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Abstract. Computational complexity analysis plays an essential part in the edu-
cation of computer and software engineers. For that reason, it is carefully studied
in programming courses, as well as in the algorithms and data structures courses.
The number of students who learn programming is rapidly growing, but the num-
ber of teachers cannot keep up with that trend. Therefore, it is necessary to develop
tools that can ease and accelerate the daily tasks of teachers, especially for learning
purposes and in the context of automating the processes of exam preparation. We
propose a novel template- and rule-based approach and a corresponding software
system for assembling synthetic source code segments of defined time complexity.
Based on the developed grammar, the system can produce source code segments
with a broad scope of different time complexities while guaranteeing the complex-
ity of the generated segment. The system can be used for generating questions for
exams as it can assemble a large number of different code segments that can be
given as questions that have similar difficulty levels. The system was evaluated both
by human experts and ChatGPT tool.

Keywords: automated source code assembling, computational complexity, time
complexity, rule-based assembling.

1. Introduction

Software is becoming an essential part of everyday life. The software industry is grow-
ing constantly, with a high and increasing demand for well-trained programmers. Many
countries invest a lot in the development of programming education, leveraging differ-
ent innovative approaches from primary education [13] to higher education [60] levels.
Computer science and engineering schools have an essential role in such education. For
example, at the Department of Electrical Engineering and Department of Software Engi-
neering of the School of Electrical Engineering at the University of Belgrade, introductory
programming courses are taught in the first year of undergraduate studies. These courses
attend more than 1000 students [33]. The number of students is expected to grow even
more in the following years amid the increasing interest in those topics [48].

The number of teaching personnel does not follow this increased number of students.
In addition, the number of exam periods is six times per course per year. This puts pres-
sure on the teaching staff and makes automated test assembling and evaluation crucial in
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maintaining the quality of the teaching process and helping the professors and teaching
assistants in their everyday responsibilities.

Computational complexity and analysis of algorithms are fundamental disciplines in
computer science. Computational complexity classifies computational problems accord-
ing to their difficulty and assigns complexity classes to them [26], [14], [12]. The analysis
of an algorithm describes how good it is from the quantitative point of view [26] and in-
cludes time and space complexity analysis. Both disciplines help programmers understand
and estimate the resources necessary to execute programs. Time complexity approximates
the time needed for the program execution depending on the problem size, while space
complexity models the computer memory usage [50]. The problem size is usually input
data size, noted as a dimension of the problem n.

Many researchers have studied these areas from the early days of computer science.
Donald Knuth summarized concepts of computational complexity theory and the big O
notation [25], first introduced a notation for lower-bounded functions [27], and created
the term analysis of algorithms [26]. Papadimitriou represented complexity as a number-
theoretic concept and examined P and NP problems [39]. Arora and Barak collected a
substantial quantity of complexity classes [5]. They also analyzed space complexity and
represented the theoretical concept of randomized and quantum computation [5].

Understanding the basic concepts of the computational complexity of algorithms, es-
pecially time complexity, is a substantial part of introductory courses on programming,
algorithms, and data structures. There are well-known classes of computer programs with
certain time complexities used in real-life applications, such as binary search, different
sorting methods, tree and graph traversals, finding shortest paths in graphs, and similar.
Most universities recognize the necessity of teaching these concepts. For example, Table
1 shows the first five universities on the ARWU (Shanghai) list [51] for the year 2022
and the courses that cover the topics on computational complexity as a part of their cur-
riculum. The selected list sorts these universities by Computer Science and Engineering
subject.

However, besides real-life examples, there is frequently a need for synthetic source
code examples with defined time complexity. Based on our previous work and efforts
[40,44], we propose a novel, template- and rule-based approach to source code assembling
of predefined time complexity. The approach is implemented through a software system
that generates code segments based on the defined code templates and interaction rules.
One of the most important goals of the system is to improve both the teaching process
and the quality of student examination. Assembled segments can be used in classes for
teaching or given to students at exams. Teachers can choose one of the segments in manual
mode or let the software system choose it in automated mode. Usage of the proposed
software significantly decreases exam assembly time, as instructors configure it once and
then use the assembled segments.

The software can help to prevent cheating with the possibility of generating many seg-
ments according to the given criteria. Therefore, each student can get a different question.
In addition, the system does not contain a database of questions in its final form, which
prevents possible database theft. To secure result correctness, the software calculates and
verifies the time complexity of the generated segments.
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Table 1. World Universities and their courses which study algorithm time complexity

University Courses

Massachusetts Institute
of Technology (MIT)

Introduction to Computer Science Programming in Python
(6.001), Introduction to Algorithms (6.006), Automata, Com-
putability and Complexity (6.045), Design and Analysis of the
Algorithms (6.046)

Stanford University Mathematical Foundations of Computing (CS103), Program-
ming abstractions (CS106B), Introduction to automata and
complexity theory (CS154), Design and analysis of algorithms
(CS161), Computational complexity (CS254)

University of California,
Berkeley

The Structure and Interpretation of Computer Programs
(CS61A), Efficient Algorithms and Intractable Problems
(CS170), Computability and Complexity (CS172)

Carnegie Mellon
University

Great Ideas in Theoretical Computer Science (15251), Al-
gorithms & Advanced Data Structures (15351), Algorithms
(15451), Undergraduate complexity theory (15455)

Tsinghua
University

Logic and Computation I, Combinatorics and Algorithms De-
sign, Advanced Theoretical Computer Science

Keeping in mind the educational perspective of a large number of students, the ne-
cessity of automatizing the exam assembling process, and cheating prevention, the main
contributions of the paper are:

– We developed a novel, formal approach for assembling code segments with verified
target time complexity.

– We implemented a software system based on our formal approach and made it pub-
licly available and open source [42].

– We evaluated the implemented system and showed that assembled segments resemble
hand-crafted and that the tool can significantly decrease exam preparation time.

The paper is organized as follows. We introduce computational complexity analysis
emphasizing time complexity analysis in Section 2. We define template- and rule-based
proposed system principles, the assembling approach, and the time complexity calculation
in Section 3. We present the system architecture in Section 4. We evaluate the system in
Section 5. We discuss related work in Section 6. We briefly conclude and summarise
directions for future work in Section 7.

2. Theoretical background

We introduce all the necessary definitions for understanding the proposed system’s design
principles. We also note the undecidability of the symbolic complexity calculation.

2.1. About time complexity calculation

We assume that a problem size depends on only one input parameter n. This assumption
is not a limiting factor because the time complexity calculations are usually done in one
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dimension [14], [12]. The function T (n), which approximates the program execution time
as a function of the problem size n, is defined with several elementary steps. Each step
has a constant execution time [14]. Unfortunately, even for small programs, this function
becomes very complex. Therefore, it is usually reduced to the function with the same
asymptotic behavior for sufficiently large n. For example, the function T (n) = n2 +
log(n) + n + 2n, is reduced to the function 2n. This is formalized by big O notation,
where O(2n) denotes a class of functions that have 2n as their upper limit. The big O
notation is defined by Definition 1 [12].

Definition 1. For a given function T (n),

T (n) = O(f(n))

if there exist c ∈ R and n0 ∈ N such that c > 0 and n0 > 0 and for all n ∈ N such that
n > n0 it holds

0 ≤ T (n) ≤ c · f(n)

.

Expression T (n) = O(f(n)) denotes that function T (n) belongs to the class of functions
O(f(n)). When this notation is used, the analysis of the complexity of an algorithm is
reduced to the analysis of the complexity of the general structure of the algorithm.

Different characteristics can be proved directly from the definition [12]. Two of them,
used in our approach for complexity calculation, are based on calculating complexity
when two independent code segments are put into the sequence and when one code seg-
ment is nested into a loop. In the case of sequence, the resulting complexity is a sum of the
two complexity classes. In the case of nesting, there are some cases where the resulting
complexity is a product of two complexity classes.

It can be proved that the sum of the two complexity classes is equal to the larger
complexity class [12], as shown in Equation 1

O(f(n)) +O(g(n)) = O(max(f(n), g(n))) . (1)

The product of two complexity classes is the complexity class of the product function
[12], as shown in Equation 2.

O(f(n)) ·O(g(n)) = O(f(n) · g(n)) (2)

Although time complexity function can have arbitrary form, there is a subset of func-
tion classes that are commonly used in real-world programming and therefore have ex-
ceptional importance in education: constant O(1), logarithmic O(log(n), linear O(n),
polynomial O(nk), k > 1, exponential O(kn), k > 1 and factorial O(n!). Equation 3
compares these function classes.

O(1) < O(log(n)) < O(n) < O(nk) < O(kn) < O(n!) (3)
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2.2. Halting problem and the complexity calculation

In the general case, the time complexity calculation of an arbitrary source code is an unde-
cidable problem. This is a direct consequence of the undecidability of the halting problem
(proved by Alan. M. Turing [56]). The halting problem is the problem of determining for
an arbitrary program and an arbitrary input whether the program will finish running or
continue to run forever. Since it is not possible to construct an algorithm that can deter-
mine if each program stops its execution, then it is also not possible to make an algorithm
that would count the number of executed statements, i.e., which would calculate the time
complexity of an arbitrary program. The Listing 2.1 shows the example of the Collatz con-
jecture problem [11]: a program that looks very simple, but its time complexity cannot be
calculated.

The Collatz conjecture program generates a sequence of numbers. For the arbitrary
number n, there is no mathematical proof that the sequence will eventually reach num-
ber 1 and that the loop will terminate. Conway proved that Collatz-type problems are
undecidable [11].

1 while(n != 1){
2 if(n % 2 == 0){
3 n = n / 2;
4 } else {
5 n = 3 * n + 1;
6 }
7 print(n);
8 }

Listing 2.1. Pseudo code of the Collatz conjecture problem

2.3. Time complexity calculation approaches in software

A time complexity calculation of a source code is a complex task, undecidable for an
arbitrary source code. However, extensive research is done to estimate and predict time
complexity or generate a code segment of the given complexity.

Early work in this context was done by McCabe, who proposed the concept of cy-
clomatic complexity [30]. Cyclomatic complexity is a software metric that measures the
number of linearly independent paths in the control flow graph of the given source code.
It is then used to estimate the complexity of the program. However, it does not quantify
the number of passes through the paths in the execution context of the program. Hence, it
cannot be used directly to estimate time complexity.

The Master theorem for divide-and-conquer problems was given in [7]. It provides
an asymptotic analysis with big O notation for recurrence relations presented in typical
divide-and-conquer algorithms. In general, the time complexity of the algorithm that takes
the problem of the size n and partitions it in partitions each sized n/b can be calculated
with Equation 4:

T (n) = a · T (n/b) + f(n) . (4)

where a is the number of partitions and f(n) is the time to create partitions and combine
their results. The time complexity of well-known algorithms such as binary search of a
sorted array, binary tree traversal, and merge sort can be calculated with this approach.
However, the approach is limited only to divide-and-conquer problems.
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In the recent period, there were attempts to use machine learning methods to estimate
the time complexity of the code. Those methods operate on hand-crafted features or ap-
propriate code embeddings, which are used to learn the internal structure of the code.
Code representations such as code2vec [4] are used in this context in [53] to predict the
time complexity class of a given program written in Java. For training purposes, they
collected annotated dataset CoRCoD: Code Runtime Complexity Dataset [32][53], ex-
tracted from online judges, with 932 source code examples with five different classes of
complexities: O(1), O(log(n), O(n), O(n · logn), O(n2). The results showed that code
embeddings have comparable performances to hand-crafted features for classification us-
ing Support Vector Machines, which showed the best accuracy, precision, and recall on
the test set. However, the accuracy was at most around 70% and varied across classes
significantly.

New research on time and space complexity prediction can be found in [52],[34].
Siddiq et al. used a GPT3-based code generation tool GitHub Copilot to predict the run-
time complexity of a given source code using zero-shot prompting [52]. The obtained
accuracy ranges from 45.44% to 56.38%, depending on the suggestions given to the sys-
tem. A transformer-based approach to space and time complexity is considered in [34].
The authors state that existing time complexity calculation libraries and tools only apply
to limited use cases because of the lack of a well-defined rule-based system. They pro-
posed using code-based language models, such as BERT, CodeBERT, GraphCodeBERT,
CodeT5, and Longformer. They achieved prediction accuracy ranging from 72.55% for
C++ codes to 92.08% for Java codes, depending on the model used.

Another machine learning approach was conducted in [36] using a dataset based on
exam questions from the Programming 1 course at the University of Belgrade, School of
Electrical Engineering. The dataset contained 61 exam questions and solutions, each rep-
resenting a code segment written in Pascal and its time complexity. Features were crafted
from the source code using three models: count vectorizer, term frequency-inverse docu-
ment frequency, and embedding layers in neural networks. The results showed that classi-
cal machine learning models, such as random forests, perform better than more advanced
models based on neural networks. However, the model’s accuracy was not high due to the
relatively small annotated data set used in training.

The authors of this paper adopted another approach to time complexity calculation.
Through several papers [44], [45], [40], [41], we developed a set of methods for source
code assembly of a given time complexity. In the first approach, a set of basic, hand-
crafted, and verified complexity segments was used to produce new segments with code
parametrization and obfuscation based on simple rules given in Equation 1 and Equation 2
[44]. However, only basic complexity classes and combining techniques were supported.
Further approach [45] introduced a more abstract assembly strategy modeled with XML
and abstract syntax trees. The paper [40] was oriented toward educational and technical
aspects of the system. These aspects are further elaborated in the extended version of the
conference paper [41], where we introduce a formal approach to the segment assembling
process with a prototype implementation described with the subset of C grammar. The
system is based on templates and rules together with the time complexity calculation ap-
proach done by symbolic calculation using the Yacas tool. This significantly broadens the
scope of assembled code segments and their complexity. Although promising, symbolic
calculation has limitations due to its high time complexity and non-applicability for some
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complexity classes. Preliminary analysis and assessment of the system for teaching and
evaluation were given in [43]. The results suggest that the system produces code segments
with similar semantics but different textual representations.

3. Segment assembling process and time complexity calculation

This section presents an algorithm for source code assembling and all the necessary con-
cepts. The algorithm merges two code segments (templates) with known complexities
using a chosen rule, which lets us calculate and guarantee the exact complexity of the re-
sulting segment. The resulting segment can be used in further segment assembling. This
enables rule cascading and complex segment assembling.

3.1. Basic building blocks, templates, and rules

A template is an arbitrary source code segment, assembled of building blocks, recognized
from imperative programming. Building blocks are assignment statements and simple
while loops. If statements are generated in the assembling process, as will be described.
For and do-while loops are generated by transforming while loops at the end of the as-
sembly process (not further discussed).

Figure 1 shows different template examples, denoted with T1 to T10. Templates T1,
T3, and T5 are examples of assignment statements, and they are predefined. Templates
T2 and T9 are examples of simple loops. Templates T2, T4, and T6 to T10 are products
of the assembling process.

Fig. 1. Assembling process with different templates and rules
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We support assignment statements that include expressions with addition, subtrac-
tion, multiplication, and division. We also support different kinds of simple loops. The
structure of a simple loop is described with grammar. In the grammar, we use the symbols
presented in Table 2 and abbreviations given in Listing 3.1. We also introduce the operator
∗ (star) to shorten the number of grammar rules (without information loss). The operator
∗ takes one permutation from the set of all permutations of the sequence of the terminal
or non-terminal grammar symbols. Symbols presented in Table 2 are non-terminal sym-
bols. They are mapped to variables and constants used in particular source code segments.
For example, in Figure 1 variable i in template T1 is a specialization of symbol a0, and
constant 1 is a specialization of symbol z1.

Table 2. Symbols used in the grammar

Symbols Description

a0, a1 Variables holding lower loop bounds
b0, b1 Variables holding upper loop bounds
s0 Variable holding a sum
v0, v1, ..., v6 Auxiliary variables
c0, c1, c2 Numerical constants greater than zero
z0, z1 Numerical constants greater than zero ordered such that z0 < z1
o0, o1 Numerical constants greater than one ordered such that o0 < o1

1 init(lower,upper) := (lower=z0; upper=n;)*
2 init(lower,upper,aux0) := (lower=z0; upper=o0; aux0=n;)*
3 body(lower,upper,aux0,aux1,aux2) := body1(lower,upper) |
4 body2(lower,upper,aux0,aux1) |
5 body3(lower,upper) |
6 body4(lower,aux0,aux2)
7 body1(lower,upper) := (lower=lower+z1; [upper=upper+z0;])* |
8 (upper=upper-z1; [lower=lower-z0;])* |
9 (lower=lower+c0 | upper=upper-c1)

10 body2(lower,upper,aux0,aux1) := (lower=aux0*aux0;
11 upper=aux1*aux1;
12 aux0=aux0+z0;
13 aux1=aux1-z0;)*
14 body3(lower,upper) := (lower=lower*o1;
15 [upper=upper-z0; | upper=lower+z0; | upper=upper*o0;])*
16 | (upper=upper/o1;
17 [lower=lower-z0; | lower=lower+z0; | lower=lower/o0])*
18 body4(lower,aux0,aux1) := (lower=aux0*aux0; aux0=aux0+z0;)* |
19 (lower=lower+aux1; aux1=aux1+z0;)*

Listing 3.1. The abbreviations for initializations of variables and definitions of bodies that
are used in the grammar

A description of a supported structure of a simple loop segment is given in Listing
3.2. The simple loop segment contains initialization statements, one while loop, and a
loop body. We initialize only those variables that are used in the loop body. The body is a
sequence of statements. We define four different body types, denoted with body1, body2,
body3, and body4 (Listing 3.1). Each type contains its corresponding statements listed in
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the table. Simple loops with body1 and body2 have complexity O(n), loops with body3
have complexity O(log(n)) and loops with body4 have complexity O(sqrt(n)).

1 simple_loop := init(a0,b0)
2 init(v0,v1,v2)
3 while(a0<b0){
4 body(a0,b0,v0,v1,v2)
5 }

Listing 3.2. Grammar rule that describes a simple loop segment

Two source code segments are data dependent if the first segment produces a result
used in the second segment and if that result impacts the time complexity of the combi-
nation of these two segments. Otherwise, these two source code segments are mutually
independent. Figure 1 also shows an example of the data dependency where two segments
are put into a sequence. Template T8, with O(n) complexity, produces a value for vari-
able s. After the loop, the value stored in s is a sum of the first n numbers. The variable
s is forwarded as an upper loop bound of the T9. Therefore, the time complexity of the
sequence is O(n2).

Each template has ports defined by the system. Ports describe data entry points (input
ports) and exit points (output ports). A port is a variable that satisfies one of the following
conditions: the variable value is gathered from the other template (input port), or the
variable value is forwarded to the other template (output port). Template T1 from Figure 1
has O(1) complexity, input port b, and output ports a and b. The output port of the template
can be connected to the input port on another template. Port connections represent data
flow between templates and exist only if that data flow impacts the resulting complexity
calculation. This happens when templates have data dependencies. Port connections are
used to mark particular data dependencies.

During the assembling, the variables inside one template can be renamed or special-
ized to constants. In this case, renaming increases the possibility of template reuse inside
different rules. Renaming is also used in the creation of port connections between two
templates. In this case, all appearances of the output port names are replaced with the
input port names.

An operation is a template merging method. It can be sequencing, nesting, and se-
lecting. Sequencing operation puts one template after another. The nesting operation puts
one template inside another template. Selecting operation puts one template into the then
branch of an if statement or two templates into the then and else branches of the if state-
ment. If statement additionally has a selection condition. We use conditions that do not
trivially evaluate to true or false. Therefore, the code in existing branches must be consid-
ered when calculating time complexity.

The rule collects all the information needed to assemble a new segment. This infor-
mation contains used templates, the data dependencies between them (denoted as port
connections), and the operation used for template merging. Also, the rule defines variable
renaming. Figure 1 contains three rule examples. Rule 1 puts templates T1 and T2 into
the sequence, renames variable a to p, specializes variable b to constant 1, and produces
template T4. This combining does not have data dependencies (and therefore does not use
port connections). Rule 3 nests template T5 in T6. In this case, data dependency between
T5 and T6 is created (and therefore port a is connected to port n), variable b is renamed
to n, and variable c is specialized to constant 2. The assembled segment is a temporary
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result. To be accepted as a result, its time complexity must be calculated. The following
section describes the time complexity calculation.

3.2. Time complexity calculation

Time complexity calculation differs in two cases: when assembling is done using two tem-
plates with and without data dependencies between them. The following sections describe
the time complexity calculation in both cases.

Assembling without data dependencies If data dependencies are not present, the time
complexity calculation is straightforward. For the sequencing and selecting operations,
the resulting complexity is a sum of the two complexity classes. In the case of nesting,
the resulting complexity is a product of two complexity classes. Therefore, starting with
simple loops and assignment statements, we can assemble segments with the complexity
classes described with Equation 5.

O(ni · logj(n) · sqrt(n)k),where i, j, k ≥ 0 . (5)

Additionally, complexity classes calculated with data dependencies can be mutually
multiplied or multiplied with complexity classes described with Equation 5. All these pos-
sibilities provide significant coverage of important complexity classes (denoted in Section
2.1) and other non-trivial complexity classes.

If the assignment statements or the if statements (with constant complexity) are nested
inside the simple loop and data dependencies are not present, the result is an enhanced
loop segment. Templates T6 and T8 (Figure 1) are examples of enhanced loops.

Assembling with data dependencies If a segment is assembled from two templates
with data dependencies between them, time complexity calculation is challenging, and
we introduce some constraints to make the calculation possible. When data dependencies
are present, the algorithm for time complexity calculation requires a defined segment
structure such that the time complexity can be calculated analytically. This is not a limiting
factor because support for more data dependencies can be easily added when necessary.
We support the following three cases of template assembling with data dependencies:

1. One or more assignment statements are nested inside one empty while loop. This case
is used for assembling the simple loop segments when the system is started. Empty
while loop and assignment statements are predefined.

2. One or more assignment statements are nested inside one simple loop.
3. Two enhanced loops are sequenced or nested.

In the first two cases, the newly created loop body must comply with one of the four
supported simple loop bodies (Listing 3.1). This implies that the assembled loop is a
simple loop segment, and its time complexity can be determined, as described in Section
3.1. Figure 1 illustrates this situation. Template T5, having the O(1) complexity, is nested
into template T6, width O(n) complexity. Template T5 changes the loop bound of the
T6. Consequently, the resulting segment has O(log(n)) complexity. The third case is
described in the following paragraphs.
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Sequencing with data dependencies Listing 3.3 describes the supported structure of the
sequence of the two enhanced loop segments.

1 loop_sequencing : =
2 (init(a0,b0) init(v0,v1,v2) (s0=0;|s0=1;) v3=c0;)*
3 while(a0<b0){
4 (body(a0,b0,v0,v1,v2)
5 (s0=s0+o0*v3;|s0=s0*o0*v3;|s0=s0+z0;|s0=s0*o0;))*
6 }
7 (init(a1,b1) init(v4,v5,v6) b1=s0;)*
8 while(a1<b1){
9 body(a1,b1,v4,v5,v6)

10 }

Listing 3.3. Grammar rule that describes two enhanced loop segments put into a sequence

The left-side variable from that statement (marked as s0) is used as an upper loop
bound in the second segment, which creates a data dependency. Let the O(f(n)) be the
complexity of the first segment in sequence and O(g(n)) be the complexity of the second
segment in sequence. The resulting complexity calculation is given in Table 3. There are
four ways to calculate the overall complexity, depending on the chosen statement.

Table 3. Asymptotic value of the variable s0 after the first segment is executed and the
resulting complexity of the sequence of two enhanced loops

Statement Variable s0 Resulting complexity

s0 = s0 + o0 ∗ v3 ≈ f(n2) max(O(f(n), O(g(f(n2))))
s0 = s0 ∗ o0 ∗ v3 ≈ f(n!) max(O(f(n), O(g(f(n!))))
s0 = s0 + z0 ≈ f(n) max(O(f(n), O(g(f(n))))
s0 = s0 ∗ o0 ≈ f(on) max(O(f(n), O(g(f(on))))

Nesting with data dependencies We describe three supported cases when two enhanced
loop segments are nested, and data dependency is present between them. These three cases
lead to three different ways of resulting complexity calculation. The data dependencies
are created with the assignment statements placed inside the outer loop and before the
inner loop. These statements modify the bounds of the inner loop in a controlled manner.
Grammar in Listing 3.4 describes these three cases.

Let the O(f(n)) be the outer loop complexity and O(g(n)) be the inner loop com-
plexity. In the first case, inner loop bounds are constants, which implies that the inner
loop does not impact the complexity calculation anymore, and the resulting complexity is
O(f(n)).

In the second case, we use multiplication and division to modify the inner loop bounds,
and the resulting complexity is described with Equation 6.

f(n)∑
i=1

g(oi0) (6)

In the third case, we use addition and subtraction for the same purpose. The resulting
complexity calculation for this case is described with Equation 7.
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f(n)∑
i=1

g(i · z0) (7)

These formulas cannot be analytically calculated for the arbitrary functions f(n) and
g(n). Therefore, we use the following functions for f(n) and g(n): n, log(n) and sqrt(n).
These functions are supported complexity classes of used enhanced simple loop segments
(as described in Section 3.1). The resulting complexity is given in Table 4 and Table 5.

1 loop_nesting := loop_nesting1 | loop_nesting2 | loop_nesting3
2 loop_nesting1 := init(a0,b0) init(a1,b1) init(v0,v1,v2) v6=c0
3 while(a0<b0){
4 body(a0,b0,v0,v1,v2)
5 init(v3,v4,v5)
6 ((a1=z1; b1=z0;) | (a1=v6; b1=v6;))
7 while(a1<b1){
8 body(a1,b1,v3,v4,v5)
9 }

10 }
11 loop_nesting2 := init(a0,b0) init(a1,b1) init(v0,v1,v2)
12 while(a0<b0){
13 body(a0,b0,v0,v1,v2) init(v3,v4,v5)
14 ((a1=a1*o0; b1=n;) | (b1=b1/o0; a1=c1;))*
15 while(a1<b1){
16 body(a1,b1,v3,v4,v5)
17 }
18 }
19 loop_nesting3 := init(a0,b0) init(a1,b1) init(v0,v1,v2)
20 while(a0<b0){
21 body(a0,b0,v0,v1,v2)
22 init(v3,v4,v5)
23 ((a1=a1+z0; b1=n;) | (b1=b1-z0; a1=c2;))*
24 while(a1<b1){
25 body(a1,b1,v3,v4,v5)
26 }
27 }

Listing 3.4. Grammar rules that describe two nested enhanced loops

Table 4. Lookup table for the complexity calculation by Equation 6

f(n) n log(n) sqrt(n)

g(n)

n on n osqrt(n)

log(n) n2 log(n)2 n

sqrt(n) sqrt(on) sqrt(n) sqrt(osqrt(n))
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Table 5. Lookup table for the complexity calculation by Equation 7

f(n) n log(n) sqrt(n)

g(n)

n n2 log(n)2 n

log(n) n log(n) · log(log(n)) sqrt(n) · log(sqrt(n))

4. Implementation details

We present the architecture of the proposed system for source code assembling based on
the defined templates and rules. The system can produce many resulting code segments
from a limited set containing initial templates and rules. This is important for the simplic-
ity of usage and for controlling the correctness of each output.

4.1. System overview

The system generates various source code segments using the set of available segments
and combining operations. It has a modular structure. Figure 2 presents system modules.
These modules are the graphical user interface (GUI), template assembling module, rule
assembling module, template database, rule database, rule execution, complexity calcula-
tion module, result segment processor, and segment-assembling manager.

Fig. 2. System overview

Rule and template assembling modules are directly connected to the databases and the
GUI. The template assembling module collects information from the GUI and then builds
the template intermediate representation, which is further downloaded to the database.
Similarly, the rule assembling module gets information from the GUI, creates the rule
representation, and saves it within the corresponding database.
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4.2. Graphical user interface

Graphical user interface is introduced in [40], and has been constantly improved. It serves
for creating custom user templates. These templates can be used to enrich the template
database or to test the system. Figure 3 displays a template assembling GUI after starting
the tool.

Fig. 3. GUI for template assembling

The template assembling GUI has the following parts: the toolbar, segment creating
pane, XML model view pane, and generated code view pane. The toolbar contains com-
mands for adding segment building blocks (loops, expressions, and selections), deleting
segments, generating code from graphical representation, saving to a file and copying the
generated code, and selecting an interface language (English and Serbian are currently
supported). The click on the creation pane adds or removes a segment, and depending
on the position of the click, we can achieve nesting or sequencing. The XML model view
pane displays the intermediate implementation of the generated segment, while the gener-
ated code view pane displays the final source code. Rule assembling GUI is implemented
similarly. It has a similar role as the template assembling GUI and enables creating custom
rules and testing the system.

4.3. Rule execution

The rule execution module is the core of the system. Figure 4 presents the steps of the
rule execution process.

Two operands used during the rule execution process can be templates, rules, or their
combination. If an operand is a template, it is forwarded to the next step. If the operand
is a rule, it is executed, and the output is delivered to the next step. Operation execution
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Fig. 4. Rule execution diagram

is straightforward. The nesting operation nests the second operand into the first. The se-
quencing operation creates a sequence where the second operand follows the first. The
selecting operation puts the first operand into the then branch and the second operand into
the else branch. Else branch may not exist.

The most complex step is the time complexity calculation of the resulting segment,
verified according to the theory and grammar described in Section 3. The last step is
establishing data dependencies using port connection, when needed. The rule definition
contains mappings between the first segment’s output ports and the second segment’s
input ports. These mappings are executed via variable renaming.

The output of rule execution is an intermediate program segment representation, which
can be stored in the template database and used as an input to another rule. The result seg-
ment processor takes the intermediate segment and converts it to the source code of the
target language. Currently, we support C and C++ programming languages, but other pro-
gramming languages can be easily added to the system. During the processing, the result-
ing segment is obfuscated [44]. Obfuscation changes the resulting source code, without
changing its time complexity, by modifying variable names not included in data depen-
dencies. As a result, the number of generated segments is additionally increased.

The segment assembling manager module is responsible for implementing higher-
level assembling strategies, which use the current template and rule mechanism to gen-
erate many segments. There are two envisioned scenarios for higher-level assembling
strategies. The first is to assemble a set of segments of some desired (target) time com-
plexity. The other one is different: starting from the seed set of basic templates and rules,
the system should assemble a set of segments and let the system calculate their time com-
plexity. A large number of segments can be further used in online examinations and CAT
(computer-aided testing).

5. Evaluation and discussion

We evaluated our proposed solution in several contexts. First, similarly to some recent
studies from the open literature, we used a machine learning approach to verify code
segment complexity. Second, we presented our experiences of using assembled segments
in exams and discussed them with the help of field experts in the form of an interview on
the topic.

5.1. Evaluated code segments

To evaluate briefly and concisely, we focused on the four most significant complexity
classes: O(log(n), linear O(n), linear logarithmic O(n · log(n)), and quadratic O(n2).
We chose two representative code segments for each class: one hand-crafted (Listings 5.1,
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5.3, 5.5, and 5.7), typically given as an exam question or presented in lectures, and one
assembled with our system (Listings 5.2, 5.4, 5.6, and 5.8).

It can be seen that some of the hand-crafted code segments represent well-known
algorithms, such as binary search and insertion sort, which are often taught as examples
in programming and algorithms and data structure courses. Those examples are shown in
Listing 5.1 and Listing 5.7. The other two hand-crafted code segments do not represent
any particular algorithm but were assembled with target complexity in mind. In Listing
5.3, it can be noted that a "dead" loop has been inserted into the code with no iterations to
confuse the less knowledgeable students.

1 d = 0, g = n-1;
2 while (d <= g) {
3 s = (d + g) / 2;
4 if (arr[s] == k)
5 break;
6 else if (k < arr[s])
7 g = s - 1;
8 else
9 l = s + 1;

10 }

Listing 5.1. Hand-crafted code segment with time complexity O(log(n)) which represent
binary search algorithm

1 f = 0;
2 a = 1;
3 b = n;
4 while (a<b)
5 {
6 a = a*2;
7 f = f+1;
8 }
9 d = f;

10 c = 1;
11 while (c<d)
12 {
13 d = d-1;
14 c = c*2;
15 }

Listing 5.2. Assembled code segment with time complexity O(log(n))

Assembled segments with our tool follow the rules presented in Section 3.2. The seg-
ments are slightly longer than those hand-crafted, mainly because the processor uses more
intermediate variables to assure correctness. Compilers-based techniques (such as con-
stant folding, constant propagation, strength reduction, copy propagation, common sub-
expression elimination, and arithmetic simplification [1]) could further simplify the code.
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1 i = s = 0;
2 while (i < n) {
3 i += 1;
4 j = m = 0;
5 for (; j <= m; ++j) {
6 m *= i;
7 s++;
8 }
9 s--;

10 }

Listing 5.3. Hand-crafted code segment with time complexity O(n). Note the dead inner
loop

1 a = 1;
2 b = n;
3 do
4 {
5 a = a+4;
6 }
7 while (a<b);
8 a = 1;
9 b = n;

10 while (a<b)
11 {
12 b = b-24;
13 }

Listing 5.4. Assembled code segment with time complexity O(n)

1 s = 0;
2 for (i = 0; i < n; i++) {
3 j = 1;
4 while (j < i) {
5 s += i * j;
6 j *= 2;
7 }
8 }

Listing 5.5. Hand-crafted code segment with time complexity O(n · log(n))

1 a = 1;
2 b = n;
3 do
4 {
5 b = b/2;
6 c = 1;
7 d = n;
8 do
9 {

10 d = d-1;
11 }
12 while (c<d);
13 }
14 while (a<b);

Listing 5.6. Assembled code segment with time complexity O(n · log(n))
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1 for (int i = 1; i < n; ++i ) {
2 int k = a[i], j = i - 1;
3 while ( ( j > 0 ) && a[j] > k ) {
4 a[j + 1] = a[j];
5 j = j - 1;
6 }
7 a[j + 1] = k;
8 }

Listing 5.7. Hand-crafted code segment with time complexity O(n2) which represents
insertion sort algorithm

1 a = 1;
2 b = n;
3 while (a<b)
4 {
5 d = n;
6 c = 1;
7 while (c<d)
8 {
9 c = c+13;

10 d = d-64;
11 }
12 b = b-24;
13 }

Listing 5.8. Assembled code segment with time complexity O(n2)

5.2. ChatGPT-based evaluation

We used ChatGPT [38], a language model-based chatbot, to assess several hand-crafted
and assembled code segments. Although the validity of such an evaluation in different
areas is widely discussed [47], [2], several recent studies [55], [9], [29] suggest the ability
of AI tools to provide explanations, examples, and guidance on complex programming
tasks. In addition, machine learning techniques can be used for time and space complexity
prediction [53], [34], [52].

We asked ChatGPT to answer the following two questions for each of the code seg-
ments given in Section 5.1:

– What is the time complexity of the following piece of code?
– Is this piece of code written by humans or generated by an algorithm?

The snapshot of the whole conversation with ChatGPT can be found at the following
link, but also on the GitHub project [42]. Conclusions drawn from the ChatGPT experi-
ment are given in the following paragraphs.

Regarding the first question, ChatGPT successfully calculated the time complexity
for all given segments, except for the hand-crafted code segment from Listing 5.3 and the
computer-assembled code segment from Listing 5.8, where it firstly gave wrong answers.
However, with additional inputs and hints, ChatGPT eventually gave correct answers. As
mentioned, the code from Listing 5.3 has a "trick" in the form of a dead loop, which
confused the chatbot. The piece of code given in Listing 5.8 indirectly uses the dimension
of the problem n through intermediate variables b and d. It confuses ChatGPT, as it could
also deceive an inattentive human reader.

https://chat.openai.com/share/d2e612a0-faa5-4b7f-a710-f1213a96e6f4
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Based on the answers to the second question, we conclude that ChatGPT does not
imply that any code segment was machine-assembled. A typical answer resembles: "This
code appears to be something a human might write. It follows typical programming pat-
terns using constructs like loops and variable manipulation. There are no obvious signs
of unusual patterns or styles that would suggest an algorithm generated it". It shows that
from this perspective, we managed to imitate the humans in the way they assemble simi-
lar code segments. ChatGPT also recognized well-known binary search and insertion sort
algorithms as human-written.

5.3. Real-life experiences

Instead of the hand-crafted counterparts, code segments generated by our system have
been occasionally used as exam questions in the Programming 2 course at the University
of Belgrade, School of Electrical Engineering, for the past three years. Typically, they
were used two or three times out of five exam periods in which the exam can be taken.
There was no observable change in students’ success on these questions. Therefore, stu-
dents find code segments generated by our system equally difficult to solve.

To assess our solution from an instructor’s perspective, we organized a focus group
of four field experts engaged in courses that deal with code complexity calculation. We
described our approach and presented the participants with the same code segments given
in Section 5.1. We asked them for comments on the following general questions:

– How much time is needed to assemble a code segment of a target complexity as an
exam question?

– How useful is the presented solution in the context of preparation of exam questions?
– For the presented pieces of code, to distinguish whether they were written by humans

or generated by an algorithm?

The participants agreed that the effort needed to assemble a code segment as an exam
question greatly depends on its time complexity and the desired structure of the code. On
average, it varies from 15 to 30 minutes, together with final verification. Taking a code
segment from some predefined repository or a book significantly reduces that time, as
only final verification and some code obfuscation are needed. In that context, a presented
software solution can be beneficial to produce a large code base and avoid question re-
peating. They also pointed out that the offered approach guarantees target complexity,
which reduces the time needed for verification and guarantees correctness.

The participants were more successful in determining whether the code segment was
machine-assembled or hand-crafted. They were correct for all hand-crafted cases and
three out of four machine-assembled cases. However, they mostly noted that this is due
to the unusual naming conventions for the variables used in assembled segments and the
generally excessive use of variables, which can be corrected in the further developments
of the system.

6. Related work

As the most fundamental concepts of programming, analysis of algorithms and compu-
tational complexity have been studied from the early days of computer science. On the
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other hand, recently, automated test assembling and evaluation have attracted significant
research interest because introductory programming courses have become massive. We
provide information on the related research and compare it with our approach.

Algorithm time complexity is a topic of various studies. There are two different ap-
proaches: empirical (profiling) and analytical. In the first approach, a program is instru-
mented and executed, possibly several times and with various inputs. Instrumentation is
achieved by inserting additional instructions into the source code or binary file, and these
instructions observe program behavior during execution. Valgrind is a tool that does ex-
tensive dynamic binary instrumentation [35]. Gprof is a tool that does a combination
of compile-time instrumentation and runtime sampling [20]. Based on the collected em-
pirical data, time complexity can be estimated. Further, profiling can help with program
optimization. McGeoch, Precup, and Cohen developed a heuristic algorithm for finding
upper bounds among datasets [31]. A dataset is represented by the two vectors X and Y ,
such that Y = f(X), where f is an unknown function. The problem is to analyze X and
Y and estimate complexity bound O(f(X)).

S. F. Goldsmith, A. S. Aiken, and D. S. Wilkerson [19] developed a profiling soft-
ware called trend-prof. It constructs empirical computational complexity models. The au-
thors showed that for real-world programs, linear and exponential complexity models are
enough for roughly modeling execution time. We decided to use a formal approach be-
cause empirical complexity calculation involves compiling, linking, and executing the
generated segment numerous times with extensive input data. In addition, our software
should generate many segments, which would take too long if empirical complexity cal-
culation is used.

In the analytical approach, the time complexity of the program is analyzed statically,
i.e., without executing the program. This approach might give more precise results than
profiling but is generally undecidable as it requires calculating loop summaries symbol-
ically. J. Gustafson, A. Ermedahl, C. Sandberg, and B. Lisper [22] presented a method
for deriving a static worst-case execution time using symbolic execution. To estimate the
time, they estimate the upper bound on the number of loop iterations. The estimated time
is a number, while our work uses symbolical values for complexity functions. Research on
symbolic execution [54] is based on the computation of loop summaries for loops along
acyclic paths leading to the target location. It demonstrates that the usage of the symbolic
execution can lead to a very complex calculation that requires SMT [6] solvers usage. S.
Gulwani, K. K. Mehra, and T. Chilimbi [21] developed a technique for computing sym-
bolic bounds on the number of statements as a function of scalar input and user-defined
functions that describe input data structures. They add counters to the source code, and
the modified code is symbolically executed and generates symbolic bounds. However,
their algorithm may not calculate the result in some cases. The mentioned approaches
use extensive symbolic computation, where entire programs are subject to execution. We
use a symbolic execution-based technique only when we combine two program segments
with data dependencies. Instead of using SMT solvers, we constrained our software to the
cases when symbolic calculation can be done analytically, and then precalculated results
are incorporated into the software as lookup tables.

There are various approaches to automated test assembling and evaluation. One ap-
proach is to choose the questions from the database considering various parameters, such
as the examination area, question difficulty, the appearance of the previous exams, etc.
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That kind of software system often uses artificial intelligence, logic programming, and
genetic algorithms [10], [23], [59]. Another approach is the question parameterization
[16], [17], [18]. If the questions are used for programming exams, parameterization can
be done with the change of the input data, which results in a change in the output. Pa-
rameterized parts can be marked or chosen randomly. Our software also uses question
parameterization during the assembling process.

The idea for the source code segments assembling process is based on A. W. Bier-
man’s work [8]. He presented program segments as a sequence of abstract expressions
derived from the rules applied to the specific source code. Our approach is the reverse:
starting from the set of defined templates and rules, templates are combined with the rules,
and as a result, the segments are assembled.

The evaluation can be automated when the examination is done using pencil-and-
paper tests or online. In the case of pencil-and-paper tests, answers are written on partic-
ular paper forms, which are then scanned and further processed by specialized software
[33]. Online examination is usually performed by popular learning management systems
such as Blackboard, Canvas, and Moodle [15]. Different techniques are used for auto-
mated evaluation [3], [24]. New approaches combine several techniques [57]. For exam-
ple, M. V. Janicic, M. Nikolic, D. Tosic, and V. Kuncak developed the software tool for
automated grading of students’ assignments, using testing, software verification, and con-
trol flow graph similarity measurement [58]. Our system automatically generates correct
answers. Therefore, it can evaluate generated questions.

The difficulty levels of generated questions are similar, although the questions look
different to the students. In our earlier study [43], we have shown that there is a notice-
able difference between textual similarity of the generated segments that was additionally
verified using the JPlag tool [46] for source code similarity detection. On the other hand,
the semantic similarity of the generated segments was high.

The cheating problem can be present no matter how exams are organized. With the
help of software tools, teachers can prevent cheating in different ways. One way is to
check if the solutions offered by students are a product of cheating. This check can be
done with various tools for software comparison [49], [46], which detect similar solu-
tions. Another way is trying to prevent cheating before the examination even starts. This
prevention can be achieved by assembling the exam questions such that each student is
given a different set of questions with similar characteristics. This is especially adequate
for computer-aided tests but can also be used for paper tests. Our approach supports this
solution.

Finally, the approach to source code assembly with defined time complexity presented
in this study has several limitations. Although a broad scope of segments of different time
complexities can be produced, they are still limited to a closed set based on the defined
grammar. However, all practically important examples of time complexities found in the
most important scholarly books from the field [12], [14], [39], [25] can be produced. The
only notable exception is the support for code segments that contain recursion, which is
not supported by our current approach and will be the topic for future research.
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7. Conclusion

This paper presents a novel approach to source code assembly for defined time com-
plexity. A formal, grammar-based method models a broad class of code segments with
different time complexities. Code templates and rules guide the assembly process. In con-
trast with machine learning approaches, our approach guarantees the time complexity
correctness of the generated code segment.

The implemented system can be used both as an educational tool during the teaching
process and as a helper tool for the automated assembly of exam questions. The assem-
bling algorithm makes it possible to follow the assembling process so students can easily
understand the presented time complexity.

There are several directions for future work. The core of the system can be further ex-
panded to include additional, rarely used classes of time complexities that are not present
in the system. Produced segments can be assigned weights based on defined metrics,
which would facilitate the final choice of segment by the instructor.

From our experience, students find time complexity calculation difficult. In that sense,
any effort that can help students learn it step by step can be beneficial. One of the apparent
directions for future work is to make our tool suitable for educational purposes, which
follows the recommendations for new approaches in learning code complexity analysis
[28] and a general call for innovative technologies in education [37].
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