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Abstract. Recent work has demonstrated the Transformer model is effective for
computer vision tasks. However, the global self-attention mechanism utilized in
Transformer models does not adequately consider the local structure and details
of images, which may result in the loss of information and local details, causing
decreased estimation accuracy in gaze estimation tasks when compared to convo-
lution or sequential stacking methods. To address this issue, we propose a paral-
lel CNNs-Transformer aggregation network (CTA-Net) for gaze estimation, which
fully leverages the advantages of the Transformer model in modeling global context
while the convolutional neural networks (CNNs) model in retaining local details.
Specifically, Transformer and ResNet are deployed to extract facial and eye infor-
mation, respectively. Additionally, an attention cross fusion (ACFusion) Block is
embedded with CNN branch, which decomposes features in space and channels to
supplement lost features, suppress noise, and help extract eye features more effec-
tively. Finally, a dual-feature aggregation (DFA) module is proposed to effectively
fuse the output features of both branches with the help feature a selection mecha-
nism and a residual structure. Experimental results on the MPIIGaze and Gaze360
datasets demonstrate that our CTA-Net achieves state-of-the-art results.
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1. Introduction

Estimating gaze from a single low-cost RGB sensor is an important research topic in
computer vision, where eye or facial images are typically used as inputs to estimate the
real gaze direction and locate gaze points. Gaze estimation has important applications in
fields such as human-computer interaction [32], education [10], and medical diagnosis
[36] [30].

Existing gaze estimation methods can be roughly categorized into two categories:
model-based methods [9] [23] [25] and appearance-based methods [13] [26] [22]. Model-
based methods focus on learning the geometric model of the entire eye and perform gaze
estimation through manual calibration of features. However, this approach heavily relies
on complex experimental equipment, which limits its effectiveness in harsh and uncon-
strained environments. In recent years, appearance-based methods have attracted much
attention due to the development and application of deep learning, which only requires
a regular RGB camera to capture images and directly learns the mapping function from
facial appearance to human gaze [1]. CNNs have the ability to learn highly complex map-
ping functions, making them suitable for gaze regression. For example, Dilated-Net [4]
, RT-Gene-Net [12], CA-Net [5]. Although these CNNs-based gaze estimation methods
have achieved good performance, they always rely on using dilation convolution opera-
tions with different padding rates to extract contextual information, which may cause the
loss of local information related to gaze and make the contextual information unrelated.
Therefore, developing more effective gaze estimation models is critical for achieving bet-
ter performance, robustness, and generalization in gaze estimation tasks.

Along with the Transformer model [28], thanks to its self-attention mechanism that se-
lectively captures long-term dependencies between all tokens, has demonstrated outstand-
ing performance in natural language processing tasks. In recent years, researchers have
explored the use of Transformers in visual tasks, including gaze estimation. For instance,
Cheng et al. [6] designed a Hybrid Transformer, which combines CNN and Transformer
to extract low-level features and model global interactions, respectively. Cai et al. [2] used
a linear combination of different Transformer frameworks for prediction and achieved a
high ranking in the ETH-XGaze competition leaderboard. These methods effectively ad-
dress the limitations of the Transformer architecture in modeling fine-grained details by
using convolutional networks to introduce spatial biases in modeling local information.
However, given that the operation of flattening image patches in the Transformer architec-
ture may negatively impact the internal structural information of low-resolution images .
Additionally, Transformer-based approaches often suffer from a quadratic growth of com-
putational complexity with spatial size, which can result in cumbersome network architec-
tures. Therefore, there is a need for a new network framework that can effectively address
these issues while maintaining the integrity of structural information in low-resolution
images.

In this paper, a parallel CNNs-Transformer aggregation network is proposed for gaze
estimation (CTA-Net), which explicitly embeds global context and local information. Dif-
ferent from most existing Gaze estimation methods using a single feature encoder to ex-
tract feature, our CTA-Net adopts a parallel CNNs-Transformer structure to extract local
and global cues via CNNs and Transformer networks from facial and eyes images, re-
spectively. Moreover, since existing methods either ignore the correlation between the
two eyes or handle the eye images separately for final output, we propose an eye image
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Attention Cross Fusion (ACFusion) Block by using different combinations and interac-
tion mechanisms. Specifically, we generate multiple attention feature maps through an
attention mechanism to effectively filter out redundant or noisy information in feature
channels, and further enhance the internal information of features and improve the per-
formance of gaze estimation and target detection by interacting with binocular attention
features. Finally, a dual-feature aggregation (DFA) module is introduced to merge the
output features of different encoders for joint gaze regression.

Our contributions are as follows:
• We propose a parallel CNNs-Transformer aggregation network for gaze estimation

(CTA-Net), which simultaneously considers the local details of features and global high-
level semantic information.

• We design a dual-feature aggregation (DFA) module to fully integrate feature in-
formation from different encoders, promoting global information from the Transformer
branch and reducing the noise that CNN features may contain.

• We present an eye image Attention Cross Fusion Block(ACFusion), which generates
multiple attention feature maps to aggregate attention feature information for binocular
image interaction.

2. RELATEDWORK

In the realm of gaze estimation, our exploration of related work focuses on two pivotal as-
pects: Gaze Estimation and Transformer-based approaches. These choices are motivated
by the historical evolution of gaze estimation methodologies and the recent transformative
impact of Transformer architectures in computer vision.

2.1. Gaze Estimation

Before the advent of CNN-based approaches to gaze estimation, regression functions were
commonly used to create specific gaze mapping functions. These methods, such as neu-
ral networks [31], adaptive linear regression [21], Gaussian process regression [33], and
dimension reduction [20], showed reasonable accuracy in constrained settings, but they
were significantly less accurate in unconstrained settings due to the highly non-linear na-
ture of the mapping function. However, with the rapid development of deep learning in
recent years, Zhang et al. [38] proposed the first CNN-based gaze estimation method that
far exceeded the performance of function regression methods using only a simple CNN.
Since then, many improved and extended CNN-based gaze estimation methods [7] have
emerged. For instance, Yu et al. [19] designed a multi-task gaze estimation model with
landmark constraints, and Fischer et al. [12] used VGG-16 to extract features from binoc-
ular images to estimate gaze. Zhang et al. [38] proposed GazeNet, which inputed eye
images into a 16-layer architecture where the head pose information was connected to the
first fully connected layer after the convolutional layer. Cheng et al. [4] introduced dilated
convolution in their gaze estimation method, which was combined with joint inference
for head and eye avatars. Moreover, Cheng et al. [8] developed the FAR-Net to estimate
the 3D gaze points of both eyes by combining the asymmetric properties of both eyes,
which has the best performance in several public data sets. Krafka et al. [18] presented
a multi-channel architecture to takes as input a left-eye image, a right-eye image, and a
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cropped image of the face and face grid information. Cheng et al. [5] later proposed a
coarse-to-fine network to integrate face and eye images by estimating a basic gaze from
the face image and then refining the basic gaze with the eye image. To better investigate
CNN-based gaze estimation, many large-scale gaze dataset tasks have been mentioned
[16] [40] [37]. Despite the great success of these methods in gaze estimation, more accu-
rate models are always needed and gaze estimation still faces challenges.

2.2. Transformer

The Transformer was initially introduced by Vaswani et al. [28] in the realm of natural
language processing (NLP), as a unique self-attention mechanism to replace convolu-
tional and recurrent networks. Compared with recurrent networks, the global computa-
tion of self-attention layers can selectively capture long-term dependencies between all
tokens, and efficiently capturing continuity between semantic information and exhibiting
outstanding performance. The success of the Transformer in NLP has inspired research in
the field of computer vision, and it has been applied to various visual tasks. For instance,
Carion et al. [3] used the encoder-decoder structure of the Transformer as the detection
head (DETR) by extracting image features through a CNN and inputting the features
into the detection head for prediction. Dosovitskiy et al. [11] proposed a purely self-
attention-based visual Transformer (ViT), which solved the image classification problem
by directly predicting possible categories using the Transformer encoder after dividing
the image into non-overlapping 16×16 patches. Zheng et al. [41] applied the Transformer
to replace the encoder in the natural image segmentation task to achieve state-of-the-art
results. Cheng et al. [6] first introduced the Transformer into the gaze estimation task and
proposed a Hybrid Transformer, which extracts bottom-level features using a CNN and
models global interaction through the Transformer. Cai et al. [2] combined various Trans-
former frameworks to make predictions, and Huang et al. [15] proposed a lightweight
transformer network for gaze estimation by using self-attention mechanisms. However,
when replacing convolution with the Transformer or stacking them sequentially, it may
lead to the loss of semantic information and features, affecting gaze estimation accuracy.
Therefore, new methods are needed to address this problem.

3. Methods

3.1. Overall architecture

The architecture of CTA-NET is shown in Fig. 1, which mainly consists of a Gaze Transformer-
ResNet encoder, an attention cross fusion (ACFusion), and a dual-feature aggregation
(DFA) module. We first adopt a parallel Transformer-ResNet network to extract facial and
eye information, respectively. Specifically, the Transformer branch is utilized to process
facial images and starts with global self-attention, which is then followed by the restora-
tion of detailed local features. Meanwhile, the CNN branch processes eye images, and the
ACFusion module is employed to enhance the expression ability of local features by in-
creasing the receptive field through two layers. The features extracted from both branches
are fed into our proposed DFA module, which selectively fuses the information using at-
tention and Hadamard addition. The multi-level fused feature maps are combined using
residual connections, and then passed through a fully connected layer for gaze estimation.
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Fig. 1. An overview of the CNNs and Transformer aggregation network framework(CTA),
which includes two parallel branches(Transformer and CNN), and our proposed Dual
Feature Aggregation module

3.2. Gaze Transformer-ResNet Encoder

Unlike previous methods[6][2], we do not send the facial and eye images together to the
Transformer for gaze regression after processing with the CNN. This decision stems from
our consideration that the Transformer relies on the concept of position encoding, and
the amalgamation of features from distinct facial regions may compromise the inherent
positional information of the subject. Such compromise has the potential to diminish the
accuracy of gaze estimation. In lieu of this approach, our paper introduces a two-stream
framework, meticulously designed to concurrently extract features from diverse image
types. The merit of this parallel processing framework lies in its ability to not only capture
comprehensive global information but also retain sensitivity to local details. This dual
focus proves advantageous in achieving more precise and accurate gaze estimation.

Transformer Branch The Transformer branch adopts a traditional encoder-decoder ar-
chitecture, starting with the input image x ∈ RH×W×3 being divided into N = H

S × W
S

blocks with S typically set to 16. These blocks are flattened and linearly projected into a
D0 -dimensional output, generating the original embedding sequence e ∈ RN×D0 . To
incorporate prior knowledge, a learnable position embedding is added to e. Then, the gen-
erated embedding z0 ∈ RN×D0 is used as the input to the Transformer encoder, which
consists of L layers of multi-head self-attention (MSA) and multi-layer perceptron (MLP)
[27]. The self-attention module is the core of the Transformer encoder, and updates the
state of each embedded patch by globally aggregating information across all layers. By
applying the softmax function, the inner product between the query(q) vector and the
key(k) vector is normalized, resulting in a relative weight assigned to each elemenAt of
the global information. This facilitates the aggregation and updating of the global infor-
mation, as expressed through the following formula:

SA (zi) = softmax

(
qik

T

√
Dh

)
v, (1)
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where [q,k,v] = zWqkv,Wqkv ∈ RD0×3Dh is the projection matrix, zi ∈ R1×D0 and
qi ∈ R1×Dh are the i-th rows of z and q , respectively. MSA is extended by concatenating
multiple self-attention modules SA and projecting the latent dimension to RD0 . The MLP
is a dense layer stack consisting of fully connected layers with GELU activation and
Dropout, where the first fully connected layer increases the number of input nodes by four
times, and the second fully connected layer recovers the original number of nodes. The
output of the last transformer layer is layer-normalized to obtain the encoded sequence
zL ∈ RN×D0 . The encoded sequence zL is reshaped to produce the final output ft ∈
RH

8 ×W
8 ×D0 , which is then jointly inputted into the DFA module with the feature map

outputted by the CNN branch for sufficient fusion.

CNN Branch Our CNN branch is designed based on the ResNet network architecture.
The traditional ResNet contains 4 layers to obtain enough low-level information while
avoiding excessive consumption of model resources from overly deep networks, which
can increase the model’s sensitivity to noise, interference, and adversarial attacks. In our
approach, we specifically chose the output of the second layer CONV ∈ RH

8 ×W
8 ×C as

the feature information for subsequent fusion. This choice aims to enhance the overall
generalization ability. To better preserve the details of the image and reduce information
loss, we introduce an upsampling operation before feature fusion. Specifically, we first
use bicubic interpolation to upsample the left and right eye images (56×56→224×224).
Compared with traditional bilinear interpolation, bicubic interpolation has better edge-
preserving ability and performs better in visual tasks that require accuracy. Next, the
ResNet network is utilized to extract features to generate the original feature images
fL ∈ RH

8 ×W
8 ×C and fR ∈ RH

8 ×W
8 ×C . These paired features are then input into our

proposed feature-enhanced attention module ACFusion to fuse the left and right eye fea-
tures. Furthermore, The feature fc ∈ RH

8 ×W
8 ×C1 obtained by the CNN branch is then

combined with the feature map output by the Transformer branch and input into the DFA
module for comprehensive fusion.

3.3. Attention Cross Fusion

This article proposes a module named ACFusion Fig. 2 to address various issues in the
task of gaze estimation caused by the fusion of information from the left and right eyes,
such as feature noise, information loss, and region imbalance. The ACFusion module
combines residual connections with attention mechanisms to effectively fuse the feature
information from the left and right eyes. Specifically, the ACFusion module employs a
channel attention mechanism to assign different weights to feature maps, emphasizing
important features while suppressing noise. For the left eye feature tL, the ACFusion
module first calculates the weight of each channel and adjusts the feature map based on
these weights to retain valuable features. The channel attention mechanism is then used
to further enhance the left eye feature map. The attention-enhanced left eye feature map
is multiplied by the right eye feature tR, and their spatial information is encoded and
mapped using a 3x3 convolutional operation to highlight or suppress the necessary re-
gions. The resulting convolutional features are calculated using the ReLU function to
retain useful feature information. To further improve the quality of the fused feature rep-
resentation, the ACFusion module employs a spatial attention mechanism to enhance the
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Fig. 2. Schematic diagram of the attention cross-fusion module. As shown in the figure,
it includes a channel attention module(CA Module), convolution module, and spatial at-
tention module(SA Module). The feature map is converged by each module in turn and
cross-fused with the original feature map to get the final output. The fusion operation of
the eye image is carried out simultaneously

global contextual information of the feature map. In this process, the refined left and right
eye feature maps are progressively combined with the original feature map to obtain an
information-enhanced feature map. Finally, these feature maps are concatenated and out-
put as the fused feature fc.

The ACFusion module effectively utilizes the left and right eye feature information.
Compared with previous single extraction methods, the ACFusion module can more ef-
fectively capture the left and right eye feature information while reducing feature noise
and information loss. By introducing attention mechanisms, the ACFusion module can
also better adapt to the imbalance of image regions, further improving the quality of the
fused feature representation.

3.4. Dual Feature Aggregation

Due to the issues of dimension mismatch, context integration, and imbalanced feature
representation in the fusion of encoding features from CNN and Transformer, in order to
balance the feature expression capabilities of both and ensure comprehensive representa-
tion and integration of global and local contextual information, we propose a novel DFA
Block (see Fig. 1(c)) that combines attention and multi-layer feature fusion mechanisms.
Specifically, we leverage the SE-Block introduced in [14] to incorporate channel atten-
tion with residual connections to process the global information ft from the Transformer
branch, resulting in the featured representation Ft:

Ft = Residual ([ft, ChannelAttn (ft)]) . (2)

Here, Residual() denotes the residual connection operation, while ChannelAttn() de-
notes the complete channel attention module, and SpatialAttn() denotes the complete
spatial attention module. Considering that high-level features in CNNs typically possess
a larger receptive field and stronger semantic information, we adopt spatial attention from
CBAM [34] as a spatial filter combined with residual connections to process the feature
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information fc from the CNN branch, enhancing local details and suppressing irrelevant
regions to obtain the feature Fc:

Fc = Residual ([fc,SpatialAttn (fc)]) . (3)

Next, Hadamard addition is applied to element-wise sum the outputs from both branches
to alleviate the issue of gradient vanishing, preserve the positional information of the orig-
inal feature maps, and enhance the expressive capacity of the model:

Fhadamard = Conv (ft ⊕ fc) .

Here, | ⊕ | denotes Hadamard addition, and Conv refers to a 3x3 convolutional layer.
Finally, the interactive feature Fhadamard is concatenated with the attention features Ft

and Fc, followed by a final fully connected layer. This step allows for effective integration
of global and local contextual information, resulting in the feature representation gp that
effectively captures the global and local context at the current spatial resolution:

gp = (Ft) Concat (Fc) Concat (Fhadamard ) . (4)

Here, the Concat operation entails merging the outputs of multiple independent self-
attention modules along the feature dimension. The proposed block combines two atten-
tion mechanisms to enhance the learning of global and local contextual information.Firstly,
the SE block introduced in [14] is employed to fuse channel attention with residual con-
nections, aiding the flow of global information in the Transformer branch. Secondly, spa-
tial attention is utilized as a spatial filter combined with residual connections to selectively
emphasize local details and suppress irrelevant regions. This approach leverages the fact
that high-level features in neural networks typically possess larger receptive fields and
stronger semantic information. By combining these attention mechanisms, our goal is to
effectively capture both global and local contextual information. To further enhance the
model’s expressive power, we utilize the Hadamard addition operator to element-wise
combine the outputs of the two branches, effectively integrating both global and local
contextual information. Finally, the interactive feature Fhadamard and the attention features
Ft and Fc are concatenated and passed through a final fully connected layer. This step en-
ables the model to effectively integrate global and local contextual information, resulting
in the feature representation gp that captures contextual information at the current spatial
resolution.

3.5. Loss Function

Deep supervision is a technique that introduces intermediate supervision signals at mul-
tiple stages of the network. In our approach, we employ deep supervision to enhance
the training process[24]. Specifically, we incorporate the Transformer branch and fusion
branch into our architecture, serving as additional sources of supervision. These branches
aim to capture different aspects and features of the input data.By adding these intermedi-
ate supervision signals, our goal is to improve gradients and facilitate convergence during
network training. Deep supervision signals provide valuable information at different lev-
els of abstraction, enabling the network to learn more effectively and efficiently. This
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approach not only helps optimize the overall loss function but also enhances the inter-
pretability and generalization capability of the network. We formulate a comprehensive
objective function as follows:

L = αL (G, ft) + βL (G, fc) + γL (G,gp) , (5)

where α, β, and γ are adjustable hyperparameters that control the weights of each compo-
nent. L (G, ft) represents the weighted IoU loss between the predicted facial gaze values
ft and the ground truth (G). This term encourages accurate localization of facial pixels
and precise depiction of facial regions. L (G, fc) represents the binary cross-entropy loss
between the predicted facial gaze values and the ground truth, promoting pixel-wise clas-
sification accuracy of facial regions. Finally, represents a specific loss term that captures
additional information related to facial geometry. By combining these different loss terms,
the network is guided to learn robust and accurate facial gaze values. Through experi-
mentation and iterative optimization of hyperparameters, we can find the optimal balance
between the different components of the loss function, thereby improving the overall per-
formance of the network. In summary, adopting weighted IoU loss, binary cross-entropy
loss, and deep supervision techniques contributes to enhancing the effectiveness and ro-
bustness of our gaze prediction network. These strategies enable the network to leverage
both pixel-level and high-level cues to accurately depict and localize facial regions, mak-
ing it suitable for various practical applications such as facial analysis, recognition, and
virtual reality.

4. Experiments

4.1. Setups

Dataset Our experiments are conducted on two main-stream datasets: MPIIGaze [40] and
Gaze360 [17]. MPIIGaze is a kind of data set of gaze estimation based on appearance. It
consists of MPIIGaze and MPIIFaceGaze, with MPIIGaze containing 15 subjects and
3,000 eye images per subject. The 3000 eye images are made up of 1500 left-eye images
and 1500 right-eye images. MPIIFaceGaze, as an extension of MPIIGaze, contains the
face image corresponding to each eye image in MPIIGaze. Note that MPIIGaze provides
a standard evaluation method that selects 3000 images for each subject to make up the
evaluation set. With leave-one-out evaluation, we do the experiment in the evaluation set,
not in the whole evaluation set.

Gaze360 contains part of the back image without facial features, so we need to delete
the image without face detection result according to the face detection annotation pro-
vided. Gaze360 contains a training set with 84K images for 54 subjects and a test set with
16K images for 15 subjects.

Data preprocessing We normalized both datasets in the same way. Specifically, we used
virtual camera rotation and translation to eliminate the roll angle of the head and maintain
the same distance between the virtual camera and the reference point (the center of the
face). Additionally, we cropped eye images of size 56×56 from the normalized facial
images, which were automatically detected using a face detection algorithm. The eye
images were then histogram equalized and converted to grayscale to eliminate lighting
effects.
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Implementation details CTA-Net was built using the PyTorch framework and trained
using an NVIDIA-A40 GPU. We used the Adam optimizer to train the entire model and
used a linear learning rate warm-up with a warm-up phase of 5. For training on MPIIGaze,
we use a batch size of 512 and 80 iterations, with a learning rate set to 0.0005 and a decay
rate of 0.5. On Gaze360, we use a 256 batch size and 80 iterations, with a learning rate
set to 0.0005 and a decay rate of 0.5. It is worth noting that we trained MPIIGaze using
the leave-one-out method, taking an average of 15 sessions.

Evaluation metrics We use gaze Angle error as the evaluation measure of most gaze
estimation methods. Assuming that the ground truth gaze direction is G ∈ R3 and the
predicted gaze vector is g′ ∈ R3, the gaze Angle error can be calculated as follows:

Langular =
G · g′

∥G∥ ∥g′∥
. (6)

The smaller the Angle error value is, the closer the model result is to the real value.

4.2. Comparison with appearance-based methods

To demonstrate the performance of our proposed method compared to other appearance-
based gaze estimation methods on two datasets, MPIIFaceGaze and Gaze 360, we con-
ducted a comprehensive evaluation. Considering the unique characteristics of the CTA-
Net network architecture, we compared it with a total of nine convolutional network-
based gaze estimation methods, including Full-face [39], Dilated-Net [4], RT-Gene [12],
and GazeTR-Hybrid [6](the transformer-based gaze estimation method) to showcase its
design advantages. Due to the unavailability of source code for some recent appearance-
based methods, we referenced Cheng’s survey [7] for some of our data.

Table 1. Performance in MPIIFaceGaze dataset. Due to the improved accuracy of RT-
Gene through ensemble of four models, we also provided the results of model ensemble
and referred to it as RT-Gene (4 models) to distinguish it from RT-Gene

Methods MPIIFaceGaze Gaze360 (Front 180◦) Realtime

iTracker (AlexNet)[18] 5.6◦ None 37ms
MeNets[35] 4.9◦ None 36ms
FullFace[39] 4.8◦ 14.99◦ 37ms
Dilated-Net[4] 4.8◦ 13.73◦ 34ms
RT-Gene[12] 4.8◦ None 34ms
RT-Gene(4 ensemble) 4.3◦ 12.26◦ 36ms
Bayesian Approach[29] 4.3◦ None 32ms
FAR-Net[8] 4.3◦ None 33ms
CA-Net[5] 4.27◦ 12.26◦ 34ms
Gaze360[17] None 11.40◦ 33ms
GazeTR-Hybrid[6] 4.00◦ 10.62◦ 28ms

CTA-Net(ours) 3.91◦ 10.44◦ 30ms



Gaze Estimation Feature Aggregation and Attention Fusion 841

Fig. 3. The dataset is presented in a visualized format, where the ground truth is repre-
sented by a red arrow

Table 1 presents the results on the MPIIFaceGaze dataset. Our CTA-Net achieves
lower angular error compared to the other methods. Specifically, our CTA-Net outper-
forms the highly accurate GazeTR-Hybrid with an angular error of 3.91°, representing an
improvement of nearly 0.1° on the MPIIFaceGaze dataset. Table 1 displays the results on
the Gaze 360 dataset. Following the division of the Gaze 360 dataset into train-val-test
sets and evaluation ranges by Kellnhofer et al. [17], we adopt the same evaluation crite-
ria, focusing on the frontal 180° range. This allows for a fair comparison with all relevant
methods trained and evaluated on datasets within the 180° range. The proposed CTA-Net
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achieves state-of-the-art gaze estimation performance with an average angular error of
10.44° in the frontal 180° range.

Fig. 3 illustrates the visualization results of the proposed method on the MPIIGaze
dataset. Panels (a)-(d) show visualizations of eye directions for different subjects. Each
group presents the visualizations for the same subject under different methods. We also
compared the visualizations from the MPII model and the ground truth. The experimental
results demonstrate that our method can adapt to different eye appearances while main-
taining high accuracy and robustness.In summary, our research extends beyond theoretical
contributions to underscore the practical efficacy of the proposed model. Through rigor-
ous visual analyses in real-world application scenarios, depicted in Fig. 4, we confirm the
model’s robust generalizability. The positive outcomes observed in diverse contexts not
only enhance theoretical understanding but also position the model as a versatile and ef-
fective solution for addressing real-world challenges. This dual validation, both in theory
and practical application, establishes our model as a promising and impactful advance-
ment in the field.

Fig. 4. The Citation Representation of Models in the Real World

4.3. Ablation study

We propose ablation experiments for the network structure and the proposed module re-
spectively, and evaluate the effectiveness of the parallel branch design and the fusion
module by changing the serial-parallel structure of the backbone network and the design
choice of the fusion module.

Ablation experiments of structures. In order to better reflect the effectiveness of the
parallel structure of CNN and Transformer, we design two simple network frameworks re-
spectively, as shown in the figure, and recorde our experimental results on MPIIFaceGaze
and Gaze360.

In this study, we present two architectures for gaze estimation: (a) a unified approach
where both facial and eye images are processed by the same convolutional network before
being fed into a transformer decoder and a fully connected layer for the final output, and



Gaze Estimation Feature Aggregation and Attention Fusion 843

Fig. 5. The structure of CNN is mainly a pre-trained backbone network, including a pool-
ing layer and fully connected layer, while the structure of the transformer is consistent
with that in the text. Figure (a) is a serial structure, and Figure (b) is a parallel structure

(b) a parallel architecture inspired by CTA-Net, which utilizes separate convolutional and
transformer networks that are connected via a fully connected layer, shown in Fig. 5. To
ensure experimental accuracy, we do not incorporate any additional modules and relied
solely on ImageNet pre-trained networks for our CNN backbone. Our results (Table 2)
demonstrate that the parallel architecture outperforms the unified approach by a margin
of 0.13° and 0.25° on MPIIFaceGaze and Gaze360 datasets, respectively.

Table 2. Ablation experiments of structures. ‘CNN→TR’and ‘CNN+TR’indicate a serial
structure and a parallel structure, respectively

Methods Backbones Pre-train MPIIFaceGaze Gaze360

CNN�TR ResNet18 ImageNet 4.47◦ 12.31◦

CNN�TR ResNet50 ImageNet 4.50◦ 13.16◦

CNN+TR ResNet18 ImageNet 4.44◦ 12.57◦

CNN+TR ResNet50 ImageNet 4.37◦ 12.21◦

In addition, we conduct a thorough analysis of the rationality of the CNN branch
design. Specifically, we perform comparative experiments to evaluate different upsam-
pling methods and output layers of the CNN branch network. The tested upsampling
methods include linear and bicubic interpolation, while the four different levels of the
ResNet50 network are used as output layers. The overall architecture of the model remain
unchanged, with the transformer branch generating an encoding sequence, which is re-
shaped to match the output channels of the CNN branch. The results, as shown in Table
3, indicates that the bicubic interpolation method exhibited higher accuracy compared to
the linear interpolation method. In addition, our performance analysis of the output layer
selection of CTA-Net demonstrates that it represented the optimal choice. These findings
provide compelling evidence for the benefits of our proposed CNN branch design strategy.
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Table 3. Ablation experiments of CNN branch

CNN-ResNet50
MPIIFaceGaze Gaze360
bilinear bicubic bilinear bicubic

Layer L

L=1 3.94° 3.94° 10.60° 10.59°
L =2 3.93° 3.91° 10.51° 10.44°
L =3 3.97° 3.95° 10.77° 10.71°
L =4 4.02° 4.01° 10.61° 10.61°

Ablation experiments of modules.
In order to evaluate the impact of ACFusion and DFA modules on gaze estimation

accuracy, we design CT-Net for module comparison, which replaces the module details
in CTA-Net with fully connected layers for direct output. Results on both datasets are
shown in Table 4(‘CTF-Net’stands for CT-Net+ACFusion network.), where our proposed
method demonstrates a significant improvement in accuracy when incorporating the AC-
Fusion module, with an increase of 0.16° and 1.92° on MPIIFaceGaze and Gaze360, re-
spectively. At the same time, both datasets exhibit worse performance compared to CTA-
Net, which proves the advantages of the proposed attention components. In addition, we
present the gaze estimation accuracy of each participant in the MPIIFaceGaze dataset and
compare different methods. Out of 15 participants, our proposed method achieves better
gaze estimation accuracy for 9 participants, as shown in Fig. 6.

Fig. 6. The structure of CNN is mainly a pre-trained backbone network, including a pool-
ing layer and fully connected layer, while the structure of the transformer is consistent
with that in the text. Figure (a) is a serial structure, and Figure (b) is a parallel structure

In addition, we conduct ablation experiments to investigate the impact of the internal
design of the modules.

Attention ablation:
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Table 4. Ablation experiments of modules

Methods MPIIFaceGaze Gaze360

CT-Net 4.18° 12.51°
CTF-Net 4.02° 10.59°

CTA-Net(Single) 4.41° 14.01°
CTA-Net 3.91° 10.44°

We specifically focus on the ACFusion module and evaluate its influence on gaze es-
timation performance. The ACFusion module incorporates an attention mechanism to as-
sign different weights to the left and right eyes, enabling the estimation of gaze residuals.
To examine the role of the attention module, we propose an experimental configuration
called “Without-Att”, where the weights for the left and right eyes were fixed at 0.5, effec-
tively removing the attention module for generating eye features. Furthermore, to explore
the effect of the stacking order within the ACFusion module, we introduce a different
stacking order called “Reverse-Att”, which interchanges the spatial attention and channel
attention. The results of these ablation experiments are presented in Table 5.

Compared to the complete ACFusion model, the attention ablation experiment shows
a decrease in performance by 1.58° on the Gaze360 dataset. Similarly, the performance
of the reverse attention order experiment is reduced by 2.27° compared to the CTA-Net.
These results demonstrate the advantages of the attention component and the importance
of the stacking order. By analyzing the findings from these ablation experiments, we can
draw conclusions about the internal design of the ACFusion module and further validate
its significance in gaze estimation tasks. This deeper understanding will contribute to un-
raveling the functionality and benefits of the ACFusion module.Furthermore, attention
ablation experiments were conducted on the extraction of monocular feature information
(CTA Net Single). As depicted in Figure 4, the accuracy of independently processing eye
images decreased by nearly 0.5, rendering it ineffective in guiding gaze estimation. The
fundamental reason for this phenomenon is that monocular feature information may lack
sufficient context and comprehensiveness, posing a challenge in capturing the complexity
of the visual system. Although eyes play a crucial role in visual perception, processing
eye images independently may not fully capture the interaction and synergy between the
eyes and the entire visual process. Therefore, our experimental results underscore the im-
portance of considering binocular or more extensive visual information in gaze estimation
tasks to achieve more accurate and comprehensive gaze estimation results.

Hadamard ablation:

To evaluate the impact of the DFA module on gaze estimation performance, we con-
duct an ablation experiment called “Without-Had”. The DFA module is a critical compo-
nent in our approach, utilizing Hadamard addition to generate feature maps. We design
an ablation experiment specifically targeting the Hadamard addition operation within the
DFA module. In the Hadamard ablation experiment, we retain the DFA module but re-
move the Hadamard addition operation, implying that we no longer employ Hadamard
addition for generating feature maps. This allows us to assess the importance of the
Hadamard addition operation within the DFA module. By comparing the performance
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of these two ablation experiments with the complete model, we can evaluate the influence
of the DFA module and the Hadamard addition operation on gaze estimation.

Based on the results from Table 5 and the ablation experiments, we observe a de-
crease in accuracy of 0.97° in the DFA module when the Hadamard addition operation is
removed. This highlights the significance of the Hadamard addition operation in the DFA
module for accurate gaze estimation

Table 5. Attention ablation and Hadamard ablation

Methods Gaze360

Attention ablation Without- Att 12.02°
Attention ablation Reverse- Att 12.71°
Hadamard ablation Without-Had 11.41°

CTA-Net 10.44°

4.4. Limitation and Future Work

Our model currently faces challenges due to a large number of overall parameters, re-
sulting in prolonged training times. Furthermore, the complexity of the model structure
introduces the risk of overfitting, especially when dealing with limited training data. This
complexity may compromise the model’s ability to generalize to new data. In the future,
we are committed to thoroughly exploring these identified limitations and proposing prac-
tical solutions. Additionally, we will carefully consider the challenges posed by extensive
training times and the risk of overfitting in our work. This is aimed at enhancing the
efficiency and robustness of the model.

5. Conclusion

Our proposed dual-stream framework for accurate gaze estimation demonstrates excep-
tional functionality and meticulous internal design techniques. Through image fusion and
the utilization of attention mechanisms, our approach preserves crucial positional infor-
mation and effectively combines features from the left and right eyes. The attention cross-
fusion (ACFusion) module addresses challenges such as feature noise and information
loss, while the Dual Feature Aggregation (DFA) block integrates global and local contex-
tual information. These designs yield superior accuracy in gaze estimation.

Although extensive experimental results on two mainstream datasets demonstrate the
effectiveness of our proposed approach, it is important to note that the design based on this
framework requires high-quality datasets and is inevitably influenced by environmental
factors. Future research can focus on refining feature extraction methods to handle more
complex scenarios and further improve accuracy and robustness.
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