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Abstract. Session-based recommendation using graph neural networks (GNN) is
a popular approach to model users’ behaviors and attributes of items from the per-
spective of user-item interaction sequence. However, current researches seldom in-
corporate the unique attributes of items to delve into a comprehensive analysis of
user behaviors. In addition, GNN faces three problems when encounting complex
modeling scenarios: long-range dependencies, order information loss, and data spar-
sity, which are essential to modeling long-tail items. We study the interactions be-
tween users and items from a new perspective. A novel Contrastive Learning based
Tail Adjusted Repeat Aware Graph Neural Network (CLTAR-GNN) is proposed
to tackle the problems. A Tail Adjusted Repeat (TAR) mechanism captures users’
repeat-explore behaviors in both short-head and long-tail session items based on
graph neural networks. Through the TAR, we are able to further understand the
underlying graph-based mechanisms that influence user-item interactions. A Self-
Attention (SA) network with position embedding is incorporated to overcome the
sequence information loss issues, which may be caused by the complex user be-
haviors and item characteristics modeling. Finally, a mutli-task learning framework
is employed to combine TAR, SA and a contrastive learning model into a unified
framework to enhance model performance by collaboratively training graph and
sequence-based embeddings. Experimental results show that CLTAR-GNN outper-
forms the state-of-the-art session-based recommendation methods significantly. The
average improvement compared with all baselines are 17.5% (HR@20) and 22.5%
(MRR@20) on both experimental datasets.
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1. Introduction

Recommendation systems alleviate the issue of information overload by providing users
with relevant information. These systems usually rely on user identity and historical be-
havior data, but for anonymous browsing sessions, recommendations must be based on
short-term behavior records. The challenge of session-based recommendation is to obtain
high-quality sequence representations. Traditional classic methods such as Markov chain-
based methods can model the intrinsic correlations of sequence data [7]. However, there is
still significant room for improvement in traditional methods regarding memory enhance-
ment, learning and generalization capabilities, discovery of complex nonlinear sequence
patterns, and computational efficiency [9]. With the rapid development of deep learning
technology, approaches such as recurrent neural networks (RNN) [10] and graph neural
networks (GNN) have applied deep learning methods to session-based recommendations,
RNN-based methods that incorporating attention mechanism could be used to model a
long session sequence [11], but RNN-based methods have two significant limitations [26]:
could not accurately estimate user representations and seldom consider complex interac-
tions between session items. GNN-based methods model sessions as graph-structured
data and are able to capture complex transitions of items [18,13], which can be used to
investigate users’ behavior patterns in sessions by constructing user-item sequence-based
graphs [19,16]. For example, Ren et al [19] focus on investigating users’ different behav-
iors in session-based recommendation scenarios. Liu et al [16] constructed new networks
to improve the performance of session-based recommendation by considering different
characteristics of items.

Different from previous researches, we mainly focus on studying how patterns of
repeat-explore behavior differ depending on whether they are associated with long-tail or
short-head items. We define repeat-explore, long-tail and short-head as follows: Repeat
behavior means the next item which user will click during a session process has already
existed in the current session, otherwise it is Explore behavior. Long-tail means unpopular
items, the number of which may account for a large proportion, and generate a long-tail
effect [31]. In contrast, short-head means popular items, which occupies the head position
of sales. The main idea of modelling repeat-explore behavior, long-tail and short-head
items into a unified framework is essential important for further understanding users’
future actions based on his/her historical behaviors. More importantly, incorporating the
attributes of long-tail and short-head items can help better understand users’ potential
demands by explicitly considering users’ preference patterns towards items with different
popularity. Besides, long-tail items can provide more diversified information to further
satisfy users’ demands. It is also meaningful to promote the transformation of high-quality
long-tail items into short-head items in an e-commerce system.

However, there exists two challenging problems when constructing a unified model
framework: The first problem is How to mine patterns from session sequence while mod-
elling user behavior and the intrinsic associations of items. Existing session recommen-
dation models mainly focus on using GNN with L layers to capture L − hop relations
of items in a graph. The use of GNN-based methods has led to significant improve-
ments in session recommendations. However, this solution may cause over-fitting and
over-smoothing because of stacking too many layers [2]. In another aspect, when ses-
sions are converted to graphs, the information within item orders in a session may be lost.
Although combining sequence attention model can reduce the negative influence of in-
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formation loss, existing methods are ineffective in capturing sequence patterns due to the
complexity of user behavior modelling. Another important factor affecting the quality of
session representations is the problem of data sparsity, especially for long-tail items. A
deep learning model usually has a large number of parameters that need to be optimized.
However, in two public datasets for session-based recommendations (Yoochoose and Dig-
inetica), there are items that appear many times but there are also long-tail items that rarely
appear. Due to lack of training data, the accuracy of session recommendations with long-
tail items will be relatively low, and there will exist big biases towards popular short-head
items. To address these problems, we propose a novel model called Contrastive Learning
based Tail Adjusted Repeat Aware Graph Neural Network (CLTAR-GNN), which is de-
signed to improve recommendations by capturing more of the rich information contained
in sessions. The main contributions of our work can be summarized as follows:

– A novel Tail Adjusted Repeat Aware Graph Neural Network (TAR-GNN) is pro-
posed to investigate user repeat-explore patterns in both short-head and long-tail ses-
sion items. These can improve model performance by further understanding users’
behaviors towards different items, while can increase the item diversity of the recom-
mendation list.

– The re-designed Repeat-Explore and Factor Generating module consider both long-
term global and short-term local dependencies between items in a session.

– By integrating self-attention with position embedding, the model can consider both
order information and complex high-order relations between session items, which can
further optimize the modelling of users’ repeat-explore behaviors by mining sequence
patterns from sessions.

– A multi-task learning framework is proposed to collaboratively learn users’ repeat-
explore behaviors towards items with different level of popularity and item sequence
patterns. In addition, a contrastive learning framework is also Incorporated to deal
with data sparsity problem caused by long-tail items.

The code could be found in: https://github.com/Linxw718/CLTAR-GNN

2. Related Work

2.1. Conventional Recommendation Methods

In traditional recommendation systems, where users can be identified, neighborhood-
based methods have been widely used [22]. Such methods do not directly optimize the
ranking of items, though Rendle et al [20] present a generic optimization criterion derived
from the maximum posterior estimator for optimal Bayesian personalized ranking based
on matrix factorization. However, the method seldom considers the context of a session
item. Early methods for session-based recommendation borrow the idea of neighborhood-
based methods. For instance, Davidson et al [4] calculate the similarity between items us-
ing the co-occurrence between them. They recommend items that are most similar to those
in the current session. Neighborhood-based methods are limited by the problem of data
sparsity, and do not take the order information of the session into consideration. Methods
based on Markov chains [21] are capable of capturing order information, but when more
preceding items are considered, the state size becomes unmanageable, making such meth-
ods unsuitable for capturing complex high-order sequential information within a session.

https://github.com/Linxw718/CLTAR-GNN
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2.2. Deep Learning Based Methods

With the rapid development of deep learning technology, many new methods for session-
based recommendation have been proposed. Hidasi et al [8] use RNN to model session
sequences. These are able to leverage historical information from the session and take item
order into account. Nevertheless, in long sessions, RNN-based methods cannot capture
the complex dependencies between items. Li et al [12] point out that previous studies
only model users’ sequential behavior, and do not emphasize the user’s main purpose.
They propose a model based on attention mechanism, which uses a local encoder and a
global encoder to model the users’ behavior sequences with a view to infer the user’s main
purpose. Liu et al [15] consider both global and current interests of the user in the session.

In recent years, many researches have applied GNN to session-based recommenda-
tion. Wu et al [27] transformed sessions into a directed graph, in which nodes represent
items and edges represent the sequential relationship of items. Item vectors are obtained
through a gated GNN, after which, session vectors can be obtained by combing the item
vectors using an attention network. On the basis of this research, Yu et al [32] proposed a
target attentive GNN model able to generate different session representations for the same
session with respect to different target items. Gupta et al [6] point out that GNN-based
methods are subject to popularity bias, causing these methods to recommend popular
items over long-tail items which is related to the norm of the learned items and their
session-graph representations. Chen and Wong [2] spotted two information loss problems
in the GNN-based methods: namely loss of long-range dependencies of items and loss
of order information. They addressed these problems by adding EOPA to preserve order-
information and SGAT to capture long-term dependencies. Instead of GNN, Fang [5] used
self-attention networks to encode sessions that capture long-range dependencies.

The aforementioned research does not thoroughly explore the modeling of user behav-
ior and item characteristics. In addition, enhancing the model with more detailed analysis
would improve the complexity of the model, which could inadvertently compromise its
inherent ability to capture and represent sequential patterns effectively. In this research,
we model users’ repeat-explore behaviors and item popularity into a unified framework,
and incorporate self-attention with POS embedding to enhance the model capability in
mining sequence patterns from sessions.

2.3. Contrastive Learning

As a kind of self-supervised learning, contrastive learning has achieved excellent perfor-
mance in Computer Vision (CV) area. SimCLR [3], which stands for Similarity Con-
strastive Learning Representation, is a typical contrastive learning framework that gener-
ates different views of images using data-augmentation methods such as random rotation.
It is designed to learn useful representations from unlabeled data by maximizing the simi-
larity between augmented views of the same image and minimizing the similarity between
different images. It produces different views of the same image close and keep views of
different images away in the feature space by optimizing a loss function called NT-Xent
loss. The feature representations of images obtained from SimCLR can then be applied to
other downstream tasks.

In recommendation area, SimCLR can effectively learn representations of items or
users without relying heavily on labeled data. Some researchers have tried to apply the
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idea of contrastive learning. Zhou et al [34] used a self-supervised learning method to
learn the internal relationship among items, item attributes and item sequences by de-
signing different contrastive loss functions. Xie et al [28] applied contrastive learning to
sequential recommendations. Unlike sequential recommendation, user identity is usually
unknown in session-based recommendations, and more attention is paid to a user’s short-
term preferences, which is apparent from the shorter session sequences.

In this paper, we apply contrastive learning to session-based recommendation by min-
ing self-supervised signals, we can capture intrinsic features of the session by considering
both order-information and complex correlations between items. Therefore, the model
could obtain high-quality session representations, especially long-tail item representa-
tions, for making more accurate recommendations based on repeat-explore behaviors.

3. Model Descriptions

3.1. Model Overview

Session-based recommendation aims to predict the next item that a user may click based
on the sequence of items clicked earlier in the current session. Let V = {v1, v2, . . . , v|V |}
denotes the set of |V | items that have appeared in all sessions. Assume SS is the set of
N sessions, a session S ∈ SS can be represented as a list S = [vs1, vs2, . . . , vsn], where
vsi ∈ V denotes an item has been clicked in the ith position or at the ith timestamp by
the same user in session S. n is the length of session S, and for different sessions S, the
values of n are different. For the current session S at the nth timestamp, the objective of
session-based recommendation is to predict vs(n+1) at the n + 1 timestamp. The main
idea is that we use the CLTAR-GNN model to calculate the score ŷi (a real number) of
each candidate item vi ∈ V based on the session S. The formula can be seen as below:

ŷi = CLTAR−GNN(vi, S), i ≤ |V |
ŷ = {ŷ1, ŷ2, . . . , ŷ|V |}

(1)

All the scores ŷi (i ≤ |V |) generate a score vector ŷ, where ŷi is the score of item vi,
which is calculated by CLTAR-GNN. The top K items with the highest score from ŷ will
be recommended to the user. The architecture of the proposed CLTAR-GNN is shown
in Figure 1. There are eight major components in CLTAR-GNN, including a Data Aug-
mentation module, a Gated Graph Neural Network (GGNN) embedding layer, a Session
Generation module, a Repeat-Explore component, an Item Factor Generating module, a
Self-Attention network, a Contrastive Loss (CL) framework and a Multi-Task Learning
strategy. The Data Augmentation module can generate new sessions by leveraging exist-
ing ones, thereby enhancing the training dataset for sessions involving long-tail items. The
initial session embedding are generated by using GGNN model. The Session Generation
module, Repeat-Explore module and Item Factor Generating module are collaboratively
incorporated to model users’ repeat-explore behaviors based on short-head and long-tail
items. We define the model consists of the three modules as Tail Adjust Repeat Aware
(TAR) mechanism. In addition, a Self-Attention module is also combined with TAR mod-
ule to enhance the model capability in mining sequence patterns. Contrastive losses are
calculated for different session augmentations. The contrastive task and recommendation
task are jointly training using a Multi-Task Learning framework.
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Fig. 1. A representation of the architecture of CLTAR-GNN

3.2. Data Augmentation Module

The Data Augmentation module can generate two new sessions for each existing session
through augmentation operations. The two new sessions are similar to the existing ones,
and will be used as a positive pair in Contrastive Learning, while any two augmented ses-
sions generated from different sessions are used as a negative pair. CLTAR-GNN adopts
four data augmentation operations, including Odd-Even augmentation, Random augmen-
tation, Cropping augmentation and Dropping augmentation [28,34]. Assume there exists
N sessions, then each augmentation can generate 2N new sessions, which are prepared
for the Contrastive Learning module.

As seen in Figure 1, the output of Odd-even augmentation is Sodd and Seven, which
can be treated as a positive pair for odd-even contrastive learning (Odd-Even loss); the
output of Random Augmentation is Sr1 and Sr2, which can be treated as a positive pair
for random contrastive learning (Random loss); the output of Cropping Augmentation is
Sp1 and Sp2, which can be treated as a positive pair for cropping contrastive learning
(Cropping loss); the output of Dropping Augmentation is Sd1 and Sd2, which can be
treated as a positive pair for dropping contrastive learning (Dropping loss).

3.3. GGNN Embedding Layer

In this research, Gate Graph Neural Network (GGNN) is adopted as the embedding layer
[13]. The advantage of GGNN over traditional sequence-based embedding methods, such
as LSTM or GRU, is that it can capture high-order graph-based correlations among items.
For a session S = [s1, s2, . . . , sn], its in-degree and out-degree adjacency matrices are
defined as Ein and Eout ∈ Rn×n. We define E ∈ Rn×2n as the concatenate of Ein and
Eout. Assuming that there exists t iterations, then for node i in session S at t, its node
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embedding at t+ 1 could be represented as:

mt+1
i =

∑
v∈Ni

Mt(h
t
i, h

t
v|E,S) (2)

ht+1
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t
i |mt+1
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where Mt is message propagation operation, and indicates the correlation between i and
its neighbors v ∈ Ni. ht

i and ht
v denote item embedding at t. zti controls forget information

and rti controls the influence of newly generated information. Ut is similar to GRU, and
is used to update the embedding of item i at t+ 1. The length of ht

i is defined as d.

3.4. Tail Adjust Repeat Aware Mechanism (TAR)

In this section, a TAR mechanism is proposed to collaboratively model users’ repeat-
explore behavior patterns on short-head and long-tail items. The mechanism consists of
three modules: A Session Generation module is designed to calculate the probabilities
[Pr,Pe] of users selecting different behaviors. The Repeat-Explore module calculates the
preference score for each candidate item under different behaviors of a user. The Item
Factor Generating module is used to encode items with different level of popularity (short-
head and long-tail). Finally, a Focal Loss based Repeat-Tail loss function is designed to
provide optimization strategy for TAR.

Session Generation Module. The main target of the session generation module is to
adopt an attention mechanism that captures a user’s main preference in session S. This
mechanism can then be used to discover the probability distributions of users’ behavior
patterns. Existing researches often use probability distributions to describe users’ prefer-
ences towards different behaviors [19,30]. In this article, we focus mainly on two types
of user behavior pattern: repeat and explore. We define the probability of users’ repeat
patterns as Pr and explore patterns as Pe. Formulas for Pr and Pe are shown below:

spg =

n∑
i=1

agi h
t
i; spc = ht

n (4)

sp = [spg, s
p
c ]Ws1 (5)

[Pr, Pe] = softmax(Ws2 × sp) (6)

where agi is the attention weight of item i in session S, which is utilized to determine
the influence of a user’s historical click behaviors on items to his/her current state at
timestamp n. Ws1 ∈ R2d×d, Ws2 ∈ Rd means weight matrices. Different from previous
studies [19], inspired by long-short term modules which are widely applied in sequence
processing [15], we consider both long-term global dependencies spg and short-term local
dependencies spc by calculating ht

n. In formula 6, the Pr and Pe of users’ repeat-explore
behaviors for selecting the (n + 1)th item in session S are mainly determined by sp,
which is the concatenate of spg and spc . Pr and Pe are two probabilities, which are used to
determine whether the user will adopt repeat or explore behaviors at (n+1)th timestamp.
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Repeat-Explore Module. The Repeat-Explore module is used to re-calculate session
representations based on two behavior patterns: repeat and explore. Assume Is ∈ V is the
item set, and that each item appears in session S. x represents item embedding and T (x)
represents item id which x represents. Then the indicator function H(x, y) is defined in
formula 7. y = 0 represents repeat mode, y = 1 represents explore mode. The idea
of using indicator function to encode different user behaviors are discussed in existing
researches [1,17,33]. We design a repeat-explore function: for an arbitrary item l in V , its
score of whether a user will click it at n+ 1 in session S is represented in formula 8.

H(x, y) =

{
1− y, T (x) ∈ Is
y, T (x) /∈ Is

(7)

Repeat: ŷrl = H(el, 0)el(s
r
gc)

T

Explore: ŷel = H(el, 1)el(s
e
gc)

T + γ ·
∑

i∈S sim(el, ei)

len(S)

(8)

where srg and seg are global session representation of repeat and explore with attention
weight [15,5] as ari and aei respectively (Similar to formula 4, srg =

∑n
i=1 a

r
ih

t
i and

seg =
∑n

i=1 a
e
ih

t
i). s

r
gc and segc are combination of global and local representations of

Repeat and Explore patterns respectively (similar to formula 5, srgc = [srg, s
p
c ]Wr1 and

segc = [seg, s
p
c ]We1). ŷrl is the score of item l in a repeat pattern, ŷel is the score of item l in a

explore pattern. el is the embedding of item l with its size as d, the initial value of which is
pre-trained by neural network embedding (pytorch nn.Embedding). In our study, explore
pattern led to item recommendations that have fewer interactions (ex. Co-occurrence in all
sessions) with items in session S, while ignores that in many cases, users prefer to click
new items that have high co-occurrences with existing items in a session [17,32,33]. To
resolve this issue, we added

∑
i∈S sim(el, ei)/len(S) to the Explore formula in formula

8, and γ is the weight to control the influence of item correlations.

Item Factor Generating. The main target of item factor is to generate session embed-
dings and their influence factors by consider both long-tail and short-head items. Similar
to previous studies, which model items according to their unique characteristics [1,16,25],
we used Pareto rules to identify short-head popular and long-tail less popular items by
counting each item’s click frequency. Assume ITS , IHS represent the set of long-tail and
short-head items which appear in session S. We re-define item embedding as:

F (x) =

{
x+ [1, 1, 1, . . . , 1], T (x) ∈ ITS
x+ [0, 0, 0, . . . , 0], T (x) ∈ IHS

(9)

where F (x) is adjust function. x represents item embedding and T (x) represents item id
of x. F (x) could adjust x based on its short-head or long-tail characters. Vector [1, 1, 1, . . . , 1]
and [0, 0, 0, . . . , 0] have the same length as x. Based on the adjust function F (x), attention
mechanisms [23,29] are then adopted to obtain long-term global session representations
sprg and speg , which are corresponding to repeat and explore behaviors respectively. The
expressions of global sessions could be seen in formula 10. Short-term local representa-
tions of sprc and spec , which are corresponding to repeat and explore behaviors, could be



Improved Session Recommendation 353

seen in formula 11. Finally, based on formulas 10 and 11, the combinations of long-
short term global and local session representations spr and spe, which are corresponding
to repeat and explore behaviors, could be seen in formula 12.

sprg =

n∑
i=1

apri F (ht
i); sprc = F (ht

n) (10)

speg =

n∑
i=1

apei F (ht
i); spec = F (ht

n) (11)

sprgc = [sprg , sprc ]Wpr1; spegc = [speg , spec ]Wpe1 (12)

where apri and apei are attention weights. Wpr1 and Wpe1 ∈ R2d×d are weight matrices.
sprgc and spegc are used to generate four item factors: Rr

head and Re
head are for short-head

items, which are associated with repeat and explore behaviors. Rr
tail and Re

tail are for
long-tail items, which are associated with repeat and explore behaviors (formula 13, 14).

Rr
head = sigmoid(Wp2 · sprgc); Rr

tail = 1−Rr
head (13)

Re
head = sigmoid(Wp3 · spegc); Re

tail = 1−Re
head (14)

where Wp2 and Wp3 ∈ Rd are the weight matrices. Rr
head and Rr

tail are item factors
which are used to calculate the probabilities of users’ selections for short-head or long-
tail items when engaging in repeat behaviors. Re

head and Re
tail are item factors which are

used to calculate the probabilities of users’ selections for short-head or long-tail items
when engaging in explore behaviors.

Repeat-Tail Loss. We design repeat-tail loss lrt−rec to investigate users’ different repeat-
explore patterns for both long-tail and short-head items. For an arbitrary item vl ∈ V , we
have already obtained its repeat and explore pattern probability for session S, which are
Pr and Pe respectively, through formula 6; while the item’s recommendation score under
repeat and explore patterns, which are ŷrl and ŷel , could be obtained through formula 8.
Then the item l’s recommendation score ĉl could be represented as:

ĉl = Prŷ
r
l T (l, 1) + Peŷ

e
l T (l, 0) (15)

where T (x, y) is an indicator function to determine which factors should be adopted to
item l according to its unique characters and its correlations with session S. T (x, y) could
be represented as in formula 16.

T (x, y) =


Rr

head, x ∈ IH , y = 1
Rr

tail, x ∈ IT , y = 1
Re

head, x ∈ IH , y = 0
Re

tail, x ∈ IT , y = 0

(16)

where IH and IT are the set of short-head and long-tail items. For all candidate items
[v1, v2, . . . , v|V |], the recommendation score could be ĉ = [ĉ1, ĉ2, . . . , ĉ|V |], then vector
ŷc = softmax(ĉ) is the vector of final recommendation scores based on probability
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distributions. It denotes the probability of each candidate item to be clicked next at n+ 1
for session S. The cross-entropy loss lrt−ce(ŷc) between the predicted probability and the
ground-truth is calculated as:

ŷc = softmax(ĉ) = [ŷc1, ŷc2, . . . , ŷc|V |]

lrt−ce(ŷc) = −
|V |∑
l=1

(yl × log(ŷcl) + (1− yl)× log(1− ŷcl))
(17)

where yl is the one-hot embedding denoting the ground-truth item (It denotes which item
was truly clicked at n+1 timestamp). ŷcl is the lth element in ŷc. It denotes the probabil-
ity of item l to be clicked at timestamp n+ 1 in session S. Due to the imbalanced data of
sessions, we use focal loss [14] in CLTAR-GNN. Focal loss could increase the impact of
hard samples and decrease the impact of easy samples in the process of model optimiza-
tion. Hence, focal loss can help make more accurate recommendations of long-tail items.
The focal loss based repeat-tail loss lrt−rec(ŷc) is formulated as:

lrt−rec(ŷc) = (1− exp(−lrt−ce(ŷc)))
γ lrt−ce(ŷc) (18)

where γ is the focusing parameter and we set it as to 2. The repeat-tail loss lrt−rec(ŷc)
can predict the next likely-to-be-clicked short-head or long-tail item within a session when
operating under the repeat-explore behaviors, with the objective of aligning the predicted
value as closely as feasible to the actual value (the item that is genuinely clicked).

3.5. Self-Attention Network (SA)

The TAR mechanism mainly focuses on modelling user different behaviors towards items
with different popularity, which can detect more complex interaction patterns from a
session. However, this mechanism is chiefly concerned with the design of theoretical
models that address intricate relationships between users and items, which may conse-
quently reduce the model’s inherent capability for sequence modeling. In another aspect,
GGNN is adopted as embedding layer for capturing high-order correlations among items,
while its limitations would be that GGNN could not capture order information and long-
range dependencies in a session. Though there exists related researches optimized existing
GGNN-based methods to solve the problems mentioned above to a certain extent [2], it
is challenge to incorporate more complex user-item interaction models, such as TAR,
into existing researches, because modelling complex interactions between user-item may
compromise the sequential modelling capabilities of the model.

In this research, we find that sequential modelling is very important to the accuracy of
recommendation results. Thus, we design a Self-Attention (SA) network specifically for
sequential modelling, and then adopt a multi-task learning framework to collaboratively
train the model and TAR in a unified framework. For a session S = [vs1, vs2, . . . , vsn], its
t iteration item embedding through GGNN could be represented as E′ = [ht

1, h
t
2, . . . , h

t
n]

with dimension size as d. In order to take the order information of the session into account,
we stack position embeddings P = [p1, p2, . . . , pn] for each item in the session, where pi
denotes the position embedding of item vsi . The input E for self-attention networks is:

E = E′ + P (19)
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Self-attention [23] are composed of multi-head attention and feed-forward networks.
Multi-head attention could capture different information from the session. Assume H
heads are assigned, then the output F of multi-head attention could be seen in formula 20.
WO ∈ RHd×d is the projection matrix. Then F is passed through a two-layer fully
connected feed-forward network (FFN) with activation functions (σ) to obtain output as
HS = [h1, h2, . . . , hn]. According to experiments, we find that using the average of the
last two item vectors (hn−1 and hn) as session representation z can produce better results.

F = Concat(head1(E), . . . , headH(E))WO + E

HS = σ(FFN(FFN(F ))) = [h1, h2, ..., hn]

z =
hn−1 + hn

2

(20)

After getting the session representation z, we can calculate the items that should be
recommended to users. For each candidate item vl ∈ V , its corresponding recommenda-
tion score is calculated as gl = z · el, where el is the vector of item vl (el is calculated
by using pytorch nn.Embedding). Let g = [g1, g2, . . . , g|V |] denotes the recommenda-
tion scores of all items. ŷs = softmax(g) is the vector of final recommendation scores.
It denotes the probability of each candidate item to be clicked next for session S. The
cross-entropy between the predicted probability and the ground-truth is calculated as:

g = [g1, g2, . . . , g|V |] where gl = z · el and l ≤ |V |
ŷs = softmax(g) = [ŷs1, ŷs2, . . . , ŷs|V |]

lsa−ce(ŷs) = −
|V |∑
l=1

(yl × log(ŷsl) + (1− yl)× log(1− ŷsl))

(21)

where yl is the one-hot embedding denoting the ground-truth item. ŷsl is the lth element
in ŷs. ŷsl denotes the probability of item l to be clicked next at n + 1 for session S.
Similar to formula 18, the focal loss based self-attention loss lsa−rec(ŷs) is formulated in
22, where γ is the focusing parameter and we set it as to 2.

lsa−rec(ŷs) = (1− exp(−lsa−ce(ŷs)))
γ lsa−ce(ŷs) (22)

3.6. Contrastive Loss Function
Session embeddings of S from different modules are summarized as: Repeat-Explore:
srgc, s

e
gc (Formula 8). Item Factor: sprgc, s

pe
gc (Formula 12). Self-Attention: z (Formula

20). We merge all representations into a unified vector as sz = [srgc, s
e
gc, s

pr
gc, s

pe
gc, z]. As-

sume a training batch contains N sessions S1, S2, . . . , SN . Data augmentation strategies
from Odd-even, Random, Cropping, Dropping are used to generate positive instances for
each session Si. For each session Si, each strategy could generate two positive instances,
which are Sodd

i and Seven
i for Odd-even, Sr1

i and Sr2
i for Random, Sp1

i and Sp2
i for

Cropping, Sd1
i and Sd2

i for Dropping. The representations of all instances are szoddi and
szeveni , szr1i and szr2i , szp1i and szp2i , szd1i and szd2i respectively. Then for all sessions,
we adopt SimCLR framework for contrastive learning and use NT-Xent loss (Normalized
Temperature-Scaled Cross-Entropy Loss) to generate contrastive loss [3], which are odd-
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even loss lodd−even
cl , random loss lr1−r2

cl , cropping loss lp1−p2
cl and dropping loss ld1−d2

cl :

lodd−even
cl =

N∑
i=1

NT−Xent(Si, S
odd
i , Seven

i )

lr1−r2
cl =

N∑
i=1

NT−Xent(Si, S
r1
i , Sr2

i )

lp1−p2
cl =

N∑
i=1

NT−Xent(Si, S
p1
i , Sp2

i )

ld1−d2
cl =

N∑
i=1

NT−Xent(Si, S
d1
i , Sd2

i )

(23)

3.7. Predictions

In previous sections, we introduced the calculation methods for repeat-tail loss lrt−rec(ŷc
(formula 18), self-attention loss lsa−rec(ŷs) (formula 22), contrastive loss lodd−even

cl ,
lr1−r2
cl , lp1−p2

cl and ld1−d2
cl (formula 23). In this section, a multi-task learning strategy is

adopted to obtain the final loss lcltar of CLTAR-GNN. The loss function could be seen as
below in formula 24:

lcltar = α · lrt−rec + β · lsa−rec + γ(lodd−even
cl + lr1−r2

cl + lp1−p2
cl + ld1−d2

cl ) (24)

where α, β and γ are weight parameters to control the contributions of each loss. Based
on grid search of hyperparameter, we assign α as 0.3, β as 0.7 and γ as 1. Finally, for
a session S = [vs1, vs2, . . . , vsn], the probability score ŷi for each candidate item vi
(i ≤ |V |) that could be clicked at timestamp n+ 1 is as follows:

ŷi = α× ŷci + β × ŷsi (25)

4. Experiments

4.1. Experiment Settings

Two widely-used public datasets Yoochoose and Diginetica are selected to test the perfor-
mance of the model. Yoochoose is from RecSys Challenge 2015, which contains the click
sequence of users on an e-commerce website within six months. Because the Yoochoose
dataset is too large, only the latest 1/64 part of it is used, as done in [27]. Diginetica is
from CIKM Cup 2016 challenge. The statistics of datasets are shown in Table 1.

Evaluation Metrics In order to compare with other models for session-based recommen-
dation, two evaluation metrics HR@20 and MRR@20 are used.

HR@20 (Hit Rate): This metric indicates the proportion of correctly predicted ses-
sions in all testing sessions. Correctly predicted nhit means that the ground-truth item is
among the top 20 items with the highest recommendation scores calculated by the model.
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Table 1. Statistics of datasets used in the experiment

Statistics Yoochoose 1/64 Diginetica
# of clicks 557,248 982,961
# of training sessions 369,859 719,470
# of test sessions 55,898 60,858
Average length 6.16 5.12

In formula 26, nhit represents sessions that have been correctly predicted, and N denotes
the number of all testing sessions.

HR@20 =
nhit

N
(26)

MRR@20 (Mean Reciprocal Rank): This metric denotes the average of reciprocal
ranks of the ground-truth items. When the ground-truth item is not among the top-20
recommended items, the reciprocal rank is set to 0. In formula 27, S denotes the set of
correctly predicted sessions, and ranki denotes the rank of ground-truth item for session
i.

MRR@20 =
1

N
(
∑
i∈S

1

ranki
) (27)

Baseline Methods The proposed model CLTAR-GNN will be compared with the follow-
ing representative baseline methods on Yoochoose and Diginetica datasets.

– Item-KNN [22] recommends similar items of the previous clicked item in the session
based on cosine similarity.

– BPR-MF [20] optimizes a pairwise ranking objective function via stochastic gradient
descent.

– FPMC [21] models next-basket recommendation. The user feature is removed since
it is unavailable in session-based recommendation.

– GRU4REC [8] models user sequences for session-based recommendation using RNN.
– NARM [12] employs a local encoder and a global encoder with an attention mecha-

nism to model the user’s sequential behavior and capture the user’s main purpose.
– STAMP [15] captures users’ general interests of session context and user’s current

interests of last click.
– RepeatNet [19] takes repeat-explore consumption behaviors into account and uses

GNN to model users’ repeat and explore behaviors.
– CSRM [24] incorporates collaborative modeling into session-based recommendation

with an end-to-end model.
– SR-GNN [27] models session sequences into graph-structure data and uses graph

neural networks to capture complex item transitions.
– GC-SAN [29] integrates self-attention layers with graph neural networks to learn

long-range dependencies.
– TAGNN [32] proposes a target attentive network which could discover the relevance

of target item with graph neural networks.
– LESSR [2] designs two new graph neural network based layers, which are EOPA and

SGAT to solve the information loss problems.
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– SR-SAN [5] captures long-range dependencies between items using self-attention
networks.

– NISER [6] normalizes the item and session-graph representations to improve the rec-
ommendation accuracy of long-tail items.

Hyperparameter Setup Following [16], for sessions with length ¿ 10, we consider only
the most recently clicked 10 items. The dimensions of both item embeddings and position
embeddings are set as 300 (Hyper-parameter studies of embedding size could be seen in
Figure 2). The batch size is set to 100. Following [13], The Adam optimizer is adopted
with the initial learning rate 0.001. Decay rate is set as 0.1 per 3 epochs. We use dropout
probability of 0.1 and attention heads of 4 on self-attention networks. The focusing pa-
rameter for focal loss is set to 2. The weight of contrastive loss in multi-task learning is
set to 1, which make it have the same impact for the model optimization with the loss of
recommendation task. We use the normalization strategy as introduced in [16] and set the
scale factors as 16 following the paper. The number of training epochs is set to 30, and
we adopt the early stopping strategy. When the performance does not improve after 10
consecutive epochs, the training will be terminated.

Fig. 2. The performance of CLTAR-GNN with different embedding sizes

Another important hyper-parameter is split-ratio, which decides the proportion of
long-tail items in training dataset. We assign the split-ratio as sr ∈ 0.5, 0.6, 0.7, 0.8, 0.9,
and use sr to divide all items in V into long-tail and short-head groups. Then we test dif-
ferent sr to find the best results, which is evaluated by HR@20, MRR@20. Experimental
results of selecting sr could be seen in Figure 3. The proposed CLTAR-GNN could obtain
the best HR@20 and MRR@20 on Yoochoose 1/64 when sr = 0.7; while for Diginetica,
the best sr is 0.6. The training process could be seen in Figure 4, the loss of the CLTAR-
GNN is small compared with other three baselines during the training process, while the
performance on validation datasets in terms of HR@20 and MRR@20 keeps a relatively
high score.

4.2. Overall Performance Comparison

Results and Observations To evaluate the performance of CLTAR-GNN, we compare
it with 14 state-of-the-art baselines introduced above. Table 2 summarizes the best results
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Fig. 3. The Performance of sr on Yoochoose 1/64 and Diginetica

Fig. 4. The Training Process of CLTAR-GNN in terms of LOSS, HR@20 and MRR@20

of all models. As seen in Table 2, Traditional recommendation methods including Item-
KNN, BPR-MF and FPMC obtain the lowest performance score. These methods make
recommendations only based on the similarities or transitions between items, which are
unable to leverage other important information such as the order of items. Compared
with traditional methods, GRU4REC applies RNN to session-based recommendation and
outperforms traditional methods. Both NARM and STAMP consider the current interest
and global interest of the user, and thus get better results. RepeatNet considers users’
repeated-explore patterns, and has better performance than other RNN-based methods.
CSRM applies collaborative neighbor information to current session, and it’s performance
on Yoochoose dataset is very competitive.

The GNN-based methods generally perform better than the methods mentioned above.
SR-GNN firstly model the session sequences as graphs and then consider the transitions of
items, obtaining better results than RNN-based methods. TAGNN is an improved version
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Table 2. The performance of CLTAR-GNN and its variants compared with 14 state-of-
the-art Baseline

Methods Yoochoose 1/64 Diginetica
HR@20 MRR@20 HR@20 MRR@20

Item-KNN 51.60 21.81 35.75 11.57
BPR-MF 31.31 12.08 5.24 1.98
FPMC 45.62 15.01 26.53 6.95
GRU4REC 60.64 22.89 29.45 8.33
NARM 68.32 28.63 49.70 16.17
STAMP 68.74 29.67 45.64 14.32
RepeatNet 70.71 31.03 47.79 17.66
CSRM 71.45 30.06 50.55 16.38
SR-GNN 70.57 30.94 50.73 17.59
GC-SAN 70.66 30.04 51.70 17.61
TAGNN 71.02 31.12 51.31 18.03
LESSR 70.64 30.97 51.71 18.15
SR-SAN 71.74 31.58 52.04 17.61
NISER 71.27 31.61 53.39 18.72
TAR-GNN w/o sa 69.85 30.76 51.73 18.22
TAR-GNN w/o sa− ls 69.46 30.45 51.52 18.03
TAR-GNN 71.73 31.17 53.92 18.98
CLTAR-GNN w/o sa 70.31 30.98 52.65 18.66
CLTAR-GNN w/o sa− ls 70.12 30.82 52.49 18.31
CLTAR-GNN 72.07 31.67 54.49 19.02

of SRGNN. By adding a target attentive module, its performance is better than SRGNN
in all the metrics. LESSR proposes two new layers on the basis of graph neural networks
to solve the information loss problem, which outperforms TAGNN on Diginetica dataset.
GC-SAN outperforms SR-GNN since it applies self-attention mechanism and combines it
with graph neural network to capture long-range dependencies, however, the information
of global dependencies between items may be lost during the process of neighbor item ag-
gregations. SR-SAN mainly uses self-attention networks to replace GNN for session en-
codings, and achieves the second place on Yoochoose dataset in term of HR@20. Though
NISER uses GNN to get session encodings, it adopts optimal normalization representa-
tion method to obtain more accurate item and session embeddings, it greatly improves the
performance of long-tail items recommendations and achieves the second place on Yoo-
choose dataset in term of MRR@20. The proposed method CLTAR-GNN outperforms all
baselines on both datasets in terms of all metrics, proving its effectiveness in the session-
based recommendations task. Specifically, CLTAR-GNN outperforms the best baseline
by average 1.2% (HR@20) and 0.9% (MRR@20) on Yoochoose and Diginetica datasets.
The average improvement compared with all baselines are 17.5% (HR@20) and 22.5%
(MRR@20) on both datasets. In order to better illustrate the effectiveness of the proposed
model, five variants are proposed, which are TAR-GNN, TAR-GNN w/o sa, TAR-GNN
w/o sa− ls, CLTAR-GNN w/o sa, CLTAR-GNN w/o sa− ls.

– TAR-GNN: CLTAR-GNN does not contain contrastive learning.
– TAR-GNN w/o sa: TAR-GNN does not contain self-attention.
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– TAR-GNN w/o sa − ls: TAR-GNN does not contain both self-attention and long-
short term mechanism.

– CLTAR-GNN w/o sa: CLTAR-GNN does not contain self-attention.
– CLTAR-GNN w/o sa − ls: CLTAR-GNN does not contain both self-attention and

long-short term mechanism.

Based on the performance analysis of the proposed CLTAR-GNN and its variants, our
findings are summarized in four aspects:

– Considering users’ repeat-explore patterns in both short-head and long-tail items
could improve the performance compared with RepeatNet, GC-SAN and TA-
GNN. TAR-GNN w/o sa − ls could make an average improvement of 7.8% and
2.1% in terms of HR@20 and MRR@20 on Diginetica compared with RepeatNet,
while the performance on Yoochoose 1/64 is not as good as RepeatNet. One main
reason is that the number of sessions in Diginetica is bigger than Yoochoose 1/64, so
Diginetica could provide more training instances with long-tail items and reduce the
negative influence of data sparsity. Compared with GC-SAN and TA-GNN, the aver-
age improvements of TAR-GNN are 3.8% (HR@20) and 4.1% (MRR@20) on two
datasets, which indicates that on the premise of incorporating self-attention network
at the same time, the investigation of behavior patterns could bring more advantages
in session recommendations.

– Incorporating long-short term module into TAR could make further improve-
ment. Compared with TAR-GNN w/o sa − ls, the average improvements of TAR-
GNN w/o sa are 0.5% and 1.1% on two datasets. Experimental results indicate the ef-
fectiveness of the proposed long-short term module. Besides, compared with NARM
and STAMP, which considers both general and current interests of users, TAR-GNN
w/o sa could also have an average improvement of 7% and 12% in terms of HR@20
and MRR@20.

– Self-attention module is important for capturing order-information, which could
not be well captured by only using GNN based methods. Compared with TAR-
GNN w/o sa, TAR-GNN could obtain a more significant improvement in terms of
two metrics. Besides, TAR-GNN outperformances SR-GNN and TAGNN by average
3.5% (HR@20) and 3% (MRR@20) on two datasets. Experimental results illustrate
that TAR-GNN could better leverage order information derived from self-attention
to improve the performance. Compared with LESSR, which adopts optimized GNN
and GRU for capturing long-term dependencies and order information, TAR-GNN
incorporating self-attention could also obtain a better result.

– Data sparsity limits the ability of the proposed model to process long-tail items,
while the contrastive learning could better solve the problem to a certain extent.
SR-SAN and NISER exhibits strong competitiveness in the task of session recom-
mendation, and outperformance TAR-GNN in terms of two metrics. We consider the
potential reasons that limit the ability of TAR-GNN could be the lack of training sam-
ples of long-tail items. Adding contrastive learning validates our motivations that it
is necessary to use data augmentation strategies to improve the performance. Exper-
imental results show that incorporating CL could significantly improve the perfor-
mances of TAR-GNN and CLTAR-GNN outperformances the two competitive base-
lines by average 1.5% (HR@20) and 1.2% (MRR@20) on both datasets.
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Performance based on Popularity Threshold As illustrated in [6], popularity threshold
is an indicator to evaluate whether an item is popular or not. The indicator could help
better evaluate the performance of CLTAR-GNN on the task of long-tail item recommen-
dations. The popularity of an item could be defined as popularity = φ(i)

maxφ(i) , where φ(i)
is the number of times item i appears in all sessions. In order to evaluate the performance
of long-tail recommendations, we should firstly construct a long-tail testing dataset L.
For a session S = [s1, s2, . . . , sn] in the testing dataset, if its n + 1th clicked item is
non-popular (popularity ≤ threshold), then we set S ∈ L. We set the threshold as
0.01, 0.05, 0.1, 0.5, 1, and obtain five long-tail testing datasets, the performances of the
proposed model and four other baselines on the five datasets are summarized in Figure 5.

Fig. 5. The performance of long-tail item recommendations on Yoochoose 1/64 and Dig-
inetica

In Figure 5, when the threshold is small, the target items of all sessions in the long-
tail testing dataset are non-popular. The proposed CLTAR-GNN outperforms the other
four baselines significantly for those sessions filtered by threshold with long-tail items as
target. While for RepeatNet, SR-SAN and LESSR, there are no mechanisms for them to
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identify whether current session is a long-tail or short-head recommendation task. Though
NISER is a competitive model for the task of long-tail item recommendations, CLTAR-
GNN outperformances NISER by average 1.2% and 0.8% improvement on two datasets in
terms of HR@20 and MRR@20. One main reason is that CLTAR-GNN uses item factor
to decide whether short-head or long-tail items are taken as recommendation targets.

Performance based on Repeat-explore Patterns In this section, a new experiment is
conducted to investigate the models’ performance on users’ repeat and explore behaviors
separately. Repeat behavior means repeating click a item that has already existed in a ses-
sion, explore means a new item will be clicked in the session. According to the definition
of repeat and explore, we could divide all sessions in the testing dataset into repeat ses-
sions and explore sessions, and evaluate the performance of the proposed model on the
two types of sessions. Experimental results could be seen as in Table 3.

Table 3. The performance of repeat-explore

Methods Yoochoose 1/64 Diginetica
HR@20 MRR@20 HR@20 MRR@20

CLTAR-GNN
R 93.55 64.85 91.87 58.28
E 64.35 19.26 44.60 8.82

RepeatNet
R 91.71 57.65 87.43 49.33
E 61.27 27.81 39.69 8.89

SR-GNN
R 92.25 63.08 86.14 52.26
E 62.55 19.04 42.10 8.74

SR-SAN
R 92.93 64.37 86.86 51.53
E 64.11 19.31 43.02 8.45

As seen in Table 3, “R” represents Repeat sessions, and “E” represents Explore ses-
sions. In both Yoochoose 1/64 and Diginetica datasets, the percentage of Repeat sessions
is about 30% and that of Explore sessions is about 70%. RepeatNet is a research to investi-
gate users’ repeat-explore behaviors, CLTAR-GNN obtains better performance compared
with RepeatNet because the proposed model could capture more accurate repeat-explore
patterns. The proposed CLTAR-GNN also outperformances SR-GNN and SR-SAN sig-
nificantly. The two baselines represent GNN-based and Attention-based session recom-
mendation models respectively.

4.3. Ablation Test

An ablation study was conducted to help determine the contribution of each component of
the proposed model. Variations of CLTAR-GNN are tested, in which specific components
were removed or replaced. These assignments were as follows:

– -CL: Contrastive learning removed.
– -GGNN: Use neural network embeddings to replace GGNN.
– -RE: Repeat-explore removed.
– -HR: Item factor generating removed.
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– -LS: Long-short term removed.
– -SA: Self-attention removed.
– -PE: Position embedding removed.
– -FL: Use entropy loss to replace focal loss.
– +PH: Add projection head to CLTAR-GNN.

As for +PH, the main idea is from the study of SimCLR, which adds a projection head
(PH) to improve the performance. The projection head is a MLP layer which projects
session vectors into a different feature space to calculate the contrastive loss. The test
results are evaluated using HR@20 and MRR@20, and are summarized in Table 4.

Table 4. Ablation results for CLARE

Methods Yoochoose 1/64 Diginetica
HR@20 MRR@20 HR@20 MRR@20

CLTAR-GNN 72.07 31.67 54.49 19.02
-CL 71.73 31.17 53.92 18.98
-GGNN 71.97 31.26 54.33 18.89
-RE 72.01 31.14 54.31 18.91
-HR 71.95 31.15 54.25 18.82
-LS 71.95 31.21 54.36 18.88
-SA 70.31 30.98 52.65 18.66
-PE 70.69 29.40 53.54 18.65
-FL 71.82 31.04 54.23 18.88
+PH 71.66 31.55 53.75 18.96

As seen in Table 4, self-attention (-SA) and position embedding (-PE) have the highest
contribution on the performance of CLTAR-GNN, which is consistent with our previous
experimental conclusion. Besides, contrastive learning (-CL) also has a great impact on
the performance of CLTAR-GNN. The impact of focal loss (-FL) is relatively smaller,
but also make positive contributions to the performance, which indicate that focal loss
could help resolve data imbalance problem. Projection head (+PH) cannot improve the
performance in session-based recommendation.

4.4. Comparison with Different Model Variant

Different variants of the proposed CLTAR-GNN are also verified in this section. Six vari-
ants are summarized as below:

– CLTAR-GNN-AVG: Use the average of self-attention output as the representation of
session embedding.

– CLTAR-GNN-N1: Use the last item embedding of self-attention output as the repre-
sentation of session embedding.

– CLTAR-GNN-N2: Use average of the last two item embeddings of self-attention
output as the representation of session embedding.

– CLTAR-GNN-S: Only use single attention mechanism in item generating module.
– CLTAR-GNN-M: The session embeddings in session generation layer will share

weights with adjust function in item factor generating module.
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– CLTAR-GNN-SM: The structure considers both single attention design and weight
sharing strategy.

CLTAR-GNN-S is used to evaluate whether the design of two attention mechanisms
in item factor generating module is necessary. CLTAR-GNN-M investigates whether in-
corporating repeat-explore and head-tail modules in early stage will obtain better per-
formances. In order to verify those assumptions, experiments are conducted based on
CLTAR-GNN and its six variants, and the results could be seen in Table 5.

Table 5. Experimental results for different variants

Methods Yoochoose 1/64 Diginetica
HR@20 MRR@20 HR@20 MRR@20

CLTAR-GNN-AVG 71.46 30.54 53.61 18.55
CLTAR-GNN-N1 71.72 31.43 53.54 18.66
CLTAR-GNN-N2 72.07 31.67 54.43 19.02
CLTAR-GNN-S 71.56 30.02 53.49 18.37
CLTAR-GNN-M 68.36 27.62 51.98 17.44
CLTAR-GNN-SM 68.64 27.36 51.35 17.10

As shown in Table 5, CLTAR-GNN-N2 is the best choice for calculating session em-
beddings. CLTAR-GNN-AVG may be unable to make accurate recommendations because
it focuses on the global interest, and CLTAR-GNN-N1 only uses one item vector which
may be unrepresentative. Therefore, CLTAR-GNN-N2 is a better choice which doesn’t
have these problems. Besides, different structure-based variants of CLTAR-GNN (S, M,
SM) could not obtain better results in terms of HR@20 and MRR@20 on both datasets,
which further indicates the effectiveness of the proposed CLTAR-GNN.

5. Conclusion

In this paper, we propose a novel model called Contrastive Learning based Tail Adjusted
Repeat Graph Neural Network (CLTAR-GNN) for Session-based Recommendation. We
design a series of innovations, which include: incorporate self-attention, position embed-
ding and graph neural network into a unified framework to consider both long-term order
information and high-order complex correlations among items; incorporate repeat-explore
and head-tail into a unified framework to consider users’ different behavior patterns in
long-tail and short-head items; consider long-short term correlations for all session repre-
sentation modelling; use contrastive learning to extract self-supervised signals from raw
data, thus get high-quality session representations and make more accurate recommenda-
tions. Extensive experiments conducted on two public datasets Yoochoose 1/64 and Dig-
inetica show that CLTAR-GNN evidently outperforms the state-of-the-art session-based
recommendation methods. Besides, Experiments also exhibit that self-attention with posi-
tion embedding is essential important for the proposed model to capture long-term depen-
dencies and order information. The negative influence of data sparsity and data imbalance
problems in session recommendations have also been confirmed through extensive ex-
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periments, and contrastive learning framework is verified as a good solution to solve the
above problems to a certain extent.

In future, it would be worth exploring and employing different contrastive learning
frameworks in CLTAR-GNN. In another aspect, users’ behavior patterns will be further
investigated from the perspective of consumer behavior theory. With the guidance of do-
main theory, prior knowledge of users and sessions will be also taken into considerations
to further improve the performance and make the results more explainable.
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