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Abstract. Integrated modular avionics systems primarily achieve system fault tol-
erance by reconfiguring the system configuration blueprints. In the design of man-
ual reconfiguration, the quality of reconfiguration blueprints is influenced by vari-
ous unstable factors, leading to a certain degree of uncertainty. The effectiveness
of reconfiguration blueprints depends on various factors, including load balanc-
ing, the impact of reconfiguration, and the time required for the process. Solving
high-quality reconfiguration configuration blueprints can be regarded as a type of
multi-objective optimization problem. Traditional algorithms have limitations in
solving multi-objective optimization problems. Multi-Agent Reinforcement Learn-
ing (MARL) is an important branch in the field of machine learning. It enables the
accomplishment of more complex tasks in dynamic real-world scenarios through
interaction and decision-making. Combining Multi-Agent Reinforcement Learning
algorithms with reconfiguration techniques and utilizing MARL methods to gen-
erate blueprints can optimize the quality of blueprints in multiple ways. In this
paper, an Improved Value-Decomposition Networks (VDN) based on the average
sequential cumulative reward is proposed. By refining the characteristics of the in-
tegrated modular avionics system, mathematical models are developed for both the
system and the reconfiguration blueprint. The Improved VDN algorithm demon-
strates superior convergence characteristics and optimization effects compared with
traditional reinforcement learning algorithms such as Q-learning, Deep Q-learning
Network (DQN), and VDN. This superiority has been confirmed through experi-
ments involving single and continuous faults.

Keywords: Integrated modular avionics system, Multi-Agent Reinforcement Learn-
ing, reconfiguration blueprint, multi-objective optimization problem.
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1. Introduction

The modular avionics system offers several advantages, including system integration, a
layered structure, network unification, scheduling flexibility, and centralized maintenance.
It finds widespread applications in aerospace fields, including fighter aircraft, civil air-
craft, and satellites [1,2,3]. With the continuous expansion of the functionality of inte-
grated electronic systems, the probability of system failures has also increased dramat-
ically, posing significant challenges to the safety and reliability of the systems. Conse-
quently, fault-tolerant mechanisms for integrated electronic systems [4,5,6] are critical
tasks.

Reconfiguration is a crucial mechanism for fault tolerance in integrated electronic
systems. Reconfiguration in integrated electronic systems refers to the process of real-
locating system resources and loading system software to ensure complete system func-
tionality when faults occur in system partitions or software resources [7]. The reconfig-
uration of integrated electronic systems is primarily achieved through the generation of
reconfiguration blueprints [8,9]. There are two main approaches to generating reconfigu-
ration blueprints: manual design and traditional algorithms [10,11]. Manual design is in-
fluenced by practical experience and individual differences, while traditional algorithms
emphasize feasibility but have limitations in solving multi-objective optimization prob-
lems [12,13,14]. Multi-agent reinforcement learning is a crucial branch of machine learn-
ing that can handle more complex tasks in dynamic real-world scenarios [15,16,17]. Gen-
erating reconfiguration blueprints using a multi-agent reinforcement learning approach al-
lows for optimizing blueprints from various perspectives. Therefore, this paper proposes
an intelligent method for generating reconfiguration blueprints for integrated electronic
systems based on multi-agent reinforcement learning.

The main contributions of this paper include:

1) The establishment of mathematical models for integrated electronic systems and
reconfiguration blueprints. This involves creating models for system resources, system
partition, and system software based on the characteristics of integrated electronic sys-
tem reconfiguration. Additionally, models for system faults, reconfiguration configuration
blueprints, and system migration are developed considering the characteristics of recon-
figuration blueprints.

2) The proposal of an Improved VDN algorithm based on average sequential cumu-
lative rewards. Grounded in the VDN algorithm in multi-agent reinforcement learning,
this algorithm is designed in conjunction with a comprehensive electronic system. It in-
cludes reconfiguration states, actions of agent, overall and local reward functions, and
algorithmic strategies. The introduction of an adaptive exploration strategy based on the
average sequence cumulative reward enhances the efficiency and accuracy of algorithmic
reconfiguration. This builds upon the original exploration strategy of the VDN algorithm.
Finally, an analysis and verification of the results of the Improved VDN algorithm are con-
ducted, comparing it with reconfiguration algorithms implemented based on Q-learning
[18], DQN [19], and VDN [20], confirming the superiority of the proposed Improved
VDN algorithm.
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2. Related Works

Reconfiguration techniques play a crucial role in maintaining the security, reliability, sur-
vivability, maintainability, and scalability of integrated modular avionics systems, holding
substantial practical significance and economic value. Extensive research has been con-
ducted on reconfiguration techniques by professionals both domestically and internation-
ally. Housseyni et al. [15] proposed a distributed reconfiguration method based on a multi-
agent model. The method considers the functional module as the smallest unit of recon-
figuration, representing each device as an agent. Each agent undergoes reconfiguration at
three levels, with the first level responsible for adding and removing functional modules,
the second level for integrating functional modules, and the third level for updating func-
tional modules with data. The method ensures the security of distributed reconfiguration
through agent communication in eXtensible Markup Language (XML) format. Zhou et al.
[21] introduced a functional architecture framework for the Distributed Integrated Modu-
lar Avionics (DIMA) platform, utilizing the Architecture Analysis and Design Language
(AADL) action model to construct the functional action characteristics of DIMA’s dy-
namic reconfiguration. This framework provides a design basis for implementing DIMA’s
dynamic refactoring. Saadi A et al. [22] proposed a methodology for validating software
refactoring using the Communicating Sequential Processes (CSP) language, refactoring
techniques, and the FDR model, aiming to guide the process of software refactoring.
Ensuring the consistency of dynamic software refactoring involves conducting a compre-
hensive analysis before making any modifications to the software. The ability to safely
execute software refactoring at runtime is crucial for the feasibility of integrated modu-
lar avionics system refactoring. Chen et al. [23] proposed an AADL model based on the
reconfiguration process of an integrated modular avionics system. Using the accessibility
analysis method of Petri nets, the danger of IMA reconfiguration function is analyzed.
This method overcomes the weaknesses of the traditional static analysis method, making
it more capable of analyzing hazardous behavior during runtime. It provides a solution to
the state explosion problem that arises during reachability analysis.

Literature [24,25] has confirmed the effectiveness of reinforcement learning in op-
timizing planning. Zhang et al. [26] applied sequential game multi-agent reinforcement
learning to the field of integrated modular electronic system reconfiguration. They utilized
a policy gradient Monte Carlo search tree algorithm incorporating bias estimation to expe-
dite the convergence of the conventional algorithm. However, the method does not address
the adaptation of the exploration factor during the competition and cooperation phases of
the agent. Liu et al. [27] proposed a reliability analysis method based on the AADL model,
using Petri nets to analyze the reliability of the reconfiguration method. This method as-
sists in designing reconfiguration models at the early stage of integrated modular avionics
system development, ultimately improving the reliability of the entire integrated modu-
lar avionics system. Hollow et al. [28] proposed a reconfiguration scheme for integrated
modular avionics systems based on a simulated annealing algorithm. The scheme finds
an equivalent reconfiguration scheme with a search function for the integrated modu-
lar avionics system by calculating the fitness. While it has theoretical significance, the
method exhibits certain defects, such as the inability to meet timeliness. Cui et al. [10]
proposed a reconfiguration technique for integrated modular avionics systems based on
distributed techniques. This technique enables the system to adapt to the reconfiguration
task, quickly detect and locate faults, and establish a blueprint for reconfiguration. Suo et
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al. [12] introduced an integrated modular avionics system reconfiguration safety detection
technique based on STPA. The method focuses on coordinating human-computer inter-
actions and detecting system failures based on the severity of the failure, human factors,
and time constraints. The analysis results can be utilized for system development, system
operation, and project revision, ensuring the safety of reconfigurable integrated modular
avionics systems.

3. Research Methodology

3.1. Integrated Modular Avionics System Modeling

The integrated modular avionics system consists of hardware resource modules, operat-
ing system modules, and software modules. A single module satisfies functional indepen-
dence, while multiple modules provide isolation. Additionally, the overall system ensures
security and reliability [29,30,31]. The simplified schematic of the integrated modular
avionics system is shown in Figure 1.
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Fig. 1. Schematic diagram of the simplified model of the integrated modular avionics
system

System resource model. In this paper, the system hardware resources are abstracted into
a system hardware module. This module should include attributes such as CPU resource
list, partition resource list, software resource list, and operation status to realize the func-
tion of easy maintenance and management of partition collection. The hardware resources
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are represented using a quaternion model as shown in Equation (1).

Resource = ⟨CPUlist, Patitionlist, Applicationlist, state⟩
CPUlist = {CPU1, CPU2, ..., CPUS}

Partitionlist = {Partition, Partition2, ..., PartitionM}
Applicationlist = {App1, App2, ..., AppN}

state = {0, 1}

(1)

Where Resource denotes the system resources. CPU list denotes the set of central
processor resources. Partitionlist denotes the set of partitions configured on the proces-
sor. Applicationlist denotes the set of software resources configured on partitions. state
denotes the health state of the system resources. 0 is the system resource policy. 1 is the
system resource failure. S denotes the total number of system processors. M denotes the
total number of system partitions. N denotes the total number of system software appli-
cations.

System partition model. The modeling of system partitions is carried out in terms of
both temporal and spatial isolation. Combining the principles of temporal scheduling and
spatial mapping of partitions, the model for constructing partitions for temporal and spa-
tial attributes is shown in Equation (2) below.

Partitioni = ⟨timestart, timeduration,
memoffset,memsizePartitioni

, Applicationlist, state⟩
(2)

Where timestart denotes the start execution time of the partition. timeduration de-
notes the duration of execution of the partition. memoffset denotes the offset address of
the partition’s virtual memory. memsizePartitioni

denotes the size of the virtual memory
of partition i. Applicationlist denotes the set of applications deployed in the partition.
state indicates the health status of the system partition, with 0 being a healthy partition
and 1 being a faulty partition.

System software model. The system software model is constructed in terms of both
software spatial resources and software temporal resources. The hexadecimal model of
software resource modeling is depicted in Equation (3).

Appij = ⟨pid, rank, runcycle,WCET, timedeadline,mem, state⟩ (3)

Where Appij denotes the application software model, where the partition number
is i and the software number is j. pid denotes the process ID of the application software.
rank denotes the task priority of the application software. runcycle denotes the execution
cycle of the application software. WCET denotes the worst-case execution time of the
process. time deadline denotes the application software deadline. mem indicates the
space resources required by the application software. state indicates the health status of
the system software, with 0 being software health and 1 being software failure.
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3.2. Reconfiguration Blueprint Model

System Failure Model. There are two main types of faults in the integrated modular
avionics system: processor faults and processor partition faults [32,33]. When any one of
these faults occurs, or when multiple faults occur in succession, the integrated modular
avionics system enters a fault state [34]. This paper presents a model called the System
Fault Abstraction Model (SFAM) for abstracting system faults. To uniquely identify faults
and their occurrence locations, two attributes, namely system fault type and system fault
location, are required to create a two-tuple model for the system fault model (4).

Fault = ⟨type, location⟩ (4)

Where Fault denotes the system failure model, type denotes the system failure type,
and location denotes the system fault location.

It is necessary to establish the following constraints to distinguish between the two
types of faults and their respective locations in the integrated modular avionics system.

Faultij =

 type =⊆ {Fi, Fij}, (1 ≤ i ≤ S, 1 ≤ j ≤ M)
locationi = Ci, type = Fi

locationij = CiPj , type = Fij

(5)

Fi indicates that a processor failure has occurred in the system, and the faulty pro-
cessor is numbered i. Fij indicates that a processor partition failure has occurred in the
system. The faulty partition is located in the jth partition of the CPU number i. Ci in-
dicates the location of a system processor failure with faulty processor number i. CiPj

indicates the location of a system processor partition failure.

Reconfiguring the configuration blueprint model. The reconfig blue print (RBP) model
consists of the following set of five Equations (6) and (7).

RBP = ⟨CPU list, Partitionlist, Applicationlist, Faultlist,Map⟩
Faultlist = Fault1, Fault2, . . . , FaultK

(6)

Map =
{
applicationi

CPUs−→ Partitionj

}
(i ∈ [1, |Applicationlist|] , j ∈ [1, |Partitionlsit|])

(7)

The reconfiguration blueprint model above illustrates the mapping relationship be-
tween processors, partitions, and software in the reconfiguration blueprint. For example:
Map =

{
App1

C1−→ Partition1

}
denotes that the application software numbered 1 is

deployed on the partition numbered 1. The partition numbered 1 is deployed on the pro-
cessor numbered 1. Faultlist is a list of faults, and the number of faults is K.

Refactoring Migration Blueprint Model. Reconfigure Migrate Blueprint (RMB) con-
sists of a reconfigured initial state, a set of reconfigured intermediate states, a reconfig-
ured end state, and their corresponding transfer relationships. The Reconfigure Migration
Blueprint model definition consists of five tuples, as shown in Equation (8) below.

RMB = ⟨Sinit, Send, Faultlist, Slist,Move⟩
Slist = {S1, S2, ..., Sn}

Move =
{
Ssrc

Fault−→ Sdes

} (8)
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Where RMB denotes the refactoring migration blueprint model. Sinit denotes the
refactoring initial state. Send denotes the refactoring end state. Slist denotes the set of
refactoring intermediate states. Move denotes the refactoring transfer relation. Ssrc de-
notes the source state in the refactoring transfer relation. Sdes denotes the destination state
of the refactoring transfer relation.

Blueprint Quality. To improve the quality of the filtered feasible reconfiguration blueprints,
this paper introduces optimization objectives to assess their quality.
A.Load balancing

Rationalizing the allocation of resources across multiple partitions in an integrated
modular avionics system will improve the quality of reconfiguration blueprints. In this
paper, we use the term ”load” to refer to the evenly distributed allocation of partition
resources. Load is calculated as the weighted sum of CPU utilization and memory utiliza-
tion for each partition. The calculation formula for establishing load balancing is provided
in Equation (9) below.

LB = 1− 2 ∗
√

1
M

∑M
i=1

(
LoadPi − Load

)2
Loadpj = µ1 ∗ C

Pj
use + µ2 ∗M

Pj
use

C
Pj
use =

∑|Applicationlist|
j=1

WCETappij

Partitiondurtime

M
Pj
use =

∑|Applicationlist|
j=1

mem
Partitioni
appij

memsizePartitioni

µ1 + µ2 = 1

(9)

where LB denotes load balancing and LoadPj
denotes denotes the load on the parti-

tion numbered i. Load denotes the average resource load on all partitions. µ1 denotes the
weight of CPU utilization, and denotes the weight of memory utilization. CPj

use denotes
the partition pj of CPU utilization, the M

Pj
use denotes the weight of the partition’s pj of

the partition. The memory utilization of the partition.
B.Reconfiguration fault tolerance

Refactoring Fault Tolerance (RFT) is used to measure the impact of refactoring blueprints
on the system. The success rate of migrating the software set to the remaining available
partitions is determined by the weighted proportion of the software that is successfully mi-
grated. This paper emphasizes the importance and criticality of integrated modular avion-
ics system software. The integrated modular avionics system software is categorized into
five levels. Level 5 is the highest level of importance, while Level 1 is the lowest level
of importance. According to the definition of migration success rate, the indicator for
migration success rate is established as shown in Equation (10) below:

RFT =

∑nM

i=1 GMi∑NM

i=1 GMi

(10)

C.Reconfiguration time rate
During the reconfiguration migration process, each software that requires reconfigura-

tion migrates in parallel, following the sequence outlined in the reconfiguration blueprint.
The individual processor refactoring time is defined as the total time required to reload
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all the software in the respective partition of the processor. The lower the percentage of
time spent on refactoring, the higher the fault tolerance of the refactoring blueprint, and
the lesser impact it has on system functionality. The reconfiguration time rate metric is
established as shown in Equation (11) below.{

RTR = 1−Max(TCPUs )
Tmax

TCPUs
=
∑n

i=1 TAppi

(11)

RTR denotes the reconfiguration time. TCPUs
denotes the reconfiguration recovery

time for processor numbered s. Tmax denotes the maximum reconfiguration time. Nre

denotes the processor ck number of software in the processor that needs to be reconfig-
ured. The TMi denotes the application software Mi reconfiguration migration time of the
application software.
D.Load optimization function

To allocate more resources for future reconfiguration actions and enhance the success
rate and efficiency of reconfiguration, a load optimization function is proposed. It is shown
in Equation (12) below.

Minf1 =
∑M

i=1

∑N
j=1 µ1Cuse (Pi, Appij) + µ2Muse (Pi, Appij) µ1 + µ2 = 1

∀Memuse (Pi, Appij) ≤ Memmax

∀Cuse (Pi, Appij) ≤ CPUmax

(12)

f1 denotes the load optimization function. Cuse(Pi, Appij) denotes the software to
be migrated Appij to be migrated to the partition Pi after being migrated to a partition.
µ2Muse(Pi, Appij) denotes the CPU utilization of the software to be migrated Appij to
be migrated to the partition Pi memory utilization after being migrated to a partition.
Memuse(Pi, Appij) represents the memory utilization of the software to be migrated,
Appij , after it has been migrated to partition Pi. Memmax indicates the maximum mem-
ory available to the processor. And Cuse(Pj ,Di) Indicates the maximum memory avail-
able on the processor for the software to be migrated Appij to be migrated to the partition
Pi CPU resource consumption after being migrated to the partition.CPUmax indicates
the maximum CPU resources available to the processor.
E.Multi-objective optimization function

The multi-objective optimization function is established as shown in Equation (13)
below.

Maxf2 = λ1LB + λ2RFT + λ3RTR{
0 < λi < 1, i ∈ [1, 3]
λ1 + λ2 + λ3 = 1

(13)

Where f2 denotes the multi-objective optimization function, λ1 denotes the load bal-
ancing weights, and λ2 denotes the reconfiguration fault tolerance weights, and λ3 denotes
the reconfiguration time share weights.

3.3. Reconfiguration method based on Improved VDN algorithm
Overview. In this paper, the algorithm for generating intelligent reconfiguration blueprints
incorporates the design concepts of the VDN multi-agent reinforcement learning algo-
rithm. It refines the characteristics of the reconfiguration task of a comprehensive elec-
tronic system and incorporates them into the design of agent, state design, action space
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design, and payoff function design. Specifically, the software that requires reconfiguration
is referred to as an agent. The decision sequences are organized based on the software’s
level of importance, which ranges from high to low. The partition state is represented by
the weighted sum of time and space resources consumed by all partitions. The partitioned
states, along with the observations made by the agent about their states, are utilized as the
states in the reinforcement learning process. The assignment of each agent to an avail-
able partition or scheduling failure is abstracted as the action space. For the exploration
and exploitation strategy, this paper adopts a strategy based on the cumulative reward of
the average sequence. The cumulative rewards in the environment information are uti-
lized to allow the algorithm to adaptively adjust the exploration factor during the training
phase. For the reward function, two separate functions are designed for the agent compe-
tition phase and the agent cooperation phase. It is used to achieve the goal of balancing
the optimization of agent systems and overall efficiency. When the algorithm reaches the
termination round, the reconfiguration configuration blueprint is obtained.

Environmental design. Each software that requires reconfiguration is defined as a stan-
dalone agent. Each agent can independently sense the state of the environment, take ac-
tions, and receive feedback from the environment. All the agents compete and cooperate
within the integrated modular avionics system environment. In this paper, a state matrix
is used to describe the reconfiguration state of the integrated modular avionics system.

In conjunction with the integrated modular avionics system, the CPU information,
partition information, and application software information are enumerated first. Let’s
consider an integrated modular avionics system that consists of three CPUs and six par-
titions. Each partition has 50 ms of available time slice resources and 50 KB of available
memory resources. During the process of refactoring, the sequence of software refactor-
ing significantly impacts the quality of the refactoring and the migration plan. This paper
decomposes the fault granularity at the software level when defining the refactoring state.
In other words, CPU2 faults are divided into software M3 faults and software M4 faults.
At this point, two agents, M3 and M4, are generated according to the algorithm’s design.
As shown in Figure 2, the state matrix of agent M3 has been established.

The specific meaning of the state matrix is illustrated in the Equations. (14) and (15)
below. The state matrix is divided into two rows. The first row represents the states of
all partitions of the integrated modular avionics system, which correspond to the current
observations of the agent in its environment. The weighting coefficients for the normal
partitions are 0.5 for both the operation cycle and the operation memory, and -0.5 for the
faulty partitions. The second row represents the state of the software that needs to be re-
configured. This pertains to the observation of agent within the framework of multi-agent
reinforcement learning [35,36,37]. The observations of the agent about the environment
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are combined with their observations of themselves to form comprehensive insights.

State(i,j) =



ParInfopj
(i = 0, 0 < j < m)

Appindex (i = 1, j = 0)
Appdur (i = 1, j = 1)
Appmem (i = 1, j = 2)
AppWD (i = 1, j = 3)

Appdeadline (i = 1, j = 4)
Apprank (i = 1, j = 5)

0 else

(14)

ParInfopj
=

{
0.5 ∗Duruse

pj
+ 0.5Memuse

pj
(0 < j < m,Pjtrouble− free)

−0.5 ∗Duruse
pj

− 0.5Memuse
pj

(0 < j < m,Pjtrouble)
(15)

Where State(i,j) denotes the state matrix. m denotes the number of partitions.
ParInfoPj denotes the information of partition j. Appindex denotes the software num-
ber. Appdur denotes the software runtime period. Appmem denotes the software runtime
memory. AppWD denotes the worst runtime of the software. Appdeadline denotes the
software cutoff time. Apprank denotes the software importance level. DurusePj denotes
the remaining time slice resources of partition j. and MemusePj denotes the remaining
memory resources of partition j.

In this paper, the reconfiguration of agent follows the software priority order, indi-
cating that software with high priority is reconfigured before software with low priority.
When the agent with high priority executes an action, it affects the environment and other
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prioritized observations. In this example, the agent M3 has a priority of 5, while the agent
M4 has a priority of 4. M3 executes the refactoring before M4. After executing the recon-
figuration action, the agent M3 migrates the application to partition 2. But partition 2 does
not have any available resources at the moment. When the agent M4 executes the action,
its state matrix changes, as depicted in Figure 3.
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Fig. 3. M4 reconfiguration state diagram

Agent Action Design. In this paper, an individual action of an agent is defined as the
process of scheduling the current software to be reconfigured for a specific available par-
tition. The set of all executable discrete scheduling actions constitutes the action space.
The specific definition is shown in Equation (16). When there are m available partitions,
the size of the current action space is m. It contains m successful scheduling actions. That
is, the software that needs to be reconfigured can be scheduled for any of the available
partitions.

Actioni = (Act0, Act1...Actm−2, Actm−1)

Actj =

{
1 j = k, k ∈ [0,m− 1]
0 else

ActionSpace ⊆ {Actioni} (i ∈ [0,m− 1])

(16)

m denotes the number of partitions. Actioni denotes the i-th action. Actj denotes the
j-th action component, and ActionSpace denotes the set of action spaces.

Exploratory strategies based on average sequential cumulative rewards. During the
process of algorithm training, the agent selects actions based on a strategy of exploration
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and exploitation. In the traditional VDN algorithm, the strategy is defined as shown in
Equation (17) below.

π (a|s) =
{
1− ε a = argmaxQ (s, a)

ε a = random (a)
(17)

The algorithm generates a random number specifically when it is executed. When the
random number is less than the exploration coefficient, the algorithm executes the explo-
ration policy. This policy randomly selects an action from the action space for execution.
When the random number is greater than 0, the algorithm executes the exploitation strat-
egy, which selects the optimal action based on the existing experience. The traditional
strategy is to gradually decrease the value over time. It does not consider the feedback
information from the agent during the training process, and it lacks informed action se-
lection.

The algorithm in this paper explores a utilization strategy using an adaptive approach
based on the cumulative reward of the average sequence [38]. The exploration factor
is dynamically adjusted based on the cumulative reward value of the agent during the
training process. In reinforcement learning, the sequence of actions taken by an agent
from the initial state to the goal state is crucial. The cumulative reward of the sequence is
defined by Equation (18).

Gt =

T∑
k=0

γkRt+k+1 (18)

Gt denotes the cumulative serial reward at moment t,γdenotes the reward decay coef-
ficient, and Rt+k+1 denotes the reward value of the k+1st action at moment t. Therefore,
the exploration factorεand the average sequence cumulative reward are defined as shown
in Equation (19) below.

ε = 1
1+log2(Ḡ+1)

Ḡ = 1
L

∑e−1
i=e−L Gi

(19)

L denotes the number of sequence entries, Ḡ denotes the average reward of the first
L sequences. With the exploration utilization strategy described above, the exploration
factor is dynamically adjusted based on the average cumulative reward obtained sequen-
tially. Aggregated environmental feedback information guides the agent in choosing their
actions.

Reward function design. During the reconfiguration of an integrated modular avionics
system, a new blueprint is generated after performing an application migration operation.
The reward function is used to evaluate the impact of the action on the refactoring pro-
cess. For a positive impact, the reward function provides positive feedback. Increasing
the reward value tends to motivate the agent to perform better actions in the next round
of training. The reward function provides negative feedback for unfavorable outcomes.
Decrease the reward value to discourage the agent from engaging in negative actions. The
algorithm in this paper is designed with two reward functions. These functions are used
to calculate the cost of actions and the overall reward of the agent.
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The cost-reward function of agent actions is primarily applied during the competi-
tive phase of multi-agent reinforcement learning. During this phase, the agents compete
with each other for time slices and memory resources in order to achieve higher local
payoffs. For an agent system, successful migration will result in the efficient utilization
of the allocated time slice and memory resources for each partition. And the consumed
resources are inversely proportional to the cost of that action. That is, the smaller the ratio
of consumed partition resources to available partition resources, the more favorable the
migration of other agents. Once the migration fails, it indicates that the action is unfa-
vorable and penalizes the agent. The final reward function of a single agent is shown in
Equation (20).

r(s, a)jt =

1−µ1∗CpuusejPatitioni
−µ2∗MemusejPatitioni

migration successful
−1 migration failed

µ1 + µ2 = 1

(20)

r(s, a)
j
t denotes the local reward return value for agent j at time t. CpuusejPatitioni

denotes the time slice occupancy of the partition after agent j migrates to partition i.
MemuseiPatitionj

denotes the memory occupancy of the partition after agent j migrates
to partition i. µ1 denotes the time slice weighting coefficients, and µ2 denotes the memory
weighting coefficients.

The overall reward function is primarily used in the cooperative phase of multi-agent
reinforcement learning. In this phase, the goal of cooperation among the agents is to
achieve a higher overall reward. At this time, some individuals may receive a reduced re-
ward in exchange for an overall increase in rewards. This prevents all agents from falling
into local optimal solutions by avoiding the use of greedy strategies. The algorithm’s
explorability and stability have been enhanced. According to the multi-objective opti-
mization constraint metrics in the resource constraints of the reconfiguration blueprint,
this paper evaluates the current agent actions based on load balancing, reconfiguration
fault tolerance, and reconfiguration time ratio. The overall reward function is shown in
Equation (21).

R(s, a)jt =

{
λ1 ∗ LB + λ2 ∗RTR+ λ3 ∗RID migration successful

−1 migration failed
(21)

R(s, a)
j
t denotes the overall reward return value for agent j at time t.

4. Results and Discussion

4.1. Experimental design

In this paper, we have reconfigured the blueprint for the algorithm that generates intelli-
gence, written in the Python language. The parameters of the agent need to be set when
training the agent. The parameter settings are shown in Table 1 below.

The network topology structure employs a traditional DQN MLP network, as illus-
trated in Figure 4 below.

Based on the system migration model of the integrated modular avionics system and
the experimental data, the reconfiguration configuration state migration graph shown in
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Table 1. Parameter Settings

parameters parameter value

Training round 20000
Competitive learning rate 0.1
Cooperative learning rate 0.9
Sample size 16
Empirical sample size 2000
Target network update rate 0.01
Memory utilization weights µ1 0.5
Time-slice utilization weights µ2 0.5
Starting rounds of cooperation 16000
Average accumulated experience bars L 10
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Fig. 4. Schematic of MLP network topology

Figure 5 below has been constructed. Among them, S0 is a blue node representing the
initial configuration blueprint. There are eight faults, each of which generates a reconfig-
uration state. There are eight green nodes corresponding to S1 to S8. Send is a red node
representing the final state of the reconfiguration. Two scenarios cause a reconfiguration
state to enter the end state. The first reason is that there are no faults that require reconfig-
uration. The second reason is that the available system resources are insufficient to meet
the reconfiguration requirements.

Specifically, the initial state is S0. When the system injects a single fault with fault
number ”Fault1,” System Partition 1 fails. The system invokes the intelligent reconfigura-
tion algorithm to generate a new reconfiguration blueprint. The system restores the normal
state of S1 by migrating the application and utilizing the reconfiguration blueprint. When
the system injects a continuous fault with a fault number of Fault5, a continuous fault
occurs in system partitions 1 and 3. At this point, the system proceeds to invoke the in-
telligent reconfiguration algorithm to create a new reconfiguration blueprint based on S1.
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Subsequently, the system executes the reconfiguration process to restore the system to its
normal state, S5. Since the consecutive faults for Fault5 have been reconfigured, there are
no longer any faults in the system. Therefore, the state is transferred to the reconfiguration
end state Send. The remaining steps of the state transfer process are the same as described
above.

S0

S1

S2

S3

S4

S5

S6

S7

S8

Patition3

CPU4

Patition2

Patition13

Send

Fig. 5. System Reconfiguration Configuration State Migration Diagram

4.2. Experimental results and analysis

The configuration table is generated for the eight faults mentioned above in this experi-
ment. After the experiment, all the faulty applications were moved to the available par-
titions. The reconfiguration blueprint meets the requirements for time constraints, space
constraints, and uniqueness constraints. The validity of the experimental results is veri-
fied.

Parameters affect experimental results. For the parameter impacts of the algorithm,
this paper takes the reconfiguration impacts arising from an environment in which fault
1 occurs in an integrated modular avionics system as an example. The impact of the
single fault parameter experiment is analyzed. Fault 1 is a typical single fault. That is, 1
partition fails and 1 software needs to be reconfigured. For the aforementioned fault, the
experimental results are presented in Table 2 of the Single Fault Parameter Experiment
data.

This paper presents an example of the reconfiguration impact in an environment where
a Fault6 fault occurs in an integrated modular avionics system. It analyzes the impact of
experiments on continuous fault parameters. Fault6 is a typical continuous fault. Three
partitions have failed and six software need to be reconfigured. For the above fault, the
results of the experiment are shown in Table 3 of the Continuous Fault Parameter Table
experiment data below.
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Table 2. Single Fault Parameter Experiment Data Sheet

λ1 λ2 λ3 maximum values convergence value LB RFFT MSR

0.45 0.1 0.45 0.941853 0.931086 0.851807 0.940000 1.000000
0.4 0.2 0.4 0.939961 0.931882 0.859705 0.940000 1.000000
0.35 0.35 0.3 0.937844 0.929896 0.859705 0.940000 1.000000
0.25 0.45 0.3 0.942316 0.939148 0.858650 0.940000 1.000000
0.2 0.4 0.4 0.952482 0.946362 0.862412 0.940000 1.000000
0.1 0.45 0.45 0.961241 0.958732 0.887322 0.940000 1.000000

Table 3. Experimental Data Sheet for Continuous Fault Parameters

λ1 λ2 λ3 maximum values convergence value (math.) LB RFFT MSR

0.45 0.1 0.45 0.625812 0.374881 0.682018 0.660000 0.666667
0.4 0.2 0.4 0.674227 0.675892 0.640000 0.560000 1.000000
0.35 0.35 0.3 0.632193 0.599479 0.679393 0.520000 1.000000
0.25 0.45 0.3 0.602516 0.579556 0.684264 0.580000 1.000000
0.2 0.4 0.4 0.631485 0.597244 0.701263 0.580000 1.000000
0.1 0.45 0.45 0.586616 0.357389 0.784097 0.660000 0.888889

According to the above experimental results, when a single failure occurs, all parame-
ter selection cases are able to complete the reconfiguration for that failure. The reconfigu-
ration time share and migration success rate are the same. The algorithm’s return value at
this point depends on the load balancing situation. From the experiments, we can see that
the final choice of the single failure parameter λ1 Select 0.1.λ2 Select 0.45.λ3Choosing
0.45. The impact of load balancing value is more significant than other parameter choices.

When continuous failure occurs, it is not possible to explore a viable reconfiguration
option when both 0.45 and 0.1 are selected for λ1. The metrics for return value are un-
satisfactory. When λ1 non-0.4 is chosen, the return value hardly exceeds 4. According to
the experimental results, the return value is more significant than other parameter choices
when λ1 Select 0.4.λ2 Select 0.2.λ3 Select 0.4 for continuous failure.

Single Fault Experimental Results. Experiments were primarily conducted on the qual-
ity of blueprints and convergence speed.
A.Blueprint quality experiment

The single fault blueprint quality comparison experiment compares four metrics: the
return value of the individual reconfiguration algorithm, load balance, reconfiguration
time ratio, and migration success rate. The multi-agent algorithm calculates the average
value of the agent. To mitigate the instability of reinforcement learning, the data is aver-
aged over 10 rounds of iterations. The single fault has a specific location and less faulty
software. The experiment allows for a maximum of 1 fault location in the CPU and a
maximum of 3 faulty software. Figure 6 displays the graphs used to compare the quality
of reconfiguration blueprints for S1-S4.

According to the figure above, it can be seen that in the case of a single fault, all
the various intelligent reconfiguration algorithms have MSR metrics of 1. This means
that in the case of fewer software faults, all the algorithms are capable of performing
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Fig. 6. Comparison of the quality of S1-S4 reconfiguration blueprints

the reconfiguration task. From the data in the table, it can be seen that in the case of the
same number of training sessions. The Improved VDN algorithm is capable of generating
blueprints with higher load balancing metrics compared to other algorithms. As a result,
the reward values also converge to a higher level.
B.Convergence rate experiments

To compare the convergence speed of various reconfiguration blueprint generation
algorithms in the presence of a single fault. In this paper, we selected S1 training data
generated by an integrated modular avionics system in a typical single fault environment,
specifically Fault1, as an example for validation and analysis. The reward values of the
four algorithms were compared over 20,000 training rounds. The average reward value
per 10 rounds for the total number of training rounds for the Fault1 fault is plotted against
the blueprint reward trend, as shown in Figure 7 below. The figure shows the number
of converged rounds for the Improved VDN, VDN, DQN, and Q-learning blueprint al-
gorithms based on fault improvement: 665, 1,163, 1,661, and 1,827 rounds, respectively.
The Improved VDN algorithm demonstrates a faster convergence speed compared to other
algorithms.

Continuous Failure Experiment Results. The following provides a comparison of blueprint
quality and convergence speed.
A.Blueprint quality comparison

More faulty software is involved in consecutive faults, with up to 2 CPUs implicated
in the fault location and up to 6 instances of faulty software in the experiment. Figure 8
is used to compare the quality of S1-S4 reconfiguration blueprints.

From the figure, it can be seen that there is a continuous failure, such as S6. At
this time, the system resources drop dramatically. The corresponding mean squared er-
ror (MSR) values of the Improved VDN, VDN, DQN, and Q-learning algorithms are 1,
0.666667, 0.666667, and 0.5, respectively. It shows that in the case of a large number
of faulty software, only VDN can generate a usable reconfiguration blueprint within a
limited time. The other three algorithms are unable to complete the refactoring and can
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S1-DQN S1-Q_learning

S1-VDN S1-Improved VDN

Fig. 7. S1 Blueprint Reward Change Trend Chart

only attempt to migrate the software to be refactored based on the software priority. The
software with a lower migration success rate has higher load balancing metrics and refac-
toring time ratio metrics compared to the Improved VDN algorithm. However, the reward
value for final convergence is still lower than that of the Improved VDN algorithm. As
can be seen from the data in the table, with the same amount of training, the Improved
VDN algorithm is more effective at generating reconfiguration blueprints and converges
faster than other algorithms. It also has an advantage over other comparative algorithms
in its ability for simultaneous multi-objective optimization.
B.Comparison of convergence speeds

To compare the convergence speed of various reconfiguration blueprint generation
algorithms in the presence of continuous faults. In this paper, the training data of the
integrated modular avionics system generating S6 under the typical continuous fault envi-
ronment, Fault6, is selected as an example for validation and analysis. And the algorithms
are selected to compare the corresponding reward values of the four algorithms in 20,000
rounds of training. As shown in Table 4, the reward values of the three reconfiguration
blueprint generation algorithms changed after 20,000 iterations of training in the presence
of Fault1 fault.

For the Fault6 fault, the average reward value of every 10 rounds of training is used
to plot the trend of reward change in the blueprint. Under this framework, the explo-
ration factor is adaptively adjusted by utilizing cumulative rewards derived from the av-
erage sequence. The number of converged rounds for the improved intelligent reconfigu-
ration blueprint algorithm based on VDN is 1744 rounds. The intelligent reconfiguration
blueprint generation algorithms based on VDN, Q-learning, and DQN are all in an oscil-
lating state and cannot converge.
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Fig. 8. Comparison of the quality of S5-S8 reconfiguration blueprints

Table 4. S6 State 1-20,000 Training Blueprint Quality Values

Number of iterations Improved VDN VDN DQN Q-learning

1 0.162586 0.162586 0.137438 0.000125
1000 0.243601 0.243601 0.173120 0.073178
2000 0.321210 0.321210 0.179622 0.180646
3000 0.483040 0.483039 0.192260 0.209591
4000 0.482808 0.482808 0.190402 0.235901
... ... ... ... ...
10000 0.449848 0.449848 0.361703 0.273046
110000 0.432568 0.432568 0.321205 0.291970
120000 0.429175 0.429175 0.396585 0.293272
... ... ... ... ...
18,000 0.670433 0.567463 0.513909 0.493352
19000 0.670433 0.565181 0.515823 0.492240
20000 0.670433 0.569339 0.512242 0.494273

In summary, this paper proposes an intelligent reconfiguration blueprint generation
algorithm based on VDN and average sequence cumulative rewards. Compared to tradi-
tional linearly decreasing exploration factor strategies, the introduced exploration strat-
egy in this algorithm exhibits higher adaptability and flexibility. It better addresses the
learning dynamics of agents during the training process, avoiding blind reduction of the
exploration factor that might lead to local optima. Through the design of two reward func-
tions, the system can effectively evaluate the actions of agents, guiding them to achieve a
balance between cooperation and competition in multi-agent systems. This enables better
completion of the reconfiguration tasks for electronic systems.

A comprehensive analysis of experimental results was conducted, which included
parameter selection experiments, single-fault experiments, and continuous-fault experi-
ments. The proposed algorithm demonstrates advantages in both the quality and speed
metrics of reconfiguration blueprint generation compared to traditional algorithms based
on VDN, DQN, and Q-learning. Furthermore, its advantages become more pronounced,
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especially in complex scenarios such as continuous faults. The algorithm presented in this
paper demonstrates improved applicability and robustness.

Hence, it can be concluded that this paper incorporates the average sequence cumu-
lative reward mechanism into the VDN algorithm and applies it to the comprehensive
electronic system reconfiguration blueprint generation method. This approach not only
enables the generation of higher-quality reconfiguration blueprints but also achieves the
efficient generation of such blueprints.

5. Conclusion

This paper presents the design and validation of an intelligent generation algorithm for
reconfiguration blueprints using multi-agent reinforcement learning. The algorithm uti-
lizes average sequential cumulative rewards instead of the conventional VDN algorithm’s
ε−greedy strategy. The algorithm design includes four main elements: integrated modular
avionics system state design, exploration and utilization strategy design, action space de-
sign, and reward function design. This paper validates the proposed algorithm by compar-
ing its experimental results with reconfiguration blueprint generation algorithms based on
traditional VDN, Q-learning, and DQN. The comparison demonstrates that the proposed
algorithm exhibits superior convergence characteristics and optimization effects, making
it suitable for addressing similar multi-objective optimization reconfiguration problems.
In addition, there is room for optimizing load balancing in complex fault environments,
and evaluation metrics such as software and module correlation are not considered. In the
design of agent systems, as the complexity of faults increases and the number of software
components requiring reconfiguration grows, the number of agent systems also increases.
This significantly impacts both the solving speed and the convergence rate. Therefore, the
definition of an agent system can be further refined. Similarly, bandwidth, ports, routing,
topology, and other factors need to be considered in the future to enhance the reconfigu-
ration of distributed integrated electronic systems.

References

1. Hubbard, P.D.: Fault management via dynamic reconfiguration for integrated modular avionics.
Computer Science (2015)

2. Chen, J., Du, C., Han, P.: Scheduling independent partitions in integrated modular avionics
systems. PLOS ONE 11(12), e0168064 (2016)

3. Wang, P., Zhao, C., Yan, F.: Research on the reliability analysis of the integrated modular
avionics system based on the aadl error model. International Journal of Aerospace Engineering
(2018)

4. Burger, S., Hummel, O.: Towards automatic reconfiguration of aviation software systems. In:
2011 IEEE 35th Annual Computer Software and Applications Conference Workshops. pp.
200–205. IEEE, Munich, Germany (2011)

5. Burke, M., Audsley, N.: Distributed fault-tolerant avionic systems - a real-time perspective.
arXiv - CS - Distributed, Parallel, and Cluster Computing (2010)

6. Wang, H., Niu, W.: A review on key technologies of the distributed integrated modular avionics
system. International Journal of Wireless Information Networks 25(12), 358–369 (2018)

7. He, D., Qiao, Q., Gao, J., Chan, S., Zheng, K., Guizani, N.: Simulation design for security
testing of integrated modular avionics systems. IEEE Network 34(1), 159–165 (2020)



A Method for Solving Reconfiguration Blueprints... 1355

8. Gui, S., Luo, L., Tang, S., Meng, Y.: Optimal static partition configuration in arinc653 system.
Journal of Electronic Science and Technology 9(4) (2011)
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