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Abstract. Existing RGB-D salient object detection (SOD) techniques concentrate
on combining data from multiple modalities (e.g., depth and RGB) and extracting
multi-scale data for improved saliency reasoning. However, they frequently per-
form poorly as a factor of the drawbacks of low-quality depth maps and the lack of
correlation between the extracted multi-scale data. In this paper, we propose a Ex-
ploring Cross-Modal Weighting and Edge-Guided Decoder Network (ECW-EGNet)
for RGB-D SOD, which includes three prominent components. Firstly, we deploy a
Cross-Modality Weighting Fusion (CMWF) module that utilizes Channel-Spatial
Attention Feature Enhancement (CSAE) mechanism and Depth-Quality Assess-
ment (DQA) mechanism to achieve the cross-modal feature interaction. The former
parallels channel attention and spatial attention enhances the features of extracted
RGB streams and depth streams while the latter assesses the depth-quality reduces
the detrimental influence of the low-quality depth maps during the cross-modal fu-
sion. Then, in order to effectively integrate multi-scale features for high-level and
produce salient objects with precise locations, we construct a Bi-directional Scale-
Correlation Convolution (BSCC) module in a bi-directional structure. Finally, we
construct an Edge-Guided (EG) decoder that uses the edge detection operator to
obtain edge masks to guide the enhancement of salient map edge details. The com-
prehensive experiments on five benchmark RGB-D SOD datasets demonstrate that
the proposed ECW-EGNet outperforms 21 state-of-the-art (SOTA) saliency detec-
tors in four widely used evaluation metrics.

Keywords: cross-modality fusion, depth-quality, edge-guided, RGB-D images, salient
object detection.
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1. Introduction

Salient object detection (SOD), a crucial component of computer vision, tries to mimic
the visual learning mechanism of the human body to react fast to visual stimuli and pro-
duce visually appealing or fascinating objects or regions by exploring and segmenting
particular objects. As a valuable preprocessing tool, it has been used extensively in var-
ious computer vision applications, including semantic segmentation [1], image retrieval
[2] , visual tracking [3], and remote sensing image segmentation [4]. The technique can
perform a series of image processing operations and speed up the processing of data by
intelligently, effectively, and precisely recognizing the salient object regions. It can also
effectively distribute the limited computing resources to some extent.

In traditional RGB-based SOD, the color and texture cues captured by RGB images
play a crucial role in identifying salient objects. However, their performance suffers when
faced with difficult situations such complex backgrounds and poor illumination. As a re-
sult of the development of sensors like smartphones and Microsoft Kinect depth camera,
it is now possible to quickly gather both RGB maps and equivalent depth maps from a
scene. The spatial information and geometry contained in the depth map can be used to
offset the shortcomings of the RGB image, which provides detailed information. As a
result, it is a reasonable choice to combine RGB images and depth maps for SOD tasks
(called RGB-D SOD), which can handle more complicated scenarios and satisfy the needs
of advanced detection. However, directly integrating RGB images and depth images is not
a good countermeasure and introduces unique challenges. These challenges include: (1)
Depth noise: Depth maps acquired from depth sensors can be affected by noise and inac-
curacies, which can impact the quality and accuracy of saliency maps. (2) Complementary
fusion: Integrating RGB and depth information to capture complementary cues and avoid
redundancy is crucial. Developing effective fusion strategies that fully utilize the strengths
of each modality is a challenge.

The depth map is generally used as prior knowledge to assist handcrafted features for
SOD in the early stages of RGB-D SOD approaches. Unfortunately, early handcrafted fea-
ture techniques were really crude, frequently unable to represent data with rich high-level
semantics, and their performance was subpar. In past decades, feature representation in
convolutional neural networks (CNNs) has grown functional because CNNs can acquire
features from the geometry, color, and spatial information of images, causing RGB-D
SOD technology to pay greater attention to deep learning. Existing approaches focus on
how to design effective ”interaction/fusion” modules that bridge the gap between the two
modes. Wei et al. [5] sufficiently melded the bidirectional attention interaction module
achieves bidirectional interaction between cross-modality features. Wang et al. [6] con-
verted the original 4-dimensional RGB-D cycle into DGB, RDB, and RGD to fuse RGB
and depth before extracting depth features, which helps achieve the best channel com-
plementary fusion state between RGB and depth. Chen et al. [7] adaptively fusion of
multi-modal information makes use of complimentary RGB and depth cues to address
the issue of inaccurate depth maps. Xia et al. [8] introduced a bi-directional interactive
architecture in order to improve RGB and depth features through a circular interaction. Bi
et al. [9] proposed a feedback mechanism that receives two input features from RGB and
depth branches to exchange would exchange the new information into existing interactive
information. Zeng et al. [10] propose a compensated attention feature fusion and hierar-
chical multiplication decoder network. Although these models have achieved remarkable
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results in exploring feature fusion between modalities, they ignore the possible negative
effects caused by the introducing low-quality depth maps in the fusion process.

RGB Depth GT Ours DFNetDQSD

Good

General

Poor

Fig. 1. Visual examples of our method, DQSD [11] and DFNet [12] of depth maps with
Good, Poor, and General (top-to-bottom)

In order to avoid the contamination of low-depth maps, some works [11,13,14] de-
velop depth awareness, a guidance method of fusing cross-modal data. On the other hand,
some researchers [12,15] enhance depth maps and suppress noise from depth maps using
feature enhancement modules. In order to improve the accuracy, a growing number of
techniques [16,17] are devoted to presenting elaborate feature fusion modules, which in-
clude well-designed alternate interactions between features to filter out noise in RGB and
depth features with the help of other modal data. Furthermore, several methods [18,19]
exploit estimates supplementary meaning depth maps to lessen the impact of low-quality
depth maps. However, there are some problems with these approaches: (1) Feature en-
hancement and elaborate feature fusion mainly focus on complementary and ignore the
specificity between different modalities; (2) Depth-aware and depth estimation methods
undoubtedly increase the computational cost by estimating the depth map; (3) The per-
formance of the SOD is significantly impacted by effective mechanisms for assessing the
quality of depth maps. Some visual examples are shown in Figure 1, where the depth map
quality is classified as good, poor, and general. In these cases, features extracted from
low-quality input images reduce the discriminative ability of fused features. Therefore, it
is important to consider the quality of depth maps in the RGB-D SOD task.

Furthermore, it is important to note that SOD is fundamentally a pixel-wise dense
prediction work, which utilizes the categorization of pixels on feature maps by relying on
high-resolution and multi-scale features. However, the latest advances are mainly based
on atrous convolution techniques, which enhance high-level features through the integra-
tion of semantic segmentation modules. One of the most well-known modules is the ASPP
and its variant versions [20,21,22,23], which adjust the receptive field size and enhance
the expressive power of the feature map by controlling the atrous rate without introduc-
ing additional parameters. Although these models have achieved remarkable results, they
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still have two limitations: (1) The loss of semantic information. The calculation of atrous
convolutions is similarly to a checkerboard format, where the convolution kernel only
focuses on certain positions of the pixels in the feature map during computation, while
other positions are replaced by far “zero elements”. This means that the output results
are determined only by pixels in a few positions, which may lead to the loss of seman-
tic information. (2) The lack of information correlation. These methods capture a wide
range of contextual information by varying the atrous convolution. However, in practical
applications, the feature representations across different scales often exhibit correlations.
Separate multi-scale pooling operations on the outputs of the deep network do not ad-
equately consider this correlation, which may also be detrimental to the generation of
high-quality salient maps.

RGB Depth GT Ours JL-DCF SMEG

Fig. 2. Compare the results of our model with JL-DCF [24] and SMEG [25]. The red
anchor box represents the comparison area

Moreover, edge features refer to the information around objects in an image, which
can provide important clues about object shape and structure. In SOD, these edge fea-
tures are crucial for distinguishing salient objects from the background, as salient objects
typically have distinct contours and edge features that differ from the surrounding back-
ground. By effectively extracting and analyzing the edge features of an image, salient
objects can be more accurately identified and separated them from the background. How-
ever, most of the past research has primarily focused on the structural integrity of SOD re-
sults rather than edge quality [26]. As a result, many existing approaches suffer from poor
edge quality in their output saliency maps. As shown in the first row of Figure 2, when per-
forming SOD tasks in simple scenes, JL-DCF [24] and SMEG [25] can effectively extract
objects from the background. However, the edge details captured by these models appear
slightly rougher compared to those produced by the proposed ECW-EGNet method. This
observation highlights the need for accurate edge localization and the incorporation of
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edge attention features to optimize the performance of RGB-D SOD algorithms, thereby
mitigating the issue of edge blurring, as shown in the red box in the figure.

To solve the above problems, a Exploring Cross-Modal Weighting and Edge-Guided
Decoder Network (ECW-EGNet) is proposed for RGB-D SOD, which is equipped with
a cross-modal weighting fusion (CMWF) module, a bi-directional scale-correlation con-
volution (BSCC) module, and an edge-guided decoder. Specifically, the CMWF module
is designed to enhance the complementary between the cross-modal features and better
integrate the features, where Channel-Spatial Attention Feature Enhancement (CSAE)
mechanism and depth-quality assessment (DQA) mechanism are embedded to enhance
the discriminant feature and adaptively weights and refines the RGB and depth branches,
respectively. In addition, to exploit the property of fused multi-scale features, the BSCC
module is constructed to better capture scale-correlation information and integrate multi-
scale features of high-level features by employing depth-wise separable convolutions to
compensate for the atrous convolution, where each feature branch is connected in series
to fill the holes and further improve the quality of saliency maps. Finally, to enhance the
edge information, an Edge-Guided (EG) decoder is proposed to synthesize more accu-
rate boundary masks by means of an edge detection operator, thus guiding the decoder to
achieve more accurate image segmentation.

The main contributions of this paper include the following:

• We suggest a Exploring Cross-Modal Weighting Fusion and Edge-Guided Decoder
Network (ECW-EGNet) for RGB-D SOD that not only assesses the quality of the
depth map but also utilizes the feature attributes of different scales and edge-enhancement
features to improve the efficiency of generating high-quality saliency maps.

• We propose a Cross-Modal Weighting Fusion (CMWF) module to facilitate the learn-
ing of complementary information across modalities, in which a Channel-Spatial At-
tention Feature Enhancement (CSAE) mechanism is employed to enhance the fea-
tures of extracted RGB streams and depth streams, and a Depth-Quality Assessment
(DQA) mechanism is embedded to assess the quality of the feature of the depth map
by calculating the weighting factors to reduce the interference problem caused by the
low-quality of the depth map.

• We construct a Bi-directional Scale-Correlation Convolution (BSCC) module based
on a well-designed bi-directional structure to capture the complementary and corre-
lated information of high-level features from different scales and reduce the loss of
local information.

• We propose an Edge-Guided (EG) decoder that guides the upgrading of salient object
edges by using an edge detection operator to synthesize more accurate edge masks.

2. Materials and Methods

2.1. Network Overview

The overall framework of the proposed ECW-EGNet is shown in Figure 3. We adopt the
Swin Transformer [27] as the backbone of a two-stream architecture to acquire multi-level
feature representation via RGB and depth maps. Swin Transformer has a powerful abil-
ity to model far range dependencies and capture global context. Formally, the generated
from the RGB and depth streams are named as {fr

i }
4
i=1 and

{
fd
i

}4

i=1
, respectively. The
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discriminant representation of the CMWF with enhanced fusion features is proposed to
obtain multi-levels of fusion features by integrating RGB and depth features. Notably, F f

3

and F f
4 are sent to a bi-directional scale-correlation convolution (BSCC) module to gather

high-level semantic features and enhance the inference of the result. For the decoder, we
use the edge detection operator (i.e., Sobel [28]) to generate edge-enhanced features for
subsequent edge-guided (EG) decoders to retain a clearer edge

2.2. Cross-Modality Weighting Fusion (CMWF) module

The interaction between RGB features and depth features is essential for RGB-D SOD.
However, if low-quality depth maps are chosen to be used in the cross-modal fusion pro-
cess, interference and non-salient objects may be included, and resulting in suboptimal
performance. CMWF is deployed to leverage the unique properties of RGB and depth
information in order to enhance the fusion process. By assigning appropriate weights to
these modalities, the mechanism aims to effectively capture and combine the comple-
mentary information they provide. As illustrated in Figure 4, CMWF consists of three
main components: channel-spatial attention feature enhancement, depth-quality assess-
ment mechanism and depth-weighted cross-modality fusion.
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Fig. 3. Architecture of the proposed method. The feature encoding, cross-modal weighting
fusion, and saliency inference are depicted as three essential processes in the part

Channel-Spatial Attention Feature Enhancement(CSAE). It is increasingly ac-
knowledged that RGB images and depth maps are essentially two distinct kinds of infor-
mation representations in RGB-D SOD. RGB information contains rich color and texture
details, which are particularly useful for capturing surface appearance and object bound-
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aries. On the other hand, depth information provides valuable depth cues and shape in-
formation, which are crucial for understanding object geometry and spatial relationships.
Therefore, the features of each modality hold different importance in the channel. A Sim-
ple fusion of these features may introduce noise, thereby requiring feature enhancement
to increase the discrimination between modalities, facilitating the subsequent feature as-
sessment. Attention mechanisms have been introduced to the computer vision system,
which is motivated by the human visual system. Across the previous years, it has seen an
increase in the significance of attention mechanisms in computer vision. In general, there
are three distinct categories of attention mechanisms: channel attention mechanisms, spa-
tial attention mechanisms, and combination mechanisms that combine the former two
classes. Different from previous works [29,30], which combined channel and spatial at-
tention mechanisms serially, we use a parallel approach to infer attention mapping for
each branch (spatial and channel). As illustrated in Figure 4, this parallel channel-spatial
attention could simultaneously concentrate on “what” and “where”, which captures the
importance of different feature channels, emphasizes common salient objects, and re-
moves unnecessary noise.

Specifically, we calculate channel attention maps and spatial attention maps of RGB
feature fr

i and depth feature fd
i , which are defined as follows:

CAc
i = Sigmoid(Conv1(GAP (f c

i ))), (1)

SAc
i = Sigmoid(Conv3(CGAP (f c

i ))), (2)

where c ∈ (r, d), i ∈ (1, 2, 3, 4), CAc
i and SAc

i present the channels and spatial atten-
tion maps at the i-th level, respectively. GAP (·) represents the global average pooling
operation, CGAP (·) means the global average pooling operation along channel direc-
tion. Convk(·) represents the convolution operation with the kernel size k× k(k = 1, 3),
and Sigmoid(·) represents the sigmoid activation function. Next, the original features
with the attention are combined to create the enhanced features, which are described as
follows:

F c
i = f c

i × (CAc
i × SAc

i ), (3)

where c ∈ (r, d), F c
i is the feature enhanced by channel-spatial attention, and × represents

the operations of element-wise multiplication.
Depth-Quality Assessment (DQA) Mechanism. RGB images and depth maps are

essential components of RGB-D SOD, and the fused features often serve as the key
breakthroughs in RGB-D SOD performance during cross-modal data fusion. However,
low-quality depth images resulting from factors such as dark lighting, random noise,
and human interference can lead to information loss. Directing the fusion of features
extracted from RGB and depth streams without discrimination will lead to adverse out-
comes. Therefore, it is necessary to develop quality assessment mechanisms and feature
screening for depth maps. Inspired by [11,31,32] that high-quality depth map should be
at the same level of quality as the RGB image and have similar distinctive features, we
design a depth-quality assessment (DQA) mechanism to compute depth weighting fac-
tors. As shown in Figure 4, we weight the enhanced feature F d

i to prevent excessive noise
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introduction. Specifically, we assess the similarity between the depth feature-level atten-
tion map and the RGB feature-level attention map to reduce the importance of these depth
maps. The quality assessment mechanism is a crucial part of CMWF, which minimizes
the negative effects of low-quality depth maps on SOD.
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Fig. 4. The structure of the cross-modality weighting Fusion (CMWF) module.“1-” means
1 subtract the input of the equation

Specifically, calculating the difference between the enhanced RGB features and the
depth features is a subtraction operation, which generates the absolute value difference
between the features of the two modalities. Then, the resulting difference of the absolute
value of the RGB feature pixel value is utilited to get the i-th level weighting factor λi,
which can be defined as follows:

Srd
i = Conv1(F

r
i )− Conv1(F

d
i ), (4)

λi = 1− SUM(Srd
i )

SUM(F r
i )

, (5)

where SUM(f) =
∑H

i=1

∑H
i=1 |f(i, j)|, |·| represent the absolute value operation, H

and W are the height and width of feature f , respectively.
Depth-weighted Cross-Modality Fusion. This process is shown in Figure 4, we com-

bine RGB and depth features in a weighting factors manner to obtain fusion features F f
i ,

The process can be expressed as:

F f
i = F r

i + F d
i × λi, (6)

this module uses the depth information to weigh the contribution of depth modality during
the fusion process, thus improving accuracy and reducing noise.

2.3. Bi-directional Scale-Correlation Convolution (BSCC)

Generally, low-level features focus on the fine-grained details of the learning object, while
high-level features provide more semantic information. Several approaches [21,33,34,35]



ECW-EGNet: Exploring Cross-Modal Weighting... 955

often use atrous convolution with different dilation rates to aggregate multi-scale features
and inference context information. However, this approach leads to the loss of some de-
tails and local semantic information. Moreover, in the process of multi-scale information
fusion, features across different scales lack correlation, which may not be conducive to
generating high-quality saliency maps. To leverage the advantages of high-level features
and long-distance information correlation, we design a bi-directional scale-correlation
convolution (BSCC) module. The module extracts features step-by-step via top-down and
bottom-up bi-directional paths. As shown in Figure 5, the BSCC contains four branches
and connects them in series to fill in the holes. Each branch passes through a series of
fine-grained convolutional operations to extract higher-level semantic information.

DConv3

DConv5

DConv7

DConv9

C Conv1

R
𝑅𝑓

C

Conv1 DConvk

Concatenate Element-wise summation

Hierarchical multiplicationHierarchical short connection

𝑘 × 𝑘 depth-wise separable convolution 1 × 1 convolution 

Fig. 5. The structure of the BSCC for multi-scale information fusion

Specifically, hierarchical short connections are first used to successively obtain four-
scale features from the depth-wise separable convolution layers of the convolution ker-
nel (3, 5, 7, and 9). In addition, through hierarchical multiplication, the proposed bi-
directional scale-correlation convolution (BSCC) module enhances both high-level fea-
tures and multi-scale feature learning. Suppose the input feature is denoted R:

R1 = DConv3(R) +R
Ri = DConv2×i+1(Ri−1) +R, i ∈ (2, 3, 4),

R̃i = Ri+1 ×Ri, i ∈ (1, 2, 3)
(7)

where DConv3 represent a 3 × 3 depth-wise separable convolution, and DConv2×i+1

represent depth-wise separable convolution with a convolution kernel of 2×i+1. Finally,
we cascade the obtained multi-scale features by concatenation, and transform the feature
map through a 1 × 1 convolutional layer. In addition, residual concatenation is designed
inside the BSCC to prevent the loss of high-level semantic information, which can be
expressed as:

Rf = Conv1(Cat(R̃1, R̃2, R̃3, R4)) +R. (8)



956 Xia et al.

BSCC learns scale-correlation features efficiently by increasing the receptive field
using progressive scale features, thereby greatly improving the ability to effectively infer
salient objects from complex real-world scenes.

2.4. Edge-Guided (EG) decoder

This section focuses on the edge-guided decoder, which includes feature optimisation
based on the edge-enhanced mechanism and information fusion strategies based on edge-
guided fusion.
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Fig. 6. The architecture of the Edge-Enhanced Module

Edge-Enhanced Mechanism. Edges are one of the important features in saliency
object detection, and typically RGB image based edge enhancement methods are not
as effective as they could be, mainly because RGB image low-level features only con-
tain simple representations of surface information such as colors and textures, which are
susceptible to interference when the background texture of some application scenes is
complex. In contrast, depth maps are able to directly capture the difference in distance
between the surface of an object and the background, better preserving detailed informa-
tion such as the edge of the object. Figure 6 shows how EEM extracts edge information
by using depth low-level features fd

1 and fd
2 to filter out unimportant edge information.

To accomplish this, we build the gradient map using the Sobel operator [28] in both the
horizontal Gx and vertical Gy direction. Convolution procedures are performed with two
fixed 3× 3 parameters with a stride of 1. One definition of these convolutions is:

Mx =

1 0 − 1
2 0 − 2
1 0 − 1

 , My =

 1 2 1
1 1 1

−1− 2− 1

 . (9)
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The two convolutions described above are then applied to the input feature map to
create the gradient maps Ix andIy . The edge-enhanced feature map fe is produced by
fusing these gradient maps with the input feature map after normalizing them with the
sigmoid function:

fe = fd × Sigmoid(Cat(Ix, Iy)), (10)

where Cat(·) denotes concatenation along the channel dimension. Next, we fuse the edge-
enhanced feature maps of fd

1 and fd
2 . Frist, the feature map of fd

2 is first applied to a
1 × 1 convolution operation, and a feature map with the same size as fd

1 is generated
using bilinear upsampling. Then, to equalize the number of channels between the two
feature maps, a 3 × 3 convolution is performed on each of the two feature maps. The final
edge feature map fe is created by concatenating the two feature maps along the channel
dimension and applying two layers of convolution, with the result being supervised by the
ground truth edge map.

Edge-Guided Fusion. Low-level features can provide more detailed and localized in-
formation that can be used to locate small objects well, while high-level features can cap-
ture global information and enable the detection of large objects. Inspired by the decoding
idea widely used in the Unet framework [36]. According to [36], the edge-guided decoder
is designed to combine the obtained multi-scale cross-modal weighting fusion features
with edge-enhanced features in a progressive manner to make full use of the multi-scale
features. As shown in Figure 3, multi-scale feature fusion results are obtained by channel
concatenating using cross-modal weighting fusion features and edge-enhanced features
as input. The methods are as follows:

f
c

i =

{
Cat(F f

i , Up(Conv3(F
f
i+1))), i = 1, 2, 3

F f
i . i = 4

(11)

Finally, the edge features from the edge-enhanced module are combined with the
fused features to generate the edge-guided salient map S.

S = Up(Cat(f
c

i , fe)). (12)

2.5. Loss Function

As shown in Figure 2, saliency maps of intermediate predictions are produced during
the network testing phase in each decoder block, denoted as S(t). The ground truth GT
supervises each S(t). We adopt the Binary Cross-Entropy (BCE) loss function and the
Intersection-Over-Union (IOU) loss function during the supervised training procedure to
enhance the content representation. The total loss function, denoted TLoss, is defined as
follows:

TLoss =

5∑
t=1

L
(t)
bce(up(S(t)), GT ) + L

(t)
iou(up(S(t)), GT ), (13)

where GT represents the ground truth, up(·, ·) represents bilinear upsampling, and S(t) is
upsampled to the same resolution as GT ; L(t)

bce(·, ·) represents BCE loss, L(t)
iou(·, ·) repre-

sents the IOU loss, and its calculation formula is defined as:

Lbce = −y × lg(ŷ) + (1− y) lg(1− ŷ), (14)
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Liou =
|A ∩B|
|A ∪B|

, (15)

where y represents the analogy to which it belongs, ŷ represents the prediction map; A
represents the S(t) area and B represents the GT area.

3. Experiments

3.1. Datasets

We evaluate the performance of the proposed model on five popular RGB-D SOD bench-
marks, including RGBD135 dataset [37], NLPR dataset [38], NJU2K dataset [39], SSD
dataset [40], and STERE [41] dataset. RGBD135 dataset [37] consists of 135 indoor
RGB-D images obtained by Kinect. NLPR dataset [38] is a collection of 1000 RGB
images and depth maps pairs that were acquired using Microsoft Kinect and include
both indoor and outdoor scenes. NJU2K dataset [39] is a collection of 1985 RGB im-
ages and matching depth maps gathered from stereoscopic photographs, the internet, and
3D movies. The SSD [40] is made up of 80 RGB-D images, each of which is part of
stereoscopic film production. The STERE [41] integrates 1000 pairs of binocular images
collected from the Internet and is the first stereo image dataset in this field. For unbiased
algorithm evaluation and comparison, following [42,43], the same training dataset com-
prising 1485 RGB-D images from the NJU2K dataset and 700 RGB-D images from the
NLPR dataset was used. The remaining images were used for subsequent testing.

3.2. Evaluation Metrics

To evaluate the performance of the proposed approach and other approaches, we select
four common evaluation metrics, including Precision-Recall (PR) curve, adaptive E-
measure (Eadp

ξ ) [44], adaptive F-measure (F adp
β ) [45], S-measure (Sα) [46], and Mean

Absolute Error (MAE) [47].
The Precision and Recall of a saliency map S and a ground truth G are calculated by

the PR curve, which are defined as follows:

Precision =
|M ∪G|
|M |

, (16)

Recall =
|M ∩G|

|G|
, (17)

where M is the conversion of S into a binary image, specifically, a set of thresholds are
used to divide the saliency map S, and the threshold variation range is 0-255. First, the
recall and precision are calculated for each threshold, then, they are combined to represent
the PR curves of the model at different thresholds. The PR curves reflect the mean recall
and precision of different saliency maps at various thresholds.

The F-measure generates the harmonic mean of precision P (precision) and recall R
(recall), which is expressed as:

Fβ = (1 + β2)
P ×R

β2 × P +R
, (18)
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where β is set to emphasize the accuracy [48], and based on [48], F adp
β is obtained under

various thresholds (0-255).
The S-measure calculates the structural similarity between the predicted image and

the ground-truth map, which is defined as:

Sα = α ∗ So + (1− α) ∗ Sr, (19)

where So represents object-aware structural similarity, Sr represents region-aware struc-
tural similarity, and α is a balance parameter, set to 0.5.

The E-measure measures both image-level statistics and local pixel-matching infor-
mation, which is defined as:

Eϕ =
1

W ×H

W∑
i=1

H∑
j=1

ϕFM (i, j), (20)

where ϕFM represents the enhanced alignment matrix [44], W and H stand for the width
and height of an image, respectively, and we can get Eadp

ξ from the basics.
MAE calculates the pixel-level errors between the ground truth G and the predicted

saliency map S, which is defined as:

MAE =
1

W ×H

W∑
i=1

H∑
j=1

|S(i,j) −G(i,j)|, (21)

where S(i, j) and G(i, j) present the value of the pixel (i, j) from predicted saliency map
and ground truth, respectively.

3.3. Implementation Details

We implemented our proposed methodology with one NVIDIA GeForce RTX 3090 GPU
founded on the Pytorch framework. No preprocessing techniques are used to support the
model during training and debugging to maximize performance. All images have been
resized to 384 × 384, and three channels are copied with the depth maps. We use a pre-
trained model from ImageNet [49] to initialize the parameters of the backbone network.
Then, we enforce augmentation on all the training dataset to avoid overfitting, including
random flipping and rotating, such results show that we can achieve better results with
enhancement training in most cases. Furthermore, the learning rate initiates at a value
of 1e−5, which degrades by 10 every 100 epochs. With a batch size of 3, we train our
network for 150 epochs till convergence.
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Fig. 7. PR curves of the proposed model and other salient object detection techniques on
RGBD135 [37], NLPR [38], NJU2K [39], SSD [40], and STERE [41] datasets

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

RGBD135

MAE↓

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

NLPR

MAE↓

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

NJU2K

MAE↓

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

SSD

MAE↓

0

0.02

0.04

0.06

0.08

0.1

STERE

MAE↓

Fig. 8. MAE visualization result of the proposed model and other salient object detection
techniques on RGBD135 [37], NLPR [38], NJU2K [39], SSD [40], and STERE [41]
datasets

3.4. Comparison with SOTA Methods

To validate the effectiveness of the proposed ECW-EGNet, we compare with 21 SOTA
methods, including A2dele [50], SSF [51], CMWNet [52], BBSNet [53], D3Net [54],
ICNet [55], DRLF [6], DCFNet [56], DSA2F [57], CDINet [58], DFMNet [59], RD3D
[60], DSNet [61], MIA DPD [62], DCMF [63], C2DFNet [64], HINet [9], AFNet [7],
VST [65], SwinNet [30], CATNet [66] and FCFNet [67]. For fair comparisons, the au-
thors or providers of these methods provided or gave the default parameter settings for
implementation of the original code, which was used to produce the saliency maps.

Quantitative evaluation. To validate the effectiveness of the ECW-EGNet proposed
in this paper, our model is compared with 21 SOTA methods in a comprehensive manner
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in terms of four evaluation metrics, with higher Eadp
ξ , Sα and F adp

β values indicating bet-
ter performance and the opposite for MAE values, as shown in Table 1. We can see that
our method achieves the best results in almost all five test datasets. This can be attributed
to three main aspects: Firstly, our CMWF module can perform a weighted fusion of low-
quality depth maps. Secondly, BSCC can effectively integrate high-level semantic infor-
mation and highlight object regions. Finally, EG synthesizes more accurate edge masks
to guide the upgrading of salient object edges. In addition, we also provide the Precision-
Recall (PR) curves in Figure 7 and visualize the MAE from Table 1 (as depicted in Figure
8) to further show the effectiveness of the proposed ECW-EGNet method. As can be seen
from the results, our model achieves higher precision and recall scores on the five datasets
compared to other methods. Thus, all quantitative measures demonstrate the effectiveness
of the proposed model.

Table 1. Quantitative comparisons of the proposed method against the other 21 state-of-
the-art RGB-D SOD methods. ↑/↓ indicates that a larger/smaller is better. The top three
results are highlighted in red, blue, and green, respectively

Dataset Metric

A2dele SSF CMWNet BBSNet D3Net ICNet DRLF DCFNet DSA2F CDINet DFMNet RD3D DSNet MAI DPD DCMF C2DFNet HINet AFNet FCFNet VST SwinNet CATNet ECW-EGNet

CVPR20 CVPR20 ECCV20 ECCV2020 TNNLS20 TIP21 TIP21 CVPR21 CVPR21 MM21 MM21 AAAI21 TMM21 NP22 TIP22 TMM22 PR23 NP23 TSCVT23 ICCV21 TCSVT22 TMM 23 Ours

CNN-based Transformer-based

RGBD135

Eadp
ξ ↑ 0.922 0.948 0.967 0.967 0.951 0.959 0.954 0.960 0.957 0.972 0.972 0.975 0.970 0.973 0.967 0.967 0.969 0.954 0.978 0.979 0.980 0.980 0.977

Sα ↑ 0.886 0.905 0.934 0.933 0.897 0.920 0.895 0.918 0.916 0.937 0.938 0.935 0.928 0.936 0.932 0.924 0.927 0.925 0.939 0.943 0.945 0.945 0.939

F adp
β ↑ 0.865 0.876 0.900 0.906 0.870 0.889 0.868 0.895 0.898 0.913 0.907 0.917 0.910 0.917 0.896 0.907 0.907 0.894 0.908 0.917 0.926 0.923 0.933

MAE ↓ 0.028 0.025 0.022 0.021 0.031 0.027 0.030 0.022 0.021 0.020 0.019 0.019 0.021 0.018 0.023 0.018 0.022 0.022 0.017 0.017 0.016 0.016 0.015

NLPR

Eadp
ξ ↑ 0.945 0.951 0.940 0.953 0.945 0.944 0.936 0.956 0.952 0.955 0.954 0.959 0.957 0.958 0.940 0.961 0.950 0.960 0.949 0.956 0.969 0.971 0.973

Sα ↑ 0.896 0.914 0.917 0.930 0.911 0.922 0.903 0.921 0.917 0.927 0.925 0.930 0.926 0.931 0.922 0.927 0.922 0.936 0.924 0.931 0.941 0.940 0.941

F adp
β ↑ 0.878 0.875 0.859 0.882 0.861 0.869 0.844 0.893 0.896 0.883 0.880 0.892 0.886 0.887 0.854 0.899 0.877 0.886 0.879 0.886 0.908 0.917 0.924

MAE ↓ 0.028 0.026 0.029 0.023 0.029 0.028 0.032 0.023 0.024 0.024 0.024 0.022 0.024 0.022 0.029 0.021 0.026 0.020 0.024 0.023 0.018 0.018 0.016

NJU2K

Eadp
ξ ↑ 0.916 0.935 0.922 0.942 0.915 0.912 0.903 0.941 0.937 0.945 0.937 0.942 0.947 0.944 0.925 0.941 0.939 0.949 0.929 0.943 0.954 0.958 0.960

Sα ↑ 0.869 0.899 0.903 0.921 0.901 0.894 0.886 0.903 0.903 0.919 0.912 0.916 0.921 0.914 0.913 0.908 0.915 0.926 0.918 0.922 0.935 0.932 0.934

F adp
β ↑ 0.874 0.886 0.880 0.902 0.865 0.867 0.849 0.898 0.901 0.907 0.894 0.901 0.907 0.898 0.881 0.899 0.896 0.909 0.891 0.900 0.922 0.929 0.931

MAE ↓ 0.051 0.042 0.045 0.035 0.046 0.052 0.055 0.038 0.039 0.035 0.039 0.037 0.034 0.036 0.043 0.038 0.039 0.032 0.034 0.034 0.027 0.026 0.024

SSD

Eadp
ξ ↑ 0.870 0.873 0.902 0.920 0.904 0.879 0.880 0.906 0.912 0.906 - - 0.923 - - 0.920 0.916 0.932 - 0.922 0.925 - 0.938

Sα ↑ 0.808 0.790 0.875 0.882 0.856 0.848 0.835 0.852 0.876 0.853 - - 0.885 - - 0.872 0.865 0.897 - 0.889 0.892 - 0.891

F adp
β ↑ 0.790 0.761 0.820 0.849 0.813 0.799 0.801 0.829 0.852 0.827 - - 0.853 - - 0.848 0.837 0.855 - 0.842 0.863 - 0.880

MAE ↓ 0.069 0.084 0.051 0.044 0.058 0.063 0.066 0.053 0.047 0.056 - - 0.045 - - 0.047 0.049 0.038 - 0.044 0.040 - 0.036

STERE

Eadp
ξ ↑ 0.935 0.935 0.930 0.941 0.923 0.925 0.916 0.945 0.949 0.942 0.939 0.944 0.947 0.942 0.930 0.946 0.927 0.952 0.927 0.942 0.950 0.954 0.958

Sα ↑ 0.885 0.893 0.905 0.908 0.898 0.905 0.888 0.908 0.903 0.905 0.908 0.911 0.915 0.909 0.910 0.905 0.892 0.918 0.906 0.913 0.919 0.921 0.922

F adp
β ↑ 0.884 0.880 0.869 0.885 0.859 0.864 0.845 0.897 0.898 0.890 0.875 0.886 0.894 0.882 0.866 0.892 0.859 0.898 0.868 0.878 0.893 0.904 0.910

MAE ↓ 0.043 0.044 0.043 0.041 0.046 0.045 0.050 0.037 0.036 0.041 0.040 0.037 0.036 0.037 0.043 0.038 0.049 0.034 0.034 0.038 0.033 0.030 0.028

Qualitative evaluation. Figure 9 shows the qualitative comparison of our proposed
approach and other SOTA methods in in various challenging scenarios, including low-
quality depth maps (1st and 2nd rows), small objects (3rd and 4th rows), multiple objects
(5th and 6th rows), low contrast (7th and 8th rows), complex scenes (9th and 10th rows).

In the 1st and 2nd rows of the example, the depth map information is poor, but our
method can still accurately detect the saliency object, which proves the effectiveness of
the CMWF module. The 3rd and 4th rows show some small object samples, and the 3rd
row includes a small flower. Despite the small size of these objects, our method is also
able to detect them accurately. Examples with multiple objects are shown in the 5th and
6th rows. In the 6th row, most SOTA methods fail to detect three complete windows,
while our method is able to segment salient objects accurately. The 7th and 8th rows
demonstrate examples of low contrast between background and object regions. In the 8th
row, most SOTA methods fail to separate the owl from the branch, but our method is
able to accurately separate the salient object from the background. Finally, the 9th and
10th rows show examples of complex scenarios where our method accurately detects
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Fig. 9. Visual comparison of different RGB-D SOD methods. Including SwinNet [30],
VST [65], AFNet [7], HINet [9], C2DFNet [64], DSNet [61], DSA2F [57], DCFNet [56],
D3Net [54], BBSNet [53]

salient objects by effectively suppressing background interference, while other methods
produce spurious results. On the 10th row, our method completely segmented the objects
by highlighting foreground objects, while the other methods output incomplete results.
The above examples show that our approach can effectively detect meaningful objects in
a variety of scenarios.

4. Discussion

In this section, we perform ablation studies to verify the effectiveness of each component
of our method on the NLPR and STERE datasets. We focus on (1) the importance of
the CMWF module, (2) the effect of BSCC on RGB-D SOD, (3) the necessity of Edge-
Guided (EG) decoders, and (4) the impact of multi-scale supervision (MS). As shown
in Table 2, where M1 indicates that the model does not use any components and only
contains MS. M2 added CMWF and MS, and removed BSCC and EG. M3 means that
BSCC and MS are added to the model, and CMWF and EG are removed. M4 indicates
that the model contains both CMWF, EG, and MS, but does not use BSCC. M5 indicates
that the model contains both CMWF, BSCC, and EG, but does not use MS. M6 means
that the model uses all components simultaneously (i.e., CMWF, BSCC, EG, and MS).

The effectiveness of CMWF. The CMWF module merges RGB and depth images
in our network in a weighted manner. By comparing M1 and M2, we can see a sig-
nificant improvement in performance for both datasets. This phenomenon is even more
pronounced in the STERE dataset: the F-measure and MAE of the CMWF module im-
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Table 2. Ablation studies for our ECW-EGNet on two datasets. “
√

” denote the model
contains the corresponding component

Model CMWF BSCC EG MS
NLPR STERE

Eadp
ξ ↑ Sα ↑ Fadp

β ↑ MAE ↓ Eadp
ξ ↑ Sα ↑ Fadp

β ↑ MAE ↓

M 1
√

0.965 0.936 0.907 0.020 0.942 0.917 0.887 0.035

M 2
√ √

0.969 0.937 0.917 0.018 0.952 0.920 0.902 0.031

M 3
√ √

0.972 0.940 0.918 0.017 0.953 0.921 0.902 0.030

M 4
√ √ √

0.970 0.941 0.917 0.017 0.951 0.922 0.902 0.030

M 5
√ √ √

0.969 0.941 0.921 0.017 0.955 0.921 0.904 0.030

M 6
√ √ √ √

0.973 0.941 0.924 0.016 0.958 0.922 0.910 0.028

prove performance by 1.7% and 11.4% respectively. This is because STERE contains
a high volume of noisy depth images, whereas our CMWF reduces the interference in-
formation from low-quality images. To demonstrate the superiority of CMWF, we have
experimentally compared the performance of three variants of the CMWF module. Specif-
ically, the model w/o CMWF express our full model without the CMWF module; The
model w/o CSAE illustrate our full model without the CSAE mechanism; and the model
w/o DQA displays our full model without the DQA mechanism. The results are shown
in Table 3 and it can be seen that all three steps in CMWF are helpful in improving the
performance of SOD, especially after removing the DQA module there is a clear decrease
in performance, which confirms the potential of our DQA to evaluate depth images and
reduce the negative impact of low-quality depth maps.

The effectiveness of BSCC. In ECW-EGNet, multi-scale feature fusion is achieved
by using depth-wise separable convolutions of various convolutional kernel sizes. In Table
2, the comparison between M1 and M3 shows that the addition of the BSCC module to
integrate global features improves the performance of the network on these two datasets.
Specifically, when evaluating the NLPR dataset, the E-measure and F-measure of the
model increase by 0.7% and 1.2% respectively upon incorporating the BSCC module.

Table 3. Comparison of quantitative indicators between CMWF and variant

Model
NLPR STERE

Eadp
ξ ↑ Sα ↑ Fadp

β ↑ MAE ↓ Eadp
ξ ↑ Sα ↑ Fadp

β ↑ MAE ↓

w/o CMWF 0.962 0.930 0.904 0.020 0.948 0.918 0.895 0.033

w/o CSAE 0.972 0.940 0.918 0.017 0.953 0.918 0.901 0.031

w/o DQA 0.971 0.940 0.921 0.017 0.951 0.921 0.901 0.031

CMWF 0.973 0.941 0.924 0.016 0.958 0.922 0.910 0.028

The effectiveness of EG. It refines the contour details of salient objects by extracting
salient edge features and integrating the edge features into the decoding process. In Table
2, by looking in M2 and M4, we can see that adding EG also wins edge segmentation
on NLPR, e.g., Eadp

ξ : 0.969−→ 0.970, Sα: 0.937−→ 0.941, MAE: 0.018−→ 0.017.
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Effectiveness of multi-scale supervision (MS). During the training of the network,
we uses multi-scale supervision to achieve an accurate representation of the salient ob-
jects. To verify the effectiveness of multiple supervision, we remove all other losses in
the network, keeping only the last layer of loss L1. The results for this experiment are
presented in row M5 of Table 2. It can be observed that the removal of multi-scale su-
pervision results in a decrease in performance, which confirms that the introduction of
supervision in the output of each side facilitates performance improvement.

5. Conclusions

In this paper, we propose an efficient ECW-EGNet framework to implement RGB-D SOD.
We propose a cross-modality weighting fusion (CMWF) module that assesses the quality
of the depth map and fuses cross-modal features by calculating the difference between
RGB modal and depth modal in order to compensate for the difference between RGB and
depth modes. In CMWF, features extracted from the backbone network are enhanced to
generate discriminative features, which are then used to generate weighting factors for
the enhanced discriminative features to determine the weights for depth feature fusion.
Additionally, we introduce a bi-directional scale-correlation convolution (BSCC) module
to learn high-level semantic information to better capture contextual information for ef-
fective guided saliency prediction. Moreover, the accuracy of SOD is further improved
with the use of an Edge-Guided (EG) decoder. Experimental tests on five representative
datasets show that the proposed method outperforms 21 SOTA methods in four evaluation
metrics. In the near future, we are especially interested in the prospect of reducing model
parameters without compromising model performance. We design a more lightweight
backbone network to replace the current Swin Transformer for feature extraction.
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