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Abstract. Since its emergence at the end of 2019, SARS-CoV-2 has infected 

millions worldwide, challenging healthcare systems globally. This has prompted 

many researchers to explore how machine learning can assist clinicians in 

diagnosing infections caused by SARS-CoV-2. Building on previous studies, we 

propose a novel deep learning framework designed for segmenting lesions evident 

in Computed Tomography (CT) scans. For this work, we utilized a dataset 

consisting of 20 CT scans annotated by experts and performed training, 

validation, and external evaluation of the deep learning models we implemented, 

using a 5-fold cross-validation scheme. When splitting data by slice, our optimal 

model achieved noteworthy performance, attaining a Dice Similarity Coefficient 

(DSC) and Intersection over Union (IoU) score of 0.8644 and 0.7612 

respectively, during the validation phase. In the external evaluation phase, the 

model maintained strong performance with a DSC and an IoU score of 0.7211 and 

0.5641, respectively. When splitting data by patient, our optimal model achieved a 

DSC score of 0.7989 and an IoU score of 0.6686 during the validation phase. 

During the external evaluation phase, the model maintained strong performance 

with a DSC and IoU score of 0.7369 and 0.5837, respectively. The results of this 

research suggest that incorporating transfer learning along with appropriate 

preprocessing techniques, can contribute to achieving state-of-the-art performance 

in the segmentation of lesions associated with SARS-CoV-2 infections. 

Keywords: computer vision, machine learning, deep learning, transfer learning, 

convolutional neural networks, COVID-19, semantic segmentation, medical 

imaging, computed tomography. 

1. Introduction 

According to the World Health Organization, since the first detection of SARS-CoV-2, 

there have been more than 771 million confirmed cases of COVID-19 infection, of 

which nearly 7 million cases have resulted in death [1]. Early detection and diagnosis of 

COVID-19 are key factors in limiting the spread of the virus [2]. Diagnostic tests remain 

the most common method to detect SARS-CoV-2, with Reverse Transcription 
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Polymerase Chain Reaction (RT-PCR) tests being the most reliable. However, the fact 

that they are time-consuming is a significant disadvantage, especially regarding this 

particular virus, where early diagnosis plays a vital role in successful treatment [2]. 

The study of medical images, such as CT scans, constitutes a valuable approach for 

identifying COVID-19 by detecting pathological findings associated with lower 

respiratory tract infections (pneumonia) [3]. Medical imaging is widely used by 

specialists as a diagnostic tool for SARS-CoV-2 associated pneumonia, with CT scans 

providing much higher diagnostic accuracy, as they can identify incipient lesions in the 

lung parenchyma that cannot be discerned on plain chest X-rays [4].  

Through the review of medical images, clinicians can assess the health status of each 

patient and, if concerning findings are discovered, make the correct diagnosis and follow 

the appropriate treatment. However, while the process of reviewing medical images by 

healthcare professionals often leads to correct and timely detection, diagnosis, and 

treatment, 40-54% of malpractice cases attributable to medical radiologists are 

associated with errors in interpreting medical images [5].  

Given these challenges, leveraging machine learning techniques for the analysis of 

medical images can be a valuable tool for the early and accurate detection and diagnosis 

of COVID-19 infections. 

The COVID-19 outbreak has resulted in increased interest in how machine learning 

techniques can contribute to the process of analyzing medical images to detect COVID-

19 infections. Consequently, since the start of the COVID-19 pandemic, a multitude of 

scientific papers featuring noteworthy results have been consistently published by 

experts in the field of machine learning. The large volume of relevant papers indicates 

that this research area remains active, which is understandable given the ongoing 

presence of COVID-19. The opportunities for research in this area, along with the 

continued interest of the scientific community, motivated our engagement with this 

specific research topic. 

In this work, we investigate the applicability of deep learning techniques for detecting 

and isolating lesions associated with COVID-19 pneumonia. Our contributions can be 

enumerated as follows: 

 We utilized a segmentation architecture called U-Net [6], which we trained and 

evaluated using a publicly available dataset. Subsequently, we applied transfer 

learning principles to train and evaluate variations of the U-Net architecture, 

replacing the encoder with a pre-trained CNN model. Finally, we compared their 

performance with the basic U-Net architecture. 

 We evaluated the impact of data preprocessing on the performance of the models 

used in this work. Specifically, we trained the selected architectures on CT slices 

that were normalized in terms of contrast and brightness, and then segmented to 

retain only the information within the lung parenchyma for each slice. While 

contrast and brightness normalization are standard practices, our contribution lies in 

the systematic integration of these techniques within a deep learning framework 

tailored for detecting lesions associated with COVID-19 pneumonia. This 

preprocessing approach proved crucial in achieving state-of-the-art results, 

demonstrating its effectiveness in enhancing model accuracy and reliability. 

The rest of the article is organized as follows: Section 2 provides an overview of 

related work on COVID-19 lesion segmentation. Section 3 explains the methodology 

used in this research. In Section 4, we present and discuss the results of the conducted 
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experiments and compare them with state-of-the-art approaches. Finally, in Section 5, 

we draw conclusions from this research. 

2. Related Work 

This section provides an overview of the related literature on COVID-19 lesion 
segmentation in CT scans. To better present the findings, Table 1 summarizes the work 
conducted by other researchers that is relevant to this research paper. It can be seen that 
the U-Net architecture is the most popular approach used to address this problem. 
Furthermore, it is noteworthy that among the approaches detailed in Table 1, only three 
make use of the transfer learning technique. This observation underscores that the 
utilization of transfer learning in the context of COVID-19 lesion segmentation on CT 
scans has not been extensively explored within the existing literature. 

Table 1. Summary of the existing literature related to our proposed work 

Model Architecture Training and 

Validation Dataset 

External Evaluation 

Dataset 

Preprocessing 

& Transfer Learning 

Validation Results External Evaluation 

Results 

Ma et al. [7] 

2D U-Net 

COVID-19-CT-Seg 

[8] 

(5-fold cross-

validation 

Train: 20% 

Val: 80%) 

- HU Clipping  

[-1250, 250], 

No Transfer Learning 

DSC:  

60.80% 

- 

Ma et al. [7] 

nnU-Net [9] 

COVID-19-CT-Seg 

(5-fold cross-

validation 

Train: 20% 

Val: 80%) 

MosMed [10]  HU Clipping  

[-1250, 250], 

No Transfer Learning 

DSC:  

67.30% 

DSC:  

58.80% 

Müller  

et al. [11] 

3D U-Net [12] 

COVID-19-CT-Seg 

(5-fold cross-

validation 

Train: 80% 

Val: 20%) 

- HU Clipping  

[-1250, 250], 

No Transfer Learning 

DSC:  

76.10% 

 

-  

Müller  

et al. [13] 

3D U-Net 

COVID-19-CT-Seg 

(5-fold cross-

validation 

Train: 80% 

Val: 20%) 

An et al. [14] HU Clipping  

[-1250, 250], Data 

Augmentation, 

No Transfer Learning 

DSC:  

80.40% 

DSC:  

66.10% 

Owais  

et al. [15] 

DAL-Net 

Experiment 1: 

COVID-19-CT-Seg 

(5-fold cross-

validation 

Train: 80% 

Val: 20%) 

Experiment 2: 

MosMed 

(5-fold cross-

validation 

Train: 80% 

Val: 20%) 

Experiment 3: 

COVID-19-CT-Seg 

Experiment 3: 

MosMed 

Experiment 3: 

Reinhard 

Transformation [16], 

No Transfer Learning 

Experiment 1:  

DSC: 83.23%  

IoU:  74.86% 

Experiment 2: 

DSC: 68.63% 

IoU:  

61.35% 

Experiment 3: 

DSC:  

74.93% 

IoU: 

66.50% 
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Zheng  

et al. [17] 

3D CU-Net 

COVID-19-CT-Seg 

(5-fold cross-

validation 

Train: 80% 

Val: 20%) 

MosMed HU Clipping  

[-1250, 250], 

Data Augmentation, 

No Transfer Learning 

DSC:  

77.80% 

 

DSC: 

66.80% 

Yixin Wang  

et al. [18] 

3D U-Net 

COVID-19-CT-Seg 

(5-fold cross-

validation 

Train: 20% 

Val: 80%) 

 

- No Transfer Learning DSC:  

70.04% 

- 

Singh  

et al. [19] 

LungINFSeg 

COVID-19-CT-Seg 

(Train: 70% 

Val: 10% 

Test: 20%) 

- Data Augmentation, 

No Transfer Learning 

DSC:  

80.34% 

IoU:  

68.77% 

- 

Amara  

et al. [20] 

O-Net 

COVID-19-CT-Seg 

(Only 10 CT) 

(Train: 70% 

Val: 30%) 

MosMed  Image Cropping, 

Data Augmentation, 

No Transfer Learning  

DSC:  

86.60% 

IoU:  

76.40% 

DSC:  

58.40% 

IoU:  

42.80% 

Aswathy  

et al. [21] 

3D U-Net 

COVID-19-CT-Seg 

(Train: 60% 

Val: 20% 

Test: 20%) 

- Lung Parenchyma 

Segmentation, 

Patchwise Data 

Augmentation, 

No Transfer Learning  

DSC:  

82.00% 

 

Xiaoyan Wang  

et al. [22] 

SSA-Net 

Experiment 1: 

COVID-19-CT-Seg 

(5-fold cross 

validation) 

Experiment 2: 

MedSeg Dataset 

[23] 

(Only 98 CT Slices) 

(5-fold cross 

validation) 

- HU Clipping  

[-1250, 250], 

No Transfer Learning 

Experiment 1: 

DSC:  

65.22% 

Experiment 2: 

DSC: 

75.40% 

- 

Krinski  

et al. [24] 

Various CNN 

Models 

COVID-19-CT-Seg 

(5-fold cross 

validation 

Train: 80% 

Val: 20%) 

- Transfer Learning 

(ImageNet [25]) 

Best Model DSC:  

73.67% 

Best Model IoU:  

70.91% 

- 

Mahmoudi et al. 

[26] 

2D U-Net 

COVID-19-CT-Seg 

(4-fold cross 

validation 

Train: 70% 

Val: 30%) 

- CLAHE,  

Image Cropping,  

Data Augmentation, 

No Transfer Learning 

DSC:  

91% 

IoU:  

85% 

- 

Qiblawey et al. [27] 

Various CNN 

Models 

COVID-19-CT-Seg 

(10-fold cross 

validation 

Train: 60% 

Val: 20% 

Test: 20%) 

- HU Normalization, 

Lung Parenchyma 

Segmentation, Data 

Augmentation, 

Transfer Learning 

(ImageNet) 

Best Model DSC:  

94.13% 

Best Model IoU:  

91.85% 

- 

Enshaei  

et al. [28] 

COVID-Rate 

Private Dataset + 

COVID-19-CT-Seg  

(Only 10 CT) 

(10-fold cross-

validation 

Train: 60% 

Val: 10% 

Test: 30%) 

MedSeg Dataset 

(Only 9 CT) +  

COVID-CT-MD 

[29] 

Lung Parenchyma 

Segmentation, Data 

Augmentation, 

No Transfer Learning 

DSC:  

80.69% 

DSC:  

79.98% 

Uçar et al. [30] 

U-Net + Various 

CNN Models as 

Encoders 

MedSeg Dataset 

(Train: 80% 

Val: 20% 

Test: 10% of 

Training Data) 

- Transfer Learning 

(ImageNet) 

Best Model DSC: 

84.04% 

Majority Voting 

DSC: 

85.03% 

- 
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Building upon the research summarized in Table 1, it becomes apparent that deep 

learning methods, particularly those employing the U-Net architecture, are widely 

recognized for their effectiveness in segmenting lesions within CT scans. During our 

experimental phase, we followed this approach and utilized a 2D U-Net architecture, 

along with variations where the encoder of the U-Net model was substituted with pre-

trained convolutional neural networks. 

Each of the previously mentioned research papers employs various methods and pre-

processing techniques to provide a more reliable assessment and enhance the 

performance of the models on the given task. Notably, in [7], [11], [13], [17] and [22], 

the authors normalize the CT slices by clipping pixel intensities. In [13], [17], [19], [20], 

[21], [26], [27] and [28], data augmentation is applied. Moreover, in [21], [27] and [28], 

segmentation of the lung parenchyma is performed and in [24] and [30], the authors 

leverage transfer learning.  

In this work, we combine methods and pre-processing techniques from the 

aforementioned research papers, to achieve state-of-the-art performance. Specifically, 

we adopt a technique similar to the one used in [7], [11], [13], [17] and [22] to 

normalize CT slices in terms of contrast and brightness. Moreover, we apply data 

augmentation strategies analogous to those performed in [13], [17], [19], [20], [21], 

[26], [27] and [28]. Additionally, following the approaches in [21], [27] and [28], we 

perform lung parenchyma segmentation on CT slices. Furthermore, inspired by [24] and 

[30], we utilize a transfer learning method to train variations of the U-Net model, where 

the encoder of the network is replaced with a pre-trained convolutional neural network. 

3. Materials and Methods 

Analyzing medical images to aid in the diagnosis of COVID-19 pneumonia can be 

framed as a semantic image segmentation problem. In this type of problem, deep 

learning methods, such as convolutional neural networks, are provided with CT slices 

alongside corresponding “masks”, which are images where the regions of the CT slices 

containing lung lesions have been annotated by experts. The networks are then trained 

using the input data to map the pixels of each CT slice into distinct categories based on 

the presence or absence of lesions associated with COVID-19 pneumonia.  

The framework proposed in this study is illustrated in Figure 1. In the first step, the 

selected dataset is preprocessed before being fed into each deep learning model. 

Subsequently, the deep learning models to be used in this work are selected. For our 

experiment, we chose to employ pre-trained neural networks as the backbone of a classic 

U-Net model. Following that, the implemented models undergo training and validation. 

Finally, after the training process is completed, the models’ ability to perform semantic 

image segmentation is evaluated. Appropriate performance evaluation metrics are used 

to assess their performance. 
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Fig. 1. Block diagram of the proposed method 

3.1. Dataset Selection 

For this work, we opted to use a publicly available dataset called COVID-19-CT-Seg 

[7], [8]. This dataset consists of 3,520 CT slices collected from the Coronacases.org 

[31] and Radiopaedia.org [32] repositories, comprising data from 20 distinct patients 

[7], [8]. Specifically, 2,581 CT slices originate from 10 patients within the 

Coronacases.org repository, with the remaining 939 CT slices attributed to the other 10 

patients and taken from the Radiopaedia.org repository. Figure 2 illustrates the 

distribution of CT slices in the two subsets of the COVID-19-CT-Seg dataset. 

 

Fig. 2. Bar graph depicting the number of CT slices in the COVID-19-CT-Seg dataset 
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The creators of this dataset have provided a set of 3,520 masks, in which the lung 

parenchyma is outlined bilaterally. In addition, they have included another set of 3,520 

masks outlining lesions attributed to SARS-CoV-2.  

The initial outlining procedure was carried out by two radiologists with 1-5 years of 

experience [7], [8]. It was then optimized by radiologists with 5-10 years of experience 

and finally validated and further optimized by a radiologist with over 10 years of 

experience in respiratory radiology [7], [8].  

Each patient’s slices are stored in the Neuroimaging Informatics Technology 

Initiative (NifTI) format. A visual representation of a subset of the COVID-19-CT-Seg 

dataset, alongside corresponding masks outlining lesions attributed to SARS-CoV-2, is 

depicted in Figure 3. 

 

Fig. 3. A subset of CT slices from the COVID-19-CT-Seg dataset, along with their corresponding 

masks in which areas where lesions attributed to SARS-CoV-2 have been outlined 
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3.2. Preprocessing 

In this section, we list the preprocessing techniques applied to the data before feeding it 

as input to each of the deep learning models for training and validation. The primary 

purpose of pre-processing the data is to improve data quality, reduce training time, and 

produce better results. 

In the CT slices, the pixels containing lesions (positive samples) are far fewer than 

those that do not contain lesions (negative samples). This, combined with the relatively 

small size of the dataset used in this study, results in class imbalance. To alleviate this 

problem, we removed CT slices that do not contain lesions.  

Therefore, 1,844 slices are retained in the dataset, with 1,351 slices from the 

Coronacases.org repository and the remaining 492 from the Radiopaedia.org repository. 

The distribution of CT slices in the two subsets of the COVID-19-CT-Seg dataset is 

shown in Figure 4. Additionally, since not all CT slices are of the same dimensions, we 

resize them to 256x256. 

The CT slices in the dataset used in this work present significant difference in terms 

of contrast and brightness. This difference makes the detection of important features for 

accurate semantic image segmentation difficult. To address this problem, we normalize 

the CT slices in terms of contrast and brightness. This is achieved by applying a method 

called “windowing,” where we adjust the parameters Window Width and Window Level 

of the CT slices to 1400 HU and -500 HU respectively. The choice of these values is not 

random. According to [33], adjusting Window Width and Window Level to these 

specific values enhances the visibility of features inside the lung parenchyma, which in 

turn improves lesion detectability. Moreover, by standardizing the appearance of CT 

images through the method of “windowing,” variability can be reduced, which improves 

the generalization and performance of deep learning models. Figure 5 shows a CT slice 

before and after applying contrast and brightness normalization.  

In addition, we normalize the pixel values of the CT slices to the range [0, 1], which 

is a common practice in deep learning applications. This preprocessing step facilitates 

convergence during training by ensuring that all pixel values are within a standardized 

range. This is achieved by dividing the pixel values of the CT slices by 255, which is the 

maximum pixel value. 

The region of interest in a CT slice, examined for lesions attributed to the SARS-

CoV-2 virus, is the lung parenchyma. A beneficial practice that enhances the efficiency 

of the deep learning models used in this work involves the segmentation of CT to 

preserve only the lung parenchyma in each slice. This can be achieved by utilizing the 

masks in which the lung parenchyma has been outlined bilaterally. Figure 6 shows a CT 

slice before and after the segmentation of the lung parenchyma. 

To mitigate the risk of overfitting, data augmentation is applied to the data before it is 

fed into the neural network. Data augmentation is achieved by making slight 

modifications to the existing data. These modifications consist of combinations of 

rotation within the range of 0 to 15 degrees, horizontal flipping, and horizontal and 

vertical translation within the range of 0 to 15%. 
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Fig. 4. Number of CT slices in the COVID-19-CT-Seg dataset after removing the slices without 

lesions 

 

Fig. 5. A CT slice before and after applying contrast and brightness normalization 

 

Fig. 6. A CT slice before and after segmenting the lung parenchyma 
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3.3. Data Splitting 

For the purposes of this research paper, we leveraged the 20 CT scans provided in the 

COVID-19-CT-Seg dataset. Initially, our intention was to train our models using two 

separate datasets, as exposure to diverse datasets during training can improve a model’s 

robustness. However, due to limited access to public datasets, we chose an alternative 

approach and opted to use a single dataset sourced from two distinct repositories. To 

explore this, we employed two different scenarios:  

 In the first scenario, a set of 10 CT scans from the Coronacases.org repository, 

comprising of 2,581 slices, was utilized to construct the training and validation sets 

for training and evaluation of the deep learning models, respectively. Concurrently, 

another set of 10 CT scans from the Radiopaedia.org repository encompassing 939 

slices, was used as an external evaluation set. 

 In the second scenario, the allocation of CT scans was reversed. Here, 10 CT scans 

from the Radiopaedia.org repository were used to form the training and validation 

sets, while 10 CT scans from the Coronacases.org repository were designated for 

the external evaluation set. 

The partitioning of data into training and validation subsets was accomplished 

through a 5-fold cross validation scheme. It is worth mentioning that the splitting into 

training and validation sets was performed using two distinct approaches: 

 At the slice level, where CT slices were randomly split into training and validation 

sets without any predefined criteria. 

 At the patient level, where CT slices were allocated into training and validation sets 

based on the patient they belonged to. 

3.4. Model Selection 

This section introduces the deep learning models employed in this research. The models 

used include the classic U-Net model and variations of it with different “backbones”. 

Specifically, these U-Net architectures replace the contractive path, or encoder, with 

convolutional neural networks pre-trained on the ImageNet [25] dataset, thereby 

leveraging transfer learning. The pre-trained convolutional neural networks selected as 

the encoder for the U-Net model are the VGG16 [34] and DenseNet121 [35] 

architectures. 

U-Net Architecture. The U-Net architecture, introduced in 2015 by Ronneberger et 

al., is a convolutional neural network designed for biomedical image segmentation tasks 

[6]. This network consists of three main components: the contracting path, the 

bottleneck level, and the expansive path [6]. The contracting path, which acts as the 

encoder of the network, follows the typical structure of a convolutional neural network 

[6]. In each block of this path, the spatial dimensions of the images are halved, while the 

number of the feature channels is doubled [6]. The bottleneck level connects the 

contracting path to the expansive path [6]. The expansive path, or decoder, consists of 

blocks where, in each, the spatial dimensions of the images are doubled, and the number 

of feature channels is halved [6]. The output of each block in the contracting path is 

concatenated with the input of the corresponding block in the expansive path [6]. This 
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enables the network to preserve high-resolution features from the contracting path [6]. 

The implementation of the U-Net model allows it to leverage both high-level and low-

level features, contributing to improved segmentation accuracy [6]. Another advantage 

of the U-Net architecture is that it has a relatively small number of parameters, which 

results in reduced execution time compared to alternative segmentation methods [6]. 

U-Net Architecture with the VGG-16 Model as Encoder. In this architectural 

variation, the traditional encoder is replaced with a pre-trained VGG16 model. The 

VGG16 model consists of 21 layers organized into five blocks [34]. The bottleneck 

level of the network acts as the intermediary link connecting the VGG16 model with the 

decoder. The decoder itself consists of five blocks of layers. Notably, the outputs from 

the last four blocks of the encoder are concatenated with the inputs of the corresponding 

first four blocks of the decoder. 

U-Net Architecture with the DenseNet121 Model as Encoder. In this architectural 

variation, the traditional encoder is replaced with a pre-trained DenseNet121 model. The 

DenseNet121 model begins with a convolutional layer followed by a max pooling layer 

[35]. It then includes four dense blocks, separated by transition blocks [35]. The decoder 

consists of five blocks of layers. Notably, the outputs from the convolutional layer and 

the first three dense blocks of the encoder are concatenated with the inputs of the 

corresponding first four blocks of the decoder. 

3.5. Model Training 

The training of the implemented architectures was conducted using the Kaggle [36] 

platform, leveraging the computational capabilities of an Nvidia Tesla P100 GPU with 

16 GB of memory. The models were trained on grayscale images of size 256x256 for 

200 epochs, with a learning rate of 0.001. Due to memory constraints, the data were 

divided into batches and incrementally loaded into memory during each epoch. A batch 

size of 32 was chosen for this purpose. Additionally, Adam [37] was selected as the 

optimizer. Regarding fine-tuning, we chose not to freeze any layers of the encoder part 

of the models during training. This decision was motivated by two reasons: First, the 

problem addressed in this research significantly differs from the original task for which 

the CNN models were pre-trained. Training all layers from scratch allows the models to 

better adapt to the specific characteristics of the new problem. Second, since the dataset 

used is relatively small, freezing layers might limit the models’ ability to learn important 

features specific to the dataset.   

3.6. Model Evaluation 

In this section, we detail the methodologies used to evaluate the performance of the 

models described in the previous section. To assess the models’ ability to segment 

lesions in CT slices and detect overfitting, we implemented a 5-fold cross-validation 

scheme. Additionally, we used graphical representations to monitor the training and 

validation processes, aiming to identify the presence of underfitting or overfitting and 

investigate the models’ generalization capabilities. The evaluation also includes key 
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metrics, namely Precision, Recall, Dice Similarity Coefficient, and Intersection over 

Union. 

Precision, in the context of semantic image segmentation, is defined as the ratio of 

true positive pixels to the total number of pixels included in the segmentation by the 

model, as shown in Equation (1). 

FPTP

TP
ecision


Pr  

(1) 

Recall, in the context of semantic image segmentation, is defined as the ratio of true 

positive pixels to the total of pixels that should have been included in the segmentation 

by the model, as shown in Equation (2). 

FNTP

TP
call


Re  

(2) 

The Dice Similarity Coefficient, a fundamental metric for evaluating semantic 

segmentation tasks, is calculated as the harmonic mean of Precision and Recall. This 

metric measures the spatial overlap between two segmentation regions, A and B, as 

shown in Equation (3). 

 

(3) 

Intersection over Union, another fundamental metric for evaluating semantic 

segmentation tasks, measures the spatial overlap between two segmentation regions, A 

and B, as shown in Equation (4). 

 

(4) 

4. Results and Discussion 

To assess the impact of transfer learning on the performance of the U-Net model, we 

conducted an ablation experiment. This involved training three variants of the U-Net 

architecture: the standard U-Net model and two modified versions, where the original 

encoder was replaced with pre-trained models, specifically VGG16 and DenseNet121. 

4.1. Results when Splitting Data by Slice 

For our initial experiment, we chose to use 10 CT scans obtained from Coronacases.org 

for both training and validation, while reserving the remaining CT scans from 

Radiopaedia.org for external evaluation.  This split into training and validation sets was 

performed at the slice level. Table 2 presents the metrics used to assess the performance 

of the trained models in semantically segmenting lesions associated with COVID-19 

pneumonia. 
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Among the models evaluated, the U-Net + DenseNet121 model demonstrated 

superior performance on both the validation and external validation datasets, as 

indicated by higher mean DSC and IoU values. Despite some decline in performance on 

the external validation set, all models maintained competitive results. 

When comparing the models’ performance on the validation data with their 

performance on the external evaluation data, it is evident that the evaluation metric 

values are higher in the former than in the latter. This outcome is expected, considering 

that the external validation dataset contains previously unseen data. Therefore, it is 

reasonable that the models do not perform as well on this “unknown” dataset. Moreover, 

the validation set is used during the training process to tune each network’s parameters, 

which may lead the models to learn features specific to that set and, thus perform better 

on it, despite not being explicitly trained on that specific dataset. 

Notably, all models achieved high mean Precision and Recall on the validation set. 

Higher Precision indicates a lower false positive rate, meaning the model is less likely to 

incorrectly identify non-lesion regions as lesion-containing areas. Higher Recall implies 

that the model can effectively identify actual lesions. 

In the case of external evaluation, a notable difference between Precision and Recall 

values is apparent. Although Precision slightly decreased compared to the validation set, 

Recall exhibited a more significant reduction. A lower Recall suggests that the model is 

more likely to miss identifying actual lesion regions. 

Table 2. Ablation study results when evaluating variations of the U-Net architecture on the 

validation and external validation sets, with data split at the slice level. Training and validation 

utilized 10 CT scans sourced from the Coronacases.org repository, while the external validation 

set comprised the remaining 10 CT scans from the Radiopaedia.org repository 

Model 

Validation 

Mean 

DSC 

Validation 

Mean 

IoU 

Validation 

Mean 

Precision 

Validation 

Mean Recall 

External  

Mean DSC 

External  

Mean IoU 

Externa 

Mean 

Precision 

External 

 Mean Recall 

U-Net 
0.8423 ± 

0.0131 

0.7277 ± 

0.0194 

0.8312 ± 

0.0267 

0.8545 ± 

0.0195 

0.6587 ± 

0.0396 

0.4921 ± 

0.0435 

0.8321 ± 

0.0269 

0.5487 ± 

0.0631 

U-Net + 

VGG16 

0.8573 ± 

0.0072 

0.7503 ± 

0.0111 

0.8489 ± 

0.0120 

0.8661 ± 

0.0140 

0.7118 ± 

0.0165 

0.5528 ± 

0.0200 

0.8190 ± 

0.0171 

0.6305 ± 

0.0325 

U-Net + 

DenseNet12

1 

0.8644 ± 

0.0091 

0.7612 ± 

0.0143 

0.8597 ± 

0.0112 

0.8691 ± 

0.0094 

0.7211 ± 

0.0197 

0.5641 ± 

0.0238 

0.8071 ± 

0.0450 

0.6566 ± 

0.0584 

 

Table 3 presents the training and inference times for the models discussed in Table 2. 

The results show that the U-Net model exhibits the shortest runtime, while the U-Net + 

DenseNet121 model required the most time. This observation aligns with expectations, 

as the U-Net + DenseNet121 model includes DenseNet121 as its encoder, a deep and 

complex model that requires more time to run compared to the standard U-Net model. 

Figure 7 illustrates the training and validation curves for the models, the results of 

which are shown in Table 2. Examination of these curves reveals that all models 

converge, showing no signs of overfitting. 
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Table 3. Running times of different variations of the U-Net architecture evaluated with the data 

split at the slice level. Training and validation used 10 CT scans sourced from the 

Coronacases.org repository, while the external validation set comprised the remaining 10 CT 

scans from the Radiopaedia.org repository 

Model Training 

Time 

Validation 

Time 

External 

Validation 

Time 

U-Net 4577.40 ± 

51.57 

seconds 

1.47 ±  

0.08 seconds 

2.62 ±  

0.15 seconds 

U-Net + VGG16 4633.48 ± 

17.83 

seconds 

1.63 ±  

0.02 seconds 

2.90 ±  

0.01 seconds 

U-Net + 

DenseNet121 

7807.70 ± 

218.71 

seconds 

2.58 ± 

0.05 

seconds 

4.50 ± 

0.098 

seconds 

 

Fig. 7. Training and validation curves for the models trained and evaluated on data split at the 

slice level. Training and validation used 10 CT scans sourced from the Coronacases.org 

repository, while the external validation set comprised the remaining 10 CT scans from the 

Radiopaedia.org repository 

In our second experiment, we maintained the data splitting by slice approach, but this 
time utilized the 10 CT scans taken from Radiopaedia.org for training and validation, 
and the 10 CT scans from Coronacases.org for external validation. 
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Upon comparing the model performances, it becomes apparent that the U-Net + 
DenseNet121 model once again exhibits the highest performance across all metrics in 
both the validation and external evaluation cases. Notably, a distinct observation arises: 
the difference in performance between U-Net + DenseNet121 and the other variants is 
more apparent compared to the corresponding models in Table 2. Given that the dataset 
sourced from Radiopaedia.org is significantly smaller than the one sourced from 
Coronacases.org, it seems that U-Net + DenseNet121 performs better than the other two 
models, particularly in scenarios with limited data availability. 

Interestingly, the difference between Precision and Recall values during external 
evaluation appears to be smaller compared to what was demonstrated in Table 2. This 
suggests that using the subset sourced from Radiopaedia.org for training and validation, 
and the subset sourced from Coronacases.org for external evaluation, may lead to 
models with improved ability to generalize. 

Table 4. Ablation study results when evaluating variations of the U-Net architecture on the 

validation and external validation sets, with data split at the slice level. Training and validation 

utilized 10 CT scans sourced from the Radiopaedia.org repository, while the external validation 

set comprised the remaining 10 CT scans from the Coronacases.org repository 

Model Validation 

Mean  

DSC 

Validation 

Mean 

IoU 

Validation 

Mean 

Precision 

Validation 

Mean Recall 

External 

Mean DSC 

External 

Mean IoU 

External 

Mean 

Precision 

External 

Mean 

 Recall 

U-Net 0.7909 ± 

0.0051 

0.6541 ± 

0.0070 

0.7962 ± 

0.0253 

0.7864 ± 

0.0154 

0.6546 ± 

0.0161 

0.4867 ± 

0.0180 

0.6565 ± 

0.0411 

0.6559 ± 

0.0379 

U-Net + 

VGG16 

0.8062 ± 

0.0055 

0.6753 ± 

0.0078 

0.7935 ± 

0.0241 

0.8201 ± 

0.0155 

0.7152 ± 

0.0132 

0.5568 ± 

0.0159 

0.7341 ± 

0.0381 

0.6991 ± 

0.0239 

U-Net + 

DenseNet121 

0.8586 ± 

0.0068 

0.7523 ± 

0.0105 

0.8568 ± 

0.0166 

0.8609 ± 

0.0158 

0.7553 ± 

0.0065 

0.6069 ± 

0.0084 

0.7879 ± 

0.0235 

0.7261 ± 

0.0185 

Table 5. Running times of different variations of the U-Net architecture evaluated with the data 

split at the slice level. Training and validation used 10 CT scans sourced from the 
Radiopaedia.org repository, while the external validation set comprised the remaining 10 CT 
scans from the Coronacases.org repository 

Model Training 

Time 

Validation 

Time 

External 

Validation 

Time 

U-Net 1596.20 ± 

26.73 

seconds 

0.53 ±  

0.04 seconds 

6.47 ±  

0.03 seconds 

U-Net + VGG16 1805.55 ± 

43.33 

seconds 

0.64 ±  

0.05 seconds 

7.88 ±  

0.02 seconds 

U-Net + 

DenseNet121 

3075.20 ± 

62.63 

seconds 

1.15 ±  

0.04 seconds 

12.17 ±  

0.14 seconds 

 

Table 5 showcases the training and inference times for the models discussed in Table 

4. The results reveal that, as expected, the U-Net model exhibited the shortest runtime, 

while the U-Net + DenseNet121 model required the most time. Moreover, the training 
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and validation times in this case are shorter, and the external validation time is longer 

compared to those in Table 3. This is expected, as the dataset used for training and 

validation, sourced from Radiopaedia.org, is notably smaller than the one used for 

external evaluation. 

Figure 8 depicts the training and validation curves corresponding to the models 

whose results are displayed in Table 4. Upon examining these curves, it is evident that 

all the models converge, indicating no signs of overfitting. 

 

Fig. 8. Training and validation curves for the models trained and evaluated on data split at the 

slice level. Training and validation utilized 10 CT scans sourced from the Radiopaedia.org 

repository, while the external validation set comprised the remaining 10 CT scans from the 

Coronacases.org repository 
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4.2. Results when Splitting Data by Patient 

In this section, we assess the performance of the selected models under a patient-wise 

data split. For the first experiment, we utilized 10 CT scans from Coronacases.org for 

training and validation, while 10 CT scans originating from Radiopaedia.org were used 

for external evaluation. The performance metrics achieved during validation and 

external evaluation are summarized in Table 6. 

Once again, the U-Net + DenseNet121 model exhibits superior performance on both 

the validation and external evaluation sets. Although the model’s performance does not 

reach the levels observed when trained on data split by slice, it remains satisfactory. 

Table 6 shows lower performance metrics compared to Table 2. It is important to 

note that Table 2 contains performance metrics obtained from models trained using a 

slice-wise data split, whereas here we have opted for a patient-wise data split. When data 

are split by slice, the training and validation sets contain more diverse data, which often 

leads to improved generalization during training. In contrast, when splitting data by 

patient, the limited number of patients poses challenges due to insufficient training data 

for the model to learn patterns and relationships. Furthermore, lower performance 

metrics when splitting by slice could be associated with data leakage [38], a 

phenomenon where information from the validation or test set is used during the training 

phase, potentially overestimating model performance [38]. 

Consistent with the findings in Table 2, all models achieve similar mean Precision 

and Recall on the validation set, although these values are lower than the corresponding 

ones reported in Table 2. Notably, the performance on the external evaluation dataset is 

significantly lower, with Recall being lower than Precision, mirroring the results 

observed when using a slice-wise data split. 

Table 6. Ablation study results when evaluating variations of the U-Net architecture on the 

validation and external validation sets, with data split at the patient level. Training and validation 

utilized 10 CT scans sourced from the Coronacases.org repository, while the external validation 

set comprised the remaining 10 CT scans from the Radiopaedia.org repository 

Model 
Validation 

Mean  

DSC 

Validation 

Mean 

IoU 

Validation 

Mean 

Precision 

Validation 

Mean Recall 

External 

Mean DSC 

External 

Mean 

IoU 

External 

Mean 

Precision 

External 

Mean Recall 

U-Net 
0.7637 ± 

0.0678 

0.6216 ± 

0.0883 

0.7394 ± 

0.0894 

0.7912 ± 

0.0442 

0.6613 ± 

0.0372 

0.4940 ± 

0.0404 

0.7302 ± 

0.1209 

0.6392 ± 

0.1431 

U-Net + 

VGG16 

0.7669 ± 

0.0629 

0.6253 ± 

0.0830 

0.7591 ± 

0.0675 

0.7759 ± 

0.0673 

0.7022 ± 

0.0217 

0.5414 ± 

0.0258 

0.7592 ± 

0.0974 

0.6654 ± 

0.0639 

U-Net + 

DenseNet121 

0.7889 ± 

0.0541 

0.6540 ± 

0.0738 

0.8219 ± 

0.0521 

0.7603 ± 

0.0706 

0.7079 ± 

0.0123 

0.5480 ± 

0.0146 

0.8037 ± 

0.0558 

0.6369 ± 

0.0466 

 

The training and inference times of the models, whose metrics are presented in Table 

6, are detailed in Table 7. Similar to the experiments presented in the previous section, 

the results demonstrate that the U-Net model had the shortest runtime, while the U-Net + 

DenseNet121 model required the longest time. 

The training and validation curves for the models, whose results are depicted in Table 

6, are shown in Figure 9. Upon examining these curves, it is notable that all models 

exhibit convergence. However, unlike the curves presented in the case of data split by 
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slice, it is apparent that the models show signs of overfitting. This could be attributed to 

the potential lack of diversity in the data when splitting by patient. Furthermore, the 

reduced incidence of overfitting when splitting by slice could be linked to data leakage. 

Within Table 8, we present the metrics used to assess the ability of models trained 

with a patient-based split approach to accurately segment lesions attributed to SARS-

CoV-2. For this evaluation, 10 CT scans sourced from Radiopaedia.org were used for 

training and validation, while the remaining CT scans from Coronacases.org were used 

for external evaluation.  

In line with all previous experiments, the U-Net + DenseNet121 model demonstrates 

superior overall performance. Similar to our previous experiment, where we trained and 

validated using data from the Radiopaedia.org repository, we note that the difference 

between Precision and Recall values during external evaluation is smaller compared to 

instances where our models were trained on data from the Coronacases.org repository. 

Table 7. Running times of different variations of the U-Net architecture evaluated with the data 

split at the patient level. Training and validation used 10 CT scans sourced from the 
Coronacases.org repository, while the external validation set comprised the remaining 10 CT 
scans from the Radiopaedia.org repository 

Model Training 

Time 

Validation 

Time 

External 

Validation 

Time 

U-Net 4176.32 ± 

143.44 

seconds 

1.36 ±  

0.28 

seconds 

2.41 ±  

0.02 

seconds 

U-Net + VGG16 4684.79 ± 

157.58 

seconds 

1.64 ± 

0.35 

seconds 

2.92 ± 

0.01 

seconds 

U-Net + 

DenseNet121 

7613.26 ± 

223.34 

seconds 

2.45 ±  

0.50 seconds 

4.45 ± 

0.10 

seconds 

 

Table 8. Ablation study results when evaluating variations of the U-Net architecture on the 

validation and external validation sets, with data split at the patient level. Training and validation 

utilized 10 CT scans sourced from the Radiopaedia.org repository, while the external validation 

set comprised the remaining 10 CT scans from the Coronacases.org repository 

Model Validation 

Mean  

DSC 

Validation 

Mean 

IoU 

Validation 

Mean 

Precision 

Validation 

Mean Recall 

External 

Mean DSC 

External 

Mean 

IoU 

External 

Mean 

Precision 

External 

Mean 

Recall 

U-Net 0.7631 ± 

0.0813 

0.6224 ± 

0.1035 

0.7845 ± 

0.0842 

0.7568 ± 

0.1285 

0.6724 ± 

0.0380 

0.5075 ± 

0.0428 

0.6975 ± 

0.0746 

0.6621 ± 

0.0890 

U-Net + 

VGG16 

0.7755 ± 

0.0079 

0.6387 ± 

0.1032 

0.7680 ± 

0.0699 

0.7872 ± 

0.1056 

0.6895 ± 

0.0437 

0.5275 ± 

0.0512 

0.7227 ± 

0.0433 

0.6631 ± 

0.0690 

U-Net + 

DenseNet121 

0.7989 ± 

0.0615 

0.6686 ± 

0.0835 

0.7905 ± 

0.0762 

0.8146 ± 

0.0925 

0.7369 ± 

0.0189 

0.5837 ± 

0.0238 

0.7642 ± 

0.0420 

0.7152 ± 

0.0484 
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Fig. 9. Training and validation curves for the models trained and evaluated on data split at the 

patient level. Training and validation utilized 10 CT scans sourced from the Coronacases.org 

repository, while the external validation set comprised the remaining 10 CT scans from the 

Radiopaedia.org repository 

Table 9. Running times of different variations of the U-Net architecture evaluated with the data 
split at the patient level. Training and validation used 10 CT scans sourced from the 
Radiopaedia.org repository, while the external validation set comprised the remaining 10 CT 
scans from the Coronacases.org repository 

Model Training Time 
Validation 

Time 

External 

Validation 

Time 

U-Net 1581.43 ± 97.51 

seconds 

0.50 ±  

0.18 seconds 

6.48 ±  

0.02 seconds 

U-Net + VGG16 1799.78 ± 83.24 

seconds 

0.63 ±  

0.24 seconds 

7.90 ±  

0.04 seconds 

U-Net + 

DenseNet121 

3101.80 ± 144.39 

seconds 

1.06 ±  

0.36 seconds 

12.13 ±  

0.21 seconds 
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Table 9 provides a breakdown of the training and inference times for the models that 
achieved the performance metrics displayed in Table 8. Once again, the U-Net model 
had the shortest runtime, in contrast to the U-Net + DenseNet121 model, which required 
the longest time for training, validation and external evaluation. 

In Figure 10, the training and validation curves for the models, whose results are 

shown in Table 8, are presented. In the experiment conducted for this section, all trained 

models converge. However, it is evident that each model exhibits some degree of 

overfitting. 

 

Fig. 10. Training and validation curves for the models trained and evaluated on data split at the 

patient level. Training and validation utilized 10 CT scans sourced from the Radiopaedia.org 

repository, while the external validation set comprised the remaining 10 CT scans from the 

Coronacases.org repository 
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4.3. Results of the Application of Semantic Segmentation on a Subset of the 

Validation and External Validation Datasets 

Figures 11 and 12 illustrate the results of applying semantic segmentation to subsets of 

the validation and external evaluation datasets, respectively. Upon examining these 

results, it is evident that all models effectively isolate lesions present in the CT slices. 

In addition, a quantitative analysis was conducted, and the results are presented in 

Tables 10 and 11. Notably, the U-Net + DenseNet121 demonstrated the most accurate 

segmentation among the models on both the validation and external evaluation datasets, 

as evidenced by its superior DSC and IoU values in Tables 10 and 11. 

 

Fig. 11. Semantic segmentation results on a subset of the validation dataset 
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Table 10. Quantitative analysis of the results displayed in Figure 11 

Slice U-Net U-Net + VGG16 U-Net + DenseNet121 

 DSC IoU DSC IoU DSC IoU 

Slice 1 0.8622 0.7577 0.8818 0.7886 0.8830 0.7905 

Slice 2 0.8170 0.6906 0.8475 0.7353 0.8927 0.8062 

Slice 3 0.8460 0.7331 0.8828 0.7901 0.8988 0.8162 

Slice 4 0.9071 0.8300 0.9448 0.8953 0.9461 0.8977 

Slice 5 0.8638 0.7602 0.8585 0.7521 0.8653 0.7626 

 

Fig. 12. Semantic segmentation results on a subset of the external validation dataset 
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Table 11. Quantitative analysis of the results displayed in Figure 12 

Slice U-Net U-Net + VGG16 U-Net + DenseNet121 

 DSC IoU DSC IoU DSC IoU 

Slice 1 0.6218 0.4511 0.6417 0.4724 0.6627 0.4955 

Slice 2 0.6537 0.4856 0.7074 0.5472 0.7283 0.5726 

Slice 3 0.6624 0.4952 0.7595 0.6122 0.8020 0.6695 

Slice 4 0.7669 0.6219 0.8131 0.6851 0.8444 0.7307 

Slice 5 0.8521 0.7423 0.8704 0.7705 0.8853 0.7942 

4.4. Statistical Test Analysis of the Results 

In this section, we conduct a comprehensive statistical analysis of the results derived 

from our experiments. Our goal is to compare the performance of the best and worst 

models, namely U-Net + DenseNet121 and U-Net, respectively. To assess the 

performance of our models across different cross-validation data partitions, we 

employed a statistical test called t-test. 

A t-test is used to compare the means of two groups [39]. There are two types of t-

tests: the independent t-test, which compares the means of two groups that are unrelated 

to each other, and the paired t-test which compares the means of two groups that are 

related to each other [39]. 

Since we compare two CNN models that have been trained and evaluated on the same 

data using a 5-fold cross-validation scheme, the appropriate t-test to use is the paired t-

test. This is because the same data folds are used for evaluating both models, meaning 

the results from each fold are paired. The aim of an analysis using a paired t-test is to 

discern whether there exists a statistically significant difference in the models’ mean 

performance scores. 

The paired t-test employs two contradictory research hypotheses: the null hypothesis 

and the alternative hypothesis [40]. The null hypothesis states that the mean difference 

between the paired observations is zero [40]. The alternative hypothesis states that the 

mean difference between the paired observations is not zero [40]. 

 The steps to compute the paired t-test are summarized below: 

1. Calculate the difference between each pair of observations: 

iii xyd   (5) 

2. Calculate the mean difference: 
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4. Calculate the t-statistic: 

n
s

d
t

d

  

(8) 

Under the null hypothesis, this statistic follows a t-distribution with n-1 
degrees of freedom 

5. Find the p-value corresponding to the calculated t-statistic. 

6. Compare the p-value to the chosen significance level: 

 If the p-value is less than the significance level (commonly 0.05), reject the null 

hypothesis. 

 If the p-value is greater than the significance level, fail to reject the null hypothesis. 

Table 12 presents the p-values obtained from the paired t-test. In cases where the p-

values are less than 0.05, there exists a statistically significant difference in the 

performance of the compared models. By examining Table 12, we can see that all p-

values are less than 0.05. This indicates a statistically significant difference in the 

performance between U-Net and U-Net + DenseNet121. 

Table 12. Statistical test analysis of the U-Net and U-Net + DenseNet121 models. Training and 
validation utilized 10 CT scans sourced from the Coronacases.org repository, while the external 
validation set comprised the remaining 10 CT scans from the Radiopaedia.org repository. 

Split by Slice Split by Patient 

Validation External Validation Validation External Validation 

DSC IoU DSC IoU DSC IoU DSC IoU 

0.0026 0.0022 0.0231 0.0202 0.0263 0.0175 0.0093 0.0080 

4.5. Comparison of our Results with the Results of other Researchers 

In this paper, we employed deep learning methods, specifically convolutional neural 

networks, to assess their efficacy, after appropriate training, in detecting and outlining 

lesions in CT slices caused by COVID-19 pneumonia. This proved to be a challenging 

task for two primary reasons. Firstly, collecting a large enough dataset posed difficulties 

due to the necessity of annotations provided by medical experts. Secondly, the 

prevalence of the negative class in medical images contributed to evident class 

imbalance within the data. To address these issues, we proposed leveraging transfer 

learning by replacing the encoder of a standard U-Net model with a pre-trained model. 

Results indicate that the quality and quantity of the utilized dataset, as well as the use 

of ideal preprocessing techniques, were critical for our models’ performance. 

Segmentation of the lung parenchyma and normalization in terms of contrast and 

brightness helped achieve better overall performance. On the other hand, data 

augmentation was not that helpful. 

Employing two different splitting techniques provided us with the opportunity to 

compare our method with the literature, as some authors chose to split by patient instead 

of by slice and vice versa. 
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Verifying our approach using both subsets of the dataset for training, validation and 

external evaluation showed similar performance. This observation indicates the 

robustness of the models and their strong generalization capabilities. 

Upon observing the performance of the selected models during semantic 

segmentation on both the validation and external validation datasets, it becomes evident 

that the standard U-Net model achieves significantly improved performance when 

transfer learning is applied. Moreover, the results on the external evaluation datasets 

demonstrate high generalization ability. 

Table 13. Comparison of our work with other scientific papers where the data were split by slice. 

Model Architecture Training and 

Validation Dataset 

External Evaluation 

Dataset 

Preprocessing 

& Transfer Learning 

Validation 

Results 

External 

Evaluation Results 

Xiaoyan Wang  

et al. [22] 

SSA-Net 

Experiment 1: 

COVID-19-CT-Seg 

(5-fold cross 

validation) 

Experiment 2: 

MedSeg Dataset 

[23] 

(Only 98 CT Slices) 

(5-fold cross 

validation) 

- HU Clipping  

[-1250, 250], 

No Transfer Learning 

Experiment 1: 

DSC:  

65.22% 

Experiment 2: 

DSC: 

75.40% 

- 

Krinski  

et al. [24] 

Various CNN 

Models 

COVID-19-CT-Seg 

(5-fold cross 

validation 

Train: 80% 

Val: 20%) 

- Transfer Learning 

(ImageNet [25]) 

Best Model DSC:  

73.67% 

Best Model IoU:  

70.91% 

- 

Mahmoudi et al. 

[26] 

2D U-Net 

COVID-19-CT-Seg 

(4-fold cross 

validation 

Train: 70% 

Val: 30%) 

- CLAHE,  

Image Cropping,  

Data Augmentation, 

No Transfer Learning 

DSC:  

91% 

IoU:  

85% 

- 

Qiblawey et al. [27] 

Various CNN 

Models 

COVID-19-CT-Seg 

(10-fold cross 

validation 

Train: 60% 

Val: 20% 

Test: 20%) 

- HU Normalization, 

Lung Parenchyma 

Segmentation, Data 

Augmentation, 

Transfer Learning 

(ImageNet) 

Best Model DSC:  

94.13% 

Best Model IoU:  

91.85% 

- 

Our  

Approach 

U-Net + 

DenseNet121 

Experiment 1: 

COVID-19-CT-Seg  

(10 CT from 

Coronacases) 

(5-fold cross-

validation) 

Experiment 2: 

COVID-19-CT-Seg  

(10 CT from 

Radiopaedia) 

(5-fold cross-

validation) 

 

Experiment 1: 

COVID-19-CT-Seg  

(10 CT from 

Radiopaedia) 

Experiment 2: 

COVID-19-CT-Seg  

(10 CT from 

Coronacases) 

HU Normalization 

WW: 1400 WL: -500, 

Lung Segmentation, 

 Data Augmentation 

Transfer Learning 

(ImageNet) 

Experiment 1: 

DSC: 86.44% 

IoU: 76.12% 

 

Experiment 2: 

DSC: 85.86% 

IoU: 75.23% 

 

Experiment 1: 

DSC:  

72.11% 

IoU:  

56.41% 

 

Experiment 2: 

DSC:  

75.53% 

IoU:  

60.69% 

 

Through our experiments, we found that increasing the batch size results in better 

overall model performance, while increasing the depth of the U-Net model by adding 

extra layers or changing layer parameters increases the model complexity without 

significant performance gains. 
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Another distinctive aspect of our approach that sets it apart from the works of other 

researchers is the utilization of 2D U-Nets instead of 3D U-Net architectures, which are 

less computationally expensive. Upon reviewing Tables 13 and 14 it is evident that our 

best model outperforms the majority of the models featured in other works, 

demonstrating enhanced performance. Analytically, when splitting by slice and training 

on the data from the Coronacases.org repository, our best model achieves a DSC and 

IoU score of 0.8644 and 0.7612 during the validation phase and a DSC and IoU score of 

0.7211 and 0.5641 during the external evaluation phase. When splitting by slice and 

training on the data from the Radiopaedia.org repository, our best model achieves a 

DSC and IoU score of 0.8586 and 0.7523 during the validation phase and a DSC and 

IoU score of 0.7553 and 0.6069 during the external evaluation phase. When splitting by 

patient and training on the data from the Coronacases.org repository, our best model 

achieves a DSC and IoU score of 0.7889 and 0.6540 during the validation phase and a 

DSC and IoU score of 0.7079 and 0.5480 during the external evaluation phase. When 

splitting by patient and validating on the data from the Radiopaedia.org repository, our 

best model achieves a DSC and IoU score of 0.7989 and 0.6686 during the validation 

phase and a DSC and IoU score of 0.7369 and 0.5837 during the external evaluation 

phase. This improvement is crucial for clinical applications, as accurate segmentation of 

COVID-19 lesions can lead to better monitoring of disease progression and response to 

treatment. Automated and reliable identification of affected lung regions can help 

radiologists quantify the extent of disease more efficiently, enabling timely adjustments 

in patient management strategies. This could potentially reduce diagnostic errors and 

improve patient outcomes by ensuring that critical cases are identified and treated 

promptly. 

By further examining the results in Table 13, it is evident that our best model is 

surpassed by the models trained in studies [26] and [27] in terms of performance. While 

our work demonstrates lower DSC and IoU scores compared to [27], it is important to 

consider the difference in our data preprocessing strategies. In [27], the authors applied 

data augmentation techniques before splitting the dataset into training and validation 

sets. This approach may introduce a risk of data leakage, as slightly modified images 

could be present in both training and validation sets potentially overestimating model 

performance during evaluation. In contrast, our method follows a better practice by 

performing data augmentation after the data split and exclusively on the training set. 

Regarding [26], their strategy of cropping the CT slices to the size 256x256 likely 

contributed to their models achieving higher DSC and IoU scores, as it may have helped 

them better focus on anatomical features relevant to the task. As shown in the results of 

Table 14, our best model is slightly outperformed by the model presented in [13], as 

well as by the model implemented in [15].  
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Table 14. Comparison of our work with other scientific papers where the data were 

split by patient 

Model Architecture Training and 

Validation Dataset 

External Evaluation 

Dataset 

Preprocessing 

& Transfer Learning 

Validation 

Results 

External 

Evaluation Results 

Ma et al. [7] 

2D U-Net 

COVID-19-CT-Seg 

[8] 

(5-fold cross-

validation 

Train: 20% 

Val: 80%) 

- HU Clipping  

[-1250, 250], 

No Transfer Learning 

DSC:  

60.80% 

- 

Ma et al. [7] 

nnU-Net [9] 

COVID-19-CT-Seg 

(5-fold cross-

validation 

Train: 20% 

Val: 80%) 

MosMed [10]  HU Clipping  

[-1250, 250], 

No Transfer Learning 

DSC:  

67.30% 

DSC:  

58.80% 

Müller  

et al. [11] 

3D U-Net [12] 

COVID-19-CT-Seg 

(5-fold cross-

validation 

Train: 80% 

Val: 20%) 

- HU Clipping  

[-1250, 250], 

No Transfer Learning 

DSC:  

76.10% 

 

-  

Müller  

et al. [13] 

3D U-Net 

COVID-19-CT-Seg 

(5-fold cross-

validation 

Train: 80% 

Val: 20%) 

An et al. [14] HU Clipping  

[-1250, 250], Data 

Augmentation, 

No Transfer Learning 

DSC:  

80.40% 

DSC:  

66.10% 

Owais  

et al. [15] 

DAL-Net 

Experiment 1: 

COVID-19-CT-Seg 

(5-fold cross-

validation 

Train: 80% 

Val: 20%) 

Experiment 2: 

MosMed 

(5-fold cross-

validation 

Train: 80% 

Val: 20%) 

Experiment 3: 

COVID-19-CT-Seg 

Experiment 3: 

MosMed 

Experiment 3: 

Reinhard 

Transformation [16], 

No Transfer Learning 

Experiment 1:  

DSC: 83.23%  

IoU:  74.86% 

Experiment 2: 

DSC: 68.63% 

IoU:  

61.35% 

Experiment 3: 

DSC:  

74.93% 

IoU: 

66.50% 

Zheng  

et al. [17] 

3D CU-Net 

COVID-19-CT-Seg 

(5-fold cross-

validation 

Train: 80% 

Val: 20%) 

MosMed HU Clipping  

[-1250, 250], 

Data Augmentation, 

No Transfer Learning 

DSC:  

77.80% 

 

DSC: 

66.80% 

Yixin Wang  

et al. [18] 

3D U-Net 

COVID-19-CT-Seg 

(5-fold cross-

validation 

Train: 20% 

Val: 80%) 

 

- No Transfer Learning DSC:  

70.04% 

- 

Our  

Approach 

U-Net + 

DenseNet121 

Experiment 1: 

COVID-19-CT-Seg  

(10 CT from 

Coronacases) 

(5-fold cross-

validation) 

Experiment 2: 

COVID-19-CT-Seg  

(10 CT from 

Radiopaedia) 

(5-fold cross-

validation) 

Experiment 1: 

COVID-19-CT-Seg  

(10 CT from 

Radiopaedia) 

Experiment 2: 

COVID-19-CT-Seg  

(10 CT from 

Coronacases) 

HU Normalization 

WW: 1400 WL: -500, 

Lung Segmentation, 

 Data Augmentation 

Transfer Learning 

(ImageNet) 

Experiment 1: 

DSC: 78.89% 

IoU:  

65.40% 

 

Experiment 2: 

DSC: 79.89% 

IoU:  

66.86% 

Experiment 1: 

DSC:  

70.79% 

IoU:  

54.80% 

 

Experiment 2: 

DSC:  

73.69% 

IoU:  

58.37% 
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5. Conclusions and Future Work 

The primary goal of this study was to investigate the ability of deep learning methods to 

accurately segment lesions in CT slices caused by pneumonia attributed to SARS-CoV-

2. Our focus was on evaluating the performance of a U-Net architecture and two 

variations of it, where the encoder was replaced with pre-trained convolutional neural 

networks. The outcomes, presented in Section 4 and compared with the literature in 

Section 2, indicate that the objectives of this research have been achieved. 

This study lays the groundwork for potential future extensions aimed at enhancing the 

robustness and applicability of the proposed models. Future work could involve 

collecting more diverse data, featuring variations in patient age, gender and ethnicity 

from various healthcare facilities. This would allow for further training of the models 

using more varied datasets. Additionally, training the models on higher-resolution 

images could enhance segmentation precision and overall model performance. Another 

potential direction could involve adapting our segmentation method for other respiratory 

diseases where accurate lesion segmentation is equally critical. Moving our method from 

research to clinical practice is also a promising prospect. This would require further 

steps, including extensive clinical trials and validation studies to ensure the robustness 

and reliability of the segmentation tool in real-world scenarios. Collaborating with 

healthcare providers to integrate our tool into hospital information systems and 

workflows will be essential for practical implementation. 

Tuning the hyperparameters of the deep learning models automatically using methods 

such as Grid Search and Random Search could potentially improve model performance. 

These methods were omitted in this work due to their computational expense. 

Implementing regularization techniques, such as Lasso and Ridge Regression, could 

help address the overfitting phenomenon observed when data are split by patient. 
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