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Abstract. Ontology integration is merging a set of ontologies to provide a sin-
gle, unified ontology, which contains all of the knowledge from input ontologies.
Most solutions described in the literature are based on the OWL format and in-
corporate its strengths and weaknesses. In our previous research, we developed the
ontology integration framework FOKI, which does not use the OWL. Collected ex-
perimental data using prepared ontologies proved its usefulness. However, the lack
of OWL support makes it challenging to use the FOKI framework in practical ap-
plications. This paper presents a meta-model and a set of transformation rules for
bi-directional transformation between ontologies expressed in our framework and
the OWL standard. The meta-model serves as a bridge in the transformation pro-
cess. Transformation rules are built by referencing an abstract syntax element of
OWL2 and an appropriate mathematical formalism from FOKI. Their correctness
was verified on widely available ontologies expressed in OWL provided, e.g., by
the Ontology Alignment Evaluation Initiative.
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1. Introduction

Ontology integration, a well-explored area within the field of knowledge management,
addresses the challenge of merging multiple source ontologies into a unified target on-
tology, encapsulating the collective knowledge of the input sources. This process in-
volves selecting elements from source ontologies representing the same aspects of a mod-
eled universe of discourse and integrating them into a cohesive entity while preserving
unique, non-conflicting elements. Formally, it can be defined as: for the given n ontolo-
gies O1, O2, ..., On one should determine an ontology O∗, which is the best representation
of the given input ontologies.

The topic is widely discussed in literature. In [20], authors examine the challenge of
semantic heterogeneity in ontologies on the Semantic Web, emphasizing the importance
of ontology alignment and merging for achieving interoperability. It categorizes existing
merging approaches into three types—single-strategy, multiple-strategy, and those utiliz-
ing external semantic resources—and introduces a novel framework that leverages multi-
ple knowledge bases to address semantic discrepancies and enhance ontology merging.

For example, in [6], authors address the need for effective methodologies to inte-
grate and reuse ontologies, which are vital for standardizing information and fostering
knowledge-based digital ecosystems. The paper introduces an approach that employs het-
erogeneous matching techniques to automate the process of building ontologies, thereby
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simplifying the creation of digital ecosystems. The method has been successfully applied
to the food production domain, demonstrating its practical utility.

The article [24] discusses the integration of biomedical ontologies using Semantic
Web standards, specifically addressing the challenges posed by structural differences that
can lead to inconsistencies when merging. It introduces a framework that uses a seed
ontology for iterative enrichment with new sources, employing a novel fine-grained ap-
proach for mapping repair and alignment conservativity supported by both theoretical
formalization and practical algorithms. The framework has been applied to integrate mul-
tiple medical ontologies, enhancing real-world healthcare services provided by Babylon
Health, and shows promising results when compared with leading ontology integration
systems.

The academic literature is replete with various approaches to address this topic, each
offering unique insights and methodologies. A comprehensive review of these diverse
strategies and an exploration of ongoing research avenues that have yet to be fully ex-
plored is described in detail in ([22]). This work not only aggregates the different avail-
able solutions but also critically examines their effectiveness and potential for further
development.

While the concept of ontology integration is straightforward conceptually, it presents
significant semantic and computational complexities. Most existing solutions are restricted
to a specific ontology representation format, typically OWL (Web Ontology Language),
particularly its second version, OWL2. Despite OWL’s robustness, it imposes limitations
on the expressiveness of concept attributes. For instance, once an attribute is associated
with a concept, it cannot be reused with the same name in another context within the on-
tology, leading to rigid and unnatural naming conventions to circumvent this limitation.

Our research has identified that attributes often acquire varied meanings across dif-
ferent concepts. For example, the attribute ”number” might represent different data in
the ”Book” and ”Address” contexts. This observation inspired us to develop a novel on-
tology expression and management approach based on a solid formal foundation that
ensures flexible domain modeling and determinism. We proved in [23] that an approach
to ontology alignment (and later into ontology integration) based on analyzing attributes
semantics gives good results.

This research led to the development of the Framework for Ontological Knowledge
Integration (FOKI), which offers a formally grounded, theoretically robust tool for ontol-
ogy management. The FOKI framework allows for a detailed examination of ontological
elements and their interrelationships, providing a comprehensive perspective on ontology
structure. Moreover, our approach provides a broad perspective on ontologies, allowing a
deep analysis of their internal elements and their relationships.

The developed framework has many advantages, such as limiting human participation
in the integration process to a minimum, resolving issues related to a diversity of se-
mantic relations, and enabling proper identification of mappings between the ontologies.
Additionally, the FOKI framework can express changes that appear while maintained on-
tologies evolve. Informally speaking – a FOKI model can answer the question ”What
changed when”. Several applications showed the usefulness of our approach in both the
tasks of ontology integration and ontology alignment ([18], [19], [17]).

Despite its advantages, the primary limitation of FOKI is its incompatibility with
OWL, particularly for practical applications that rely on standard ontology formats like
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those provided by the Ontology Alignment Evaluation Initiative (OAEI) 1 – a state-of-the-
art dataset used to test the usefulness of many ontology-related applications. Therefore,
we need to transform the FOKI model into the OWL standard for experimental verifica-
tion and comparison of our approach with other solutions.

This paper, therefore, focuses on establishing a set of transformation rules that facili-
tate the conversion between OWL (OWL2 specifically) and the FOKI formalism, aiming
to bridge the gap between these two frameworks and enhance the practical deployment of
FOKI. Every rule must be built by referencing an abstract syntax element of OWL2 and
an appropriate mathematical formalism of the FOKI framework (obviously if such exists
and is applicable).

Preparing the aforementioned transformations presents several challenges. The first
significant challenge arises from the assumption in FOKI that attributes and relations
are annotated with logical sentences, explicitly defining their intended semantics. This
requirement substantially increases the complexity of maintaining the FOKI ontology.
Each logical sentence must be meticulously crafted and maintained to preserve the in-
tended semantics, which can be time-consuming and error-prone. The explicit annotation
of semantics also demands higher expertise from ontology developers, making developing
and maintaining FOKI-based ontologies more demanding compared to other frameworks.

Secondly, the OWL standard operates under the premise of an open-world domain,
where it is assumed that the absence of information does not imply falsehood. In con-
trast, FOKI assumes a closed-world domain, where what is unknown as true is considered
false. This fundamental difference in assumptions can lead to an OWL ontology built us-
ing FOKI formalism being overly restrictive. For example, OWL provides mechanisms
to express that two concepts are equivalent, implying that their sets of instances cannot
be disjointed. In FOKI, it is straightforward to check whether two sets of instances are
disjoint; however, this does not necessarily mean that the ontology developer intended
these concepts to be equivalent. This mismatch in assumptions can result in unintended
interpretations and constraints within the OWL ontology, complicating its application and
potentially leading to incorrect inferences.

Eventually, we introduce a meta-model that encapsulates the essential concepts of
FOKI. This meta-model is built on a dual foundation: it functions both as a simplified
version of the OWL2 meta-model and as an extension that includes elements unique to
FOKI. This dual nature facilitates bi-directional translation between OWL2 and FOKI,
allowing for the transformation of ontologies in both directions with minimal information
loss.

Our goal is to develop procedures that enable these transformations while preserving
the integrity and semantics of the original ontologies. This involves addressing the signifi-
cant semantic differences between OWL and FOKI, such as the open-world assumption in
OWL versus the closed-world assumption in FOKI, as well as the unique name assump-
tion in OWL and its reproduction in FOKI. By carefully considering these differences,
we aim to create a robust and reliable method for ontology translation that maintains the
fidelity of the original data.

The developed meta-model is a versatile solution that accommodates varying seman-
tic definitions and relationships inherent in different ontologies, making it universally
applicable. Its design allows it to adapt to and integrate diverse ontological structures and

1 http://oaei.ontologymatching.org



108 Bogumila Hnatkowska et al.

semantics, ensuring that the FOKI framework is not limited to any specific domain or on-
tology structure. This flexibility supports a broad range of ontology types and integration
scenarios, enhancing its utility across various applications.

By accommodating different semantic definitions, the meta-model ensures that the
FOKI framework can handle the complexities of integrating multiple ontologies with dif-
fering structures and semantics. This universality is particularly beneficial for projects
requiring data synthesis from disparate sources, enabling seamless interoperability and
more comprehensive data analysis. Consequently, the FOKI framework becomes a pow-
erful tool for a diverse range of applications, from academic research to industry-specific
solutions, ensuring robust and efficient ontology management and integration.

The paper is organized as follows. Section 2 contains an overview of similar research
found in the literature. Section 3 provides base mathematical definitions used throughout
the paper. A motivating example is presented in Section 4 The core contribution is given in
Section 5, and the accepted evaluation procedure with its results can be found in Section 6.
Section 7 summarizes the paper and overviews our upcoming research plans.

2. Related Works

In real situations, there is a need to transform one model or standard into another. This
paper is devoted to ontology transformation, which can be defined as changing one ontol-
ogy format into another with the same semantics. In other words, we will define rules that
allow us to run transformation between an OWL ontology and FOKI.

There exists different ontology representation approaches like Suo-Kif [21], OWL
(expressed by many concrete syntaxes, e.g., functional, Manchester, XML, RDF Turtle,
RDF/XML), database schema, different mathematical representations or UML. In many
practical solutions ontologies, especially expressed in OWL2, are subjects of transforma-
tions to/from different notations [27], UML [8], [9], [27], [28],[7], description logic [5],
programming languages [4], [12], database (schema) [1], [2], [14] or business vocabular-
ies and rules [15], [16].

Many approaches exist to the definition of transformation rules, depending on their
formality level and paradigms used. It is possible to represent transformation rules in
natural language [1], [4], [8], [9], [12], [25]. The alternative approach is a semi-formal
method that can be based, e.g., on structured tables [14], or patterns with placeholders
[16]. The most precise method is based on a mathematical apparatus [2], [27]. It reduces
the risk of misinterpretation but could be hard to understand. So the formal representations
are typically extended with simple explanations.

The second division is based on how the transformation rules are written – one can
use either a declarative ([28]) or operational language ([8]). Sometimes a hybrid method
is used, e.g. [15]. When the ordering of transformation rules matters, their ordering is also
provided [27].

We can also differ transformations based on the direction (one or two ways) and
the loss of information (lossy transformation vs. lossless). Authors of [1] developed the
OWLMap tool for the automatic and lossless ontology transformation into a relational
database. Similarly, [25] proposed a transformation system providing a lossless roundtrip
mapping for OBO and OWL ontologies. Rule-based transformations presented by [3] and
[29] are lossy as some OWL axioms are not considered, e.g., property restrictions.
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Similarly, in [8], only some features of UML class diagrams have been preserved in
the transformation to OWL. Xu and et.all [27] manage to propose a semantics-preserving
approach for extracting OWL ontologies from existing UML class diagrams, however,
it cannot support several new syntaxes (including the Functional-Style syntax and the
Manchester syntax) and richer datatypes of OWL2 language. Authors of [26] proposed an
algorithm for transforming OWL ontology into a relational database that works without a
loss of information; however, authors are aware of limitations to represent more advanced
OWL features.

The created FOKI meta-model and transformation procedures allow us to transform
ontologies (OWL2 – FOKI) in both directions almost losslessly, which is a major advan-
tage. This issue is discussed in more detail in Section 5. The transformation procedures
are defined in an operational manner.

3. Basic Notions

Framework for Ontological Knowledge Integration (FOKI) is built on mathematical foun-
dations [23]. We assume that a real world is defined as a triple (A, V, P ) where: A is a
finite set of attributes that can be used to describe objects, V is a set of their valuations
(domains) such that V =

⋃
(a∈A) Va, where Va is a domain of a particular attribute a

and P is a set of predicates that can be used to define integrity constraints. The following
sextuple defines an ontology in FOKI as a (A, V, P )-based ontology:

O = (C,H,RC , I, RI , Z) (1)

where: C is a set of concepts; H is a concepts’ hierarchy; RC is a set of relations between
concepts, RC = {rC1 , rC2 , ..., rCn }, n ∈ N , such that rCi ∈ RC(i ∈ [1, n]) is a subset of
C×C; I is a set of instance identifiers; RI = {rI1 , rI2 , ..., rIn} is a set of relations between
concepts’ instances, Z is a set of first-order logic sentences, built over predicates from P .
Each concept c ∈ C is defined as:

c = (idc, Ac, V c, Ic) (2)

where: idc is an identifier of the concept c, Ac is a set of its attributes, such that Ac ⊆ A,
V c is a set of attributes domains (formally: V c =

⋃
(a∈Ac) Va ), Ic is a set of instances

of the concept c. We write a ∈ c to denote that an attribute a belongs to concept c set of
attributes Ac. It is worthy of notice that attributes from set A have no semantics. They can
be only interpreted if they are part of the chosen concept [10].

By DA we denote a set containing of words that can be used to define the sublanguage
LA
S of the propositional calculus composed of DA elements and logical operators of con-

junction, disjunction, and negation. By their own, elements of DA. can be interpreted as
atomic descriptions of attributes. Formally, we can define a function SA that assigns a
logical sentence from LA

S to attributes Ac within a specific concept c. The function SA

has a following signature SA : A × C → LA
S and allows us to formally define relation:

equivalency (denoted as≡), generalization (denoted as←) and contradiction (denoted as
∼) between attributes:

– Two attributes a ∈ Ac1 , b ∈ Ac2 are semantically equivalent, denote by a ≡ b, if the
formula SA(a, c1)⇔ SA(b, c2) is a tautology for any two c1 ∈ C1 and c2 ∈ C2.
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– The attribute a ∈ Ac1 in concept c1 ∈ C1 is more general than the attribute b ∈ Ac2

in concept c2 ∈ C2 (denoted by a ← b) if the formula SA(b, c2) ⇒ SA(a, c1) is a
tautology for any two c1 ∈ C1 and c2 ∈ C2.

– Two attributes a ∈ Ac1 , b ∈ Ac2 are in semantical contradiction, denoted by a ∼ b, if
the formula ¬(SA(a, c1)∧SA(b, c2)) is a tautology for any two c1 ∈ C1 and c2 ∈ C2.

Instances are closely related to the concepts because they are their physical materi-
alization. Thus, we can write i ∈ c, which can be read that the instance i belongs to
the concept c. Formally, an instance i which belongs to the set IC is defined as a pair
i = (idi, vic) where:

– idi is an instance identifier,
– vic is a function with a signature vic : A

c → V c

Instances can belong to many different concepts, therefore, a set of instances’ iden-
tifiers from Equation 1 is defined as I =

⋃
c∈C

{idi|(idi, vic) ∈ Ic}. We also define an

auxiliary function Ins(c) = {idi|(idi, vic) ∈ Ic} which for a given concept c returns a set
containing identifiers of instances assigned to it.

By analogy to DA we define a set DR and a sub-language LR
S to give relations seman-

tics. Formally, we can define a function SR : RC → LR
S that assigns a logical sentence

from LR
S to a relation from the set RC . As a consequence, we can define formal criteria for

relationships between relations, analogical to criteria for relationships between attributes.
However, within LR

S we distinguish elements: is symmetric, is transitive and is reflexive
that for some selected relation r can be used to describe their properties:

–
(
SR(r

C
1 ) =⇒ is symmetric

)
⇒ (∀(c1, c2) ∈ rC1 : c1 = c2) ∧∀(i1, i2) ∈ rI1

∃(i2, i1) ∈ rI1 , where c1, c2 ∈ C, rC1 ∈ RC , rI1 ∈ RI , i1 ∈ c1 ∨ c2, i2 ∈ c1 ∨ c2)
–
(
SR(r

C
1 ) =⇒ is transitive

)
⇒ (∀(c1, c2) ∈ rC1 : c1 = c2) ∧∀(i1, i2), (i2, i3) ∈

rI1 : (i1, i3) ∈ rI1) where c1, c2 ∈ C, rC1 ∈ RC , rI1 ∈ RI , i1 ∈ c1 ∨ c2, i2 ∈ c1 ∨ c2)
–
(
SR(r

C
1 ) =⇒ is reflexive

)
⇒ (∀(c1, c2) ∈ rC1 : ∃(c1, c1) ∈ rC1 ∧∃(c2, c2) ∈ rC1 )

∧∀(i1, i2) ∈ rI1 : ∃(i1, i1) ∈ rI1 ∧ ∃(i2, i2) ∈ rI1)

In the above conditions, we utilize the =⇒ symbol to denote the implication that occurs
within logical sentences built from elements from LR

S . The symbol⇒ denotes the impli-
cation in the context of the ontology definition and its elements. To simplify the notation,
we will use predicates (e.g., is asymmetric (r))) to denote properties defined above.

The hierarchy of concepts H is simply defined as a subset of a cartesian product of a set
of concepts H ⊂ C × C. A pair of concepts (c1,c2) such that c1 = (idc1 , Ac1 , V c1 , Ic1)
and c2 = (idc2 , Ac2 , V c2 , Ic2) may be included in the hierarchy (to represents the fact
that c1 is an ancestor of c2) only if all of the following postulates are met:

1. |Ac2 | ≥ |Ac1 |
2. ∀a ∈ Ac1∃a′ ∈ Ac2 : (a ≡ a′) ∨ (a← a′)
3. Ins(c2) ⊆ Ins(c1)

The set of relations RC allows us to describe which concept instances can be con-
nected. The actual materialization of these connections is described by the set of instance
relations marked as RI which must satisfy the following formal criteria:



Formal transformation of OWL ontology to a FOKI generic meta-model 111

1. rIj ⊆
⋃

(c1,c2)∈rCj

(Ins(c1)× Ins(c2))

2. (i1, i2) ∈ rIj =⇒ ∃(c1, c2) ∈ rCj : (c1 ∈ Ins−1(i1)) ∧ (c2 ∈ Ins−1(i2)) which
describes that two instances may be connected by some relation only if there is a
relation connecting concepts they belong to

3. (i1, i2) ∈ rIj =⇒ ¬∃rIk ∈ RI : ((i1, i2) ∈ rIk) ∧ (rCj ∼ rCk ) which concerns a
situation in which two instances cannot be connected by two contradicting relations

4. (i1, i2) ∈ rIj ∧ ∃rIk ∈ RI : rCk ← rCj =⇒ (i1, i2) ∈ rIk which denotes that if two
instances are in a relation and there exists a more general relation, then they are also
connected by it.

4. Motivating example

As was mentioned before, FOKI lacks a formal syntax but delivers – at the meta-model
level – the necessary means for ontology integration. The semantics of attributes and
relations are defined as logic formulas in FOKI, which is the main difference between
FOKI and OWL. Zero-order logic is a mechanism used in FOKI to define alignment rules
([11]) and integration rules ([10]).

There are plenty of ontologies expressed in OWL, including those dedicated to ontol-
ogy integration (e.g., OEAI benchmarks). To be able to process these ontologies in FOKI,
a translation mechanism from OWL to FOKI meta-model is necessary. The translation
must be two-directional, as the result of ontology integration should be comparable with
existing benchmarks expressed in OWL. Translation FOKI-OWL is performed on the syn-
tax level only. The semantics of particular elements (attributes, relations) are defined later
by an expert.

To motivate our work and explain the source of the problems mentioned in the in-
troduction, we use a simple example of ontology integration. Let’s assume there are two
ontologies, O1 and O2, to be integrated into OWL – see Table 1.

Each ontology introduces only one concept Person with a few attributes. These on-
tologies could be represented using our FOKI formal model as:

O1 = { Person (name : string, birthdate : dateT ime) }
O2 = {Person (first name : string, last name : string,

age : nonNegativeInteger)}

For the ontologies’ integration, the value of the SA function has to be defined for each
attribute. The semantics are later stored separately in CSV files. Having the semantics de-
fined, the integration process can be run. The integration results could be, e.g. as follows:

O1 O2 = {Person (name : string, birthdate : dateT ime,
age : nonNegativeInteger) }

Now, to make the results readable, and useful for further processing, a transforma-
tion from FOKI to OWL is necessary. It could produce an ontology in the form given in
Listing 1.1.
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Table 1. Ontologies to be integrated in OWL format

O1 O2

<D e c l a r a t i o n
<C l a s s IRI =”# Pe r so n ”/>
</ D e c l a r a t i o n>
<D e c l a r a t i o n>
<D a t a P r o p e r t y IRI =”#name”/>
</ D e c l a r a t i o n>
<DataProper tyDomain>
<D a t a P r o p e r t y IRI =”#name”/>
<C l a s s IRI =”# Pe r so n ”/>
</ DataProper tyDomain>
<DataPrope r tyRange>
<D a t a P r o p e r t y IRI =”#name”/>
<D a t a t y p e

a b b r e v i a t e d I R I =” xsd : s t r i n g ”/>
</ Da taPrope r tyRange>
<D e c l a r a t i o n>
<D a t a P r o p e r t y IRI =”# b i r t h d a t e ”/>
</ D e c l a r a t i o n>
<DataProper tyDomain>
<D a t a P r o p e r t y IRI =”# b i r t h d a t e ”/>
<C l a s s IRI =”# Pe r so n ”/>
</ DataProper tyDomain>
<DataPrope r tyRange>
<D a t a P r o p e r t y IRI =”# b i r t h d a t e ”/>
<D a t a t y p e

a b b r e v i a t e d I R I =” xsd : da teTime ”/>
</ Da taPrope r tyRange>

<D e c l a r a t i o n>
<C l a s s IRI =”# Pe r so n ”/>
</ D e c l a r a t i o n>
<D e c l a r a t i o n>
<D a t a P r o p e r t y IRI =”# f i r s t n a m e ”/>
</ D e c l a r a t i o n>
<D e c l a r a t i o n>
<D a t a P r o p e r t y IRI =”# age ”/>
</ D e c l a r a t i o n>
<D e c l a r a t i o n>
<D a t a P r o p e r t y IRI =”# l a s t n a m e ”/>
</ D e c l a r a t i o n>
<DataProper tyDomain>
<D a t a P r o p e r t y IRI =”# age ”/>
<C l a s s IRI =”# Pe r so n ”/>
</ Da taProper tyDomain>
<DataProper tyDomain>
<D a t a P r o p e r t y IRI =”# f i r s t n a m e ”/>
<C l a s s IRI =”# Pe r so n ”/>
</ Da taProper tyDomain>
<DataProper tyDomain>
<D a t a P r o p e r t y IRI =”# l a s t n a m e ”/>
<C l a s s IRI =”# Pe r so n ”/>
</ Da taProper tyDomain>
<DataPrope r tyRange>
<D a t a P r o p e r t y IRI =”# age ”/>
<D a t a t y p e a b b r e v i a t e d I R I
=” xsd : n o n N e g a t i v e I n t e g e r ”/>
</ Da taPrope r tyRange>
<DataPrope r tyRange>
<D a t a P r o p e r t y IRI =”# f i r s t n a m e ”/>
<D a t a t y p e a b b r e v i a t e d I R I =” xsd : s t r i n g ”/>
</ Da taPrope r tyRange>
<DataPrope r tyRange>
<D a t a P r o p e r t y IRI =”# l a s t n a m e ”/>
<D a t a t y p e a b b r e v i a t e d I R I =” xsd : s t r i n g ”/>
</ Da taPrope r tyRange>
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Listing 1.1. Integrated ontology

<Declaration><Class IRI="#Person"/></Declaration>
<Declaration><DataProperty IRI="#name"/></Declaration>
<Declaration><DataProperty IRI="#age"/></Declaration>
<Declaration><DataProperty IRI="#birthdate"/></Declaration>

<DataPropertyDomain>
<DataProperty IRI="#name"/><Class IRI="#Person"/>
</DataPropertyDomain>

<DataPropertyRange>
<DataProperty IRI="#name"/>
<Datatype abbreviatedIRI="xsd:string"/>
</DataPropertyRange>

<DataPropertyDomain>
<DataProperty IRI="#age"/><Class IRI="#Person"/>
</DataPropertyDomain>

<DataPropertyRange>
<DataProperty IRI="#age"/>
<Datatype abbreviatedIRI="xsd:nonNegativeInteger"/>
</DataPropertyRange>

<DataPropertyDomain>
<DataProperty IRI="#birthdate"/>
<Class IRI="#Person"/>
</DataPropertyDomain>

<DataPropertyRange>
<DataProperty IRI="#birthdate"/>
<Datatype abbreviatedIRI="xsd:dateTime"/>
</DataPropertyRange>

5. Transformation Procedure

This section presents detailed transformation procedures to convert ontologies between
FOKI and the OWL2 standard. These two frameworks exhibit fundamental differences in
their treatment of unknown facts. To bridge these differences, we designed a set of precise
transformation rules to preserve the semantic integrity of the ontologies.

The intricacies of translating OWL’s complex, expressive capabilities, particularly its
data properties and logical constructs, into the formal structure of FOKI are explained.
This includes handling equivalence, disjointness, and cardinality constraints in a closed-
world context. Next, the rigorous testing and validation of our procedures using bench-
mark datasets provided by the Ontology Alignment Evaluation Initiative and the Ontology
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Lookup Service is presented. The aim of our experimental research is to confirm the re-
liability and consistency of our transformation rules in practical ontology management
applications.

5.1. Assumptions

The primary contribution of this paper is the development of transformation procedures
that facilitate the conversion between two fundamentally distinct ontology representation
notations: the newly developed FOKI formalism and the widely adopted OWL2 standard.

The critical difference between these frameworks lies in their approaches to managing
unknown facts within a given domain. OWL2 operates under an open-world assumption,
meaning that the absence of explicit information does not imply falsehood. In contrast,
FOKI follows a closed-world assumption, where any statement not explicitly included in
the ontology is considered false.

To bridge these conceptual differences effectively, we have established a detailed set
of transformation rules. These rules are designed to be repeatable and concise, ensuring
that the semantics of the input ontology are preserved as accurately as possible despite
the inherent constraints of the differing frameworks. This transition involves careful con-
sideration of OWL’s non-functional data properties and open-world assumption, as well
as FOKI’s functional attributes and closed-world perspective. The meticulous design of
these transformation rules aims to minimize information loss and maintain the integrity
of the original ontology’s semantics.

Furthermore, our approach addresses the challenges of converting OWL’s rich, expres-
sive capabilities into the more rigid structure required by FOKI. This includes handling
equivalence, disjointness, and other logical constructs that may have different interpre-
tations in a closed-world context. Our transformation procedures have been rigorously
tested to ensure that they provide reliable and consistent results, facilitating the interop-
erability between systems using OWL2 and those based on the FOKI framework. This
advancement not only supports seamless data integration across diverse ontological sys-
tems but also enhances the robustness and flexibility of ontology management practices.

The other difference relates to data properties. In OWL, an instance may have many
valuations (literals) of a specific data property unless the property is marked as functional.
In FOKI, an attribute (the equivalent of OWL data property) may have, at most, one value
assigned independently on the case. No mechanism in FOKI allows combining attribute
domains. It is why almost all OWL axioms referring to data properties (e.g., DataU-
nionOf, DataComplementOf ) are not taken into consideration, including new data types
declaration. Some other axioms, e.g., DataMinCardinality, are considered with specific
restrictions (the cardinality must be equal to 1). At that moment, only OWL primitive
types (declared in e.g., owl, RDF namespaces) are translated. For the unknown type, a
special anyURI is assigned, which can be treated as a parent for all types.

Given the profound semantic differences between OWL2 and FOKI, achieving an ut-
terly lossless transformation is impractical. Instead, our approach focuses on providing the
best possible approximation by narrowing the transformation scope to the most frequently
utilized elements in real-world ontologies. This decision was informed by extensive anal-
ysis of datasets provided by the Ontology Alignment Evaluation Initiative (OAEI) and
the Ontology Lookup Service (OLS), which serve as benchmarks and repositories for
state-of-the-art ontology applications and biomedical ontologies, respectively.
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These platforms provide invaluable resources for validating and refining our transfor-
mation procedures, ensuring they meet the practical demands of ontology management
and application in diverse domains. The former, OAEI (Ontology Alignment Evaluation
Initiative), is a non-profit organization that has organized (since 2004) public campaigns
aimed at evaluating ontology matching technologies. For this reason, it provides bench-
mark datasets with pre-prepared ontologies. These datasets are frequently treated as a
state of the art benchmark data used to test various ontology-related applications. The
latter, the Ontology Lookup Service (OLS), is a repository for biomedical ontologies that
provides a single point of access to the latest ontology versions.

We tested more than 250 ontologies (first level only, without counting imported ele-
ments), and based on them, created a frequency distribution for all axioms. The obtained
results are presented in Table 2. The table contains all axioms found in processed on-
tologies. Some axioms represent constructs that cannot be considered in transformations
to FOKI formalism (e.g., annotations). These are written in italics. Out of the remaining
axioms we have selected to implement in transformation rules those with at least 1% oc-
currence. As one can observe, the DataPropertyRange is the last axiom directly translated
to FOKI (it represents an attribute domain) with 239 occurrences (more than 99.99% of
axiom instances are above that limit).

5.2. FOKI Meta-model

Figures 1, 2, and 3 present the FOKI meta-model, which enables bi-directional translation
between OWL2 and FOKI. Both OWL and FOKI ontologies can be represented as meta-
model instances expressed in an abstract way (syntax agnostic).

The meta-model includes all elements specific to FOKI and those of OWL, which can
be translated into FOKI. On one side, it is a limited version of the OWL2 meta-model, and
– on the other side – it is an extension of the OWL2 meta-model as it contains elements
presented in FOKI only (e.g., the semantics part). Because of its flexibility, we call it
generic or universal.

The ontology, according to its formal definition (see chapter 3), is defined as a compo-
sition of concepts (C), generalization relationships between concepts (H), relations (RC),
instances of concepts (I), instances of relations (RI ), and predicates (Z) – see Figure 1.
The predicates are specific to FOKI and are skipped in the meta-model. The other ontol-
ogy components are directly visible in the meta-model, represented by associations and
compositions written in blue.

There exists an apparent connection between OWL2 and the meta-model. The OWL2
class is represented by the Concept meta-class while the OWL2 instance – by the Instance
meta-class.

OWL2 class is a container of data properties represented by the Attribute meta-class.
Each attribute should have a domain defined. The domain is perceived as a set of primitive
types defined in namespaces owl, RDF, XSD). Additionally, the attribute can be set as
functional.

Each attribute is functional by default in FOKI (one can have at most one value as-
signed). Here, it is used to mark the fact that the translation OWL2-meta-model-FOKI can
be potentially lossy (when isFunctional = false). However, instances are rarely defined in
ontologies, and an attribute has extremely rarely more than one value (see Table 2).
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Fig. 1. FOKI meta-model – ontology basic structure



118 Bogumila Hnatkowska et al.

How OWL2 class expression axioms are represented in the meta-model depends strongly
on its type. SubClassOf axiom is represented by Generalization meta-class, which di-
rectly links the parent and its child. Self-associations with the representative role names
equivalentTo, disjointWith represent OWL EquivalentClass and DisjointClass axioms.

The meta-model Relation class represents an OWL2 object property. Such a relation
can be marked as transitive, reflexive, symmetric, etc. It can also refer to its inverse version
(a result of the translation of InverseObjectProperty). Essential axioms define the domain
and range of a property. In the meta-model, both are represented by directional associa-
tions with specific roles (domain, range) from Relation to Concept meta-class. Similarly
to classes, axioms about object properties equivalence, or the fact some are disjoint or
inverse, are represented by directional self-associations with Relation meta-class on both
ends. A relation can also store a list of its parents (if any).

The OWL2 concept instances are represented by the Instance meta-class. The qualifier
concept represents this at the end of the association, linking the Instance meta-class with
AttributeValuation meta-class (representation of the OWL2 Literal, e.g., ’John’). Simi-
larly, instances of object properties are represented by the RelationInstance meta-class.
The instance of the Relation meta-class remembers its features, i.e., if it is symmetric,
reflexive, functional, etc.

Concepts and instances are named elements, i.e., they can be identified by an IRI (In-
ternationalized Resource Identifier) from which the resource’s name can be extracted (the
name attribute) – see Figure 2. The name can include the package name, while its short
version (the shortName attribute) is only limited to the resource name. For an anonymous
instance, the is anonymous attribute is set to false. As an instance can belong to many
classes (concepts), their attributes can be split into groups (one group per concept).

Let us demonstrate the correspondence between the OWL ontology from Section 4
and our meta-model. In this example:

– O1, O2 are instances of the Ontology meta-class
– Person is an instance of the FOKI Concept meta-class (all the properties inherited

from NamedElement meta-class, i.e. name, iri and shortName are set for Person, the
concept is not anonymous); Person is a part of the proper ontology

– name, birthdate etc. are instances of the Attribute meta-class with properly set domain
(string for name, dateTime for birthdate). The concept instance keeps attributes via
composition relationship. The functional property for attributes is set to false.

Attributes (parts of Concepts) and Relations are elements to which semantics can be
assigned in the form of a first-logic predicate sentence – see Figure 2. Such sentences
are represented by instances of the Semantics class and its children (Label, Operator).
Assuming that Person’s name has semantics defined as first name and last name, the
semantics (associated with the name attribute) will be represented as two instances of the
Label meta-classes, one for first name, and one for last name, connected by an instance
of the Operator meta-class with the type property set to ’and’. The semantic part is not
considered in the OWL2 to FOKI translation because this part is absent in OWL.

The core of every ontology is formed by a concept’s definition and concept hierarchy
– see Figure 3.

Any concept in OWL2 can be directly declared and have a name or be introduced indi-
rectly as a combination of other concepts, e.g., union, intersection, etc. The combinations
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Fig. 2. FOKI meta-model – ontology named elements and elements with semantics

are represented as children of AnonymousConcept meta-class working on arguments (args
role). The concrete children of AnonymousConcepts can be easily linked to the proper
class expressions in OWL2, e.g. ObjectIntersectionOf (ObjectIntersection) in the meta-
model), ObjectUnionOf (ObjectUnion), ObjectComplementOf (ObjectComplement), Ob-
jectSomeValuesFrom (ObjectValuesFrom, type=some), ObjectAllValuesFrom (ObjectVal-
uesFrom, type=all), ObjectMinCardinality (ObjectCardinality, type = min), ObjectMax-
Cardinality (ObjectCardinality, type=max), ObjectExactCardinality (ObjectCardinality,
type=exact), ObjectHasSelf,ObjectHasValue, ObjectOneOf.

Such a solution enables the representation of complex structures, e.g.,
UnionOf(IntersecionOf(A, B), C) – see Figure 4. As one can notice, the names for anony-
mous concepts are created by the FOKI tool, and they reflect the intended semantics of
the way the concept’s arguments are combined.

DisjointUnion OWL axiom introduces a separate anonymous class – DisjointUnion
in the meta-model.

5.3. Transformation Rules from OWL

The input ontology O, in OWL, can contain elements that are not explicitly defined. It
means that some of its content must be inferred before any operations on reading ontology
are possible. For the sake of consistency, the elements that can be inferred include:

– domain/ranges of relations if they are known for one of the parent relations
– instances of concepts/relations (a result of getInstance operation).

Examples of transformation procedures are presented below. The meta-model is a
proxy between OWL2 and FOKI translation. Therefore, translation procedures are split
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Fig. 3. FOKI meta-model – ontology concept heierarchy
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Fig. 4. Exemplary instance of a complex concept

into two groups. The first takes an OWL2 ontology and produces an instance of the meta-
model. The second goes further and translates an instance of the meta-model into an
instance of FOKI (the mathematical formalism). The opposite transformations, i.e., from
FOKI formalisms to the instance of the meta-model and farther to the OWL are straight-
forward (defined indirectly by the existing transformation rules).

Let OOWL represent an ontology expressed in OWL2, OMM represent the same on-
tology as an instance of the meta-model, and OFOKI represent the ontology O expressed
in FOKI formalism (abstract syntax). These three representations are globally available
for every formulated procedure. To select a specific element from one of the ontologies,
a dot notation is used, e.g., OFOKI .C which represents the set of concepts C from the
OFOKI ontology. If the element belongs to the meta-model, the meta-class name pro-
ceeded by a ‘ ’ (to represent an instance) is used instead, e.g., Attribute, Instance,
Relation. The valuation of attributes for meta-class instances, if necessary, will be de-

scribed with a dot notation, e.g. AttributeValuation.value =’5’. In the same manner, the
association ends will be referred, e.g., Ontology.I = new Set(Instance) – where I is the
association end representing a set of instances being part of the ontology.

Due to the limited space available for this paper, we present only some representatives
of transformation procedures and divide them into two sections. The first shows how basic
ontology elements are created. These elements are classes, attributes, relations between
concepts, and relations between instances. The second demonstrates how relation proper-
ties are translated using a symmetry feature as an example. The last example concentrates
on so-called AnonymousConcepts, i.e., concepts without a specific name constructed as a
composition, e.g., a union or an intersection of other concepts.

OWL2 to meta-model translations The first transformation algorithm 1 shows how a
new concept is created. When a new instance of a meta-model class is created, all its
association ends are also initialized as empty collections (sets). For example, when an
Attribute is created, then it is connected with an empty set of AttributeValuations. For
simplicity, that fact is skipped in the transformation procedures.

The next four transformations 2, 3, 4, 5 present how axioms connected with data prop-
erty are processed. The procedure 2 translates a data property declaration that introduces
a data property name only. On that basis, a new attribute is created and stored (as a part
of meta-model ontology) for further processing.
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Algorithm 1 CreateConcept in meta-model.
OWL syntax: Class(c)

1: Input: c ∈ OOWL

2: create new Concept
3: generate unique id
4: Concept.id = id
5: Concept.name = c.name
6: Concept.IRI = c.IRI
7: add Concept to OOWL. Ontology.C

Algorithm 2 CreateAttribute in meta-model.
OWL syntax: Declaration( DataProperty( p ) )

1: Input: p(roperty) ∈ OOWL

2: create new Attribute
3: Attribute.isFunctional = false
4: Attribute.name = p.name
5: Attribute.IRI = p.IRI
6: add Attribute to OOWL. Ontology.attribute

The FindOrCreateAttribute function 3 is an auxiliary element, used later for trans-
lation of other axioms. The existence of similar functions, e.g. FindOrCreateConcept,
FindOrCreateRelation etc., is assumed. These functions look for an element with a spe-
cific name. If it does not exist, the element is created.

Algorithm 3 FindOrCreateAttribute in meta-model
1: Input: a,OOWL

2: Result: An attribute Attribute – meta-model representation of a in OWL2
3: if OMM . Ontology.attribute contains Attribute : Attribute.name = a.name then
4: return Attribute
5: end if
6: return CreateAttribute(a,OOWL)

Translation of DataPropertyDomain axiom 4 results in finding or creation (if it does
not exist) of an attribute that is assigned to the proper class (also found or created).

Translation of DataPropertyRange axiom 5 requires the proper attribute to be found
(or created). After that, its feature domains are modified by adding a new range.

The procedure 6 shows the creation of complex concepts (by the example of Object-
IntersectionOf ).

The next procedure 7 shows the creation of a concept instance, assuming that the
instance is not an anonymous one (a result of the processing of ClassAssertion axiom).

Data property in OWL2 may have a value assigned to an instance that is a proper
class member. In the meta-model, the data property value is represented by an instance
of AttributeV aluation class. The instance uses a qualifier (concept) to split attribute
values into manageable pieces (Algorithm 8).
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Algorithm 4 Assign an attribute to a concept in meta-model
OWL syntax: DataPropertyDomain(p, c)

1: Input: p(roperty), c(lass) ∈ OOWL

2: Attribute = FindOrCreateAttribute(p,OMM . Ontology);
3: Concept = FindOrCreateConcept(c,OMM . Ontology);
4: add Attribute to Concept.attribute

Algorithm 5 Assign an attribute’s domain in meta-model
OWL syntax: DataPropertyRange(p, r)

1: Input: p(roperty), r(ange) ∈ OOWL

2: Attribute = FindOrCreateAttribute(p,OMM . Ontology);
3: add r to Attribute.domains

Algorithm 6 Create an anonymous concept
OWL syntax: ObjectIntersectionOf(c1, c2, . . . , cn)

1: Input: c1[OWL], c2[OWL], . . . , cn[OWL] ∈ OOWL

2: create new ObjectIntersection
3: add ObjectIntersection to OMM . Ontology.concepts
4: ObjectIntersection.name = ObjectIntersectionOf +c1.name+ and +· · ·+ and +

cn.name
5: for ci ∈ {c1, . . . , cn} do
6: add ci to ObjectIntersection.args
7: end for

Algorithm 7 Create an instance
OWL syntax: ClassAssertion(c i)

1: Input: c(lass), i(nstance) ∈ OOWL

2: Instance = FindOrCreateInstance(i, OMM . Ontology);
3: generate unique id;
4: Instance.id = id;
5: Instance.is anonymous = false;
6: Concept = FindOrCreateConcept(c,OMM . Ontology);
7: add Instance to Concept.instances;
8: add Concept to Instance.concept;

Algorithm 8 Create an instance valuation
OWL syntax: DataPropertyAssertion(p i v)

1: Input: p(roperty), i(nstance), v(alue) ∈ OOWL

2: create new AttributeV aluation;
3: AttributeV aluation.value = v;
4: Instance = FindOrCreateInstance(i, OOWL. Ontology);
5: add AttributeV aluation to Instance.attributes; ▷ Assuming Instance[c] means to

add to instance’s attributes
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Meta-model relation is created during the processing of ObjectProperty axioms (dec-
larations, domain definition, range definition). These axioms are processed similarly to
DataProperty axioms and therefore are skipped. Relation in OWL could have many fea-
tures, e.g., be symmetric, reflexive, etc. The processing of SymmetricObjectProperty ax-
iom is presented in Algorithm 9.

Algorithm 9 Create a symmetric relation
OWL syntax: SymmetricObjectProperty(p)

1: Input: p(roperty) ∈ OOWL

2: Relation = FindOrCreateRelation(p,OMM . Ontology);
3: Relation.isSymmetric = true;

Transformation rules from meta-model to FOKI This section presents some proce-
dures for translating elements taken from the presented meta-model into mathematical
constructs defined according to the formal foundations presented in Section 3. Such trans-
formation requires an auxiliary procedure, which takes as an input an instance for Seman-
tics class from the meta-model. It recursively creates a logic sentence built from atomic
literals and logic operators (negation, conjunction, disjunction, implication, and exclusive
disjunction). This procedure is presented as Algoritm 10.

Algorithm 10 Create Semantics
1: Input: s ∈ OMM .Semantics
2: if s is OMM .Label then
3: return s.name;
4: else
5: if s.type = ’not’ then
6: return ¬ + Create Semantics( s.args[0]);
7: else if s.type = ’and’ then
8: return Create Semantics( s.args[0]) + ∧ + Create Semantics( s.args[1]);
9: else if s.type = ’or’ then

10: return Create Semantics( s.args[0]) + ∨ + Create Semantics( s.args[1]);
11: else if s.type = ’xor’ then
12: return Create Semantics( s.args[0]) + ⊕ + Create Semantics( s.args[1]);
13: else if s.type = ’implies’ then
14: return Create Semantics( s.args[0]) + =⇒ + Create Semantics( s.args[1]);
15: end if
16: end if

The first transformation 11 shows how a concept’s definition is built from an instance
of a Concept. If the concept is anonymous, an additional predicate is stored in FOKI. The
procedure also shows how the defined earlier procedure for creating logic sentences is
used in the context of attributes’ semantics.
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Algorithm 11 Transformation of a concept
1: Input:OMM , c ∈ OMM .C
2: create new concept c = ( c.id, Ac = ∅, V c = ∅, Ic = ∅);
3: for a ∈ c.A do
4: create an attribute a named a.name;
5: add a to Ac;
6: OFOKI .SA(a, c) = Create Semantics( a.DA/DR);
7: add a.domain to V c;
8: end for
9: add c to OFOKI .C;

10: if c.isAnonymous then
11: add is anonymous(c) to OFOKI .Z;
12: end if

The next procedure 12 addresses the transformation of instances. It allocates attributes’
values to the particular instance created accordingly to the template enforced by a concept
to which it will be eventually assigned. Similarly to the previous procedure ( 11), the situ-
ation in which a particular instance is not explicitly defined in OWL is handled by adding
is anonymous predicate.

Algorithm 12 Transformation of a concept’s instance
1: Input: OMM , c ∈ OMM .C, i ∈ OMM .I ∧ i ∈ c.Ic
2: create new instance i = ( i.id, vic = ∅);
3: find c ∈ OFOKI .C such that c.id = c.id;
4: for a ∈ i.Vc do
5: add a.value to vic;
6: end for
7: Ic = Ic ∪ {i};
8: if i.is anonymous then
9: add is anonymous(i.id) to OFOKI .Z;

10: end if

The procedure 13 shows how a transformation of concepts hierarchy is performed.
According to Equation 1 the generalization of concepts is expressed as an ordered pair of
concepts included in the set H. Therefore, the transformation takes as input an instance of
a Generalization class, which has two attributes pointing to two Concept class instances.
Then, these concepts are extracted, the generalization representation is created, which is
eventually added to the set H according to the mathematical definition.

Algorithm 13 Transformation of a concept’s generalization
1: Input: OMM , h ∈ OMM .H
2: find c1 ∈ OFOKI .C such that h.parent.id = c1.id;
3: find c2 ∈ OFOKI .C such that h.child.id = c2.id;
4: add (c1, c2) to OFOKI .H;
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The last two procedures ( 14, 15) focus on translating concepts and instances relations.
The first ((Algorithm 14) addresses relations between concepts. It is a similar approach
to the transformation of concept generalization, but it requires a Relation class instance
as an input to extract participating concepts. It then utilizes a procedure for creating logic
sentences to generate relation’s semantics, which is eventually expanded with descriptions
of particular relations features (e.g. its transitivity or reflexivity).

Algorithm 14 Transformation of a concept’s relation
1: Input: OMM , r ∈ OMM .R
2: find c1 ∈ OFOKI .C such that r.domain.id = c1.id;
3: find c2 ∈ OFOKI .C such that r.range.id = c2.id;
4: find rC ∈ OFOKI .R

C such that rC = r.name;
5: add (c1, c2) to rC ;
6: OFOKI .SR(r) = Create Semantics( r.DA/DR);
7: if ¬r.isSymmetric then
8: concatenate ′ ∧ is symmetric′ to SR(r)
9: end if

10: if ¬r.isReflexive then
11: concatenate ′ ∧ is reflexive′ to SR(r)
12: end if
13: if ¬r.isTransitive then
14: concatenate ′ ∧ is transitive′ to SR(r)
15: end if
16: if ¬r.isIrreflexive then
17: concatenate ′ ∧ is irreflexive′ to SR(r)
18: end if
19: if ¬r.isFunctional then
20: concatenate ′ ∧ is functional′ to SR(r)
21: end if
22: if ¬r.isInverseFunctional then
23: concatenate ′ ∧ is inverse functional′ to SR(r)
24: end if
25: if ¬r.isAssymetric then
26: concatenate ′ ∧ is assymetric′ to SR(r)
27: end if

The last procedure 15 performs a translation of relations between instances. It accepts
an instance of RelationInstance class from the meta-model. Then it extracts two partici-
pating instances, which are eventually included in the appropriate relation taken from the
set OFOKI .R

I according to Equation 1.

6. Evaluation Procedure

The meta-model and bi-directional transformation procedure were implemented in a pro-
totype tool written in Java 1.8, and available in executable version (jar file) at [13].

The following testing procedure was used to check the correctness and complete-
ness of the transformation process. After reading an input ontology, it was saved without
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Algorithm 15 Transformation of instances relation
1: Input: OMM , r ∈ OMM .RI
2: find rI ∈ OFOKI .R

I such that rI = r.name;
3: find i1 ∈ OFOKI .I such that r.domain.id = i1.id;
4: find i2 ∈ OFOKI .I such that r.range.id = i2.id;
5: add (i1, i2) to rI

any change in the functional syntax for further comparison. Next, the input ontology was
transformed into a meta-model instance. This instance was later saved under another name
in the functional syntax. Such an approach made a textual comparison of two files possi-
ble (the original input ontology and the result of its processing) with generally available
tools. We used the diff tool that computes and displays the differences between the con-
tents of two files. When any textual difference was identified, it was checked if the FOKI
translation was semantically different from the original version.

The testing procedure was run for commonly available ontologies of different sizes
and natures. The results are presented in Table 3. The first column contains information
about the ontology processed, the second – about the number of axioms and annotations
(not translated) in the ontology, the third – about not translated axioms, and the fourth
some notes/explanations of the results.

In most places when syntax differences were identified, the semantics were preserved,
e.g. InverseObjectProperties(:forEvent :hasCall) is an equivalent for InverseObjectProp-
erties (:hasCall :forEvent)). Once it occurred that the original ontology was redundant –
some axioms could be eliminated without changing the semantics (they can be inferred
from existing axioms). The translation didn’t contain the redundant axioms. And once, the
axiom InverseObjectProperties(:parallel with :parallel with) is replaced with the equiva-
lent one ReflexiveObjectProperty(:parallel with).

7. Future Works and Summary

In this paper, we introduced a meta-model and a comprehensive set of rules designed
to facilitate the translation of ontologies between the FOKI framework’s internal math-
ematical formalism and the widely used OWL2 standard. Utilizing UML notation, we
meticulously defined the meta-model and outlined transformation procedures that effec-
tively bridge these distinct frameworks. Each transformation procedure was crafted to
align an abstract syntax element of OWL2 with its corresponding representation in the
FOKI framework using specific meta-model elements.

The meta-model and the bi-directional transformation procedures, a result of our re-
search, were implemented in Java. This practical implementation allowed us to rigorously
test our translation method against ontologies primarily sourced from the Ontology Align-
ment Evaluation Initiative. These ontologies, serving as a benchmark dataset, are essential
for validating many ontology-related tools.

The input ontology was initially preserved in its original functional syntax as a base-
line for subsequent comparisons. It was then transformed into a meta-model instance and
saved under a new identifier in the functional syntax. This approach facilitated a detailed
textual comparison between the original input ontology and its processed counterpart
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Table 3. The results of transformation

Ontology
name and
source

Axiom num-
ber Annota-
tion number

Percentage of correctly
transformed axioms

Not transformed axioms
or transformed with some
changes

Comments

Shop 92/0 92 (100%) - The FOKI translation contains
one additional axiom: Decla-
ration(Class(owl:Thing))

EDAS2 194/0 193
(99.9%)

DifferentIndividuals (1)

Sigkdd 2 892/11 891 (99.9%) ObjectPropertyRange(:award
:Award) – redundancy

ConfOf 2 270/65 269 (99.9%) Instead of: InverseObject-
Properties(:parallel with :par-
allel with) It is: ReflexiveOb-
jectProperty(:parallel with)

Conference 2 408/0 399 (97.7%) Declaration(
Datatype(xsd:date)) (1)
Usage of datatype (8)

Instead of: DataProper-
tyRange(:is an ending date
xsd:date) It is: DataProper-
tyRange(:is an ending date
xsd:anyURI)

Movie
Ontology 3 870/0 861 (98.9%) DifferentIndividuals (6) Dec-

laration(Datatype(xsd:date))
(1) Usage of datatype (1)

Declaration(Datatype(xsd:date))
ObjectPropertyDomain
(movieontology:hasActress
www:Movie) ObjectProp-
ertyDomain (movieon-
tology:hasMaleActor
www:Movie) – axioms
can be inferred from definition
of hasActor object property.

Sabine target 4 2896/784 2894 (99.9%) DataPropertyAssertion
(s///abine:hasTopicID
:EU ”130”8sd:int)
DataPropertyAsser-
tion(sabine:hasTopicID
:Politica sociale ”300”8sd:int)
(2)

In FOKI all attributes are func-
tional by definition, and it is
why only the last value assig-
ment is remembered.

Sabine
source 4

2582/784 2580 (99.9%) DataPropertyAssertion
(sabine:hasTopicID
:EU ”164”8sd:int)
DataPropertyAsser-
tion(sabine:hasTopicID
:Immigration ”281”8sd:int)
(2)

In FOKI all attributes are func-
tional by definition, and it is
why only the last value assig-
ment is remembered.

Human 5 14857/15507 14854 (99.9%) Declaration (AnnotationProp-
erty(...)) (3)

.

Mouse 5 7592/3451 7588 (99.9%) Declaration (AnnotationProp-
erty(...)) (4)

.
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using standard tools. The transformation accuracy, a key measure of our methodology,
consistently exceeded 95% across all tested ontologies. The minor losses observed were
primarily due to inherent differences between the OWL and FOKI frameworks. Despite
this, the results were highly satisfactory, demonstrating that OWL2 ontologies can now
be effectively processed using the FOKI framework. Non-functional attributes are adeptly
managed within the transformation, which is primarily lossy only in rare cases where
an attribute is assigned multiple values. Addressing this issue could be achieved by en-
hancing the complexity of the transformation, possibly by representing a non-functional
attribute domain as a collection in FOKI.

In the future, our efforts will concentrate on developing a concrete syntax and a query
language for FOKI, as currently, the framework is equipped only with an abstract syntax.
For FOKI to be utilized in practical applications, it is imperative to either adapt an existing
ontology syntax or devise a new one tailored to its unique requirements.

References

1. Afzal, H., Waqas, M., Naz, T.: Owlmap: fully automatic mapping of ontology into relational
database schema. International journal of advanced computer science and applications 7(11)
(2016)

2. Andon, P., Reznichenko, V., Chistyakova, I.: Mapping of description logic to the relational data
model. Cybernetics and Systems Analysis 53, 963–977 (2017)

3. Astrova, I., Korda, N., Kalja, A.: Storing owl ontologies in sql relational databases. Interna-
tional Journal of Electrical, Computer and Systems Engineering 1(4), 242–247 (2007)

4. Athanasiadis, I.N., Villa, F., Rizzoli, A.E.: Ontologies, javabeans and relational databases for
enabling semantic programming. In: 31st Annual International Computer Software and Appli-
cations Conference (COMPSAC 2007). vol. 2, pp. 341–346. IEEE (2007)

5. Baader, F.: The description logic handbook: Theory, implementation and applications. Cam-
bridge university press (2003)

6. Caldarola, E.G., Picariello, A., Rinaldi, A.M.: An approach to ontology integration for ontology
reuse in knowledge based digital ecosystems. In: Proceedings of the 7th International Confer-
ence on Management of computational and collective intElligence in Digital EcoSystems. pp.
1–8 (2015)

7. De Paepe, D., Thijs, G., Buyle, R., Verborgh, R., Mannens, E.: Automated uml-based ontology
generation in oslo 2. In: The Semantic Web: ESWC 2017 Satellite Events: ESWC 2017 Satellite
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