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Abstract. Visual Question Answering (VQA) is an emerging field of deep learning
that combines image and question features and generates collaborative feature rep-
resentations for classification by uniquely fusing the components. To enhance the
effectiveness of models, it is crucial to fully utilize the semantic information from
both text and vision. Some researchers have improved the accuracy of the model’s
training by either adding new features or enhancing the model’s ability to extract
more detailed information. However, these methods have made experimentation
more challenging and expensive. We propose a model called asynchronous self-
attention model (ASAM) that makes use of an asynchronous self-attention compo-
nent and a controller, integrating the asynchronous self-attention mechanism and
collaborative attention mechanism effectively to leverage the rich semantic infor-
mation of the underlying visuals. It realizes an end-to-end training framework that
can extract and exploit the rich representational information of the underlying vi-
sual images while performing coordinated attention with text features, as it does not
over-emphasize fine-grained but finds a balance within it, thus allowing the model
to learn more valuable information. Extensive ablation experiments were conducted
on the proposed ASAM using the VQA v2 dataset to verify its effectiveness. The
results of the experiments demonstrate that the proposed model outperforms other
state-of-the-art models, without increasing the model complexity and the number of
parameters.
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1. Introduction

With the comprehensive development of deep learning, single-modal tasks involving com-
puter vision (CV) and natural language processing (NLP) no longer meet the demands of
technological advancement. Consequently, there has been a growing emphasis on multi-
modal task learning involving the collaboration of image and text modalities. Among
these multi-modal tasks [28,43,25], a pivotal research direction is visual question answer-
ing (VQA)[37,23].

The VQA task aims to accurately answer the natural language questions about im-
ages. This requires the model to not only comprehend the content of both the images and
the questions but also to grasp the intricate relationships between them. Initially, training
models of convolutional neural network developed rapidly and involved in many fields
[8,5]. The research on VQA also focused on the training model using convolutional neural
networks [9,29,35] and subsequently evolved to incorporate attention mechanisms which
are now widely used in scientific research [6]. Several studies [27,31,44] have demon-
strated that methods leveraging conventional self-attention mechanisms have provided
significant impetus to advancing visual question answering (VQA) tasks. However, their
performance remains limited as traditional attention mechanisms fail to effectively model
the intricate relationships between the two modalities.

With the advancement of computing and communication technologies, a disruptive
new architecture has emerged-the Transformer [40]. Initially devised to address problems
in NLP, the Transformer has progressively found success in applications to computer
vision and multimodal tasks. This success is attributed to its attention mechanism, which
excels in comprehensively modeling the relationships between modalities and has been
applied in various fields[5,26] Yu et al. [45] were the first to employ the transformer
model in the VQA, leading to the model securing the championship in the 2019 VQA
Challenge. Due to the simplicity and effectiveness of the transformer’s encoder-decoder
structure and attention mechanism and its ability to capture long-distance dependencies,
there have been many attempts in VQA so far[3,42,48,4,12,20]. However, it has been
observed that fine granularity can be used in all fields[24].If most of the work emphasizes
and over-attention to it, it may lead to the loss of some effective information [24,21]. For
this reason, we consider whether there can be a solution to the issue above.

Regarding fusing features from different layers, ResNet [17] introduces an identity
shortcut connection structure that directly skips one or more layers and fuses features
between different layers to solve the problem of gradient disappearance. Qin et al. [34]
propose a Residual Weight-Sharing Attention Network (RWSAN), wherein within each
attention unit of the RWSAN layer, residual learning is performed using learnable con-
nectivity patterns and shared parameters. Drawing upon this conceptual framework, we
propose an asynchronous self-attention mechanism combined with collaborative atten-
tion, resulting in the design of the Asynchronous Self-Attention Model (ASAM). ASAM
can perform bottom-up connections to the attention map from the previous layer’s out-
put, thereby balancing the coarseness of the granularity in image representation. This
ensures that the model focuses on crucial regions of the image without introducing addi-
tional complexity, thereby allowing the effective extraction of rich semantic information
from the image. Extensive ablation experiments based on the VQA v2 benchmark dataset
prove the effectiveness of our proposed models. The main contributions of this paper are
as follows:
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(1) An asynchronous self-attention mechanism is proposed to optimize the balance be-
tween coarse-grained and fine-grained image representations. Simultaneously, a controller
is designed to optimize the features computing attention scores during the self-attention
modeling process.

(2) By integrating collaborative attention with the designed self-attention mechanism,
we propose an Asynchronous Self-Attention Model (ASAM). This model is capable of
coordinating relationships between objects of different granularities and collaboratively
attending to image features in conjunction with text.

(3) We conducted extensive experiments on the benchmark dataset VQA v2, and the
results indicate that the proposed ASAM achieved favorable performance without increas-
ing model complexity or the numbers of parameters.

The remainder of this work is organized as follows. We introduce the work related
to Visual Question Answering research in section 2. Then section 3 describes the asyn-
chronous self-attention mechanism in detail. Next, section 4 verifies the validity of the
model through extensive experiments, and finally, the concluding remarks and a prospect
for future directions are given in section 5.

2. Related Work

2.1. Visual Question Answering

The essence of the visual question answering task lies in the simultaneous comprehen-
sion of the input question and image, coupled with a capacity for reasoning to accurately
respond to natural language inquiries about the image. Over the past few years, an increas-
ing number of researchers have devoted themselves to investigating VQA tasks, leading to
a diverse array of methods that contribute to enhancing task performance. Models based
on the transformer architecture have gained more widespread application [3,16,30,15].
Mao et al. [30]proposed an approach guided by positional attention, significantly enhanc-
ing the model’s performance by incorporating three distinct positional attention modules
into a single transformer model. Chen et al. [2] proposed for the first time to introduce
contextual information with different combinations of representations into VQA, and pro-
posed a context-aware attention network (CAAN) to solve the problem of existential
comprehension bias, marking a novel breakthrough built upon the foundation of MCAN
[45]. Furthermore, visual question answering requires models to possess extensive mul-
timodal knowledge beyond specific domains to enable models to answer more abundant
questions. Consequently, some researchers leverage large-scale knowledge bases for in-
formation extraction, allowing the models to infer image content and answer questions
requiring common-sense knowledge not explicitly covered in the image [47,7,41]. Build-
ing upon optimizing features, some researchers have proposed methods such as feature
filtering, gating mechanisms, and stepwise refinement of features from coarse to fine.
Nguyen et al. [32] extract predicates simultaneously with features, enabling dual learning
of coarse-grained and fine-grained information and achieving robust reasoning. Guo et al.
[13] utilized top-k filtering, explicitly selecting the most crucial information from both the
image and the question to concentrate attention, proposing a novel multi-modal explicit
sparse attention network. Diverging from other methods that focus on refining features,
we leverage the output of the model’s preceding layer to influence the input of the next
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layer, thereby balancing the coarseness in granularity between feature representations. We
optimize the model by integrating heterogeneous self-attention and modular co-attention
networks.

2.2. Attention Model
Referring to how humans process information when seeing images, the researchers con-
sider that the model should be able to recognize what and where the object in the images
is when faced with a question. The location of the model’s gaze should be the object’s
position in the image most relevant to the question. Due to its capability to dynamically
modulate attention towards critical regions or words across multimodal modeling pro-
cesses, and to allocate weights based on feature importance, the attention mechanism
confers significant advantages in addressing VQA tasks. Consequently, it has been ex-
tensively adopted in this task to enhance modeling processes across diverse modalities
effectively. VQA models can concentrate attention on relatively important information by
incorporating attention mechanisms, thereby reducing interference from irrelevant infor-
mation. Yang et al. [44] devised a multi-layer attention network to address noise induced
by global features, which is the first attempt of attention mechanisms in VQA tasks, yield-
ing promising performance. Anderson et al. [1] introduced a Bottom-up and Top-down
Attention (BUTD) network to identify prominent image region features within the model.
However, aside from image features, learning textual features is equally crucial. In gen-
eral, visual attention assists the model in focusing on critical image regions, while textual
attention attends to essential words. Consequently, dense co-attention over both images
and questions is currently prevalent. Lu et al. [27] devised a hierarchical collaborative at-
tention model, wherein the architecture constructs a collaborative attention graph at three
levels: word level, phrase-level, and question level. Emphasizing mutual guidance be-
tween text and modalities, the model, however, is limited to learning coarse interactions
between modalities. Nam et al. [31] introduced a dual attention network (DAN) for mul-
timodal reasoning, employing multi-step reasoning to mutually guide visual and textual
attention. Yu et al. [45] proposed a multimodal dense co-attention network by modeling
dense interactions within and between modalities, representing a significant breakthrough
in attention mechanisms. Chen et al. [3] designed a textual global-context module and a
compact attention mechanism, introducing a multimodal vision-language paradigm that
enhances the modeling dependencies capability of image tokens and the model’s reason-
ing ability.

3. Method

3.1. Model Components
Before presenting the complete model framework, this section first introduces the es-
sential components of the model. The collaborative asynchronous self-attention attentive
layer consists of three basic units: Self-Attention unit (SA), Asynchronous Self-Attention
unit (ASA), and Guided-Attention unit (GA).

As shown in Fig. 1(a), only one input, denoted as X , represent either text or visual
features. In Fig. 1(b), Yi and Y(i−1)′ , are image features, and Y(i−1)′ is the reserved fea-
ture of the previous layer. In Fig. 1(c), X and Y denote text features and image features
respectively. And Z represents output features.
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Fig. 1. Three base components in the proposed SASM model

Self-Attention, Asynchronous Self-Attention and Guided-Attention Units. The at-
tention mechanism used in this paper is drawn from [40]. In feature processing, question
and image features are transformed into queries, keys, and values feature. dk and dv are
the dimensions of the keys and queries that make up the scaled dot-product attention’s
input in attention mechanisms, respectively. We calculate the dot-product of queries with
all keys and divide the result by

√
d. Finally, we use the softmax function to obtain the

attention weights on the values. In practice, to compute the attention weights on a set of
queries simultaneously, we pack queries into matrix QϵR1×d, and pack the keys and val-
ues into matrices KϵRn×d and V ϵRn×d. The calculation process of self-attention specific
is shown as follows:

f = Attention (Q,K, V ) = softmax

(
QKT

√
Dk

)
V (1)

To improve the representational capability of the features, the attention mechanism
uses a multi-head attention mechanism to enrich the feature information by jointly focus-
ing on the representation subspace at different locations. Taking the example of h separate
heads, the output feature f can be represented as follows:

f = MHA (Q,K, V ) = Concat (head1, head2..., headh)W
O (2)

headi = Attention
(
Qi,Ki, V i

)
(3)

where WQ
i ,WK

i ,WV
i ϵRd×dh are the projection matrices of Q, K , V in the i-th head,

respectively. WOϵRh×dh×d is the projection parameter matrix, dh is the dimension of
each header output feature and is generally set to dh = d/h. This setting aims to prevent
multi-head attention models from becoming too large and consuming too many computing
resources.

Based on the above description and inspiration from [45], we have independently
designed an asynchronous self-attention module ASA (see Fig. 1(b)). The input feature
can be flexibly represented as SA’s text or image features. After the feature obtains the
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attention weight in the multi-head attention layer, it guides the attention of features X ,
connects the output result with the residual of the original feature, and then normalizes
it with the LayerNorm function to facilitate optimization. After performing the above
operations, we feed the processed features into a feed-forward layer and then perform the
residual and the normalization operations again, finally outputting the attention features
ZϵRm×d. In GA, XϵRm×dx represents the text features and Y ϵRn×dy represents the
image features. Different from SA, GA uses text features to guide the attention learning
of image features.

The Asynchronous Self-Attention (ASA) we designed is different from SA and GA.
Y, Y(i−1)ϵRn×dy in ASA represent the same type of features, i.e., text or image features.
Different from the synchronous SA (Q, K, V all come from the same component output),
Y(i−1)ϵRn×dy in ASA are derived from the output of the previous component, and the
Y(i−1) , which are closer to the original features than the attended features, retain the
relatively rich semantic information of the original features. Taking image features as
an example, high-level image features have richer semantic information compared to the
underlying features. Applying the above characteristics to multi-head attention can be
represented by the following equation:

fY = Attention
(
Yi, Y(i−1), Y(i−1)

)
= softmax

(
YiY

T
(i−1)√
dy

)
Y(i−1) (4)

The more detailed model structure of the combined components will be described in the
following sections.

Component Combination. As shown in Fig. 2, we can obtain different model structures
by combining the three components in Sect.3.1, in which the text and image features are
consistent with those described in Fig. 1. The figure presents the image Asynchronous
Self-Attention Model ASAM-I (using asynchronous self-attention components on image
features), the text Asynchronous Self-Attention Model ASAM-Q (using asynchronous
self-attention components on question features), and the common Asynchronous Self-
Attention Model ASAM-QI (applying asynchronous self-attention components on im-
age and question features simultaneously). These three models are all cascade structures,
and we provide a detailed description of the multi-modal feature transfer process. Image
Asynchronous Self-Attention Model in Fig. 2(a) is our baseline model. The text features
X(i) are passed to the next layer after intensive interaction with themselves in SA. In the
image processing part, the image features Y(i) are first asynchronous self-attention with
the image features Y(i−1) from the previous layer through the ASA component, the result
features are guided by the text features X in the GA. The modelling of the image features
is completed in the GA to obtain more detailed image features. In contrast to the base-
line model described above, text asynchronous self-attention (Fig. 2(b)), as a contrasting
model, swaps the component SA with the component ASA in the baseline and uses an
asynchronous self-attention approach in the modeling of the text features to simulate the
interaction process of the text features in unimodality. The model (Fig. 2(c)) also used as a
comparison model, has a structure that combines the two structures described previously,
using asynchronous self-attention for both image and text processing, which is guided
attention for multi-modal features and interaction between unimodal features at different
moments in time.
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Fig. 2. Three different structures of the model. (a) denotes the image asynchronous self-
attention model. (b) is the text asynchronous self-attention model. (c) is the text-image
asynchronous self-attention model

3.2. Asynchronous Self-attention Model

The overall model structure of ASAM is shown in Fig. 3. ASAM contains three parts:
features representation, model modeling, and features fusion and answer classifier. We
improve the model in the interaction modeling part, which will be described in the sub-
sequent sections. The above section had provided the introduction to the basic structure
of the model. In this section, we will describe the entire model structure in detail. The
entire framework can be specifically represented as three parts. The first is to address the
way in which the image and text features that are represented as input, and the second
is the separate cascade of the three models in the model section mentioned that models
the features of the two modalities in a detailed interactive manner. Finally, for the output
image and question features, we use a multi-modal fusion model to fuse the features and
feed them to a multi-label classifier for predicting the answer.

Fig. 3. The overall structure of the Asynchronous Self-Attentive Model (ASAM)

Image and Question Representations. The input question is processed first. For a ques-
tion, we take the sentence into words and trim it to a maximum of 14 words. Next, we use
the previous words as input, transform them into a vector using the 300-D GloVe word
embedding [38] pre-trained on a large-scale corpus to obtain a words sequence of size
m × 300, where the maximum is 14 and the minimum is 1. Finally, we input the word
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embedding sequence to a single layer 512-dimensional long short-term memory (LSTM)
network to obtain the question features XϵRm×512.

For image features, we use a Faster R-CNN [36] model with a ResNet-101 as its
backbone and pre-trained on the Visual Genome dataset [19] to extract them, we can
obtain objects features Y ϵRn×2048 with a dynamic number of objects,nϵ [10, 100].

With the above description, the process of the question and image features extraction
can be expressed by the following equations:

Y = Faster RCNN (image) (5)

X = LSTM (Glove (question)) (6)

The above describes that the images have different number of object regions and the
questions also have variable number of words. To facilitate the calculation, we use the
zero-padding method to fill the number of image objects and question words to the max-
imum, which fills the image object regions n to 100 and the number of question words
m to 14. In practice, we use a linear transformation to unify the image and question di-
mensions, transforming the image features to the exact 512 dimensions as the question
features.

Collaborative Asynchronous Self-Attention with Controller. In Sect.3.1, we have in-
troduced our models, including the baseline model ASAM-I (Fig. 2(a)) and two compari-
son models ASAM-Q and ASAM-QI (Fig. 2(b)(c)). This section will focus on describing
our baseline model. The asynchronous self-attention model consists of a deep cascade of
modules shown in Fig. 2, where the question features X and the image features Y can
be described in the deep model as X(L) and Y(L) respectively, where Y(L) represents the
intermediate features in a hierarchy that the ASA component has processed. In all models,
the first layer will uniformly use the SA component instead of ASA component, because
there are no incoming features from the previous layer for the first layer of the model.
In addition to the baseline model described above, we have additionally designed a con-
troller as shown in Fig. 4 (the left half of the figure shows the processing of the features
within the controller, while the right half adds the controller on the basis as indicated in
Fig. 2(a)), which can provide a self-learning parameter for the features and can effectively
further improve the model performance. The process can be summarized in the following
equations:

k1 = Linear (AAP (k)) (7)

k2 = Linear (ReLU (k)) + Linear (ReLU (k1)) (8)

kparm = Linear (k2) (9)

kfin = kparm · k + q (10)

where AAP() is the AdaptiveAvgPool2d() adaptive average pooling function. We feed the
processed K into a linear layer, and the result is activated simultaneously with the un-
processed K subsequently by the ReLU() function. Then we pass them to another linear
layer separately and finally add them together. We obtain a parameter by summing the
results of the features through a linear layer, multiplying this parameter with the original
K and finally, adding it to Q. The input V is treated in the same way as K. With the above
processing, we can obtain more detailed features.
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Fig. 4. Asynchronous Self-Attention with Controller

Feature Fusion and answer Classifier. With a deep collaborative asynchronous self-
attention model, we obtain question features X(L) and image features Y(L) that contain
rich semantic information. To fuse the features of these two modalities, we use an MLP
layer consisting of two fully connected layers to transform the multi-modal features. Then
the softmax function calculates the attention weight αX (or αY ) for the question word
features Xm

i (or the image region features Y n
j ). Finally, by multiplying the attention

weights with the multi-modal features separately, we can obtain the final question features
X̄ and image features Ȳ . Using the question features as an example, the above process
can be summarized in the following equations:

αX = softmax
(
MLP

(
X(L)

))
(11)

X̄ =

m∑
i

αX
i X(L)i (12)

Similarly, we can obtain image features Ȳ by using the same method.
Next, we embed features X̄ and Ȳ into the same dimension and project the multi-

modal features onto a vector FϵRc by using a linear layer, where c represents the number
of features classified in the training set. Finally, the sigmoid activate function is used to
obtain the final classification. The formula can be expressed as:

f = LN
(
WT

XX̄ +WT
Y Ȳ
)

(13)

F = Linear (f) (14)

A = sigmoid (F ) (15)

where WT
X and WT

Y denote two linear projection matrices. In the final training process, as
similar to the paper [39], we use binary cross-entropy (BCE) as the loss function to train
the model.
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4. Experimental Results

In this section, we conduct a series of experiments using the collaborative asynchronous
self-attention model. Experiments will be conducted on the benchmark VQA v2 dataset
to validate the model’s performance. We provide a brief description of the parameter
settings and conduct extensive ablation experiments on the number of layers of the depth
model stack and multiple variants of the model under selected parameters in this section.
Then, we show the model validity using attention visualization. Finally, we compare the
performance with some of the previous state-of-the-art.

4.1. Implementation Details

Following [45], we set the number of heads h of the multi-head attention mechanism to
8, such a setting makes the originally 512-dimensional intermediate dimension d evenly
distributed to the 8 heads, and the dimension of each head is dh = 64. In terms of the
number of layers, we set the number of model layers to Lϵ {2, 4, 6} and performed ad-
equate experiments. During training, we set the batch size to 64 and applied the Adam
optimizer with parameters β1 = 0.9 and β2 = 0.98. For all model training epochs and
learning rate settings, we use 13 training epochs and set the base learning rate to 1e−4.
The model starts training with an initial learning rate of one quarter of the base learning
rate, which is gradually increased in subsequent training epochs until the learning rate
becomes 1e−4, and remains constant in the tenth training epoch. Finally, the learning rate
decreases in the following training epochs at a rate of 0.2 times every two epochs.

4.2. Datasets

All experiments in this paper are based on the most commonly VQA v2 dataset [11],
which uses the MS-COCO dataset as well as question and answer pairs annotated by hu-
mans. Compared to the initial version of the VQA dataset, VQA v2 minimizes linguistic
bias. In the VQA v2 dataset, each image corresponds to three questions and each question
will have ten answers to be answered, the answer chosen most frequently will be con-
sidered the correct answer to the question. The entire dataset is divided into three parts:
training set (train), validation set (val) and test set (test). Our training process will use both
the training and validation sets described above and an additional vg dataset (the addi-
tional VQA samples from Visual Genome). After completing the training, the results will
be uploaded online for evaluation. The test-dev and test-standard subsets, which divided
by test set, will be used for online evaluation, and all training results will be evaluated
online with more excellent stability and accuracy than local testing. All test results will
be divided into four sections: Yes/No (Y/N), Number, Other and Qverall (All) accuracy.

4.3. Ablation Studies

Model Layers. We first proceeded with several ablation experiments on the layers of the
model, which results are depicted in Fig. 5 and Table 1. The model’s validity is discussed
in detail in the light of the results.
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As shown in Fig. 5, with the number of layer settings increasing, the performance of
all three different models steadily increases in the other three test criteria (Yes/No, Num-
ber and Overall accuracy), except for the ASAM-Q model which decreases after 4 layers
in terms of other. This verifies that the use of asynchronous self-attention components
is effective for modeling self-attention as the depth of the model increases. It is also not
hard to notice that when setting the number of layers to 2, the effect of using asynchronous
self-attention on the question self-attention modeling (ASAM-Q) are higher than the other
two models. The analysis shows that the word sequences in the question features are only
14-dimensional space, compared to the 100 object dimensions in the image features, and
the question features can be focused on the correct words more quickly with the asyn-
chronous self-attention component. However, as the depth of the model increases and the
attention on the image continues to be refined, the accuracy of both the ASAM-QI and
ASAM-I models gradually approaches or even surpasses that of the ASAM-Q model after
4 layers. In the case of the transition from 2 to 4 layers, the model performance improves
rapidly and slows down when the transition from 4 to 6 layers, which also indicates a
gradual saturation of the model performance as the depth increases. Therefore, we set our
baseline model layer parameter to 6 layers, which saves the time cost of model training
and also controls the number of parameters in the model.

Based on 6 layers, the accuracy of each model is presented in Table 1 for comparison
with the MCAN model. The experimental results indicate that the ASAM outperforms
the MCAN on all other problems except in the Number type. Specifically, it improves the
model performance and does not increase the number of model parameters after using the
asynchronous self-attention component.

Fig. 5. Results of ablation on the ASAM-I, ASAM-QI, and ASAM-Q model layers

Model Variation. Table 2 and Fig. 6 present the results of the proposed ASAM model
with a controller. As depicted in Table 2, incorporating a controller results in a further
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Table 1. Accuracy of ASAM-Q, ASAM-QI and ASAM-I with six model layers on the
test-dev of VQA v2

Model Y/N Number Other All
MCAN 86.82 53.26 60.72 70.63
ASAM-Q 86.88 53.15 60.84 70.69
ASAM-QI 86.94 52.48 61.08 70.76
ASAM-I 86.95 52.97 61.06 70.81

augmentation of the model’s performance across various metrics, substantiating the ef-
fectiveness of the controller design. This observation highlights that the collaborative in-
teraction between the asynchronous self-attention model and the controller can unlock
more significant potential.

The performance of the basic model is compared with the performance of the model
using the controller as shown in Fig. 6 (The blue part is the original model and the or-
ange part is the model with the addition of the controller). Experimental results show that
adding a controller is superior to the model without the controller in some of the test types
as well as in overall accuracy, which further demonstrates that the controller we have de-
signed optimizes the features to some extent and allows the model to locate the target
location more accurately when converging on the attention. In addition, the figure also
depicts the trend lines for the original model and the model with the added controller un-
der different test contents. The results of the original model show an upward trend under
all test contents except for a slight downward trend in the trend line for the original model
under Y/N. This is one reason why we ended up using the model with the asynchronous
self-attention component alone on the image as our baseline model.

Fig. 6. Comparison between the original model and the model with the Controller
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Table 2. Accuracy of ASAM-Q, ASAM-QI and ASAM-I model with controller on the
test-dev and test-std set of VQA v2

Test-devTest-dev Test-std

Model Y/N Number Other All All

ASAM-QI(c) 86.91 53.29 60.86 70.73 70.96
ASAM-Q(c) 86.89 53.34 61.16 70.87 71.30
ASAM-I(c) 86.91 52.59 61.03 70.85 71.20

4.4. Comparison with State-of-the-Art

Table 3 lists the experimental results of the ASAM and the other state-of-the-art model
on the benchmark dataset VQA v2. BUTD [1] used a bottom-up visual feature of at-
tention and was the winning model in the 2017 VQA Challenge. In addition to focus
on where to look, HieCoAttVQA [27] also focuses on what words to listen for, and the
model was able to make joint inferences about attention to images and questions. Com-
pared to other bilinear pooling methods, MFH [46] used generalized higher-order models
to capture the more complex interactions between multi-modal features. BAN [18] ef-
fectively extends a single attention network using a bilinear attention mapping, and also
keeps the computational cost constant while taking into account each pair of multimode
input channels. Peng et al. [33] devised a self-guided word relation attention scheme and
two problem-adaptive visual relation attention modules to explore the semantic latent re-
lationships between words and extract precise binary relationships between objects. Qin
et al. [34] propose a Residual Weight-Sharing Attention Network (RWSAN). By using
a method that dynamically fuses multi-modal features with intra-modal and inter-modal
information flow, DFAF [10] achieved high-level interaction between visual and language
modalities. To understand the visual scene in an image, ReGAT [22] encoded the image
as a graph and used the graph attention mechanism to model the objects in the graph
with multiple types of relationships. Re-atten [12] reconstructs attention based on answer
re-attention, which allows the model to re-learn visual objects in the image. Guo et al.
[14] set thresholds for attention score to filter out the text or image features, to choose
the most relevant information for predicting the correct answer and avoid the distract
of unrelated question or image areas. MCAN [45] proposes a deep-modular co-attention
network to address the issue of insufficient deep interactions in models, winning the 2019
VQA Challenge. MESAN [13] proposes top-k-based filter method of attention scores.
From the experimental results, it is evident that the proposed method outperforms current
state-of-the-art models across most metrics, except for a slight decrement in performance
for Yes/No type questions. Compared to MCAN, ASAM also applied an encoder-decoder
architecture and used an asynchronous self-attention (with controller) model on the im-
ages, with an overall accuracy 0.22 points higher than MCAN on test-dev and 0.3 points
higher on test-std, with significant accuracy improvements on other validation metrics.
This validates the superiority of our model for Visual Question Answering with leading
performance.
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Table 3. Accuracies of the model proposed in this paper on the Visual Question Answer-
ing Dataset VQA v2 to compare with the state-of-the-art methods

Test-dev Test-std

Model Y/N Number Other All All

Bottom-up[1] 81.82 44.21 56.05 65.32 65.67
HieCoAttVQA[27] 79.70 40.00 59.80 65.80 66.10
MFH[46] 84.27 49.56 59.89 68.76 -
BAN[18] 85.31 50.93 60.26 69.52 -
MRA-Net[33] 85.58 48.92 59.46 69.02 69.46
RWSAN[34] 86.45 52.18 60.38 70.19 -
DFAF[10] 86.09 53.32 60.49 70.22 70.34
ReGAT[22] 86.08 54.42 60.33 70.27 70.58
Re-attn[12] 87.00 53.06 60.19 70.43 70.72
MCAN[45] 86.82 53.26 60.72 70.63 70.90
SCAVQA-I[14] 87.00 53.31 60.83 70.76 71.09
MESAN[13] 87.05 53.21 60.72 70.71 71.08

ASAM-QI 86.94 52.48 61.08 70.76 -
ASAM-Q 86.88 53.15 60.84 70.69 -
ASAM-I 86.95 52.97 61.06 70.81 -
ASAM-QI(c) 86.91 53.29 60.86 70.73 70.96
ASAM-Q(c) 86.89 53.34 61.16 70.87 71.30
ASAM-I(c) 86.91 52.59 61.03 70.85 71.20

4.5. Attention Visualization

Fig. 7 compares the visualization results of the MCAN with ASAM (The darker-colored
parts are the model’s attentional focus). In the Visual Question Answering task, the asyn-
chronous self-attention mechanism proposed in this paper no longer singularly pursues
fine-grained but takes a broader view of the image and retains as much information as
possible. Each of the three examples in Fig. 7 combines the real situation, the situation
predicted by the MCAN model, and the situation predicted by our model. The more high-
lighted areas in the image regions indicate that the model is focusing more attention on
them. Based on the images, it is apparent that the model proposed in this paper focuses on
objects from multiple perspectives, pinpointing the key objects and distracting some at-
tention from other relevant objects. In the first instance, the man is playing a sport, and the
model focuses not only on the man himself and the surfboard beneath his feet, but also the
waves and ultimately get a valid answer. For the counting question in the example in the
third column, our model covers all objects more comprehensively than the fine-granularity
of the comparison model, and thus correctly answers the given question. It is not difficult
to find that our model can always focus on more information, but this also implies another
problem, which is information interference. When faced with problems requiring precise
targeting of attention, MCAN reduces the interference of redundant information, which
has more advantages.
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5. Concluding Rewarks

This paper proposed an Asynchronous Self-Attention Model (ASAM) and a controller,
balancing coarse-grained and fine-grained attention within the attention model for VQA.
Its component can coordinate the relationship between the upper and lower attention lay-
ers and the VQA model using this component. The controller can retain other related
object information as much as possible without reducing the attention on key objects.
Experimental results and ablation studies on the benchmark dataset VQA v2 validate the
effectiveness of the proposed model and demonstrate the effectiveness of coordinating
the upper and lower attention layers to improve model performance. However, the choice
of feature matching fusion method still needs to be continuously explored, and this is a
direction for our future research. In future research, we will aim to explore more effective
models and apply them to the field of Visual Question Answering to assist the models
in better understanding visual and question features and to advance further the research
work related to Visual Question Answering.

Fig. 7. Attention visualization result. The first row is the input images, questions and
ground truth answers. The second is the baseline model MCAN. The third row is the
proposed ASAM model
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