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Abstract. Proteolysis-targeting chimeras (PROTACs) introduce a novel paradigm
in drug development, incorporating three essential components: the warhead, the
E3 ligand, and the linker. The complexity of the ternary structure, particularly the
intricate design of the linker, presents a significant challenge in PROTACs drug de-
sign. Here an integrated protocol for design and evaluation of PROTACs targeting
specific proteins, called TRL-PROTAC is proposed. TRL-PROTAC is focused on
the de novo design of complete PROTACs by effectively joining the designed lig-
ands targeting the proteins of interest (POI) with linkers. The ligands for POIs and
E3 ligases are generated by a molecular generation model for targeting proteins,
and the linker design is generated by a sequence-to-sequence model consisting of
a transformer variant and the policy-based reinforcement learning method which is
employed to optimize the reward values for generating PROTACs. The three com-
ponents are then integrated and optimized based on their pharmacokinetic (PK) and
degradation (DEG) properties. The experimental results have strongly confirmed
that TRL-PROTAC is superior in optimizing properties. For existing PROTACs,
TRL-PROTAC improves DEG scores by 0.45 and lowers PK scores by 1.20. More-
over, TRL-PROTAC enhances binding affinity by 2.15 in PROTACs generated from
scratch.

Keywords: proteolysis-targeting chimeras, transformer, reinforcement learning, drug
design, protein-ligand interaction.

1. Introduction

Proteolysis-targeting chimeras (PROTACs) are a promising new class of drugs [1], [2],
[3]. The PROTAC molecule consists of three parts: one ligand (warhead) binding to the
POI, one ligand (E3 ligand) for recruiting an E3 ubiquitin ligase and a chemical bridge
(linker) that links the two ligands. This enables the target protein and ubiquitin E3 lig-
ase to be recognized and induced to undergo polyubiquitination, leading to target pro-
tein degradation and disease treatment [4]. Unlike traditional occupancy-driven inhibitors
that require sufficient binding affinity to the druggable site of the target protein to exert
their effects, PROTACs utilize event-driven mechanisms and only need to bind briefly to
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the target protein to induce its ubiquitination and degradation. The advantages of event-
driven drugs such as PROTACs are that they enable the efficacy of drugs even at sub-
stoichiometric concentrations [5]. Moreover, an equivalent PROTAC can degrade multiple
equivalent target proteins and avoid off-target effects caused by high drug concentrations.
Additionally, many proteins play important roles in cancer development but lack drug-
gable pockets, making them "undruggable" by small molecule drugs [6]. However, the
emergence of PROTAC technology has made most protein targets in human cells "drug-
gable", greatly expanding the therapeutic prospects of difficult-to-treat diseases such as
metabolic syndrome. Moreover, the ability to persistently block downstream signals and
delay kinase recombination reduces the likelihood of target compensation, as demon-
strated in multiple biological evaluations of PROTACs [7].

The process of traditional drug development is notoriously low in success rate, given
that it involves target validation, high-throughput screening, optimization of lead com-
pounds, preclinical trials, and clinical trials, all of which are expensive and time-consuming
[8]. However, the development of artificial intelligence (AI) has had a significant im-
pact on the pharmaceutical industry, reducing the time and cost of drug development and
shortening the development cycle [9], [10], [11]. AI has emerged as an important tool in
computational-aided drug design [12], [13], [14], [15], [16]. Currently, AI-assisted drug
design methods can be primarily classified into three categories: structure-based meth-
ods, ligand-based methods [17], and hybrid methods [18]. Among the structure-based
methods, those focusing on protein structure and the dynamic properties of proteins are
emerging as a promising direction for development [19]. Amongst, the representative Al-
phaDrug model was proposed by Qian et al. [20] for the de novo generation of molecules
targeting specific target proteins. The Monte Carlo tree search (MCTS) algorithm was
used to search for candidate drugs in all possible molecular spaces. This approach enabled
candidate drugs to correctly dock with protein targets in an exclusive manner. Another
representative model was the reinforcement learning (RL) model proposed by Olivecrona
et al. [21]. This model utilized Recurrent Neural Networks (RNNs) [22] in combination
with the reinforcement learning method for de novo drug design and introduced an aug-
mented likelihood function for training.

Initially developed in different domains, machine learning (ML) techniques are in-
creasingly being applied to drug discovery due to their potential to expedite the entire
drug development process. As a result, a wide range of ML methods, including Artificial
Neural Networks (ANNs) [23], RNNs [22], Long Short-Term Memory (LSTM) networks
[24], and Transformer models [25], are being applied in drug design, particularly in ad-
dressing the challenges of predicting compound bioactivity. In contrast, deep learning in
PROTACs is still in its infancy. PROTACs are distinct from conventional small-molecule
drugs in that they consist of three components. When considering the generation of PRO-
TACs, not only the effectiveness of the generated individual small molecules should be
considered, but also the pharmacological properties of the overall molecule, particularly
the linker generation [26]. Due to the complex and dynamic nature of the ternary structure,
linker design remains a significant challenge.

Previous studies have shown that representing PROTACs as SMILES strings is fea-
sible for linker generation. Yang et al. [27] transformed linker design into a sentence
completion task and introduced a language model SyntaLinker to generate novel link-
ers. Zheng et al. [26] used a pair of warhead and E3 ligand as input and outputted the



TRL-PROTAC 1295

designed PROTACs with favorable properties that are chemically feasible. To generate
PROTACs with better pharmacokinetic (PK) properties, a Proformer model [26] was
developed through pre-training and fine-tuning. This model was then integrated into a
memory-augmented reinforcement learning framework with an experience reward func-
tion, which facilitated the generation of optimized PROTACs. Li et al. [8] proposed the
DeepPROTACs model to help design effective PROTACs. Ligands and binding pockets
were represented as graphs, and a graph convolutional network was applied to extract their
features. As for linkers, they were fed into the model as SMILES strings and features were
extracted using a bidirectional LSTM layer.

Zheng et al. [26] made remarkable contributions in the field of PROTACs, but their
model only considered the PK property of generated PROTACs, where a smaller PK value
indicates a higher oral availability of the molecule. However, in some cases, optimizing
for a smaller PK value can lead to a smaller DEG value, which reduces the molecule’s
degradation efficacy, and this is not desirable. Furthermore, when more complex war-
heads and E3 ligands were input into their model, beyond the scope of the training and
testing datasets, the model was unable to generate valid PROTAC molecules. The likely
reason was that their molecular generation task involved first generating complete PRO-
TAC molecules and then checking for the presence of warheads and E3 ligands. This task
required the model to generate accurate warheads and E3 ligands as a prerequisite. How-
ever, the ultimate goal was to generate linkers, which made the generation of warheads
and E3 ligands an additional burden for the model.

In this work, a rational strategy (TRL-PROTAC) targeting specific proteins for the de-
sign and evaluation of PROTACs with both better pharmacokinetic (PK) properties and
higher degradation (DEG) efficacy was proposed for the first time. To address the is-
sues raised in the preceding paragraph, we proposed a novel molecular generation task
in which linkers were directly generated from the given warheads and E3 ligands using a
pre-trained generator, the Lmser Transformer. Subsequently, these generated linkers were
concatenated with the original components to obtain complete PROTACs. To acquire war-
heads and E3 ligands that possess higher binding affinity to target proteins, we employed
the AlphaDrug model [20] to generate novel warheads and E3 ligands. To obtain PRO-
TACs with desired properties, a policy-based reinforcement learning method is employed.
Additionally, the probabilities predicted by the DeepPROTACs model were incorporated
as DEG scores into the reward function of the reinforcement learning method along with
PK scores, and a reward function was creatively proposed that simultaneously optimized
both PK and DEG properties during the molecule generation process.

Objectives. The objectives of our work can be summarized as follows:

• Designing complete PROTACs targeting the POI. For this objective, we introduced a
novel approach to design and optimize PROTACs targeting the POI (Section 3.1).

• Solving the model training problem for PROTACs with small amounts of data. For
this objective, we employed a pre-training and fine-tuning approach on the Lmser
Transformer model, which has been demonstrated to possess superior capabilities
in drug design [20], aimed to address challenges stemming from the limited dataset
(Section 3.2).

• Optimizing the properties of model-generated PROTACs. For this objective, we uti-
lized a reinforcement learning approach with an augmented likelihood function to
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optimize the Lmser Transformer, aiming to generate molecules with desirable prop-
erties (Section 3.3).

• Enhancing binding affinity between the warhead and the POI and between the e3 lig-
and and the e3 ligase. For this objective, the AlphaDrug model [20] was employed to
generate warheads and E3 ligands with enhanced binding affinity to the POI (Section
2.1).

Contributions. Our contributions can be summarized as follows:

• We proposed an effective strategy for the rational design of PROTACs targeting spe-
cific proteins, rather than designing PROTACs based on existing warheads and E3
ligands pairs.

• We introduced a novel approach to design PROTACs, which involves generating link-
ers with attachment points first, and then connecting these linkers to warheads and E3
ligands.

• We considered the pharmacokinetic and degradation properties of PROTACs in the
process of molecular generation by defining an appropriate reward function.

• We meticulously collected and provided structural data for the protein pockets tar-
geted by PROTACs.

• We conducted extensive experiments and visually presented the results through illus-
trations.

The structure of the remaining sections of this paper is outlined as follows. Section 2
presents a review of related work and the underlying motivation. In Section 3, we delve
into the specifics of our method. Section 4 elaborates on the experimental setups involv-
ing the use of the model, including data preparation. Section 5 outlines the experimental
validation of the model and the subsequent analysis of the results. Section 6 discusses the
potential applications of our method. Finally, Section 7 concludes and summarizes the
findings.

2. Related work and motivation

This section encompasses related work and the underlying motivation. Subsection 2.1 in-
troduces the AlphaDrug model used for de novo design of conventional small molecule
drugs, highlighting the insights it brings to this study. This subsection also provides de-
tails about the AlphaDrug model. Subsection 2.2 presents the methodology employed by
the DeepPROTACs model and its implications for this endeavor. Subsections 2.3 to 2.5
elaborate on the details of the three methods: Beam Search, Temperature Sampling and
the PROTAC-RL model.

2.1. AlphaDrug

AlphaDrug [20] is an advanced deep learning model that possesses the capability to design
ligands tailored to target proteins, taking into consideration the binding affinity between
the protein and ligand during the molecule generation process. Proteins are represented
as sequences of amino acids, and ligands are represented as SMILES strings. To facilitate
the inefficiency which is due to the information transfer bottleneck from the top layer
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of the encoder to various levels of decoder layers, a transformer variant called Lmser
Transformer is utilized [20]. By integrating AlphaDrug into the TRL-PROTAC frame-
work, we were empowered to initiate the design of PROTACs from scratch. The process
commenced with the identification of high-affinity warheads specific to target proteins
and high-affinity E3 ligands for specific E3 ligases. Subsequently, attachment points were
established to link the designed ligands, resulting in the formation of warheads and E3
ligands pairs, pivotal for the subsequent generation of PROTACs.

Additionally, the AlphaDrug model was trained on the PROTACs dataset and com-
pared with our model. The SMILES forms of warheads and E3 ligands are used as input
to the Lmser Transformer, while the SMILES forms of linkers are used as the output.
Furthermore, the MCTS algorithm is employed to optimize the properties of generated
PROTACs. It plays a crucial role in AlphaDrug. The MCTS algorithm is pivotal in rein-
forcement learning and decision-making tasks, extensively applied to explore vast state
spaces and determine optimal actions [28]. It finds applications in domains such as board
games, game AI, and resource allocation [29].

MCTS’s core idea is employing Monte Carlo simulations to estimate action values and
guiding the search process through a constructed tree. In this work, we have introduced
modifications to the MCTS process by incorporating the pre-trained Lmser Transformer
for simulation purposes. The algorithm comprises four key steps:

Step 1. Selection: Starting from the root node, nodes are traversed using a certain
strategy until an unexpanded node or a terminal state is reached. A modified version of the
Predictor with Upper Confidence bounds applied to Trees (PUCT) algorithm [30] is used,
which prioritizes nodes with fewer visits. The PUCT algorithm equation for selecting
child nodes is:

ãt = argmax
a∈A

(
Q
(
C̃t−1, a

)
+ U

(
C̃t−1, a

))
(1)

where ãt is a child node after t selections, C̃t−1 represents the context with the pair
of warhead and E3 ligand, and Q

(
C̃t−1, a

)
= Wa/Na represents the expected reward

for choosing symbol a in context C̃t−1, with Wa and Na representing the total reward
and visit count for the node; U

(
C̃t−1,a

)
= cpuctP

(
a | C̃t−1

)√
Nt/ (1+Nt(a)), with cpuct

controlling the degree of exploration.
Step 2. Expansion: If the chosen node has not been expanded, one or more child nodes

are added, representing potential actions.
Step 3. Simulation: Expanded child nodes are simulated via Lmser Transformer, gen-

erating outcomes based on reward or scoring rules.
Step 4. Backpropagation: Simulation rewards propagate back along the path from the

simulated node to the root, updating statistics such as visit counts and cumulative rewards.
MCTS has widespread applications in reinforcement learning, game strategy, and op-

timization problems. Its successful use in computer programs like AlphaGo underscores
its potent search and decision-making capabilities.

2.2. DeepPROTACs

DeepPROTACs [8] is a deep learning model specifically designed to predict the degrad-
ability of PROTACs. In the DeepPROTACs model, ligands and ligand binding pockets are
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generated and represented as graphs. These graph representations are then inputted into
Graph Convolutional Networks (GCNs) to extract relevant features. On the other hand,
SMILES representations of linkers are passed through a Bidirectional Long Short-Term
Memory (BiLSTM) layer to generate their respective features [8]. In our research, we
integrated the predicted probability from DeepPROTACs into the TRL-PROTAC model
to guide the determination of PROTAC degradability. By incorporating this probability
within the reward function of the policy-based reinforcement learning method, we were
able to consider the overall degradability of PROTACs during the process of linker genera-
tion. This integration facilitated the generation of PROTACs with enhanced degradability,
optimizing their effectiveness in targeted protein degradation.

2.3. Beam Search

Beam Search is a widely used decoding algorithm in sequence generation tasks, often
applied to tasks like machine translation and text generation [31]. It aims to find the
most likely sequence of tokens given a trained generative model. Unlike greedy decoding,
which selects the token with the highest probability at each step, Beam Search maintains
a fixed-size set of candidate sequences, known as the beam width.

The core idea of Beam Search is to explore multiple possible sequences simultane-
ously by considering a limited set of promising candidates. At each decoding step, the
algorithm expands each candidate sequence by generating all possible next tokens and
calculates their probabilities using the model. Then, it selects the top-k candidates with
the highest probabilities based on a scoring function. These candidates become the new
set of candidates for the next step. The scoring function combines the probability of the
current sequence with the probability of the new token, which can be defined as:

Score(s, y) = logP (y|s) (2)

where s is a candidate sequence, y is a new token, and P (y|s) is the probability assigned
by the generative model.

The algorithm repeats this process iteratively until the sequences reach the desired
length. One key parameter is the beam width, denoted as k, which determines how many
candidate sequences are kept at each step. Larger k values allow for more exploration but
may increase computation time. While Beam Search is efficient and can improve output
quality compared to greedy decoding, it may suffer from generating repetitive sequences
and missing out on diverse alternatives. Researchers have proposed variations like length
normalization and diverse beam search to address these issues.

In summary, Beam Search strikes a balance between exploration and exploitation,
leveraging a fixed-size set of candidate sequences to find high-probability solutions in
sequence generation tasks.

2.4. Temperature Sampling

When discussing the outputs of generative models, "Temperature Sampling" [32] stands
as a commonly used technique to modulate the diversity and determinism of model-
generated results. It introduces a temperature parameter τ to reweight the output probabil-
ity distribution, thereby influencing the generated outcomes. A higher temperature value
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τ smoothens the distribution, encouraging the model to sample from lower probability
options and enhancing result diversity. Conversely, a lower temperature value τ narrows
the distribution, prompting the model to favor high probability options and generating
relatively deterministic outcomes.

This temperature adjustment process can be expressed using the following equation:

Softmax(z)i =
exp (zi/τ)∑n
j=1 exp (zj/τ)

(3)

where zi represents the logits prior to softmax transformation, n denotes the possible
number of symbols, and i indicates the index of a specific symbol. By dividing logits by
the temperature parameter τ and then performing softmax normalization, a new probabil-
ity distribution Softmax(z) is obtained, where values reflect the probabilities of selecting
each symbol.

2.5. PROTAC-RL

The PROTAC-RL model [26] is a deep learning model designed to generate complete
PROTACs based on existing warheads and E3 ligands. This model utilizes reinforcement
learning to optimize the PK property of PROTACs. The model begins by one-hot en-
coding the source sequence (comprising warheads and E3 ligands sequences) and subse-
quently embedding it into a latent representation denoted as H. The decoder leverages H
to generate a probability distribution for the tokens, which are sampled iteratively. Sam-
pling continues until the model encounters the ending token "</s>", ultimately forming
the output sequence (the complete PROTACs sequence) Y = (y1, . . . , ym). The model’s
objective is to minimize the cross-entropy loss L, computed between the target sequence
Mt = (t1, . . . , tk) and the generated sequence Y :

L(Y,M) = −
k∑

i=1

yi log ti (4)

The PROTAC-RL model optimizes the generation of PROTACs attributes through a
Markov decision process. In this process, the action A = (a1, a2, . . . , am) represents the
sampling of tokens from a dictionary. The state S = (s1, s2, . . . , sm) is a hidden state,
representing intermediate molecules sampled in previous steps. The policy π refers to the
probability distribution of tokens learned by the model from the data. The reward R(Y )
is defined using the following equation [26]:

R(Y ) =

{
max

(
0, 1− 1

α |f(Y )− Target |
)
, if valid;

0, if invalid. (5)

where α is a scalar coefficient, f(Y ) is a function for calculating attributes, and Target
represents the custom target attribute value.

3. Methodology

In this section, we present the concrete methodology employed. Subsection 3.1 demon-
strates the overarching design approach for complete PROTACs. Subsection 3.2 details
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the training of ProLinker using pre-training and fine-tuning methods, along with the pro-
cess of designing from warheads and E3 ligands to linkers and merging the three com-
ponents. Subsection 3.3 elucidates the training of the policy network using policy-based
reinforcement learning.

3.1. Architecture of TRL-PROTAC

An integrated protocol for design and evaluation of PROTACs (Figure. 1) is proposed to
generate PROTACs with ideal properties (PK and DEG). As presented in Figure. 1, we
first utilized the AlphaDrug model to generate warheads and E3 ligands with high binding
affinity to the target proteins. To generate valid linkers, a novel end-to-end generation task
was proposed for the rational design of linkers from warheads and E3 ligands. In pursuit
of this goal, we initially pre-trained the Lmser Transformer, a transformer variant from
the AlphaDrug model, on a large dataset of quasi-PROTAC molecules. Subsequently, the
model was fine-tuned on a dataset of actual PROTAC molecules. The quasi-PROTAC
dataset and the actual PROTACs dataset are two different datasets. The actual PROTACs
dataset contains the PROTACs molecule, which is a ternary complex consisting of the
warhead, the linker and the e3 ligand. Whereas, the quasi-PROTAC dataset is a small
molecule dataset, where each data entry consists of only one small molecule. The pur-
pose of the model being trained on the quasi-PROTAC dataset first is to allow the model
to learn the syntactic information of the SMILES sequences. As a result, the trained model
named ProLinker was able to generate linkers. Following that, the reinforcement learn-
ing method was utilized for step-by-step molecule generation to generate PROTACs with
ideal properties.

Our model took warhead, POI pocket, E3 ligand and E3 pocket as input. In addition,
the ligands are encoded by the model in the form of SMILES strings, while the pockets are
encoded using mol2 files. All SMILES strings have already been tokenized to construct a
vocabulary. ProLinker was applied for sampling and predicting the next token based on in-
termediate molecules. The reinforcement learning method generated complete molecules
by performing sampling and subsequently calculated the reward score by RDKit [33] of
each molecule. Formally,

PK(X) = AB−MPS = |LogP(X)− 3|+NAR+NRotB (6)

Reward(X) = DEG ∗ 1

|LogP(X)− 3|+NAR+NRotB
∗ 10 (7)

where X is a PROTAC represented in SMILES format, LogP is commonly used to in-
dicate the lipophilicity of a compound, NAR represents the number of aromatic rings,
NRotB denotes the number of rotatable bonds, and DEG is the probability of degrada-
tion predicted by the DeepPROTACs model.

During the step-by-step generation process, the algorithm selects the optimal token for
the current step by taking into consideration the feedback score obtained from the previous
steps. According to the research conducted by DeGoey et al. [34], a notable negative cor-
relation (correlation coefficient r = −0.41) exists between AB-MPS and oral availability.
It was observed that a lower AB-MPS score is indicative of a higher oral availability of
the drug. Apart from that, the DEG score predicted by DeepPROTACs represented the
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Fig. 1. Flowchart of TRL-PROTAC which is a rational strategy for design and evaluation
of PROTACs targeting specific proteins. It encompasses three distinct components: the
generation of warheads and E3 ligands, the generation of linkers, and the optimization of
PROTAC properties

degradation efficacy of given PROTACs. A higher DEG score indicates a greater proba-
bility of degradation. The final reward function is derived from the integration of the two
aforementioned scores. Due to the fact that the resulting final score obtained by dividing
the DEG value by the PK value is relatively small, it has been decided to amplify the final
score by a factor of 10 and utilize it as the reward value.

3.2. ProLinker

ProLinker is a crucial step in the TRL-PROTAC workflow. Building upon the validated
efficacy of the Lmser Transformer architecture in the AlphaDrug model [20], ProLinker
adopted the same framework for its training process. Given the inherent scarcity of avail-
able datasets specific to PROTACs, our approach involved an initial pre-training phase
on a substantial collection of quasi-PROTAC molecules, followed by a fine-tuning stage
utilizing actual PROTACs. Detailed information about important parameters of ProLinker
is obtained in Section 4.3. Detailed procedures regarding pre-training and fine-tuning can
be found in Algorithm 1 and Algorithm 2.
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Algorithm 1 Pre-training with Lmser Transformer
Require: Pre-training data: quasi-PROTAC molecules Dquasi, learning rate: lr
Ensure: Pre-trained model parameters: θpre-trained

1: Initialize Lmser Transformer model with random weights: model← Lmser_Transformer()
2: Initialize optimizer: optimizer ← Adam(θpre-trained, lr)
3: for epoch← 1 to num_epochs do
4: for batch ∈ Dquasi do
5: input_batch, target_batch← prepare_batch(batch)
6: out← model(input_batch)
7: loss← Calculate the nll loss of out and target_batch
8: Backward propagation of the loss
9: Update parameters of the optimizer

10: end for
11: end for
12: θpre-trained ← parameters of the model

Algorithm 2 Fine-tuning with Lmser Transformer
Require: Fine-tuning data: actual PROTACs Dactual, pre-trained model: θpre-trained, learning rate:

lr
Ensure: Fine-tuned model parameters: θfine-tuned

1: Initialize Lmser Transformer model with θpre-trained: model← Lmser_Transformer(θpre-trained)
2: Initialize optimizer: optimizer ← Adam(θfine-tuned, lr)
3: for epoch← 1 to num_epochs do
4: for batch ∈ Dactual do
5: input_batch, target_batch← prepare_batch(batch)
6: out← model(input_batch)
7: loss← Calculate the nll loss of out and target_batch
8: Backward propagation of the loss
9: Update parameters of the optimizer

10: end for
11: end for
12: θfine-tuned ← parameters of the model
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Algorithm 1 is designed to initialize a Lmser Transformer model by training it on a
dataset of quasi-PROTAC molecules. The objective is to equip the model with meaning-
ful representations of molecular structures. The training loop consists of iterating over
a predefined number of epochs, with each epoch comprising batches of quasi-PROTAC
molecules. For each batch, the "input_batch" refers to the SMILES sequence of war-
head and e3 ligand with attachment points. And the "target_batch" refers to the SMILES
sequence of the linker with attachment points on both sides. Then the model predicts
molecular structures. The negative log-likelihood (nll) loss is then calculated to quantify
the disparity between the model’s predictions and the actual targets. Through backpropa-
gation, the model’s parameters are adjusted to minimize this loss. This iterative optimiza-
tion process is facilitated by the Adam optimizer. Algorithm 2 is designed for training
on actual PROTAC molecules. This process involves refining a pre-trained Lmser Trans-
former model using a dataset of actual PROTAC molecules (Dactual). The pre-trained
model (θpre-trained), previously obtained through Algorithm 1, serves as the starting point
for fine-tuning.

It is worth noting that we took a completely new approach to generate PROTACs. We
generated linkers sequences with attachment points from the sequences of warheads and
E3 ligands pairs. These generated linkers were then connected to warheads and E3 ligands
using the attachment points to obtain complete PROTACs sequences. This differed from
the conventional method of directly generating complete PROTACs sequences from the
pairs of warheads and E3 ligands sequences. The input format for warheads and E3 lig-
ands pairs was structured as "*N1CCN(c2ccc(Nc3ncc4cc(C(=O)N(C)C)n(C5CCCC5)c4
n3)nc2)CC1.*Nc1cccc2c1C(=O)N(C1CCC(=O)NC1=O)C2=O", where "*" denoted the
attachment point and "." represented the boundary between the warhead and the E3 lig-
and. The input sequence is initially tokenized into individual tokens from the vocabulary,
resulting in a sequence of tokens. Subsequently, the token sequence is mapped to numeri-
cal vectors based on the positions of different tokens in the vocabulary. Vectors were then
input into the model for encoding by the encoder. The model received information from
the encoder for processing and outputted a probability distribution over different tokens
in the vocabulary through the decoder. Afterward, a sequence was generated by sampling
based on this probability distribution. The output format for linkers was represented as "[
1*]CCOCCOCC[2*]", where "[1*]" denoted the attachment point between the linker and
the warhead, and "[2*]" denoted the attachment point between the linker and the E3 lig-
and. By adopting this generation approach, the model was still capable of generating valid
linkers and assembling them into functional PROTACs, even in cases where the structures
of warheads and E3 ligands were complex.

We trained the Lmser Transformer model on prepared PROTACs datasets with the
objective of minimizing the following loss function:

J(Θ) = −
∑

(S,m)∈D

t∑
τ=1

∑
a∈V

ya lnP (a | Cτ (S,m)) (8)

where Θ denotes the parameters of the Lmser Transformer network, D is the training
dataset, V is the vocabulary, S is the input sequence, m = (a1, a2, . . . , at) is the target
sequence, Cτ = {S, (a1, a2, . . . , aτ )}, τ = 1, . . . , t, represents a sequence of contexts,
P (a | Cτ ) is the probability of the next token aτ+1, and ya is a binary label indicating
whether a is the next token.
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3.3. Optimizing policy network with reinforcement learning

A policy-based reinforcement learning method is employed to optimize the policy net-
work. The policy-based approach constitutes a significant methodology within reinforce-
ment learning [35], [36]. Policy-based approaches enable the explicit learning of an opti-
mal stochastic policy [37]. Figure. 2 provides a comprehensive depiction of the procedural
steps involved in training the agent through the utilization of reinforcement learning. This
method shares the same concept as that of [21].

Fig. 2. The illustration of constructing the policy-based reinforcement learning model.
Continuous actions are taken by the policy network until a complete PROTAC sequence
is generated. Subsequently, the fundamental reward is calculated based on Formula 6
and Formula 7. The ProLinker network computes the prior likelihood for the generated
PROTAC sequence. The augmented likelihood is obtained by combining the fundamental
reward with the prior likelihood. The disparity between the augmented likelihood and the
agent likelihood is then used as the final reward to update the agent

The reinforcement learning training process usually entails equipping an agent with
the task of choosing an action, denoted as a ∈ A(s), based on a specific state, s ∈ S,
where S encompasses all possible states [38]. Here, A(s) stands for the set of actions
available in those states. The agent’s policy, denoted as π(a | s), indicates the probability
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of selecting action a in state s, and r(a | s) represents the resulting outcome or reward
following a specific action. In this work, the reinforcement learning modeling is outlined
as follows.

Reinforcement learning modeling.

• Agent: The policy network responsible for generating PROTAC sequences.
• State s ∈ S: The intermediate molecule in the process of PROTAC generation.
• Action a ∈ A(s): Selection of the next token in the vocabulary based on the interme-

diate molecule.
• Reward G(A): Accumulated reward obtained by calculating molecular properties

after generating a complete molecule.

We intend to utilize the Lmser Transformer architecture as the agent to proficiently
generate PROTACs represented in the form of SMILES strings, while ensuring the incor-
poration of desired attributes. This task is framed within the context of a partially observ-
able Markov decision process, where the agent’s objective is to determine the subsequent
token a in the vocabulary, based on the given intermediate sequence s. An episodic task
refers to a task with a well-defined endpoint after undergoing step T [39]. This task starts
sampling from the "&" symbol and concludes upon sampling "$" making it an episodic
task. In this task, the action, denoted as a, represents the selection of a token from the vo-
cabulary V to be added to the generated sequence. The state s refers to the currently gen-
erated intermediate sequence. The policy π(a | s) signifies the probability distribution for
choosing the next token in the intermediate sequence. r(a | s) represents the reward value
obtained after selecting the next token. In the molecular generation task, as the properties
of a molecule are only meaningful once the entire molecule is generated, we calculate the
cumulative reward G(A) after generating the complete molecule A = a1, a2, ..., aT . The
product of action probabilities P (A) =

∏T
t=1 π (at | st) signifies the likelihood of the

generated sequence by the model.
The agent is characterized by a structural configuration akin to that of the ProLinker

network, and it is initialized using ProLinker network parameters that have undergone
meticulous fine-tuning. The agent policy π is securely tethered to the pre-existing Pro-
Linker policy, skillfully amalgamating the rewards acquired from the attribute values of
the sampled PROTACs. This leads to a novel augmented likelihood logP (A)Aug. For-
mally,

logP (A)Aug = logP (A)Prior + σReward(A) (9)

where P (A)Prior represents the prior likelihood calculated by the ProLinker model after
step T, σ is a scalar coefficient, and Reward(A) represents the property value of the gen-
erated molecule and is calculated using equation 7. The objective of the agent is to acquire
a policy that effectively mitigates the disparity between the agent likelihood logP (A)Agent
and the augmented likelihood logP (A)Aug. This disparity will be represented as the re-
ward G(A). Formally,

G(A) = − [logP (A)Agent − logP (A)Aug]
2 (10)

The current objective of the agent is to optimize the reward value G(A), which is attained
by minimizing the loss function J(θ) = −G. The detailed specifics of the policy-based
optimization algorithm can be found in Algorithm 3.
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Algorithm 3 is devised for optimizing the policy network through reinforcement learn-
ing. It utilizes the fine-tuned model (θfine-tuned) to initialize both the prior network (Prior)
and the policy network (Agent). The parameters of the fine-tuned model are retained as
frozen prior model parameters (θprior). The optimization process involves sampling a batch
of molecules using the agent, computing likelihoods for both the agent and prior networks,
calculating scores, and then updating the parameters based on the loss function. The aim
is to obtain updated agent model parameters (θagent) over a specified number of epochs.

Algorithm 3 Optimizing policy network with reinforcement learning
Require: Fine-tuned model: θfine-tuned, batch size: batch_size, learning rate: lr
Ensure: Updated agent model parameters: θagent, Frozen prior model parameters: θprior

1: Initialize prior network (Prior) with θfine-tuned: Prior ← Lmser_Transformer(θfine-tuned)
2: Initialize policy network (Agent) with θfine-tuned: Agent← Lmser_Transformer(θfine-tuned)
3: Initialize optimizer: optimizer ← Adam(θfine-tuned, lr)
4: for epoch← 1 to num_epochs do
5: Initialize the set of molecules Ds

6: for i← 1 to batch_size do
7: a0 ← the start symbol
8: for t← 1 to T do
9: Select action at ← argmax

a
πagent(at−1|st−1)

10: end for
11: Ai ← a0a1 . . . aT

12: Add Ai to Ds

13: end for
14: agent_likelihood← Compute the likelihood of Ds on Agent
15: prior_likelihood← Compute the likelihood of Ds on Prior
16: score← calculate scores of Ds

17: augmented_likelihood← prior_likelihood+ σscore
18: loss← (augmented_likelihood− agent_likelihood)2

19: Backward propagation of the loss
20: Update parameters of the optimizer
21: end for
22: θagent ← parameters of the Agent

4. Experimental settings

This section encompasses pertinent details of the experimental setup. Subsection 4.1 il-
lustrates the data preparation process for the subsequent experiments. Subsection 4.2 pro-
vides a detailed overview of the comparative methods employed. Subsection 4.3 presents
the hyperparameter settings for pre-training and fine-tuning. Subsection 4.4 outlines the
hyperparameters for the reinforcement learning method used in training the policy net-
work.
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4.1. Data preparation

4.1.1 Data for training ProLinker
The datasets used for training and validating ProLinker were curated by Zheng et al. [26]
The pre-training dataset consisted of a collection of quasi-PROTAC small molecules care-
fully selected from the ZINC dataset. These molecules were chosen based on their simi-
larity in chemical space to PROTACs. The fine-tuning data, on the other hand, comprised
actual PROTACs obtained from the PROTAC-DB database.

These datasets consist of input data (src) and target data (tgt). The input data com-
prises pairs of warheads and E3 ligands, while the target data consists of complete PRO-
TACs. To facilitate the proposed novel task, we have retained the original input data while
modifying the target data from complete PROTACs molecules to individual linkers. Fi-
nally, a total of 204,840 quasi-PROTAC small molecules and 6,556 actual PROTACs were
acquired. Following the methodology of previous investigations, these datasets were par-
titioned into training and validation sets in a ratio of 8:1.

4.1.2 Data for generating PROTACs based on existing warheads and E3 ligands
To validate the effectiveness and superiority of the ProLinker and reinforcement learn-
ing method combination, we first employed them to generate PROTACs on the existing
dataset. The preprocessing of the dataset is depicted in Figure. 3. Due to the fact that the
ProLinker model has already been trained on the training and validation sets, only the test
set (consisting of a total of 165 pairs of Warhead and E3 Ligand molecules) was selected
for linker generation. By using the structure search tool provided by the PROTAC-DB
database [40], the corresponding information for the PROTACs in the database (a total of
162 molecules) can be retrieved. The PROTAC-DB database provides information such as
the ID, name, target name, and E3 Ligase name for the molecules. Additionally, detailed
information for both the Warhead and E3 Ligand molecules can be viewed, and links
to external databases such as the ChEMBL database [41] are provided. In the ChEMBL
database, information about the three-character representation of the ligand molecule in
the PDBeChem database [42], [43], [44] can be obtained. Using the Uniprot [45] ID for
the target protein and the three-character representation of the ligand molecule, the recep-
tor protein-ligand small molecule complex structure can be retrieved from the RCSB PDB
database [46]. A total of 54 pairs of warheads and E3 ligands have been obtained, all of
which have well-defined complex structures with the target proteins. Detailed information
about these 54 pairs of warheads and E3 ligands is obtained in Supplementary Table S1.

In the subsequent step, using the ProDy [47] package in Python, the protein pocket
structure within 5 Å of the ligand molecule was obtained based on the name of the com-
plex structure and the three-character representation of the ligand molecule. Subsequently,
the protein pocket structure was converted from PDB format to MOL2 format using the
Open Babel (obabel) tool [48]. Finally, the warheads, E3 ligands, and corresponding pock-
ets were input into the model for PROTACs generation.

4.1.3 Data for de novo design of PROTACs targeting specific proteins
Subsequently, the ProDy package [47] was utilized to select individual chains from com-
plex structures and separate the protein and ligand. The protein structure was saved in
PDB format, while the ligand structure was saved in SDF format. A total of 28 unique
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Fig. 3. The comprehensive workflow for data processing.

protein-ligand pairs were obtained. These two types of structures were then input into the
AlphaDrug model for the generation of ligands with higher binding affinity. The gener-
ated molecules with the highest binding affinity will be selected as the ligands for the
corresponding target proteins and E3 ligases for linker generation. The generated linkers
will then be further processed and combined to obtain the final PROTACs.

4.2. Comparative methods

We compared our method with other methods, including Beam Search, Temperature Sam-
pling, the AlphaDrug model and the PROTAC-RL model.

• Beam Search is an algorithm commonly employed in tasks involving the generation
of sequences, like language translation or text generation. It operates by concurrently
exploring several potential solutions, maintaining a restricted set of the most promis-
ing options (referred to as the "beam"), with the goal of identifying the most probable
sequence based on a scoring mechanism.

• Temperature Sampling is a method commonly employed in probabilistic models, par-
ticularly in generative models like language models. It entails manipulating the tem-
perature parameter during the sampling process, which in turn influences the diversity
of generated outputs: higher values amplify randomness, while lower values induce a
greater degree of predictability in the generated results.

• The AlphaDrug model is a deep learning model designed for creating custom ligands
that are specific to target proteins, considering the binding affinity between proteins
and ligands during molecule generation. It consists of a transformer variant known
as the Lmser Transformer and the MCTS algorithm. The Lmser Transformer is used
to address the inefficiency caused by information transfer bottlenecks in the encoder-
decoder architecture. And MCTS is a sophisticated algorithmic strategy frequently
applied for making decisions in intricate domains with multiple choices. MCTS sys-
tematically constructs a decision tree, intelligently exploring and exploiting possi-
bilities, resulting in improved decision-making especially in situations marked by
ambiguity and extensive options [30].
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• PROTAC-RL is built upon the SyntaLinker [27] language model, enabling the gener-
ation of complete PROTACs sequences from existing warheads and E3 ligands se-
quences. The model consists of a pre-trained SyntaLinker model for learning the
representation of PROTAC molecules and the reinforcement learning approach to
optimize the PK property of generated PROTACs.

For specific descriptions of these methods, refer to Section 2.1 and Sections 2.3 to 2.5.

4.3. Hyperparameters in pre-training and fine-tuning

As the pre-training and fine-tuning employed the same model architecture, it was essen-
tial to maintain consistency in hyperparameters, as outlined in Table 1. Here, "fragsVoc"
represents the vocabulary for input warheads and E3 ligands, while "LinkerVoc" repre-
sents the vocabulary for output linkers. "fragsMaxLen" and "LinkerMaxLen" correspond-
ingly indicate the maximum lengths of input and output sequences. "fragsPaddingIdx"
and "LinkerPaddingIdx" signify the indices of the start characters in input and output
sequences. "frags_voc_len" and "Linker_voc_len" denote the vocabulary sizes. The fol-
lowing are common parameters used for training the Transformer model.

4.4. Hyperparameters in optimizing policy network

The hyperparameters for the policy-based optimization approach are detailed in Table 2.
Here, "batch_size" indicates the number of samples used for training the policy network
in each iteration. "epoch" and "lr" respectively denote the training epochs and learning
rate for the policy network. "σ" represents the constant in Equation 9. "σ" is set to 2000
to balance the difference in magnitude between the prior likelihood computed by the
ProLinker model and the reward scores.

5. Results and analysis

In the initial phase, we commenced with the pre-training of the ProLinker model on
the quasi-PROTAC dataset, which was subsequently fine-tuned on the actual PROTACs
dataset. Afterwards, utilizing the ProLinker model in conjunction with the reinforcement
learning method, we generated 54 sets of PROTACs derived from corresponding pairs
of warheads and E3 ligands (a detailed description of the data can be found in Section
4.1). Each set contains PROTACs with different PK values, DEG values, and reward val-
ues. We visualized the distribution of the scores of the generated PROTACs (Section 5.1),
compared them with the original PROTACs (Section 5.2), and compared them with PRO-
TACs generated by Beam Search, Temperature Sampling, AlphaDrug and PROTAC-RL
(Section 5.3). Lastly, we embarked on de novo designs of PROTACs targeting the 33
specific proteins (after removing duplicates). And we selected the top 5 reward scores
of PROTACs generated by AlphaDrug and TRL-PROTAC for comparison (Section 5.4).
Moreover, we employed visualizations to enhance the analysis and evaluation of the de-
signed PROTACs.
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Table 1. Important hyperparameters of training ProLinker

hyperparameters pre-training/fine-tuning

fragsVoc "#", "$", "&", "(", ")", "*", "-", ".", "/", "1", "2", "3", "4", "5",
"6", "7", "=", "B", "Br", "C", "Cl", "F", "I", "N", "O", "P",
"S", "[B-]", "[C+]", "[C-]", "[C@@H]", "[C@@]", "[C@H]",
"[C@]", "[C]", "[N+]", "[N-]", "[N@+]", "[N@@+]", "[O-]",
"[O]", "[P+]", "[P@@]", "[P@]", "[S+]", "[S@@]", "[S@]",
"[Si]", "[Sn]", "[c-]", "[n+]", "[nH]", "[s+]", "\\", ""̂, "c", "n",
"o", "p", "s"

LinkerVoc "#", "$", "&", "(", ")", "-", ".", "/", "1", "2", "3", "4", "5", "6",
"7", ":", "=", "B", "Br", "C", "Cl", "F", "I", "N", "O", "P",
"S", "[1*]", "[2*]", "[B-]", "[B@-]", "[BH-]", "[C+]", "[C-
]", "[C@@H]", "[C@@]", "[C@H]", "[C@]", "[C]", "[IH2]",
"[N+]", "[N-]", "[N@@+]", "[NH3+]", "[O-]", "[O]", "[P+]",
"[P@@]", "[P@]", "[S+]", "[S@@]", "[S@]", "[Si]", "[Sn]",
"[c-]", "[n+]", "[nH]", "[s+]", "\\", ""̂, "c", "n", "o", "s"

fragsMaxLen 202
LinkerMaxLen 91

fragsPaddingIdx 54
LinkerPaddingIdx 59

frags_voc_len 60
Linker_voc_len 64

batch_size 32
epoch 500

lr 0.0001
d_model 96

dim_feedforward 256
num_layers 4

nhead 4

Table 2. Important hyperparameters of training policy network

hyperparameters optimizing policy network

batch_size 32
epoch 1000

lr 0.005
σ 2000
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5.1. Horizontal comparison of all generated PROTACs

The ProLinker model is initially pre-trained on a quasi-PROTAC dataset containing a
large number of small molecules to learn the chemical language of molecules represented
by SMILES sequences. Subsequently, the ProLinker model undergoes fine-tuning on an
actual PROTAC dataset to learn the specific chemical language of PROTACs. The detailed
data of pre-training and fine-tuning processes is obtained in Supplementary Tables S2 and
S3. The fine-tuned ProLinker is further optimized using a policy-based reinforcement
learning approach to generate PROTACs with specific properties. We conducted 54 sets
of experiments using existing warheads and E3 ligands to validate the effectiveness and
superiority of the ProLinker model combined with the reinforcement learning method.

To provide a more intuitive representation of the distribution of scores for all gener-
ated PROTACs across multiple dimensions, we utilized the CMplot package [49] in R
to generate the Manhattan plot for multiple scores. The Manhattan plot was originally
designed to visualize the summary statistics results of genome-wide association studies
(GWAS), especially p-values [50]. It can display the different p-values of multiple tracks
at different positions of the genome. Here, we used three different scores as three different
tracks and drew a circular scatter plot with PROTAC IDs as genomic positions. This plot
enables us to visualize the distribution of the generated PROTAC scores from multiple
dimensions, and also allows for the horizontal comparison between different PROTAC
IDs.

As shown in Figure. 4, the outermost circle of the figure represents different IDs of
PROTACs in PROTAC-DB, while the three trajectories from top to bottom represent the
scores of PK, DEG, and reward score, respectively. This figure intuitively shows the score
distribution of the model during the molecule generation process in three dimensions. It
can be observed that most of the samples show long bar-shaped distributions for the three
scores, indicating that the scoring of the model is not single-valued, but distributed from
low to high. This further confirms that the reinforcement learning method does guide the
generation of molecules with desired properties. Many molecules in the figure have PK
values reaching around 15.75, and a considerable portion of molecules have DEG values
above 0.5. The figure also allows for visual comparison between different molecules,
showing that different molecules can be optimized to varying degrees. For example, the
molecule with ID 939 has a reward value that is only presented as two dots. Because its
DEG value is relatively low, and the space for optimizing this molecule is relatively small.
On the other hand, the molecule with ID 1399 has a wide range of PK value changes, and
can even reach a minimum of around 15, while its DEG value also changes significantly,
ranging from 0 to 1. This indicates that the space for optimizing this molecule is quite
large. Detailed information about these scores of these generated PROTACs is obtained
in Supplementary Table S4.

5.2. Comparison with original PROTACs

In order to elucidate the substantial enhancement of our model-generated PROTACs over
the original PROTACs, the original PROTACs were utilized to compute the DEG values,
PK values, and reward values. As there exists only one initial PROTAC for each pair of
warhead and E3 ligand, the top 3 PROTACs generated by our model ranked by reward
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Fig. 4. The three scores, namely reward score, DEG score, and PK score, are visually
represented on three distinct tracks in the Manhattan plot

values were averaged and contrasted with the original PROTACs. To present the compar-
ison more effectively, a dumbbell plot using the ggplot2 package [51] in R was illustrated
as depicted in Figure. 5. In the figure, blue indicates the original PROTACs, while green
represents the PROTACs generated by our model. It is visually evident from the figure that
the DEG values of most PROTACs generated by our model are significantly higher than
those of the original PROTACs. At the same time, a considerable proportion of PROTACs
generated by our model have lower PK values than the original PROTACs. Based on the fi-
nal reward values, almost all PROTACs generated by our model have higher reward values
than the original PROTACs. Our model relies on the reward value to generate PROTACs,
and overall, it has successfully optimized the reward value for generating PROTACs. The
DEG and PK values of these PROTACs generated by our model are relatively optimal.
Therefore, the PROTACs generated by our model provide a comprehensive improvement
over the original PROTACs. Detailed information about these scores of original PROTACs
is obtained in Supplementary Table S5.
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Fig. 5. Comparison between original PROTACs and PROTACs generated by TRL-
PROTAC. The blue dots in the figure indicate the original PROTACs, and the green dots
indicate the PROTACs generated by our model. The vertical axis indicates the different
PROTAC IDs, and the horizontal axis demonstrates the three scores of the PROTACs

5.3. Comparison with other methods

To further demonstrate the superiority of our model (TRL-PROTAC), we used the clas-
sic Beam Search algorithm (beam_size=20, n_best=5), Temperature Sampling, the Al-
phaDrug model and the PROTAC-RL model to generate PROTACs. Here, the top 5 best
PROTACs were obtained and compared with the top 5 PROTACs with the best reward
scores generated by our model, as shown in Figure. 6. The figure shows that a consider-
able number of the PROTACs generated by TRL-PROTAC (red) have better PK values
compared to those generated by the Beam Search algorithm (blue), temperature sam-
pling (deep blue), the AlphaDrug model (orange) and the PROTAC-RL model(green).
Moreover, TRL-PROTAC has a significant advantage in terms of DEG scores and reward
scores for almost all PROTACs. Therefore, it can be concluded that the combination of the
ProLinker model and reinforcement learning method is quite successful, as it can com-
prehensively consider PK and DEG scores to optimize the generated PROTACs. Detailed
information about these scores of PROTACs is obtained in Supplementary Tables S6, S7
and S8.

To further perform statistical analysis, the scores of different PROTAC IDs for the
same model were aggregated and subjected to significance tests (Wilcoxon test), as shown
in Figure 7. The results of the significance tests are indicated by statistical significance
markers in the figure. A single asterisk "*" denotes a p-value less than 0.05, two aster-
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Fig. 6. Comparison between PROTACs generated by Beam Search, Temperature Sam-
pling, AlphaDrug, PROTAC-RL and TRL-PROTAC. The horizontal axis of the figure
represents the different PROTAC IDs and the vertical axis represents the three scores of
PROTACs. The different coloured boxes indicate the PROTACs generated by different
models, where the red boxes are the scores of the PROTACs generated by our model

isks "**" indicate a p-value less than 0.01, three asterisks "***" signify a p-value less
than 0.001, four asterisks "****" indicate a p-value less than 0.0001, and "ns" repre-
sents a p-value greater than 0.05. From the figure, it can be observed that DEG scores
of TRL-PROTAC, in the significance tests against other models, are marked with four
asterisks, indicating an extremely significant difference between the DEG scores of our
model and those of other models. Furthermore, considering the data distribution in the
boxplot, TRL-PROTAC achieves higher DEG scores compared to the other models, in-
dicating a significant superiority of TRL-PROTAC in terms of DEG scores. Regarding
PK scores, the significance tests reveal that TRL-PROTAC exhibits a significant differ-
ence when compared to Beam Search and AlphaDrug, but no significant difference is
observed in comparison to PROTAC-RL and Temperature Sampling. Looking at the data
distribution in the boxplot, PK scores of TRL-PROTAC are slightly lower than those of
Beam Search and AlphaDrug (lower PK scores are better), while they are similar to the
distributions of PROTAC-RL and Temperature Sampling. This could be attributed to the
PROTAC-RL model’s emphasis on optimizing PK scores, while the Temperature Sam-
pling method enhances sample diversity, making it easier to obtain molecules with better
PK scores. However, TRL-PROTAC stands out because it can optimize both PK and DEG
scores. Therefore, the final reward score is significantly better than that of other models.
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Fig. 7. Comparison between Beam Search, Temperature Sampling, AlphaDrug, PROTAC-
RL and TRL-PROTAC after aggregating the scores of different PROTAC IDs. Different
coloured boxes indicate PROTACs generated by different models, and the asterisks above
the boxes are significance notations for significance tests between the corresponding mod-
els

5.4. Comprehensive analysis of the de novo design of PROTACs

As illustrated in Figure. 8a, through the utilization of AlphaDrug, we employed a targeted
approach to design warheads and E3 ligands tailored specifically to the protein and E3
ligase, respectively. The resulting ligands demonstrated significantly enhanced binding
affinities to their respective proteins. In fact, the majority of the generated ligands exhib-
ited higher binding affinities than their original counterparts, with an impressive average
increase of 2.15. Continuing from there, we proceeded to design PROTACs based on the
generated ligands. As illustrated in Figure. 8b-c, the resulting PROTACs exhibited notably
elevated DEG scores, with the majority exceeding the 0.5 mark. Furthermore, compared
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to the MCTS algorithm, our model has demonstrated superiority across all three scores.
This outcome underscores the efficacy of our model in optimizing the degradability of the
generated PROTACs—an achievement that has proven elusive for other models. However,
it is worth noting that these PROTACs displayed relatively high PK scores in both of these
methods. This can be attributed to the fact that the ligands devised by AlphaDrug, while
exhibiting enhanced binding affinities for the proteins, often showcased intricate struc-
tures such as heterocyclic motifs. Consequently, the inherent PK scores of the warheads
and E3 ligands were inherently higher, thereby yielding a correspondingly elevated PK
score for the generated PROTACs. Detailed information about the binding affinity scores
of protein-ligand pairs is obtained in Supplementary Table S9. The scores of de novo de-
signed PROTACs using the TRL-PROTAC model can be found in Supplementary Table
S10, while the scores of de novo designed PROTACs using the AlphaDrug model are
available in Supplementary Table S11.

Fig. 8. Results of de novo designs of PROTACs. (a) Comparison between the binding
affinity of the generated ligands and the original ligands. (b-d) The distribution of three
scores (reward score, DEG score, and PK score) for PROTACs generated by AlphaDrug
and TRL-PROTAC

6. Potential applications

In this section, we will discuss the potential applications of the TRL-PROTAC model.
Firstly, when designing PROTACs starting from known warheads and E3 ligands, the
TRL-PROTAC model demonstrates superior performance compared to other methods
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(Beam Search, Temperature Sampling, the AlphaDrug model and the PROTAC-RL model),
yielding more favorable PK and DEG properties. Therefore, the TRL-PROTAC model
holds significant promise in discovering PROTACs drugs with enhanced attributes. Sec-
ondly, in comparison to the original PROTACs, PROTACs generated by the TRL-PROTAC
model also exhibit superior characteristics, highlighting the model’s potential in optimiz-
ing and replacing existing PROTACs medications. Finally, when designing PROTACs
targeting specific proteins (considering binding affinity), the TRL-PROTAC model out-
performs the MCTS method, showcasing its superiority in molecular de novo design.

7. Conclusion

Previous studies on generating PROTACs really did a good job, but they only consid-
ered a single property, such as PK, and then used a classification model to calculate the
degradation and filter the generated PROTACs. This approach is both time-consuming and
unable to generate valid PROTACs for complex inputs. We have innovatively proposed a
de novo design strategy for PROTACs. Our model not only coordinates the PK property
and the DEG property of PROTACs during the generation process but also avoids the is-
sue of greedy algorithms not considering long-term benefits. Experimental results show
that nearly all of the PROTACs designed using our model have better degradation and
most of the molecules have better PK property than the original PROTACs, indicating
the feasibility of our model. Compared to Beam Search, Temperature Sampling, the Al-
phaDrug model and the PROTAC-RL model, our model generates PROTACs with better
properties, demonstrating the superiority of TRL-PROTAC in PROTAC generation. Fur-
thermore, the TRL-PROTAC method enables the design of PROTACs targeting specific
proteins, offering the advantage of further considering the binding affinity between PRO-
TACs and the target proteins. To sum up, our strategy takes into account the integration
of binding affinity, degradation, and pharmacokinetic properties for PROTACs.

Compared to traditional small molecules, the complexity of PROTACs design lies in
their ternary structure. Naturally, two approaches can be considered for generating PRO-
TACs. One is to directly generate a complete PROTAC molecule and then divide it into
warhead, E3 ligand, and linker parts. Subsequently, the interaction between the warhead
and E3 ligand with the respective target proteins is checked. However, the challenge with
this approach is how to divide the PROTAC molecule and validate its ability to interact
with the target protein after division. The other approach involves designing warheads
and E3 ligands separately for the target proteins and then using a deep learning model to
generate the linker that connects these two parts and optimizes the entire PROTAC. The
difficulty here lies in how to connect these two components effectively. TRL-PROTAC
follows the latter approach and provides a novel solution to these challenges, making it a
remarkable exploration of PROTAC generation from scratch.

While our approach allows for PROTAC design against target proteins, it still has lim-
itations. It can only be applied to design PROTACs for protein targets with existing ligand
interactions and cannot be used for protein targets with no prior ligand interactions. Addi-
tionally, the warheads and E3 ligands generated by the AlphaDrug model, while exhibit-
ing a high binding affinity to proteins, contain numerous heterocyclic structures, resulting
in elevated PK properties. Further investigations will focus on exploring methodologies to
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reduce the structural complexity of the ligands while preserving their heightened binding
affinities to target proteins.
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