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Abstract. Due to disparities in tolerance, resource availability, and acquisition of
labeled training data between satellite-terrestrial integrated networks (STINs) and
terrestrial networks, the application of traditional terrestrial network intrusion de-
tection techniques to satellite networks poses significant challenges. This paper
presents a satellite network intrusion detection system named Bi-LSTM sparse self-
encoder (BLSAE-SNIDS) to address this issue. Through the development of an in-
novative unsupervised training Bi-LSTM stacked self-encoder, BLSAE-SNIDS fa-
cilitates feature extraction from satellite network traffic, diminishes dimensionality,
considerably reduces training and testing durations, and enhances the attack pre-
diction accuracy of the classifier. To assess the efficacy of the proposed model, we
conduct comprehensive experiments utilizing STIN and UNSW-NB15 datasets. The
results obtained from the STIN dataset demonstrate that BLSAE-SNIDS achieves
99.99% accuracy with reduced computational and transmission overheads along-
side enhanced flexibility. Furthermore, results from the UNSW-NB15 dataset ex-
hibit BLSAE-SNIDS’ proficiency in detecting various network intrusion attacks
efficiently. These findings indicate that BLSAE-SNIDS suits general satellite secu-
rity networks and offers a novel approach to designing security systems for polar
satellite networks, thus exhibiting practical utility.

Keywords: Satellite-terrestrial integrated networks, LSTM, Automatic encoder, Un-
supervised learning, Network security, Deep learning.

1. Introduction

As a significant augmentation to terrestrial networks, satellites extend the coverage of
such networks, facilitating convenient access for remote users. Consequently, the prevail-
⋆ Corresponding Author
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ing concept in sixth-generation mobile communications (6G) is to amalgamate satellite
networks with terrestrial networks to construct an STIN system to achieve seamless global
coverage. Nevertheless, STIN presents inherent security vulnerabilities, primarily due to
satellite node exposure and the utilization of long-distance communication links spanning
distances between 150 and 35,800 km [1]. These factors make the system susceptible to
cyber-attacks, engendering substantial security risks [2, 3]. As 6G technology continues
to advance, the security of STIN has emerged as a paramount concern in recent years.

Due to their extensive coverage, high capacity, and long-distance transmission ca-
pabilities, satellite communication networks find widespread applications in navigation,
spaceflight, radio and television broadcasting, disaster rescue, and relief. Particularly in
remote areas characterized by limited services and dispersed populations, satellite com-
munication emerges as the optimal choice due to its independence from substantial ground
infrastructure investments.

The Arctic shipping lanes, pivotal for maritime navigation, pose challenges in relying
on ship-to-shore communications for navigation and hazard warnings. These challenges
arise from inadequate data on the navigational environment in the Arctic, a lag in com-
munications infrastructure, and a dearth of navigational aids such as beacons, lighthouses,
and coastal radio services. Consequently, due to limited experience in Arctic navigation,
ships operating in the region are exposed to elevated safety risks. To foster endeavors such
as environmental conservation, resource utilization, and commercial transportation in the
Arctic, it is imperative to conduct thorough research on communication and navigation
support systems tailored for Arctic shipping lanes, aiming to enhance safety during polar
navigation. Introducing the message service of a satellite navigation system presents a
novel approach to information transmission in the Arctic region.

However, as the network scale expands, the vulnerability of satellite communication
transmission links to intrusion grows. Regrettably, a substantial disparity exists between
satellite and terrestrial networks concerning computing power, bandwidth, and other re-
sources. Furthermore, upgrading satellite hardware post-launch poses significant chal-
lenges. Hence, it is necessary to devise effective Star-Terrestrial Network Intrusion De-
tection Systems (SAT-IDS) to afford robust protection for STIN.

The primary objective of a Network Intrusion Detection System (NIDS) is the detec-
tion of harmful intrusions, typically employed to monitor network traffic, distinguishing
between normal and malicious activity to effectively mitigate the latter. Designing NIDSs
for satellite networks necessitates consideration of the limited computational power of
each satellite node, alongside stringent security and privacy requirements during trans-
mission, thereby emphasizing the importance of resource utilization efficiency [4–6].

Numerous design approaches for NIDSs have been proposed, often leveraging ma-
chine learning algorithms to discern traffic patterns [7,8]. Evaluating NIDS efficacy hinges
on its ability to accurately detect attacks, demanding comprehensive datasets encompass-
ing both normal and abnormal behaviors. However, applying such datasets from terrestrial
networks directly to satellite communications presents challenges owing to the unique
characteristics of satellite networks.

1. Satellite and terrestrial networks exhibit differing susceptibilities to various attack
types. While terrestrial networks may grapple with challenges such as Backdoor and
Botnets, exacerbated by the computational prowess and openness of terrestrial net-
work nodes [9–11] , satellite nodes with constrained resources face concerns over
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malicious distributed denial of service (DDoS) attacks, such as Synchronized Se-
quence Number (Syn) flooding. Accordingly, formulating secure datasets for distinct
satellite network domains warrants meticulous consideration.

2. Furthermore, the limited resources and computational capabilities inherent in satellite
networks pose additional challenges, as satellite nodes, when targeted, can swiftly
succumb to attacks, making recovery arduous.

3. Extracting pertinent feature selections from satellite network traffic is inherently chal-
lenging. The intricacies of satellite networks, coupled with the costliness of commu-
nication links, render the acquisition of large training datasets prohibitive.

Addressing the challenges inherent in existing satellite network intrusion detection
methods, this paper presents a novel approach termed Bi-LSTM sparse autoencoder-based
Satellite Network Intrusion Detection System (BLSAE-SNIDS). The system leverages
autoencoders for feature learning on unlabeled data, thereby generating new feature rep-
resentations in an unsupervised manner. These features are inputted into a classifier fol-
lowing a pre-training phase to enhance intrusion detection capability and classification
accuracy. The contributions of this study are outlined as follows:

1. Given the intricacies of satellite networks, obtaining ample labeled data for learning
purposes proves exceedingly difficult and costly. Consequently, we propose BLSAE-
SNIDS, which employs an overarching architecture based on Bi-LSTM sparse au-
toencoders capable of extracting implicit knowledge from unlabeled data and learning
unsupervised representations. This approach enables superior classification outcomes
with a limited number of labels.

2. Utilizing the Bi-LSTM sparse autoencoder effectively reduces the dimensionality
of input vectors in the classification task. This operation can be performed within
the network nodes of the satellite network, substantially curbing the volume of traf-
fic transmitted to the satellite network’s control center. Moreover, the computational
nodes need not be equipped with high-performance hardware to swiftly detect known
and unknown intrusion traffic. This outcome holds significant value, considering the
precious resources of satellite network links.

3. The robustness of the Intrusion Detection System (IDS) is evaluated using a real
STIN dataset. Extensive experimentation on the STIN dataset demonstrates that the
proposed model adeptly detects various satellite network attacks.

2. Related Work

The expansion of satellite networks has brought about considerable security challenges,
prompting the development of security technologies, notably Network Intrusion Detection
Systems (NIDS). Numerous studies have employed diverse machine learning techniques
to construct effective NIDS for detecting attacks in satellite and terrestrial networks. Di et
al. [12] proposed a defense architecture against Distributed Denial of Service (DDoS) at-
tacks in satellite networks, combining distributed multipoint detection, proximity source
defense, collaborative management, and protection integrity. Additionally, Li et al. [9] de-
vised security datasets for STIN satellite and terrestrial networks, presenting a distributed
NIDS employing federated learning (FL) in STIN. This system allocates resources effec-
tively across domains to analyze and block malicious traffic, particularly DDoS attacks.
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Ashraf et al. [13] introduced a novel intrusion detection approach, merging Random For-
est (RF) and Multi-Layer Perceptron (MLP) using data from satellite and terrestrial net-
works. This method enhances intrusion detection accuracy compared to other models, val-
idated through experiments on NSL-KDD, KDD-CUP 99, and STIN datasets. For DDoS
attacks in Flying Self-Organizing Networks (FANET), Zhang et al. [14] investigated the
operational features of satellite nodes, establishing security domains based on login and
logout mechanisms. They proposed a hierarchical distributed satellite network intrusion
detection model and a collaborative mechanism for intrusion detection agents inside and
outside the satellite. Guo et al. [15] introduced a blockchain-based Distributed Collabo-
rative Entrance Defense (DCED) framework to shield the satellite network from DDoS
attacks. This system records and aggregates network traffic characteristics at the satellite
network’s entrance, bolstering its defense capabilities. Azar et al. [16] proposed a hybrid
intrusion detection system for Satellite Terrestrial communication systems (STIN) and ter-
restrial networks (UNSW-NB15). They employed a Random Forest (RF) based Sequential
Forward Feature Selection (SFS) method to select critical features from the dataset. Ex-
perimental results demonstrate a notable enhancement in detection accuracy and compu-
tational efficiency. The SFS-RF model, employing 10 selected features, achieved 90.5%
accuracy on the STIN dataset and 78.52% on the UNSW-NB15 dataset. The RF-SFS-
GRU model excelled in deep learning, attaining 87% and 79% accuracy on the respective
datasets.

The Satellite Intrusion Detection System (SAT-IDS) uses machine learning to dif-
ferentiate between normal and abnormal network traffic. Various machine learning ap-
proaches have been explored in SAT-IDS development, aiming to conduct feature se-
lection tasks to extract pertinent features from satellite network traffic datasets, thereby
enhancing classification outcomes. Nonetheless, acquiring extensive labeled training sets
poses a significant challenge due to the intricate nature of satellite networks and the costly
communication links involved. Consequently, self-supervised learning and unsupervised
feature learning have emerged as viable alternatives. In these methodologies, the algo-
rithm initially learns a robust feature representation from vast amounts of unlabeled data.
Later, when addressing a specific classification task, this learned feature representation
can be applied to labeled data to solve the classification problem through supervised learn-
ing. Unlike supervised learning, unsupervised learning does not necessitate assuming that
the unlabeled data shares the same distribution as the labeled data, rendering the model
more adaptable. Zhu et al. [17] proposes a flexible and innovative framework for satellite
network intrusion detection systems, leveraging deep learning techniques. Here, a sparse
autoencoder serves as a network feature extractor. However, it is noteworthy that the re-
search is confined to system design and has not been executed practically.

Therefore, this paper proposes a Satellite Network Intrusion Detection System (BLSAE-
SNIDS) based on a Bi-LSTM sparse self-encoder. The approach leverages unlabeled data
to train the Bi-LSTM sparse self-encoder for feature extraction from satellite network
traffic while reducing dimensionality. By reusing the self- encoder’s encoder part and
integrating it with a classifier for data classification, the model’s parameters and train-
ing time can be significantly reduced while enhancing its generalization capacity. The
method acquires implicit knowledge from unlabeled data through unsupervised learning,
facilitating superior classification outcomes even with limited labeled data. This effec-
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tively differentiates between normal and abnormal traffic for satellite network intrusion
detection.

3. Methods

3.1. Model Overview

This paper introduces a satellite network intrusion detection method based on a Bi-LSTM
sparse autoencoder, as depicted in Fig. 1. The proposed method employs unlabeled data
to train the Bi-LSTM sparse autoencoder, leveraging the temporal characteristics of satel-
lite network traffic data. Feature extraction and dimensionality reduction are achieved
through the encoder section of the Bi-LSTM sparse autoencoder, followed by reconstruc-
tion via the decoder section. Subsequently, the output of the trained encoder undergoes
classification, mapping to distinct classes through a classifier. This approach effectively
learns essential features from input data, reducing model parameters and training time
by reusing the autoencoder’s encoder segment. Consequently, the method demonstrates
proficiency in distinguishing between normal and abnormal traffic for satellite network
intrusion detection.

Fig. 1. BLSAE-SNIDS structure diagram
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The Bi-LSTM encoder comprises two bidirectional LSTM layers with 64 and 32
hidden units, respectively. It takes a series of high-dimensional input data, efficiently
preserves dependencies between multiple data points in the time series, and produces
a fixed-size vector. This process reduces the high-dimensional input vector representation
to a lower dimension. In our model, the Bi-LSTM encoder consists of two layers: the first
with 64 LSTM units and the second with 32 LSTM units. This is succeeded by a Lambda
layer with ’n’ units and a dense layer with ’n’ units, where ’n’ represents the number of
categories. The Lambda layer maps the encoder output to one of the ’n’ categories through
a predefined mapping.

The Bi-LSTM decoder generates a fixed-size input sequence using a simplified repre-
sentation of the input data in the hidden space. During reconstruction, the decoder mini-
mizes the difference, i.e., the reconstruction error, between the original and reconstructed
data. The input to the decoder is the dimensionality-reduced output of the encoder. The
decoder unfolds the encoding by stacking it in the reverse order of the encoder. It con-
sists of multiple repetition vector layers replicating the encoder output 16 times, followed
by two bidirectional LSTM layers with 32 and 64 hidden units, respectively, and a time-
distributed dense layer with 1 hidden unit. The final decoder output is a reconstruction of
the encoder input.

The class dictionary (Class dict) matrix records the activation count of each neuron in
the encoder for each class label. By selecting the neuron with the highest count for each
class in the class dictionary, we determine the relevant class for each encoded sample.

3.2. Bi-LSTM stacked autoencoder

Bi-LSTM LSTM, a temporal recurrent neural network, is adept at processing and predict-
ing significant events with long intervals and time series data delays. Bi-LSTM, linking
two hidden layers operating in both input-to-output directions, is proposed for classifying
satellite network traffic. Its structure enables efficient utilization of future and past fea-
tures within specific time ranges during training, thereby enhancing prediction accuracy.
The Bi-LSTM layer effectively handles time series problems and improves prediction
accuracy. Additionally, the auto-encoder (AE) layer in our proposed structure learns fea-
tures from data and reduces data dimensionality, complemented by the Bi-LSTM layer
to further enhance prediction accuracy [18, 19]. LSTM networks excel in characteriz-
ing time series data. Unidirectional LSTM methods may yield errors by relying solely
on forward memory processing, potentially failing to capture contextual information. The
LSTM layer consists of a series of LSTM units that only process input data in the forward
direction. In contrast, Bi-LSTM includes additional LSTM layers processing data in re-
verse, as illustrated in Fig. 2. Training a Bi-LSTM network is akin to concurrently training
two independent unidirectional LSTM networks. One network is trained on the original
input sequence, while the other is trained on a reversed copy. This approach furnishes
the network with more contextual information, fostering faster and more comprehensive
problem learning.

The BiLSTM method extends traditional LSTM by incorporating sequence informa-
tion in forward (past to future) and backward (future to past) directions, enhancing se-
quence classification performance. BiLSTM networks have emerged as superior solutions
for capturing interactions between contexts. Training BiLSTM networks involves simul-
taneously training two unidirectional LSTM networks on the input sequence. One LSTM
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Fig. 2. Expanded view of Bi-LSTM

network processes the input sequence, while the other operates on a reverse copy of the
input sequence. This approach provides the network with additional background informa-
tion, facilitating faster and more comprehensive problem learning.

As depicted in Fig. 2, the LSTM unit comprises forgetting gates, input gates, and
output gates to facilitate effective short-term and long-term memorization. Specifically,
BiLSTM memory blocks are trained in two directions: one LSTM proceeds from past to
future. At the same time, the other progresses from future to past, ensuring that each time
step incorporates both past and future data. Each layer computes the respective function
for each element in the input sequence. The variables associated with LSTM units are
represented accordingly.

it = σ (Wiixt + bii +Whih(t− 1) + bhi)
ft = σ (Wifxt + bif +Whfh(t− 1) + bhf )
gt = tanh (Wigxt + big +Whgh(t− 1) + bhg)
ot = σ (Wioxt + bioWhph(t− 1) + bho)
ct = ft ∗ c(t− 1) + it ∗ gt
ht = ot

∗ tanh (ct)

(1)

where(Wii,Wif ,Wig,Wio) is the input weights, (Whi,Whf ,Whg,Who) is the cyclic
weights, (bhi, bhf , bhg, bho) is the cyclic bias, ht denotes the hidden state at moment t, ct
denotes the cell state at moment t, xt denotes the input at moment t, h (t− 1) denotes the
hidden state of the layer at moment (t-1) or the initial hidden state at moment 0, and it , ft
, gt , ot denote the input gates, forgetting gates, cell gates and outputs, respectively. gates.
is the sigmoid function and ’∗’ is the Hadamard product.

Automatic encoder The autoencoder is a neural network architecture employed in un-
supervised learning, data compression, downscaling, and data generation. It compresses
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input data to obtain a concise representation (encoding) and then reconstructs the original
data with minimal information loss (decoding). Typically, a standard autoencoder com-
prises an input layer, an output layer, and multiple hidden layers. Fig. 3 illustrates a basic
autoencoder model, which can be elucidated by assessing the reconstruction error (loss)
between the encoder, decoder, input, and output data [20–22].

Fig. 3. A simple autoencoder structure

Encoding: The encoding operation maps the input data x, i.e., the high-dimensional
vector x ∈ Rm, to a low-dimensional bottleneck layer representation (h). This is given
by the following equation, where wi is the weight matrix, bi is the bias, and f1 is the
activation function.

h = f1 (wix+ bi) (2)

Decoding: Eq. (3) illustrates how the decoding operation uses the bottleneck layer
representation (h) to produce the output of the attempted reconstruction x. Where f is
the activation function of the decoder, w is the weight matrix, b denotes the bias, and x
denotes the reconstructed input sample.

x̂ = f2 (wjh+ bj) (3)

Reconstruction Loss: as shown in Eq. (4), a reconstruction loss (L) is computed in a
typical self-encoder model to minimize the difference between the output and the input.
Here, x denotes the input data, x̂ denotes the output/predicted data, and n is the number
of samples in the training dataset [22].
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min
w,b

L (x− x̂) ;where L (x− x̂) =
1

n

n∑
n=1

|x̂t − xt| (4)

Sparse Autoencoder A sparse autoencoder is a variant of the traditional autoencoder
that includes a sparsity constraint on the hidden units, ensuring that only a small number
of neurons are active at any given time. This constraint is typically enforced by adding a
penalty term to the loss function. The sparsity constraint helps the autoencoder to learn
more robust and useful features by focusing on the most significant aspects of the data.
This characteristic is particularly advantageous for satellite network traffic, where cap-
turing essential features and reducing dimensionality are crucial for efficient and accu-
rate intrusion detection. The sparse autoencoder’s structure consists of an encoder, which
compresses the input data into a lower-dimensional representation, and a decoder, which
reconstructs the original data from this representation. By doing so, the autoencoder can
effectively capture the most critical features of the data, improving the performance and
generalizability of the intrusion detection system.

Bi-LSTM Stack autoencoder In satellite network intrusion detection, we formulated a
model that integrates Bi-LSTM and autoencoder components, as depicted in Fig. 4 The
training effect of satellite network traffic using ordinary autoencoders is general. This
method treats each traffic instance as an independent input, neglecting the temporal char-
acteristics inherent in satellite network traffic and resulting in elevated training losses.

3.3. Proposed SAT-IDS

Drawing inspiration from machine learning and deep learning methodologies, we intro-
duce two hybrid intrusion detection system (IDS) techniques. The initial approach in-
tegrates a Bi-LSTM sparse encoder with a class dictionary termed BLSAE-SNIDS-CD.
The second technique combines a Bi-LSTM sparse encoder with a deep neural network
(DNN), denoted as BLSAE-SNIDS-DNN.

BLSAE-SNIDS-CD We utilize a trained Bi-LSTM Decoder to encode the network traffic
data. Initially, a Class dict matrix of size Num class × Num class, where Num class
represents the number of classes, is initialized. This matrix records the activation fre-
quency of each neuron in the encoder for every class label. Iterating over the training
labels, we update the Class dict matrix based on the following guidelines: for each im-
age, we identify the index of the largest value in its feature mapping (representing the
most active neuron in the encoder) and increment the value in the corresponding row and
column of the Class dict matrix by 1. This results in an output of the Class dict matrix,
which illustrates the activation frequency of each encoder neuron in distinguishing be-
tween different classes. Ideally, each neuron should activate exclusively for one class and
not others.

To initialize a vector named Neuron class, we map each neuron in the encoder to a
class label. We iterate through the rows of the Class dict matrix and assign each neuron
to the class with the highest value in that row. Subsequently, we output the Neuron class
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Fig. 4. Structure of Bi-LSTM autoencoder
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vector, which indicates the class each neuron represents in the encoder. Then, we iterate
over the predicted vector and replace each index with the corresponding class label from
the neuron class vector. Next, we compare the predicted vectors to the true labels of the
test images. This comparison yields a Boolean vector indicating the correctness of each
prediction.

The model can significantly influence satellite network traffic analysis, particularly in
scenarios featuring a substantial volume of unlabeled data and a limited amount of labeled
data. Notably, the model does not presuppose that the unlabeled data must align with the
distribution of the labeled data.

BLSAE-SNIDS-DNN The structure of BLSAE-SNIDS-DNN, illustrated in Fig. 5, em-
ploys the same unlabeled data as BLSAE-SNIDS-CD for training the autoencoder. This
enables the model to learn the intrinsic features of the input data and minimize the Mean
Square Error (MSE) between the input and output. During training, BLSAE-SNIDS-DNN
utilizes the encoder section for feature extraction on labeled data and then constructs a
fully connected layer atop it as a classifier. Training the classifier with labeled data fa-
cilitates the prediction of the input data class based on the feature vector and minimizes
the cross-entropy loss (CE). Subsequently, the encoder portion is employed for feature
extraction on test data, and the classifier is utilized to predict its category. Leveraging
the encoder’s pre-trained weights from unsupervised training significantly enhances the
model’s accuracy.

3.4. Data Collection and Preprocessing

STIN data set This study employs the dataset provided by [9] to represent the satellite
dataset for evaluating our model. The STIN security dataset encompasses various attack
types observed in both satellite and terrestrial networks, comprising two satellite attack
types and nine terrestrial attack types. The construction of the STIN dataset incorporates
flow-based features. The distribution of the STIN satellite dataset is illustrated in Fig. 6.

This section outlines the following data preprocessing steps:
1) Feature selection: Feature selection is imperative to accommodate the limited re-

sources of satellite nodes and minimize training and testing costs, optimizing resource
utilization and reducing expenses. Initially, irrelevant features pertaining to the dataset’s
environmental and temporal aspects, such as quintuple, are discarded. Subsequently, fea-
tures with missing values or that are entirely composed of zeros are eliminated. Further
refinement is achieved through Pearson coefficient analysis and variance selection. Pear-
son’s coefficient assesses the correlation between feature columns, leading to the removal
of strongly correlated columns and subsequent reduction of the feature space. Variance
selection filters each feature column’s variance value, eliminating dimensions with low
variance. Table 1 demonstrates the retention of the top 16 flow-level features crucial for
intrusion detection, encompassing various benign and malicious traffic types simulated in
the prototype.

2) Normalization: Normalization ensures uniformity in the range of values across each
feature. Utilizing ”MinMax” normalization, the range of feature values is scaled to fall
between 0 and 1. The difference between the minimum value of the vector and the scale



1400 Shi Shuxin et al.

Fig. 5. Structure of supervised polar satellite intrusion detection system

Fig. 6. Distribution of STIN satellite data sets
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Table 1. Selected 16 features

Feature Description

fl dur Flow duration
fw pk Total packets in the forward direction
l fw pkt Total length of forward packets
l bw pkt Total length of backward packets
pkt len min Minimum length of a fow
pkt len max Maximum length of a flow
pkt len std Standard deviation length of a flow
fl byt s Packet bytes transmitted per second
fl iat min Minimum time between two backward packets,
bw iat tot Total time between of two backward packets
bw iat min Minimum time between of two backward packets
fw hdr len Number of bytes used in forward packet header
bw pkt s Number of backward packets per second
urg cnt Number of packets with URG
down up ratio Ratio of forward and backward packet counts
bw win byt Number of backward bytes in the initial window

size determines the new value. The normalization equation is as follows:

x̄i =
xi −min (xi)

max (xi)−min (xi)
(5)

Here, xi represents the normalized value, xi denotes the i th feature vector, min (xi)
returns the minimum value of the vector, and max (xi) returns the maximum value of the
vector.

UNSW-NB15 dataset This section discusses the following data preprocessing steps.
The UNSW-NB15 dataset specializes in terrestrial traffic representation. This dataset

is pivotal in safeguarding against unknown attacks, evaluating performance, and ensur-
ing generalizability for machine learning-based intrusion detection systems. However,
the NSL-KDD and KDDCup99 datasets have faced criticism due to their outdated attack
types, imbalanced training and test set distributions, and lack of support for certain com-
mon network protocols, rendering them incompatible with contemporary cybersecurity
requirements [23, 24].

To address the limitations of KDDCup/NSL-KDD, Moustaf and Slay [25] developed
a more sophisticated intrusion detection dataset called UNSW-NB15, designed to re-
flect modern attacks and protocols. UNSW-NB15 is an example of an intrusion detection
dataset crafted by researchers at the Australian Center for Cybersecurity (ACCS) using
the IXIA tool, extracted from 100 GB of normal and modern datasets from attack traf-
fic. The full UNSW-NB15 dataset comprises 2.5 million data records, encompassing one
normal category and nine attack categories - Analytsis, Backdoor, DoS, Exploit, Fuzzers,
Generic, Reconnaissance, Shellcode, and Worms - with the raw data featuring 49 features.

The dataset creator also provided a partitioned dataset comprising 10% of the records,
including a training set (175,341 records) and a test set (82,332 records), as depicted in
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Fig. 7. The statistical distributions of the training and test set samples have been validated
to be highly correlated, indicating the reliability of the machine learning model partition-
ing. Additionally, a few categories, such as Analytics, Backdoor, Shellcode, and Worms,
comprise less than 2% of the dataset. In this 10% subset, some redundant features were
eliminated, reducing the number of features to 42. In our study, we utilized this 10%
dataset subset for categorization.

Fig. 7. Distribution of UNSW-NB15 data sets

This section outlines the following preprocessing steps:
1) Data cleaning: The provided UNSW-NB15 training and test sets initially contain

44 features. However, only 42 features are deemed meaningful, while the remaining two
features serve as class labels for attacks. ”attack cat” represents a multi-class label, while
”label” serves as a binary class label. Therefore, irrelevant labels are eliminated based on
the model’s task. Additionally, 67,601 rows in the dataset containing null and duplicate
values are cleaned.

2) One-hot encoding: The dataset includes three categorical features: ”service,” ”proto,”
and ”state.” These features transform using one-hot encoding, a technique that converts
each feature value into a binary feature.

3) Normalization: Normalization ensures uniformity in the range of values for each
feature. ”MinMax” normalization is employed to scale the feature values between 0 and
1, as demonstrated in equation (5). The difference between the minimum value of the
equation and the scale size determines the new value.
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4) Feature selection: A comprehensive feature selection approach combining infor-
mation gain and random forest importance is implemented to identify significant features.
Ultimately, 42 optimal flow-level features are retained, which is crucial for intrusion de-
tection and delineating diverse types of benign and malicious traffic simulated in the pro-
totype.

4. Results and Discussion

The proposed BLSAE-SNIDS-CD and BLSAE-SNIDS-DNN are tested on STIN and
UNSW-NB15 datasets, with STIN as the satellite dataset and UNSW-NB15 as the ground
dataset, to provide high security for the satellite-ground network. The experimental envi-
ronment is shown in Table 2.

Table 2. Experimental environment

Equipment

CPU Intel(R) Xeon(R) Silver 4116 CPU@2.10GHz
GPU Quadro P4000
RAM 64GB
OS Ubuntu 16.04
Python 3.8.3
Database STINUNSW-NB15

4.1. Evaluation Metrics

We utilize standard performance metrics to assess the efficacy of our proposed model on
the STIN dataset, including accuracy, precision, recall, and F1 score. They are calculated
using the following equations:

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 Score = 2× Precision× Recall
Precision+ Recall

(9)

The performance metrics are defined as follows: True Positive (TP) represents the
count of accurately recognized abnormalities. True Negative (TN) represents the count
of correctly recognized normal events. False Positive (FP) represents the count of normal
events incorrectly diagnosed as abnormal. False Negative (FN) represents the count of
abnormal events incorrectly recognized as normal.
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4.2. Result Discussion

To illustrate the effectiveness of the proposed SAT-IDS, we conducted tests on two datasets:
UNSW-NB15 and STIN. The confusion matrix of BLSAE-SNIDS-CD on the STIN test
set is depicted in Fig. 8.

Fig. 8. Confusion matrix of BLSAE-SNIDS-CD on STIN dataset

The confusion matrix of BLSAE-SNIDS-DNN on the test set is displayed in Fig. 9.
Notably, the model misclassifies only 1 test case per category, indicating a classification
accuracy close to 100%.

The model undergoes training with 50 epochs and a batch size of 256. Subsequently,
the learning curve depicting the loss of the training dataset is presented in Fig. 10.

We compare BLSAE-SNIDS-CD and BLSAE-SNIDS-DNN with representative SAT-
IDS models. Fig. 11 illustrates the accuracy comparison among all models. It is evident
that both BLSAE-SNIDS-CD and BLSAE-SNIDS-DNN exhibit higher accuracy than
most of the models, demonstrating strong performance across the board.

The performance comparison of all models using the STIN dataset in terms of accu-
racy, precision, recall and F1 score is shown in Table 3. The results show that BLSAE-
SNIDS-DNN using bi-directional LSTM stacked autoencoder coded features achieved
the best performance in all evaluation metrics with 99.99% in each metric.

Table 4 presents the performance of all models utilizing the STIN dataset. Notably,
BLSAE-SNIDS-DNN demonstrates superior performance compared to other models, achiev-
ing a remarkable accuracy of 99.99% for both attack types. Its performance surpasses that
of CNN, SVM, and RF-SFS-GRU by a significant margin.

The STIN security dataset contains different types of attacks from terrestrial and satel-
lite networks. In the literature, researchers have proposed different techniques that are usu-
ally applied to terrestrial networks but not applicable to satellite networks due to different
reasons such as limited resources, different tolerance to attacks, limited computational
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Fig. 9. Confusion matrix of BLSAE-SNIDS-DNN on STIN dataset

Fig. 10. Learning curves for loss of BLSAE-SNIDS-CD

power, and scarcity of satellite network datasets. The model performance comparison
on the UNSW-NB15 dataset is shown in Table 5 and Fig. 12. The results show that the
proposed BLSAE-SNIDS-DNN still performs better and outperforms the other models
despite the fact that the performance of the other models decreases when used with the
STIN dataset. The accuracy score of BLSAE-SNIDS-DNN on the UNSW-NB15 dataset
is 90.83%. The model’s best performance on these intrusion detection datasets shows the
superiority, reliability, and ability to generalize well in the proposed model.
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Fig. 11. Accuracy comparison diagram

Table 3. Model performance comparison on STIN satellite dataset

Ref. Model Accuracy(%) Precision(%) Recall(%) F1 Score(%)

CNN 75.39 82.98 75.4 74.28
SVM 84.24 83.35 85.62 84.48

[16] RF-SFS-GRU 87 87 86 86
[13] RFMLP 96.24 94.28 98.67 96.47
Proposed BLSAE-SNIDS-CD 99.93 99.99 99.99 99.9
Proposed BLSAE-SNIDS-DNN 99.99 100 100 100

Table 4. Accuracy of classifiers on STIN satellite dataset

Attack Type CNN SVM RF-SFS-GRU RFMLP BLSAE-SNIDS-CD BLSAE-SNIDS-DNN

Syn DDos 66.3 86.18 93.36 100 99.85 99.99
UDP DDos 98.4 83.37 94.49 93.18 100 99.99

Table 5. Model performance comparison on UNSW-NB15 dataset

model Testing acc. (%) Precision (%) Recall (%) F1-Score (%)

LSTM 63.61 69.16 61.61 65.17
ANN 63.61 69.16 61.61 65.17
RF-SFS-GRU 87 87 86 86
SFS-RF 90.5 91.19 90.41 90
BLSAE-SNIDS-DNN 90.83 91.21 90.85 90.4
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Fig. 12. Performance comparison of all models on UNSW-NB15 dataset

5. Conclusion

This study proposes a satellite network intrusion detection system (BLSAE-SNIDS) based
on a Bi-LSTM sparse autoencoder, applied to both the STIN satellite dataset and the
modern IDS dataset UNSW-NB15. BLSAE-SNIDS leverages unlabeled dat a to train the
Bi-LSTM sparse autoencoder, enabling unsupervised representation learning that reduces
dimensionality, parameters, and training time of classifiers. This enhances the model’s
generalization ability, making it suitable for satellite networks. Comparative analysis with
state-of-the-art models demonstrates its superiority. Experimental results indicate that the
proposed system achieves higher accuracy than other models on both datasets. However,
this study is limited by dataset availability and is confined to the STIN dataset. Future
research will aim to construct new datasets encompassing diverse satellite attack types
and normal traffic to assess the efficacy of the proposed model.
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