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Abstract. Deep learning methods have been widely applied to English text classifi-
cation tasks in recent years, achieving strong performance. However, current meth-
ods face two significant challenges: (1) they struggle to effectively capture long-
range contextual structure information within text sequences, and (2) they do not ad-
equately integrate linguistic knowledge into representations for enhancing the per-
formance of classifiers. To this end, a novel multilingual pre-training based multi-
feature fusion method is proposed for English text classification (MFFMP-ETC).
Specifically, MFFMP-ETC consists of the multilingual feature extraction, the multi-
level structure learning, and the multi-view representation fusion. MFFMP-ETC
utilizes the Multilingual BERT as deep semantic extractor to introduce language in-
formation into representation learning, which significantly endows text representa-
tions with robustness. Then, MFFMP-ETC integrates Bi-LSTM and TextCNN into
multilingual pre-training architecture to capture global and local structure informa-
tion of English texts, via modelling bidirectional contextual semantic dependencies
and multi-granularity local semantic dependencies. Meanwhile, MFFMP-ETC de-
vises the multi-view representation fusion within the invariant semantic learning
of representations to aggregate consistent and complementary information among
views. MFFMP-ETC synergistically integrates Multilingual BERT’s deep seman-
tic features, Bi-LSTM’s bidirectional context processing, and TextCNN local fea-
ture extraction, offering a more comprehensive and effective solution for capturing
long-distance dependencies and nuanced contextual information in text classifica-
tion. Finally, results on three datasets show MFFMP-ETC conducts a new baseline
in terms of accuracy, sensitivity, and precision, verifying progressiveness and effec-
tiveness of MFFMP-ETC in the text classification.

Keywords: Multi-feature fusion, multilingual pretrained model, English text clas-
sification, multi-level structure learning.

1. Introduction

As the scale of the internet expands, vast amounts of data inundate various platforms
[21,12,7]. Behind this seemingly chaotic data lies immeasurable value [14]. For example,
shopping platforms categorize products into different types, making it easier for users to
make purchases. News media accurately classify texts, enabling users to quickly find the
information they need, saving time and improving work efficiency. Therefore, the ability
to quickly and accurately obtain target information and uncover the potential value be-
hind data has become crucial [6,5]. Text classification technology, as a key solution for
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information categorization, has attracted significant attention. Text classification involves
mining the semantics of texts and grasping the main topics to categorize texts under prede-
fined labels. Specifically, text classification uses labeled data to train and teach the model.
Through training and learning, the model learns certain classification rules, and finally, an
established classifier is used to predict and categorize unknown texts. As a fundamental
technology in natural language processing, text classification is the cornerstone of many
NLP tasks. It is widely applied in fields such as news classification, spam filtering, senti-
ment analysis, and public opinion analysis [22].

In recent years, deep learning-based text classification methods have emerged one af-
ter another, significantly improving classification efficiency [13,2,30,9]. Neural network
models such as convolutional neural networks, self-attention models, generative adver-
sarial networks, and recurrent neural networks have been widely applied to text classifi-
cation tasks. Compared to traditional statistical learning methods like support vector ma-
chines (SVMs), deep learning models generally exhibit superior performance in classifi-
cation. This is because deep learning models can automatically extract high-level features
from large datasets, reducing the reliance on manual feature engineering while possessing
strong representation learning capabilities. For instance, Multilingual BERT, based on the
self-attention mechanism and large-scale pretraining, can capture contextual information,
handle long-distance dependencies, and enhance the generalization ability of the model
through multitask learning.

Despite the strong performance of deep learning-based text classification models in
various scenarios, challenges remain in capturing semantic information related to long-
distance dependencies within texts. Researchers have proposed several innovative meth-
ods to address this issue. For instance, Mundra et al. developed the hierarchical atten-
tion network, which improves text structure understanding by introducing two levels of
attention mechanisms—sentence and word levels—using bidirectional recurrent neural
networks for encoding [18]. Liu et al. introduced the MEANI model, which employs
an attention mechanism to integrate emotional language features into the neural network,
thereby enhancing the model ability to handle complex emotional expressions [16]. While
self-attention-based models have made significant progress in addressing long-distance
dependency issues, they have not entirely solved the problem. A key limitation is that
many models focus primarily on sentence or document-level processing without explic-
itly incorporating linguistic knowledge, which is essential for grasping nuanced semantic
relationships across different contexts. This shortcoming can lead to suboptimal perfor-
mance in certain scenarios. Take, for example, the sentence: “Although the plot of this
film may seem somewhat monotonous and indistinct, it uniquely captivates our perception
in a manner that few contemporary films achieve.” At first glance, the sentence appears
to criticize the film’s plot. However, considering the context—especially the phrase “in
a manner that few contemporary films achieve”—the sentence is actually offering high
praise. If a model fails to incorporate linguistic knowledge effectively, it might misclas-
sify this sentence as a negative review, illustrating the limitations of current self-attention
models in capturing subtle semantic relationships.

To this end, a novel multilingual pre-training based multi-feature fusion method is pro-
posed for English text classification (MFFMP-ETC). Specifically, MFFMP-ETC consists
of the multilingual feature extraction, the multi-level structure learning, and the multi-
view representation fusion. Specifically, multilingual feature extraction utilizes the power
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of Multilingual BERT to extract rich semantic features from English texts. By capturing
both contextual and nuanced language details, it provides a solid foundation for precise
text classification, which ensures that even subtle linguistic cues are effectively identified
and leveraged. Then, multi-level structure learning combines the strengths of Bi-LSTM
and TextCNN to capture both global and local features of the text. The Bi-LSTM focuses
on understanding long-term dependencies in both directions, ensuring that contextual re-
lationships within the text are thoroughly explored. Meanwhile, TextCNN is responsible
for identifying important local features using convolutional techniques, capturing finer
details that might be missed by global models. Furthermore, multi-view representation
fusion merges the features extracted by the previous components into a unified and com-
prehensive representation. By fusing global and local insights, it creates a more robust
and holistic understanding of the text which enhances the model sensitivity to both the
overall context and detailed features, resulting in superior classification performance. Fi-
nally, experiment results prove the model advantages in recognizing complex semantic
structures and enhancing classification precision, setting a new baseline for English text
classification tasks.

The contributions of MFFMP-ETC are threefold:

– A multi-level structure learning within the deep multilingual feature extraction ar-
chitecture is proposed via modelling bidirectional contextual semantic dependencies
and multi-granularity local semantic dependencies, which captures global and local
structure information of English texts.

– An invariant semantic learning is devised to aggregate consistent and complementary
information among representations of views for obtaining a more robust and holistic
understanding of the text which enhances the model sensitivity to both the overall
context and detailed features, resulting in superior classification performance.

– Experiment results illustrate the efficacy of MFFMP-ETC in comparison to existing
methods, highlighting its superior accuracy across three English text classification
datasets.

Next, Section 2 reviews related research on text classification methods based on deep
learning, including methods based on convolutional neural networks, methods based on
recurrent neural networks, methods based on feedforward neural networks, methods based
on graph neural networks, and methods based on pre-trained language models. Section 3
provides a detailed introduction to the structure and working principles of the MFFMP-
ETC model, including the input layer, multilingual BERT pre-trained language model
layer, (Bi-LSTM layer, TextCNN layer, multi-feature fusion layer, and classifier layer.
Section 4 presents the experimental results on the MR, SST-2, and CoLA datasets, demon-
strating the significant improvement in classification accuracy of the MFFMP-ETC model
compared to existing models. Finally, Section 5 summarizes the main contributions of this
paper and discusses potential future research directions, including exploring more com-
plex attention mechanisms, integrating domain knowledge, and applying the model to
other related tasks to further enhance text classification performance.

2. Related Works

Deep learning-based text classification model refer to a model that utilizes deep neural
network architectures to extract features from textual data and classify the text. This model
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learns from a large amount of training data to automatically capture semantic information
in the text and categorize it into one or more predefined classes. It is primarily divided into
five branches: methods based on convolutional neural networks (CNNs), methods based
on recurrent neural networks (RNNs), methods based on feedforward neural networks
(FNNs), methods based on graph neural networks (GNNs), and methods based on pre-
trained language models (PLMs).

Methods based on CNNs: CNNs are initially used for image processing. With further
research, they began to be applied in the field of text classification. Kim et al. proposed
the classic TextCNN model, which was the first to combine CNNs with text classification
tasks [2]. The TextCNN first utilized word2vec for word vector initialization, then used
multiple kernels of different sizes to extract key information from sentences, helping the
model better capture local features. Finally, the model fed the acquired data into a fully
connected layer for final classification and output. Although this model can better cap-
ture text features, it loses lexical order and positional information during convolution and
pooling operations, and can only capture local word order information, which is detri-
mental to the final classification results. In addition to the TextCNN model, there are also
classic text classification models such as CharCNN [30], DPCNN [9], and CCRCNN [27].
CharCNN transforms the input text into individual characters, representing the text using
strings without relying on syntactic and semantic features of the text. This approach has a
good fault tolerance rate and can improve classification accuracy. The DPCNN model fur-
ther refines and improves upon TextCNN by increasing the network depth to enhance text
feature extraction, thereby improving text classification accuracy. The CCRCNN model
is suitable for short text classification. It extracts contextual features of the text through
the network, uses attention mechanisms to capture contextual concepts, and integrates
these conceptual features, thereby strengthening the model’s ability to capture semantic
information and improving classification accuracy.

Methods based on RNNs: Text is sequential in nature, and understanding it requires
connecting words in a specific sequence rather than interpreting each word in isolation.
For example, the meaning of ”I,” ”eat,” and ”banana” changes depending on their order.
RNNs are designed to handle sequential data, making RNN-based text classification mod-
els widely applicable [19]. RNNs can capture positional information and long-distance
dependencies in sequences, enhancing the model’s ability to capture semantic informa-
tion in text. However, RNNs suffer from the issues of gradient vanishing and exploding,
which prevent parallel computation and result in high computational costs. Despite these
challenges, many excellent RNN-based text classification models have been developed.
TextRNN is one of the classic RNN-based text classification models. It is a multi-task
learning model that can be used in scenarios with limited sample data and has achieved
good results on many datasets. Other classic RNN-based text classification models in-
clude the MT-LSTM model [17] and the HAN model [24]. The MT-LSTM model lever-
ages LSTM, a variant of RNN, by categorizing the hidden states of LSTM into several
groups and activating or updating them at different intervals, making the model suitable
for long text classification. The HAN model divides the text into sentences, encodes words
and sentences using bidirectional LSTMs, and then employs an attention mechanism to
strengthen feature capture. Finally, it uses a softmax layer for text classification predic-
tion, achieving excellent results in long text classification tasks. The semi-supervised text
classification model based on bidirectional LSTM, proposed in 2019, integrates various
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loss functions such as cross-entropy, which also enhances the accuracy of text classifica-
tion to some extent [20].

Methods based on FNNs: Models based on feedforward neural networks are also ap-
plied to text classification tasks. By modifying word embeddings, feedforward neural
network models enhance the extraction of text features, significantly improving text clas-
sification accuracy. One of the most classic models is the fastText model [10]. This model
introduces the concept of n-grams, summing and averaging the input word vectors be-
fore feeding them into a softmax layer for classification. By converting multi-class tasks
into binary classification tasks, the model maintains low complexity and few parame-
ters, enabling fast and efficient text classification. Additionally, the SWEM model also
demonstrates excellent performance in long text classification [23]. This model captures
the maximum value of each dimension in word embeddings through max pooling, thereby
extracting key feature information from each word embedding. It then performs hierarchi-
cal pooling by averaging all windows, and finally uses global max pooling to sample text
features, capturing the most prominent text features. This process enhances the model’s
ability to extract text features, allowing it to achieve good results in text classification.

Methods based on GNNs: To address the limitations of traditional deep learning mod-
els in long-distance information transfer and comprehensive text semantics extraction,
recent research has shifted attention to Graph Neural Networks (GNNs). GNNs were ini-
tially designed for applications in graph-structured data. Nowadays, with deeper research,
GNNs have been applied to the field of text classification. Graph Neural Networks can de-
fine relationships between multiple concepts and preserve global structural information.
They can transform text classification tasks into graph node classification tasks. Due to
their unique properties, many classic text classification models based on GNNs have been
developed. Firstly, the graph-CNN model was proposed to convert text into graphs before
classification [3]. The model transforms text into a text graph and uses graph convo-
lution operations to capture long-distance text semantics, enhancing the model’s ability
to capture semantic information. TextGCN is another classic text classification model
based on GNNs [28]. This model constructs a text graph for the corpus based on word
co-occurrence and semantic relationships between words. The special properties of the
graph structure allow long-distance information transmission, improving the accuracy of
text classification. Zhang et al. proposed a heterogeneous graph neural network based on
transformers [29]. This model introduces additional structural encoding to account for
node heterogeneity, and the integration within the transformer allows for learning node
representations. Lin et al. proposed BertGCN, which integrates BERT with GCN to cap-
ture text features [15]. However, this model has a narrow focus on text feature information
and does not consider text features from multiple perspectives. Xie et al. proposed the TV-
GAE model, which captures feature information using GNNs [26]. This model integrates
a topic model into the graph structure to capture semantic information between text and
words, enhancing the model’s ability to learn text semantics and improving text classifica-
tion accuracy. Wang et al. proposed GLHG, a new graph construction method capable of
distinguishing different word documents, which is a new cross-language heterogeneous
graph neural network model [25]. Li et al. proposed the TextGTL model, which uses a
non-heterogeneous graph construction method [11]. This model constructs semantic text
graphs, context text graphs, and syntactic text graphs, and jointly trains multiple graphs
to capture significant feature information.



138 Ruijuan Zhang

Methods based on PLMs have also achieved great success in text classification tasks
by enhancing the extraction of text features through extensive pre-training. One of the
most classic models is the BERT pre-trained model, proposed in 2018. BERT is trained
on a large amount of unlabeled data to extract general features, which are then used to
complete classification tasks [4]. Specifically, the BERT model utilizes the encoder struc-
ture of the Transformer and is trained through two tasks. The first task is Masked Lan-
guage Modeling (Masked LM), where some tokens are masked and the model predicts the
masked tokens. The second task is Next Sentence Prediction, which involves randomly
selecting sentence pairs (sentence A and sentence B) and predicting whether sentence B
follows sentence A. This approach allows BERT to deeply learn word-level and sentence-
level features, improving its performance in subsequent classification tasks. In addition to
BERT, VAMPIRE is another classic pre-trained language model [8]. This model first in-
puts unlabeled text into a variational autoencoder (VAE) to learn general features through
pre-training. The data is then fine-tuned within the VAE model to obtain correspond-
ing word vector representations, which are then concatenated with GloVe word vectors.
Finally, the text classification is completed using an encoder and an MLP. MitText, pro-
posed in 2021, is another pre-trained language model [1]. This model uses BERT to pre-
dict mixed labeled sample data, generating pseudo-labels. It then performs TMix training
and combines TMix with other data, enhancing the data through back-translation, thereby
improving the model’s classification accuracy.

Fig. 1. The illustration of MFFMP-ETC, containing the multilingual feature extraction,
the multi-level structure learning, and the multi-view representation fusion

MFFMP-ETC stands out from traditional text classification methods due to its unique
integration of advanced techniques. Unlike CNNs that primarily capture local features
and often lose positional information, MFFMP-ETC combines the strengths of Multilin-
gual BERT, Bi-LSTM, and TextCNN to address both local and global semantic contexts.
While RNNs like TextRNN handle sequential data and long-distance dependencies, they
struggle with issues like gradient vanishing, which MFFMP-ETC overcomes through its
multi-feature fusion approach. FNNs, such as fastText, efficiently process text but may
lack depth in capturing complex semantic relationships. GNNs enhance long-distance
information transfer through graph structures but may not fully leverage linguistic knowl-
edge. Pre-trained Language Models PLMs like BERT provide deep contextual features
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but often do not integrate other feature extraction techniques. MFFMP-ETC synergis-
tically integrates Multilingual BERT’s deep semantic features, Bi-LSTM’s bidirectional
context processing, and TextCNN local feature extraction, offering a more comprehensive
and effective solution for capturing long-distance dependencies and nuanced contextual
information in text classification.

3. Multilingual Pretrained based Multi-feature Fusion Model for
English Text Classification

A novel English text classification model is proposed via integrating multi-view features
within the multilingual pre-training optimization framework (MFFMP-ETC), as shown in
Fig. 1. MFFMP-ETC consists of the multilingual feature extraction, the multi-level struc-
ture learning, and the multi-view representation fusion. The main mathematical notations
in MFFMP-ETC are listed in Table 1.

Table 1. Frequently used notations

Notations Description

xi the i-th word in the sentence.
hi the i-th word embedding vector
b the feature generated by BiLSTM
t the feature generated by TextCNN
z the fusion feature
MLP the multi-layer perceptron
Lpos positive Pair Loss
Lneg negative Pair Los
Lcross the cross-entropy loss
λ,β the balance coefficients

3.1. Multilingual feature extraction

In general, multilingual pre-trained encoders address the challenge of capturing long-
range contextual semantic information within text sequences by leveraging their training
across multiple languages. These models have learned to understand diverse sentence
structures and linguistic patterns, enabling them to better capture long-distance depen-
dencies in text. By being exposed to languages with varying syntactic and grammatical
rules, multilingual encoders develop a more flexible and comprehensive approach to un-
derstanding context, which enhances their ability to model relationships between distant
words in a sentence.

Hence, MFFMP-ETC utilizes the multilingual BERT to extract features from English
texts for enhancing representation discriminability. Firstly, the preprocessing is conduced
on each sentence, that is, a [CLS] token, indicating the beginning of the sentence, is added
to the start, and a [SEP] token, indicating the end of the sentence, is inserted at the end. Af-
ter preprocessing, the input English sentence is converted into three types of input vector
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embeddings: word embeddings, segment embeddings, and position embeddings. The final
input is the sum of these three types of embeddings. In this process, segment embeddings
are mainly used to differentiate between pairs of sentences by connecting the sentences
in the input text using the [CLS] token, which helps determine the order of two different
sentences during pre-training. Position embeddings are primarily used to distinguish the
semantic differences of words in different positions within the text sequence.

Specifically, given an input English sentence x composed of k words, which can be
formalized as:

x = [x1, x2, x3, . . . , xk] (1)

where xi represents the i-th word in the sentence.
In the experiments, the masked language model pre-training strategy is used to en-

able the model to learn contextual features of sentences. In this task, a random 15% of
the words in the text are masked with a special token, [MASK], and the model is then
tasked with predicting the masked words based on the final hidden output vectors ob-
tained through softmax functions. Here’s an example of the masking operation:

Original sentence: After watching the movie, I think it is better than the one I saw last
week.

Masked sentence: After watching the movie, I think it is [MASK] than the one I saw
last week.

However, since the input vectors do not include the [MASK] token as mentioned
earlier, a mask strategy is needed to address this issue. For words to be randomly masked
with the [MASK] token, the mask strategy is as follows: (1) 80% of the words are directly
replaced with [MASK]. (2) 10% of the original words are replaced with any other word.
(3) The remaining 10% are left unchanged. This strategy ensures varied input for the
model training, enhancing its understanding of context. For instance: (1)“After watching
the movie, I think it is [MASK] than the one I saw last week.” (2) “After watching the
movie, I think it is no than the one I saw last week.” (3) “After watching the movie, I think
it is better than the one I saw last week.”

After pre-training, using the sum of three embedding vectors generated by Multilin-
gual BERT as the input for both the BiLSTM layer and the TextCNN layer:

h = [h1, h2, h3, . . . , hk] (2)

where the dimension of hi is 768.

3.2. Multi-level structure learning

To capture multi-level structure information for learning robust and comprehensive fusion
representations, MFFMP-ETC integrates BiLSTM and TextCNN into a multi-feature fu-
sion module. TextCNN is responsible for extracting local features, such as key phrases
and n-gram patterns, while BiLSTM captures global contextual information and long-
range dependencies within the text. By combining these two approaches, the fusion mod-
ule generates a rich representation that balances local and global structures, leading to
improved generalization and robustness across different types of text data.

BiLSTM feature extraction: BiLSTM involves processing the text in both forward and
backward directions, capturing global structure features from the entire sequence. The
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BiLSTM learns long-range dependencies and contextual relationships by using hidden
state vectors at each time step. Specifically, the input to the BiLSTM network at time
step t is the concatenation of the hidden state from the previous time step ht−1 and the
current input vector xt. This enables the BiLSTM to integrate information from both past
and future contexts, refining the structure features produced by Multilingual BERT. As a
result, BiLSTM captures global dependencies within the text:

h⃗t = σ(Wt [⃗ht−1, xt] + b) (3)

The output vector of the hidden state of the LSTM network from back to front is:

←
ht = σ(Wt[

←
ht−1, xt] + b) (4)

where Wt and b represent the weight matrix and bias vectors of the forward and backward

LSTM networks. h⃗t−1 and
←
ht−1 denote the forward and backward hidden state vectors at

time step t−1, respectively. Finally, at time step t, the hidden state vector of the Bi-LSTM
layer is the concatenation of the forward and backward hidden state vectors:

bt = [⃗ht−1,
←
ht−1] (5)

After processing all time steps, a collection of hidden layer vectors that encapsulate
long-range contextual semantic information is obtained, denoted as:

B = [b1, b2, b3, . . . , bk] (6)

TextCNN feature extraction: TextCNN excels at extracting local features and captures
different N-gram features through convolution windows of various sizes. A piece of text
contains local semantic features of different granularities, thus necessitating the extraction
of features at different scales. By designing convolution kernels of various sizes to extract
text information and integrating features of different granularities, a comprehensive local
feature representation can be achieved. Using the convolution structure of TextCNN, local
features of the text can be extracted, facilitating text classification. The outputs of all
encoders in multilingual BERT are fed into the TextCNN layer. By adjusting the sizes
of convolution kernels, local text features are obtained at different widths. Convolution
operations are performed on the text sequence using convolution kernels with sizes of
2, 3, and 4. The resulting vectors are passed through the ReLU activation function to
capture important sentence information. The feature vectors obtained after pooling are
concatenated to form the output of the TextCNN layer.

Convolution operation formula: For a text sequence h = [h1, h2, h3, . . . , hk] and a
convolution kernel of size s, the feature ci extracted by the i-th convolution kernel is:

ci = f(w · hi:i+s−1 + b) (7)

where hi:i+s−1 denotes the concatenation of word vectors from position i to i+ s− 1, w
is the weight matrix, b is the bias, and f is the activation function (e.g., ReLU). After the
convolution operation, max-pooling is applied to extract the most significant feature from
each feature map. For a feature map c = [c1, c2, . . . , cn−k+1], the pooled feature p is:

p = max([c1, c2, . . . , cn−k+1]) (8)
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In the MFFMP-ETC, Using multiple convolution kernels of different sizes (e.g., 2, 3, and
4), the final output feature vector t of the TextCNN layer is obtained by concatenating the
outputs from all convolution and pooling operations:

t = concat[p2, p3, p4] (9)

where concat[] denotes concatenating function.

3.3. Multi-view representation fusion

The benefits of contrastive learning for learning fusion representations lie in its ability to
effectively utilize information from multiple views, thereby enhancing the model perfor-
mance and generalization ability. By merging representations from different views, richer
and more accurate semantic information can be obtained, which helps to improve the
quality of text representations and the effectiveness of the model.

The fusion representation is obtained through an MLP fusion layer, where the input
consists of the concatenation of three features. This process can be expressed by the fol-
lowing formula:

z = f(h, t, b) = MLP ([Concatenate(h, t, b)]) (10)

Here, h, t, and b represent the feature representations from the multilingual BERT feature
extraction, the textCNN feature extraction, and the BiLSTM feature extraction, respec-
tively. [·] denotes vector concatenation, and MLP represents a multi-layer perceptron.

In the contrastive learning framework, the goal is to maximize the similarity between
the fused representation z and the feature representations while minimizing the similarity
between these representations.

Lpos = −(cos(z, h) + cos(z, t) + cos(z, b)) (11)

Lneg = cos(h, t)) + cos(h, b) + cos(t, b) (12)

Lcontra = Lpos + λLneg (13)

where λ is the parameter for balancing Lpos and Lneg. cos(, ) denotes the similarity func-
tion.

Meanwhile, MFFMP-ETC uses a fully connected classification layer as the classifica-
tion head to transform the fusion representation z into scores for each class, and then uses
the softmax function to convert these scores into probabilities.

The output y of the classification head can be represented as:

y = softmax(Wclassz + bclass) (14)

Here, Wclass is the weight matrix of the the classification head, bclass is the bias vector,
and softmax is the softmax function. y is a vector of size K, representing the probability
distribution over each class.
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Then, the cross-entropy loss for K classes is utilized to achieve pattern mining of
English text, which can be expressed as:

Lcross = − 1

N

N∑
i=1

K∑
k=1

yi,k log(ŷi,k) (15)

Where N is the number of samples, yi,k is the true label indicating whether the i-th sample
belongs to the k-th class, and ŷi,k is the predicted probability by the model for the i-th
sample belonging to the k-th class. This process transforms the fused representation z into
a probability distribution over each class, enabling text classification.

3.4. Overall Objective Function

The MFFMP-ETC model employs an integrated objective function that combines three
distinct types of losses to optimize its performance comprehensively. The overall objective
function incorporates the following components:

L = Lpos + λLneg + βLcross, (16)

where λ and β are balancing parameters that control the influence of the negative pair
loss and cross-entropy loss, respectively.

The choice of this integrated objective function is driven by several key advantages:

– Enhanced semantic representation: By incorporating the positive pair loss, the model
benefits from a more comprehensive and enriched semantic representation. This fu-
sion of information from multiple feature sources allows the MFFMP-ETC model
to better capture and represent the nuanced meanings within the text, enhancing its
overall expressiveness.

– Reduced information redundancy: The negative pair loss contributes to minimizing
redundancy by maximizing the mutual information between the fused representation
and individual viewpoints. This reduction in redundancy not only improves the effi-
ciency of the model but also enhances its generalization capability, making it more
effective in diverse classification scenarios.

– Improved model robustness: The combination of contrastive learning losses helps the
model handle noise and errors more effectively. By focusing on both positive and
negative pairs, and aligning predictions with true labels through cross-entropy loss,
the model becomes more robust and stable, which is crucial for achieving reliable
performance in practical applications.

Overall, this multi-faceted loss function allows MFFMP-ETC to balance feature fu-
sion, differentiation, and classification accuracy, leading to significant performance im-
provements in English text classification tasks compared to traditional single-loss or less
integrative approaches.
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4. Experiments

4.1. Set up

Dataset and metric: The following three common English text datasets, i.e., MR dataset,
SST-2 dataset, and CoLA dataset, are primarily employed for training and testing MFFMP-
ETC:

– MR dataset is constructed based on brief movie review texts. The training set mainly
includes 5,331 negative samples and 3,610 positive samples.

– SST-2 dataset is a variant of the MR dataset. It should be noted that very positive
and affirmative review texts are labeled as positive samples, while negative and ex-
tremely negative review texts are labeled as negative samples. Overall, the training
set is divided into 3,310 negative samples and 3,610 positive samples.

– CoLA dataset is a dataset used for binary single-sentence classification tasks, which
contains 8,551 training data and 1,043 test data, totaling 6,744 positive samples and
2,850 negative samples. The average text length of the dataset is 7.7 words. Since the
test set of CoLA is not annotated, this paper allocates 5% of the samples from the
training set as the validation set and uses the original validation set as the test set.

For evaluation metrics, MFFMP-ETC mainly uses accuracy, sensitivity, and precision
to measure and assess the effectiveness and performance of MFFMP-ETC and compara-
tive models. Accuracy is calculated using the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

where TP, TN, FP, and FN represent the number of positive samples correctly identified,
negative samples correctly identified, negative samples incorrectly identified as positive,
and positive samples incorrectly identified as negative, respectively. Sensitivity is calcu-
lated using the following formula:

Sensitivity =
TP

TP + FN
(18)

This metric measures the proportion of actual positives that are correctly identified by the
test. Precision is calculated using the following formula:

Precision =
TP

TP + FP
(19)

This metric measures the proportion of positive identifications that are actually correct.
Implementation Details: In the experiments, MFFMP-ETC is meticulously constructed

on the NVIDIA GeForce RTX 3080 Ti graphics card, leveraging the capabilities of the
PyTorch framework within the Visual Studio Code as the development environment,
where Python version 3.6.8 is deployed. Word2Vec vectors, each with a dimension of
300, are employed to represent textual data, accommodating a maximum text length of
150 characters.Bi-LSTM network layer within MFFMP-ETC is tailored with 16 nodes
to effectively capture the dynamics of sequential information. MFFMP-ETC undergoes
a structure training regimen comprising 10 epochs and a batch size of 32, parameters
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chosen to balance thorough training with the risk of overfitting. The Adam optimizer is
engaged for its adaptive learning rate mechanism, initiated with a learning rate of 0.001
and accompanied by a decay rate of 0.1 to strategically taper the learning rate through-
out the training process. To augment the model generalization capabilities and mitigate
overfitting, Dropout with a 0.3 probability is seamlessly integrated into the MFFMP-ETC
model training phase. This method introduces an element of randomness by deactivat-
ing a subset of neurons during training, compelling the model to develop a more diverse
and robust set of features. Furthermore, MFFMP-ETC benefits from the incorporation of
word embeddings derived from the pre-trained multilingual BERT model, which, with a
dimensionality of 768, provides a comprehensive semantic representation. This integra-
tion allows MFFMP-ETC to capitalize on the nuanced language understanding expertise
acquired by BERT during its pre-training.

Table 2. Comparison results of methods on different datasets in terms of accuracy (Acc),
precision (Prec), and sensitivity (Sens)

Method MR dataset SST-2 dataset CoLA dataset
Acc Prec Sens Acc Prec Sens Acc Prec Sens

SVM 0.745 0.715 0.744 0.794 0.777 0.789 0.572 0.499 0.556
MLP 0.759 0.726 0.749 0.808 0.810 0.799 0.608 0.612 0.576
CNN-non-static 0.815 0.815 0.812 0.872 0.877 0.874 0.617 0.613 0.631
LSTM 0.804 0.799 0.800 0.859 0.866 0.864 0.612 0.632 0.605
Bi-LSTM 0.813 0.812 0.812 0.882 0.888 0.898 0.625 0.666 0.625
Multilingual Bert 0.816 0.815 0.822 0.912 0.910 0.901 0.811 0.804 0.802
MFFMP-ETC 0.862 0.866 0.859 0.915 0.920 0.919 0.832 0.818 0.820

4.2. Comparison with baselines

Comparison methods: To thoroughly evaluate the capability of MFFMP-ETC to accu-
rately capture both local and global advanced contextual semantic information, a series of
comparative and evaluative experiments are conducted with MFFMP-ETC against several
benchmark models. In addition to the original Bert pre-trained language model being di-
rectly applied to English text classification tasks, several relevant deep learning network
models are selected for comparative experiments. The detailed information on the selected
benchmark models is described as follows: SVM: To ensure the comprehensiveness of the
comparative experiment, the traditional classification model SVM is specifically chosen
as a benchmark for comparison in MFFMP-ETC. MLP: The multi-layer perceptron, a tra-
ditional model, has two hidden layers comprising 512 and 100 hidden units, respectively.
This perceptron is utilized with bag-of-words vectors that are weighted by term frequency
(TF). CNN-non-static: The input vectors for this model are kept consistent with those of
the MLP, with the model original training parameters remaining unaltered. LSTM: The
hidden layer output vectors of the Bert model are served as inputs to a unidirectional
Long Short-Term Memory network. Bi-LSTM: The bidirectional LSTM network is pro-
vided with inputs that are consistent with those of the unidirectional network. Multilingual
Bert: In the experiments, the original pre-trained multilingual Bert model is utilized. To
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guarantee that the comparative experiments represent a fair comparison, all models have
been trained from scratch.

Comparison results: As shown in Table 2, MFFMP-ETC outperforms all other mod-
els across all datasets and evaluation metrics, demonstrating advantage in extracting both
local and global high-level contextual semantic information. On the MR dataset, MFFMP-
ETC achieved the highest scores among all models in terms of Acc, Prec, and Sens, with
values of 0.862, 0.866, and 0.859, respectively. On the SST-2 dataset, MFFMP-ETC once
again demonstrated the best performance across all evaluation metrics, with Acc, Prec,
and Sens, being 0.915, 0.920, and 0.919, respectively. On the CoLA dataset, the MFFMP-
ETC performance was also the best among all compared models, with an Acc of 0.832, a
Prec of 0.818, and a Sens of 0.820. The reasons are twofold: (1) Utilization of multilingual
pretrained models. MFFMP-ETC leverages a multilingual BERT model as one of its core
components. This pretrained model has been trained on a variety of languages, captur-
ing cross-linguistic semantic information, thereby enhancing the model’s comprehension
and classification capabilities for English texts. This cross-linguistic semantic understand-
ing is a capability that traditional monolingual models lack, giving MFFMP-ETC an ad-
vantage when dealing with English texts that are multilingual or have complex semantic
structures. (2) Multi-feature fusion strategy. MFFMP-ETC employs a multi-feature fu-
sion strategy, effectively combining the deep semantic features from the BERT model,
the bidirectional contextual features from Bi-LSTM, and the local n-gram features from
TextCNN. This fusion strategy not only enhances the model’s ability to capture a wide
range of textual information but also improves the accuracy and robustness of classifica-
tion through the complementary nature of the features.

In addition, in the realm of text classification, the ability to discern and utilize semantic
information is paramount. The Multilingual Bert model’s success over traditional models
such as SVM, MLP, and LSTM is a testament to its advanced capability to capture and
process linguistic nuances. This pre-trained model, with its exposure to a diverse range
of languages, has honed a deep understanding of language constructs that transcends the
limitations of models trained solely on local context. The Bi-LSTM model’s enhancement
over its unidirectional counterpart is particularly noteworthy. By processing information
in both forward and backward sequences, Bi-LSTM is able to develop a more compre-
hensive representation of the text, thus enhancing its predictive accuracy. This bidirec-
tional capability is crucial for understanding the context in which words are used, as the
meaning of a sentence can be significantly altered by the words that precede or follow it.
Despite the Bi-LSTM model showing a slight dip in performance when compared to the
CNN-non-static model on the MR dataset, this is not indicative of a weakness. Instead,
it highlights the potential for hybrid models that can leverage the strengths of various ar-
chitectures. The CNN-non-static model, with its ability to capture local features through
convolution operations, complements the Bi-LSTM’s contextual prowess. The combina-
tion of the Bi-LSTM with the Multilingual Bert model is a case in point. This synergy
not only bolsters the model’s ability to express and extract semantic information but also
significantly amplifies the overall performance of the classification task. The Multilin-
gual Bert model’s pre-training on a vast corpus of text endows it with a rich vocabulary
of linguistic patterns and structures, which, when combined with the Bi-LSTM’s tem-
poral insights, results in a model that is both sensitive to local features and attuned to
broader contextual elements.This integrated approach to text classification is a step to-
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wards more sophisticated models that can handle the intricacies of natural language with
greater finesse. It opens up avenues for further research and development, encouraging
the exploration of additional hybrid models and the refinement of existing architectures.
As we continue to push the boundaries of what is possible with text classification models,
the fusion of diverse methodologies will undoubtedly play a key role in shaping the future
of natural language processing.

4.3. Ablation Study

Table 3. Ablation experiments of each component on MR

Lpos Lneg Lcross Accuracy Precision Sensitivity
√

0.798 0.780 0.794√ √
0.842 0.842 0.840√ √
0.814 0.812 0.820√ √ √
0.862 0.866 0.859

Three ablation experiments about Lpos, Lneg, and Lcross are conducted to prove the
effectiveness of each component. Specifically, (1) MFFMP-ETC utilizes Lcross to train the
network. This configuration serves as a baseline where only the cross-entropy loss is used.
The results show an accuracy of 0.798, precision of 0.780, and sensitivity of 0.794. This
indicates the performance when contrastive components are not used. (2) MFFMP-ETC
utilizes Lpos and Lcross to train the network. In this setup, the positive sample pair loss
is included along with the cross-entropy loss, resulting in improved performance with
an accuracy of 0.842, precision of 0.842, and sensitivity of 0.840. This demonstrates the
effectiveness of maximizing the similarity between the fused representation and feature
representations. (3) MFFMP-ETC utilizes Lneg and Lcross to train the network. Here, the
negative sample pair loss is included along with the cross-entropy loss, leading to an
accuracy of 0.814, precision of 0.812, and sensitivity of 0.820. This shows the benefit of
minimizing the similarity between different feature representations. These results indicate
that both Lpos and Lneg contribute significantly to the model’s performance. Including
all three components (Lpos, Lneg, and Lcross) achieves the best results, demonstrating the
effectiveness of the proposed framework.

As shown in Table 3, there are three conclusions: (1) The inclusion of Lpos signifi-
cantly improves performance. Comparing the results with and without Lpos, we observe
that accuracy increases from 0.798 to 0.842, precision from 0.780 to 0.842, and sen-
sitivity from 0.794 to 0.840 when Lpos is added. This demonstrates the effectiveness of
maximizing the similarity between the fused representation and the individual feature rep-
resentations. (2) The addition of Lneg also enhances the model’s performance. When Lneg
is included, accuracy improves from 0.798 to 0.814, precision from 0.780 to 0.812, and
sensitivity from 0.794 to 0.820. This indicates the benefit of minimizing the similarity be-
tween different feature representations to improve overall performance. (3) Combining all
three components (Lpos, Lneg, and Lcross) yields the best results. The model achieves the
highest accuracy of 0.862, precision of 0.866, and sensitivity of 0.859 when all compo-
nents are included. This confirms that the proposed contrastive learning framework, which
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incorporates both positive and negative sample pair losses along with the cross-entropy
loss, is the most effective configuration for optimizing performance.

4.4. The impact of different maximum sentence lengths

In an effort to understand how the maximum lengths of text in various datasets affect
the performance of machine learning models, a series of ablation studies were conducted
on the MFFMP-ETC. These studies were meticulously carried out across three distinct
datasets to provide a comprehensive insight into the influence of text length on model
outcomes. The findings, as presented in Fig. 2, reveal an intriguing pattern. Initially, the
performance of the model was observed to improve consistently across all three datasets
as the maximum length of the text was incrementally increased. This improvement sug-
gests that longer texts, up to a certain point, enable the model to capture more contextual
information, which contributes to more accurate predictions. However, this trend of im-
provement does not persist beyond a certain text length. The data indicates that when the
length of the text surpasses 150 tokens, the performance gains of the model are curtailed,
and a slight decline in performance is noted. This could be due to the model’s capacity
to process information reaching saturation, or the inclusion of noise or irrelevant infor-
mation that may dilute the signal-to-noise ratio. Recognizing this inflection point, it was
concluded that extending the text length beyond 150 tokens does not yield significant
performance improvements and may even be detrimental. This insight is crucial for op-
timizing the model’s efficiency and effectiveness. A maximum text length of 150 tokens
was selected as the optimal value, striking a balance that maximizes the model’s predictive
power while minimizing computational expenses.

Fig. 2. The impact of different maximum sentence lengths on the performance of
MFFMP-ETC
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4.5. Parameter Analysis

Fig. 3 illustrates the sensitivity analysis of parameters λ and β on three datasets for
MFFMP-ETC. Specifically, in the experiments, λ and β are constrained within the set
{0, 0.0001, 0.001, 0.01, 0.1, 1} where one parameter was kept constant while the other
was systematically varied. The results depicted in Fig. 3 illustrate MFFMP-ETC’s robust-
ness across varying values of λ and β. The performance consistently remains satisfactory,
particularly when λ is set to 0.01 and β is set to 0.001. As a result, for the three datasets,
MFFMP-ETC is configured with λ = 0.01 and β = 0.001 in the experiments. This con-
figuration is empirically determined to yield a high level of accuracy, suggesting that it
effectively weights the different components of the network loss function in a manner
that is conducive to learning robust action recognition features. The parameters λ and β
play a crucial role in the network by controlling the balance between certain regulariza-
tion terms and the overall loss. The optimal values provide a valuable reference for future
research and applications of MFFMP-ETC, as they offer a blueprint for achieving high
performance with a reasonable computational cost.

4.6. Comparison and analysis of different feature fusion

To validate the effectiveness of the multi-feature fusion model in English text classifi-
cation, MFFMP-ETC designs three types of feature fusions: (1) fusion of features ex-
tracted by multilingual BERT and BiLSTM, (2) fusion of features extracted by multi-
lingual BERT and TEXTCNN, and (3) fusion of features extracted by TEXTCNN and
BiLSTM. Based on the results in Table 4, three key observations can be made. First, the
fusion of multilingual BERT and TEXTCNN demonstrates higher accuracy, precision,
and sensitivity (0.850, 0.854, and 0.852, respectively) compared to the other two feature
fusion methods involving multilingual BERT and BiLSTM or TEXTCNN and BiLSTM.
Second, while the TEXTCNN and BiLSTM fusion performs slightly better than the mul-
tilingual BERT and BiLSTM fusion in terms of precision (0.844 vs. 0.845) and sensitivity
(0.847 vs. 0.845), it has a marginally lower accuracy (0.841 vs. 0.847). Third, MFFMP-
ETC outperforms all other methods across all metrics, achieving the highest accuracy
(0.862), precision (0.866), and sensitivity (0.859), indicating its superior effectiveness in
feature fusion for English text classification.

Table 4. Comparison and analysis of different feature fusion on MR

Fusion Accuracy Precision Sensitivity

multilingual BERT and BiLSTM 0.847 0.845 0.845
multilingual BERT and TEXTCNN 0.850 0.854 0.852
TEXTCNN and BiLSTM 0.841 0.844 0.847
MFFMP-ETC 0.862 0.866 0.859
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(a) MR (b) MR

(c) SST-2 (d) SST-2

(e) CoLA (f) CoLA

Fig. 3. The sensitivity analysis of parameters λ and β on three datasets for MFFMP-ETC
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5. Conclusion

The paper introduces a novel English text classification model known as Multilingual Pre-
trained based Multi-feature Fusion Model (MFFMP-ETC), which represents a significant
advancement in natural language processing. By integrating the strengths of Multilin-
gual BERT, Bi-LSTM, and TextCNN, MFFMP-ETC effectively captures both local and
global contextual structure information in texts. Its innovative approach to feature fu-
sion and the use of a multilingual pre-trained language model are crucial for enhancing
the recognition of long-distance dependencies and contextual information. MFFMP-ETC
achieves state-of-the-art results on the MR, SST-2, and CoLA datasets, with accuracies of
86.2%, 91.5%, and 83.2%, respectively, highlighting its superior accuracy and robustness
in managing complex semantic structures and improving classification precision. Future
work could further expand by exploring other multilingual pre-trained models, integrat-
ing additional contextualized features, handling multimodal data, conducting real-world
application tests, improving scalability and efficiency, and enhancing model interpretabil-
ity. These directions promise to push the boundaries of text classification technology and
address a broader range of linguistic and contextual challenges.
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