
Computer Science and Information Systems 22(1):279–310 https://doi.org/10.2298/CSIS240701009D 

 

   

 

Mapping-Based Approach to Integration of  

Technical Spaces 

Vladimir Dimitrieski
1
, Slavica Kordic

1
, Sonja Ristic

1
,  

Heiko Kern
2
, and Ivan Lukovic

3 

1 Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 

21000 Novi Sad, Serbia 

{dimitrieski, slavica, sdristic}@uns.ac.rs 
2 Institute for Applied Computer Science, Goerdelerring 9,  

04109 Leipzig, Germany 

kern@infai.org 
3 Faculty of Organizational Sciences, Jove Ilića 154, 

11000 Belgrade, Serbia 

ivan.lukovic@fon.bg.ac.rs 

Abstract. In the contemporary business landscape, the seamless integration of 

software components and systems is vital for ensuring the unimpeded flow of 

information, which is key to achieving success in the market. While addressing 

integration issues using standardized communication interfaces is generally 

preferred, standards are often adjusted or disregarded due to business goals or 

market strategies. Consequently, developers often resort to the manual 

development of integration adapters. This process is time-consuming, error-prone 

and persists as a significant cost factor. In this paper, we address integration issues 

and introduce a novel mapping-based approach for structured, automated, and 

reusable integration. We present an automated development process for the 

integration adapters at a higher level of abstraction, based on model-driven 

software development principles. We also present a tool called AnyMap and a 

visual domain-specific modeling language for specifying mappings and 

generating adapters, and we demonstrate the approach in a practical use case. 

Keywords: mapping-based integration, technical spaces, model transformations, 

model-driven software development, Industry 4.0. 

1. Introduction 

The modern business landscape is characterized by its open, dynamic, and almost 

limitless nature, presenting many new challenges. Key features of this landscape include 

globalization, intensified competition, technological innovation, rapid development 

cycles, flexibility, resource efficiency, decentralized production, and individualized 

demand. Companies are not only required to be the first to market their own products 

but also to offer a high degree of customization to meet the unique needs of individual 

buyers. Consequently, companies are rapidly adapting and engaging in collaborative 

processes, which necessitates the integration of their hardware and software [1–4]. 

Integrated systems enhance competitive advantage by providing unified and efficient 

access to information [5], leading to the necessity of integrating information systems 

(IS). The decentralization of production has given rise to new forms of partnership, 
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allowing companies visibility into their respective business partners' operations. For 

instance, in a factory with integrated systems, partners may gain insight into the 

production status of a specific product. This shift has also fostered new client 

relationships, enabling customers to monitor the progress of their products from 

manufacturing to delivery. Continuous data exchange is essential for implementing 

standardized business processes as part of integration. 

One defining aspect of modern businesses is the emphasis on technological 

innovation, encompassing the Internet of Things (IoT) with its Radio-Frequency 

IDentification (RFID) tags, sensors, actuators, and mobile phones, Cyber-Physical 

Systems (CPS), Internet of Services (IoS), and Smart Factory. These advancements 

have given rise to the concept of Industry 4.0. “Industry 4.0 is a collective term for 

technologies and concepts of value chain organization. Within the modular structured 

Smart Factories of Industry 4.0, CPSs monitor physical processes, create a virtual copy 

of the physical world, and make decentralized decisions. Over the IoT, CPSs 

communicate and cooperate with each other and humans in real time. Via IoS, internal 

and cross-organizational services are offered and utilized by value chain participants” 

[6]. Introducing protocols and data formats for device communication by market 

entrants can create integration challenges. 

An entire company's supply chain, encompassing levels such as material 

procurement, manufacturing, storage, transportation, and sales, is orchestrated through 

an information system (IS). Each level requires data from the level below to provide 

services and information to end users, making integration between levels a critical 

concern. Therefore, seamless information flow must be facilitated through device and IS 

integration to ensure the company's smooth operation across all levels. In general, 

integration in system and software development can be defined as “the process of 

linking separate computing systems into a whole so that these elements can work 

together effectively” [7]. Developers of ISs face the challenge of connecting the 

machines at a software level with the existing machine landscapes and IoT.  

In contemporary manufacturing systems, integrating different devices and software 

components can be a complex task due to the use of various data formats and 

communication protocols. Manufacturers often opt for proprietary protocols over 

standardization for various business and market reasons, which complicates integration. 

As a result, integration engineers are required to create adapters to facilitate smooth 

communication and data exchange between these devices and software components. 

Data formats, which are either implicitly defined or explicitly expressed by data 

schemas, and the tools used to handle them constitute a Technical Space (TS). Adapting 

data from one TS to another, such as from Comma Separated Values (CSV) to 

Extensible Markup Language (XML), requires the development of specific adapters for 

each combination of TSs. This challenge, termed inter-space heterogeneity or data 

model heterogeneity [8], persists despite industry standards and remains a significant 

cost factor [9]. Manual development of adapters for each pair of technical spaces is 

time-consuming, error-prone, expensive, and labor-intensive. 

Despite numerous approaches and tools to solving problems in the data integration 

domain, there remains a significant space for improvement. Most existing tools provide 

just one visual concrete syntax, graphical or tabular, with no exposed or explicitly 

defined abstract syntax. The graphical syntax is suitable for integration scenarios with 

low to medium complexity, while tabular syntax is suitable for scenarios with high 

complexity. Having multiple syntaxes could provide different views on top of the same 
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abstract syntax. Thus, the tool can be used in a variety of scenarios, enabling automated 

model validation and reasoning and easier development of code generators. Another 

important issue is the granularity level of reusable components. Many integration tools 

provided the reuse of one of the following concepts: user-defined functions, TS 

specifications, or mapping specifications. The most important type of reuse is the 

mapping specification reuse, but it is the hardest to accomplish. With this type of reuse, 

whole mappings could be reused and adapted to a new integration scenario, resulting in 

the (semi-)automation of the integration process. This requires the reuse and adaptation 

at the level of individual element mappings, not just at the level of whole mapping, as is 

the case with most tools. 

Our goal is to address the inefficiency when creating integration adapters by 

introducing an innovative approach for the structured, automated, and reusable 

integration of different TSs. In this paper, we propose an automated development 

process for software integration adapters at a higher level of abstraction, rather than 

manually crafting adapters at the data level. In our approach, we distinguish between the 

transformation logic and its implementation. This differentiation is facilitated by 

leveraging Model-Driven Software Development (MDSD) principles. As stated in [10], 

MDSD is a “methodology for applying the advantages of modeling to software 

engineering activities”. It is grounded in explicitly specifying models considered first-

class artifacts of all software engineering activities. Consequently, any software-related 

artifact is viewed as a model or a component of a larger model. The encouragement 

examples of successful MDSD principles' application in industry are encountered: in the 

development and management of Cyber–Physical Systems (CPSs) and smart 

manufacturing [11], in the fields of Internet of Things (IoT), and multi-agent systems 

[12] and in the development of software for robots [13]. 

MDSD approaches are usually centered around a language that is specific to a certain 

domain of application [14, 15]. Such languages are called Domain-Specific Modeling 

Language (DSML). We have developed a visual DSML aimed at specifying 

transformation models, known as mappings, between diverse technical spaces and their 

schemas. This language allows expressing of expert knowledge with a set of domain-

specific concepts and appropriate models to facilitate the creation of high-abstraction-

level mappings between the elements of the integrated technical spaces. These 

mappings are considered the fundamental units of integration and can be conveniently 

reused when building new transformation models. Segregating the transformation logic 

by creating platform-independent mappings enables transformation knowledge to be 

translated to different scenarios and integration platforms. We have developed two 

algorithms aimed at automation of transformation model's specification – a reuse 

algorithm and an alignment algorithm. The reuse algorithm identifies reuse candidates 

amongst previously specified and stored mappings by detecting similarities between the 

new schema elements and the elements within the existing mappings. The alignment 

algorithm compares pairs of source and target schemas to estimate their similarity and 

proposes the best matching pairs. We have developed various comparators, which can 

be combined to enhance the algorithms' precision. Output for both algorithms is a set of 

mappings that can be automatically applied to the new schema. 

The executable transformation code, an integration adapter, is generated 

automatically from mappings for supported execution environments. This automation 

minimizes development effort and increases the quality of adapters.  
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To implement our approach, we have developed a tool called AnyMap [16, 17] for 

specifying mappings and generating adapters. This tool provides the following 

functionalities: (i) importing existing technical space data schemas or automatically 

deducing a simplified schema from a schema-less data file, (ii) creating mappings 

between the schema elements based on a DSML, (iii) reusing existing mappings based 

on those stored in a reuse repository, and (iv) generating executable adapters to 

transform the data. Adapters are generated for different target environments and 

programming languages, so they can be used immediately after generation on the 

provided source data files. Currently, a code generator is provided for our custom-built, 

Java-based microservice execution environment. 

Therefore, our research's main contributions include our integration approach, the 

AnyMap tool with the developed DSML, and the implemented reuse mechanism. They 

are intended for software engineers of various profiles and domain experts participating 

in integration processes. We offer a highly generic solution that allows that concept to 

be applied in any business, economic, or problem domain. Following the MDSD 

principles and providing a formal abstract syntax for the DSML, we can specify more 

than one concrete syntax and automate model validation and code generation. In 

addition, this solution enables the reuse and adaptation of individual element mappings, 

not limited to whole mappings, leading to a substantial increase in the level of mapping 

specification automation. Finally, the automatic generation of integration adapters 

speeds up work, reduces the number of errors, increases quality, and reduces costs of 

adapter development.  

The paper is structured as follows. In Section 2, we discuss related work. Section 3 

presents our integration approach in detail with the developed DSML and reuse 

mechanisms. Afterward, we briefly present the AnyMap tool in Section 4. After that, we 

illustrate a use case in Section 5 and conclude this paper in Section 6 with a summary 

and suggestions for future work. 

2. Related Work 

Various methods exist for integrating TSs or system components. We focus on 

transferring data between interfaces or components with disparate data structures. This 

form of integration is commonly referred to as interconnectivity. The interconnectivity 

integration approaches mentioned in the literature can be categorized into two main 

types: standardization and transformation-based. Standardization approaches aim to 

provide standard solutions, protocols, and processes for different layers of the 

integration process. In cases where a standard is not available, fully developed, or not 

adhered to by a company, a proprietary protocol and integration adapters may be used to 

integrate desired TSs. These integration adapters are created by following a 

transformation-based approach, transforming input data to target data based on a set of 

transformation rules. This section focuses on transformation-based approaches, as our 

approach can also be classified under this category.  

There are three main sub-categories of transformation-based approaches found in the 

literature: (i) schema-based integration approaches, (ii) model-driven integration 

approaches, and (iii) ontology-based integration approaches. What is known as schema 

mapping or schema matching in the database and artificial intelligence domains, in the 
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semantic web community is known under the name ontology alignment or ontology 

matching. Some of the approaches from Sections 2.2 and 2.3 also share this view and 

are based on ontologies, so no clear line separates these approaches and fits them into a 

single, separate category. Therefore, in the rest of the section, we will only focus on the 

schema-based and model-driven approaches. 

Schema matching, as defined in the book [18], involves finding semantic 

correspondences between elements of two schemas. On the other hand, schema 

mapping, as described by Ten Cate et al. [19], is a high-level, declarative specification 

of the relationship between the source schema and the target schema. Visual notation is 

commonly used to specify schema mappings, allowing for manual specification, and 

may also include schema matching modules to aid in finding suitable mapping 

candidates. Therefore, schema matching focuses on (semi-)automatically providing a set 

of mapping elements, while schema mapping involves a tool for manually specifying 

mappings between source and target schemas, which serves as input for executable code 

generators. 

Agreste et al. [20] provided a survey on XML schema matching. The authors 

expanded the scope of existing surveys on general matching approaches by describing 

new techniques tailored specifically for the XML domain. They argued that for the best 

matching technique in the XML domain, the matching tools should be specialized for 

that domain and utilize all its peculiarities. This approach leads to more efficient 

matches better suited to the XML domain, allowing for more precise identification of 

schema element semantics.  

In their work, Bernstein et al. [21, 22] present a solution for adapting the schema 

mapping technique to an industrial setting. They introduce a prototype of a 

customizable schema matcher called PROTOtype PLAtform for Schema Matching 

(PROTOPLASM). This tool consists of three layers: (i) an import layer where mapped 

artifacts are transformed into a common internal representation based on XML, (ii) an 

operation layer containing the necessary concepts to construct a schema-matching 

strategy, and (iii) a graphical language layer used to combine graphical representations 

of operational concepts into matching strategy scripts for execution. Similarly, 

Raghavan et al. [23] propose SchemaMapper, which utilizes a hyperbolic tree instead of 

a linear tree representation. According to their findings, the hyperbolic tree supports 

faster human-performed searches for elements required during the matching process. 

In their work, Alexe et al. [24, 25] present a schema mapping approach for 

integrating relational database schemas. Unlike traditional solutions that involve loading 

entire source and target schemas and creating high-level mappings between them, 

Alexe's "divide-design-merge" approach advocates splitting source and target schemas 

into smaller parts, establishing mappings between these parts and then merging all 

partial mappings into a comprehensive whole as the final step. The approach is 

accompanied by three tools developed by the authors. 

Duchateau and Bellahsene introduce Yet Another Matcher (YAM) [26], a self-

tuning, machine-learning-based, and extensible matcher factory tool in their work. 

YAM generates a best-fit schema-matching algorithm tailored to a specific integration 

scenario. The generated algorithm identifies schema element matches and proposes 

them to the user. The self-tuning feature allows the production of a matcher with user-

defined characteristics for a given scenario, while the extensible feature enables users to 

add new similarity measures, enhancing the system's overall effectiveness. Similar 



284           Dimitrieski et al. 

   

 

techniques are found in MatchPlanner [27], utilizing decision tree methods, and eTuner 

[28], which employs synthetic matching scenarios to create matches. 

Model-driven software development facilitates the development of software 

systems at different levels of abstraction, with DSMLs playing a crucial role in reducing 

development costs. In MDSD, transformations are defined at the meta-model level, 

wherein data schema and transformation rules can be interpreted as schema-matching 

rules. Büttner et al. [29] have introduced a model-driven approach for integrating data 

among government institutions in Germany. The approach emphasizes standardizing the 

messages, interfaces, and data models exchanged. Adherence to these standards is 

overseen by a central governing body that defines meta-models (data formats) for 

various sectors within the German government. Given different standards, integrating 

data becomes a crucial task for enabling exchange. This integration process operates at 

the meta-model level, allowing for the transformation of messages and facilitating 

communication with other German or European institutions. 

Authors of [30, 31] have introduced a meta-modeling approach for integrating 

heterogeneous distributed IT systems, known as Berlin Brandenburg Business Process 

Integration and Evolution framework BIZYCLE. The BIZYCLE integration process 

relies on multilevel modeling abstractions. Initially, the integration scenario is modeled 

at the computation-independent level, covering the business aspects, and then refined at 

the platform-specific level to describe the technical interfaces of the integrated systems. 

A platform-specific model is created for each supported platform. The integration 

process is automated through model extraction, systematic conflict analysis, and code 

generation. The BIZYCLE Repository [32] supports reuse at the model level, allowing 

interface descriptions, transformation rules, and semantic annotations to be stored and 

shared between projects and users. 

There are various DSMLs and frameworks that are not directly linked to schema 

mapping but are better suited to the fields of schema matching and enterprise 

application integration. Vuković et al. [33, 34] have introduced a language called 

Semantic-Aided Integration Language (SAIL). This language allows the description, 

generation, and use of matching components within their framework without requiring 

implementation in a general-purpose programming language. The developed matching 

framework aims to automate certain steps in conflict resolution during the matching 

process. Interfaces and their elements can be semantically described using ontologies to 

facilitate this automation. Although the approach is based on ontology alignment 

principles, the SAIL domain-specific language is used to specify matching algorithms 

and adheres to the principles of the MDSD methodology. Similarly, with the IS 

modeling approach based on MDSD principles and the form type concept, Luković et 

al. [35, 36] propose integrated modeling of disparate parts of an IS.   

The FUSE (Federated User Exchange) approach [37] is a domain-aware method for 

achieving user model interoperability. It involves manual mapping and automatic 

translation processes, each utilizing two domain-aware mechanisms: (i) a canonical user 

model and (ii) user model mapping transformations tailored to specific domains. All 

mappings are initially made with the canonical user model as the target, which serves as 

a consistent shared user model. The user model mapping transformations are 

components designed specifically for mapping between different user models via the 

canonical model. This approach differentiates itself from generic approaches by 

integrating domain knowledge into new processes and tools, supporting complex user 

model interoperability tasks across overlapping domains.  
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In summary, despite the availability of numerous schema-matching approaches, only 

a small subset of them is actively being developed and maintained. Most accompanying 

tools were created as prototypes to validate the approach, making them outdated or 

inapplicable for real-world scenarios. Also, these approaches focus on schema-matching 

in relational databases and XML domains, traditionally seen as the training ground for 

schema-based integration algorithms. However, only a few identified approaches have 

been applied outside these domains, with the most notable instance mentioned in [12] 

being in the industrial domain. In contrast to these approaches, which mainly focus on 

matching source and target elements, our approach takes a broader view of the 

integration problem. It encompasses all the steps preceding the specification of rules 

and incorporates both manual and automatic integration mechanisms. As observed in 

the surveyed approaches, our tool can leverage schema and ontology-matching 

algorithms to facilitate process automation. 

Some of the fundamental elements of our approach, such as the previous iterations 

of DSML, our integration tool, execution environment, and the reuse algorithm, have 

been outlined throughout our previous work [16, 17, 38, 39]. However, this paper marks 

the first time we have formulated and presented our integration approach in its entirety, 

also encompassing all the updated details since the previous publications. The meta-

model of our DSML has been enriched with additional concepts to offer broader domain 

coverage. Based on the results of applying the language in several use cases, existing 

concepts have been also fine-tuned to better fit the domain. In addition, the automation 

feature now incorporates an alignment algorithm that does not rely on previously 

created mappings to streamline developer efforts. This notably enhances the level of 

automation in cases where the reuse repository has not yet been populated with 

previously created mappings, thereby rendering the reuse algorithm inapplicable. Lastly, 

we present a realistic, more intricate industrial integration example covering all aspects 

of this improved approach. 

3. Mapping-based integration approach 

In this section, we present our mapping-based integration approach, which is the main 

aspect of our research. The approach focuses on enabling interconnectivity, which 

maintains the existing system functionality while enabling data-level integration. It 

employs a common data structure onto which all other data formats are mapped to 

facilitate the integration. This common data structure can be seen as a TS model. 

Adhering to the MDSD principles, each model is treated as a first-class citizen, and all 

necessary operations are specified and performed on top of them. These TS models are 

directly utilized in the development process of integration adapters by establishing 

transformations between source and target TS model elements at a higher level of 

abstraction. We denote these transformations as mappings, and they are created utilizing 

a visual DSML. Once all the relevant mappings are specified, based on these abstract 

yet formal specifications of integration adapters, code generators can be used to 

generate executable integration adapters. 

While the entire integration adapter can be manually developed in a chosen 

programming language, this process is usually overly repetitive, time-consuming, and 

error prone. Offering an integration tool to support the adapter development increases 
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the level of automation in this process, yielding better development times and fewer 

errors. Therefore, the description of the approach in this section assumes that the 

integration with our approach is carried out with the support of an integration tool.  

Each activity of the integration development approach can be performed either by the 

adapter developer, automatically by the tool, or semi-automatically with the developer 

and tool participating in the activity execution. To reflect this, all diagrams depicting 

process steps in this section have two swimlanes. The first swimlane is for the 

developer, where all the integration process steps are performed by the developer. The 

second swimlane is for the integration tool, where all the integration process steps are 

performed in an automated manner by the tool without any developer intervention. Any 

process steps that can be performed by the developer, the tool, or both are drawn at the 

border between the two swimlanes. 

To facilitate the automated development of integration adapters, our approach can be 

divided into three phases:  

1. Import of TSs: An adapter developer imports all participating TSs into an 

integration tool.  

2. Mapping specification: The developer specifies the source-to-target mappings 

between the TSs imported in the previous phase. Specification may be completed 

manually, using our DSML, or in an automated way, using a supported mapping 

automation facility. 

3. Generation of an integration adapter: The executable adapter code is generated 

for a chosen execution environment based on the mapping specification created 

in the previous phase.  

3.1. Phase 1: Import of TSs  

To enable data-level integration between two TSs, i.e., interconnectivity, developers 

must first provide data schemas and data files from those TSs. These files are the input 

to the Import TSs phase presented in Fig. 1. 

 

Fig. 1. Activity diagram for the Import of TSs phase 
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Data files serve a dual purpose. First, they are used during the adapter execution as 

they are transformed into another file corresponding to the target TSs. Second, if no data 

schema is available, they can be used as examples to partially or fully construct the 

schema. These data files are referred to as example data files.  

Data schemas are essential for the integration adapter development as they define the 

structure for creating mappings. If the data schema exists, it is imported via the 

Transform data schemas process step. If a data schema is missing, a developer can use 

example data files as input for the (semi-)automatic extraction of schemas (Extract 

schemas from data files). This presents a challenging task, akin to inferring DSML 

context-free grammars from example models written in that DSML [40]. By having 

enough example data files, an inferred schema may closely match the original. 

Nonetheless, even a small subset of example data files can yield a simplified schema 

with sufficient information for integration. Therefore, for some TSs, schema extraction 

is a straightforward process and can be performed automatically, for some TSs, user 

input is required to adequately construct the schema document. Therefore, we classify 

this step as (semi-)automatic and put it in the middle between the two swimlanes in Fig. 

1. 

For the integration process to be applied consistently, imported data schemas must be 

represented in a common, generic manner, irrespective of the TSs being integrated and 

their specificness. We view each data schema as a graph of nodes and links describing 

their relationships, as introduced in [41] and described in short in the rest of the text. A 

schema can be represented as a graph with a single root element and multiple child 

elements. The root element can either be explicitly specified in the schema or be a part 

of the shared substructure and referential constraints. We have used a tree representation 

for all schemas to make it easier to handle and represent schemas. General graph 

schemas are converted into tree schemas by flattening the graph structure. During the 

flattening, relationships between elements at the same level or between upper and lower 

levels of the tree can be represented as tree elements with non-trivial types. This can be 

achieved by copying referenced structures to the referenced place or introducing a 

special reference element type for representing references where copying is not an 

option, as it would introduce recursive and infinite structures. Flattening is done at the 

TS importer level. The importer's developer is responsible for converting the original 

schema structure to the generic tree representation. The flattening can be implemented 

in many ways and algorithms, one of which is described in more detail in [41]. This 

generic schema representation is the output of Extract schemas from data files and 

Transform data schemas process steps and serves as a base structure for creating 

mappings. Concepts used to represent this generic schema structure are a part of the 

meta-model of the developed DSML and are presented in more detail in Section 3.2. 

3.2. Phase 2: Mapping specification 

Once the generic schema structures are created, transformations are specified as 

mappings between schema elements. In our approach, this is done by utilizing a custom-

made DSML and an expression language, described in detail later in this subsection. To 

start the mapping creation, a developer performs the Mapping specification phase of the 

approach, depicted in Fig. 2.  
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Fig. 2. Activity diagram for the Mapping specification phase 

Although our integration approach promotes using automated facilities for mapping 

specification, we also acknowledge some cases where a manual specification utilizing 

our DSML is required. For example, one automation facility reuses previously defined 

mappings stored in the reuse repository and tries to apply them to the current integration 

scenario. Manual mapping is required when there is not enough historical data for reuse 

to autonomously and with high precision conclude the best possible mappings for the 

current pair of TSs. Therefore, this section discusses the three ways of specifying 

mappings between the generic schema structures: manual, semi-automatic, and fully 

automatic. Regardless of the chosen way, the mappings are created by utilizing the 
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provided DSML, and the result is a mapping specification used to generate the 

executable adapter code. 

The manual way of creating mappings (Create element mappings manually) allows 

developers to use our DSML to manually connect the source and target schema 

elements and provide additional transformation expressions that will later be used at 

execution time. It must be noted that this is different from manual adapter development 

in a programming language, as in this case, the developer uses the DSML to formally 

create such an adapter without the integration tool's automation mechanisms in use. 

Implementing automation at the schema level allows multiple data files to be easily 

transformed using the same mapping, making automation more efficient. However, 

mapping reuse is restricted as there is significant variability at the data level, even for 

data that conforms to the same schema element. Conversely, if a mapping is specified at 

the schema level, it can be easily adapted to another schema element and transform all 

instances of both the new schema element and the original schema element. 

There are two approaches to automating the creation of mapping specifications: fully 

automatic and semi-automatic. In the case of a fully automatic approach, all schema 

elements are passed to the automation algorithm as it tries to specify all possible 

mappings that make sense for the two TSs in hand. As this way of mapping 

specification takes time to calculate the possible mappings, a developer might choose 

the semi-automatic method due to the usually large search space comprising many 

source and target schema elements. If a developer chooses this way for mapping 

specification, the first step is to select a subset of source and target schema elements that 

need to be mapped (Select schema elements). While this step is not always necessary, it 

may significantly speed up the automation process for large schemas. 

Regardless of the automation method, fully or semi-automatic, a developer must 

choose an automation algorithm to proceed, either a reuse algorithm or an alignment 

algorithm (Select reuse or an alignment algorithm), both introduced later in this section. 

Executing the alignment (Create mapping candidates based on selected schema 

elements) or reuse algorithms (Create mapping candidates based on selected schema 

elements and content of a reuse repository) requires a set of source and target elements 

as input and produces a set of mapping candidates as output. 

In the next step (Select and apply appropriate element mapping candidates), some or 

all candidates are applied to the current mapping context, becoming the final mappings 

from which the integration adapter is generated. In the case of the fully automatic 

method, the offered candidates are all applied to the current integration context, which 

considerably speeds up the development process and reduces errors as the developer 

does not need to interfere with the process. In the semi-automatic method, users may 

choose which mapping candidates will become new mappings applied to the mapping 

context. If they decide so, developers might also perform the Manually improve applied 

element mapping candidates process step to achieve higher precision in the automation 

process in cases when the precision of the automation algorithm is low because of the 

scarce mapping history it operates on. A developer creates use-case-specific element 

mappings missed by the automation algorithms creating more complete mapping 

specifications.  

The result of performing the Mapping specification phase is a formally defined 

mapping specification, which is serialized and saved to storage. The mapping 

specification is later used in the Generation of Integration Adapters phase, presented in 

the following subsection. 
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The DSML for mapping specification 

We developed a new DSML that is a core component of our approach. Initially, we 

identified the essential concepts necessary for creating mappings by thoroughly 

examining existing literature and numerous integration tools available at the time. As it 

is stated in [42], domain experts are essential for producing reliable results when 

constructing, making decisions, and evaluating a language. Therefore, a preliminary set 

of concepts was then discussed with domain experts across various integration domains, 

primarily focusing on industrial manufacturing where this issue is particularly 

significant. Fig. 3 shows its current meta-model based on previous versions presented in 

[16, 17, 38]. Generically represented data schemas serve as the foundation or recipe for 

creating integration adapters and, therefore, are part of the DSML meta-model. 

Concepts used to represent data schemas are represented as rectangles with gray filling. 

Once the data schemas have been identified and represented in a generic manner, the 

mapping specification process can begin. Concepts used for the element mapping 

specification are represented as rectangles with a white filling. In the rest of the section, 

the names of meta-model concepts are given in italics. 

 

Fig. 3. The mapping DSML meta-model 

A single element container (ElementContainer) is created when a data schema is 

loaded. It is given a name (name) to distinguish it from other containers. Depending on 

whether the container represents a source or a target schema, the side attribute (side) is 

set to either SOURCE or TARGET. These are both literal values defined as part of the 

ESide enumeration. Each container is contained by a single mapping specification 

(mapping), either as a source container (sourceContainers) or a target container 

(targetContainers). 

The concept of binding refers to the link between the imported, generic schema 

element and the original schema element from which it originates. These bindings 

create a two-way connection between the original data schema and the generic schema 
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structure. This connection is crucial for the adapter execution process because the 

mapping specification process occurs on top of the generic schema representation, while 

the resulting adapters must be executed based on the data files with the original schema 

definitions. By following these bindings, the code generator can accurately produce 

code that accesses the original elements of the schema documents and their associated 

data files. These bindings are established when a TS is imported into the tool, hence 

why we refer to these TS importers as binders. 

Therefore, at the level of an element container, a binding type (bindingType) and a 

binding configuration (bindingConfiguration) attribute must be set. The binding type 

identifies the binding component responsible for reading the data schema and handling 

data file read/write operations. Based on the binding type attribute, a generator can 

package the appropriate binder component with the integration adapter for execution. 

The binding configuration attribute is a storage for schema-level configuration during 

data schema import by the identified binder, based on the binding type. Since different 

binders may format this attribute differently, it's binder-specific. The binding 

configuration is essential for recreating the element tree during adapter execution, as the 

adapter only has access to the mapping file. 

Each container in the system consists of one or more data schema elements 

(Element). The name (name) and binding string (binding) are an element's two most 

important attributes. The name of an element corresponds to the name of the 

corresponding imported schema element. The binding string is a binder-specific unique 

identifier that stores the path of the schema element in the imported data schema 

document. In addition to the binder-specific configuration, a binder may set an 

additional feature (feature) for the element that will be used later in the adapter 

execution process. 

A binder can set values for each element that specify the element's type (type) and 

properties. These properties specify whether the element is a collection (isCollection), 

abstract (isAbstract), or assignable (isAssignable). By setting these values, the binder 

limits the number of functions that can be applied to these elements, which helps to 

prevent inappropriate mappings from being specified in the first place. If an element is a 

collection, usual collection operators can be applied. Abstract elements are placeholders 

or grouping elements and cannot be used as source or target elements of an element 

mapping. Finally, non-assignable elements can only be used as a source but not as target 

elements of an element mapping. 

The element type attribute is only set for primitive elements, with possible values 

defined by the EType enumeration. Complex types, like objects, are represented as sub-

trees within their element container (children). Each element representing an object 

property has a parent relationship (parent) pointing to the element representing the 

object.  

The main meta-model concept used for the mapping specification is Mapping, which 

represents a single mapping specification used in the adapter generation process. Each 

mapping has a name (name) and a set of source and target element containers 

representing loaded data schemas. Additionally, a set of element mapping specifications 

(Operator and Link) specifies transformation rules at a higher abstraction level.  

In addition to the language representing the connections between source and target 

schema elements, i.e., element mappings, it is important to have an expression language 

for expressing algorithms to manipulate the input values. For each operator that 

represents a high-level element mapping, we specify the value-level transformation 
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logic in the script property using the expression language. This expression language can 

be either custom-developed as a Domain-Specific Language (DSL) or adapted from a 

chosen general-purpose language. In our approach, the expression language is created 

by adapting an existing general-purpose programming language. This is achieved by 

specifying one or more integration-specific structures and application programming 

interfaces (APIs) and using the standard programming language mechanisms on top of 

these structures. This process is similar to building an embedded or internal DSL [43], 

where we use the syntax of the host language and add domain-specific elements, such as 

an integration-specific structure. From the point of our DSML, the transformation code 

written in the script property is related to the target framework or libraries used for the 

execution of the generated adapter code. 

The advantage of using an existing language is that all its mechanisms, statements, 

and expressions are available for defining the transformation logic. To create a structure 

that can be used in any general-purpose programming language, we have designed a 

value encapsulation structure using the generic Value<T> concept (illustrated in Fig. 3). 

The template parameter T represents the type of the value (value) received as input, 

corresponding to the schema element (element). Therefore, this structure encapsulates 

values and schema elements, allowing expressions to be made at both meta-data and 

data levels.  Furthermore, the Value<T> structure and the connected Element concept 

can be easily translated to a structure in any target scripting language, provided the 

language supports generics or a similar concept (e.g. if the target language is 

dynamically typed). 

When an operator is connected through input and output links, input and output 

variables are automatically created in the script. These variables are instances of 

Value<T>, where T represents the type of the schema element connected by the link. 

The expression language can use these variables to specify the transformation logic. 

Additionally, transformation rules can be implemented in an arbitrary construct from a 

general-purpose language on top of these variables. 

Automating the mapping specification 

As introduced earlier in this subsection, users can utilize the DSML to manually specify 

the transformation logic or use a mapping automation facility to help them in that 

endeavor. The mapping automation facility is developed in response to the existence of 

variability in input and output data schemas. In the realms of MDSD and DSMLs, a 

language developer can choose to either introduce new language concepts and adjust 

code generators to handle newly encountered variations [42, 44] or employ automatic 

model refinement and creation algorithms that do not change the DSML while assisting 

users based on implicit or stored domain knowledge. Our approach to automatic 

variability handling aligns with the latter category. 

There are two kinds of automation algorithms to apply to their current integration 

context. Fig. 4 visually represents the difference between these two algorithms. The left 

side of the figure depicts the alignment process. This process uses a schema-matching 

algorithm to identify similarities between the source schema elements (Esi..Esk) and the 

target schema elements (Etj..Etl). The matching algorithm compares each pair of source 

and target schema elements and returns a similarity score.  
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The reuse process is depicted on the right side of the figure. Though in a slightly 

different role, the matching algorithms can also be used in this process. Instead of 

comparing the source (Esi...Esk) and target (Etj...Etl) schema elements directly, the 

matching algorithms compare schema elements with the schema elements from a 

mapping repository, (Ersi...Ersk) and (Ertj...Ertl) respectively, to find previously created 

element mappings that are similar and can be reused and applied in the current 

integration scenario. This results in a probability that the repository mapping fits the 

current integration scenario. Defining a minimum probability threshold is possible to 

simplify choosing the appropriate repository mapping. This threshold is used to exclude 

any unnecessary element mappings. Throughout the rest of the text, we will simply refer 

to this threshold as "probability".  

 

Fig. 4. Comparison of the alignment and reuse algorithms 

Independent of the chosen automation algorithm, the result is always a collection of 

mapping candidates that can be applied to the current integration context to create 

mapping specifications. Such formal mapping specifications conform to the presented 

DSML's meta-model. As such, it possesses intrinsic value for reuse in future integration 

adapter developments as it is formally and generically specified. Therefore, a developer 

may want to improve the reuse process by adding the created mapping specification to a 

Reuse repository (cf. Fig. 2). There are two types of repositories: local and global. Local 

repositories are deployed on a single machine and maintained by a developer or group 

of developers who typically work on the same integration issues. By focusing on a 

single integration domain, local repositories can improve the accuracy of the reuse 

algorithm for that domain. However, local repositories tend to have a small number of 

mapping specifications, which means that the reuse algorithm cannot provide element 

mapping candidates for newly introduced elements with no previous similar elements in 

the domain. In such situations, a global repository may be more suitable. Developers 

from different integration domains store their mapping specifications in a global 

repository. Depending on the tool and data security policies, a global repository may be 

deployed at a company level or worldwide. More details about the automation 

algorithms may be found in our papers [38, 39]. 
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3.3. Phase 3: Generation of Integration Adapters 

After completing the previous process steps, a mapping specification is created. It 

represents an abstract specification of the integration adapter. If developers are satisfied 

with the mapping specification, they can generate an executable integration adapter for 

a specific execution platform. In Fig. 5 we present the activity diagram for the 

Generation of integration adapters phase. 

Our approach envisions having multiple code generators, each responsible for 

generating code that runs on a different execution platform or environment. Developers 

can choose and invoke the most suitable code generator for their integration needs 

(Select and invoke a code generator). The integration tool executes the entire code 

generation process (Generate code) by taking a formal mapping specification as input, 

parsing its contents, and producing an executable integration adapter code as output. 

The executable integration adapter serves as the output of the entire presented 

integration process. 

 

Fig. 5. Activity diagram for the Generation of integration adapters phase 

4. The AnyMap Tool 

We have developed an easily extendable integration tool named AnyMap to support our 

integration approach. AnyMap is the primary interaction point with the user and 

encompasses all activities, from reading and parsing data schemas to specifying 

mappings and generating an integration adapter. The tool helps us to realize and validate 

our approach to real-world problems. The architecture of the tool is illustrated in Fig. 6. 

The AnyMap tool comprises five modules: Core, Binding, Mapping Editor, Reuse, 

and Generator. Within each module, one or more plug-ins adhere to the interface 

outlined in the core module. To add new plug-ins to a module, it is necessary to 
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implement the appropriate interface from the core module and register their execution 

with the Eclipse IDE (Integrated Development Environment) runtime engine. The 

Eclipse IDE is a widely used IDE for Java developers who create web and desktop 

applications. With Eclipse, it's easy to create plug-ins that add functionality to the IDE, 

allowing fast and agile development. All plug-ins are implemented in Java and Xtend 

programming languages. 

The Core module is a fundamental part of the tool, including basic components used 

throughout the other modules. These core components have been developed to provide 

only the most essential functionality, allowing easy extension of other modules. The 

Core module comprises concepts such as the mapping language, expression language, 

and interfaces for implementing binders and generators. It includes all the necessary 

interfaces required to extend any of the other modules. 

 

Fig. 6. Architecture of the AnyMap tool 

The Binding module contains plug-ins representing TS binders used for importing 

and exporting data and data schemas of a specific TS. These binders can transform 

schemas into generic element trees and store reverse links from generically represented 

schema elements to the original schema elements. Each binder plug-in has an 

appropriate GUI (Graphical User Interface) that provides user interaction with the 

binders. For instance, when importing a new file from a TS, users can set up the binder 

parameters through a GUI wizard. Therefore, each binder is designed to support all the 

process steps presented in Fig. 1. 

The Mapping Editor module is a crucial component in the AnyMap tool, serving as 

the main point of interaction between users and the system. This module offers a 

graphical concrete syntax for the mapping language and a textual concrete syntax for 

the expression language. It also provides all the necessary GUI classes, such as event 

listeners, commands, and menu items, to ensure seamless interaction between the user 

and the tool.  
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Currently, the Mapping Editor module implements a graphical concrete syntax of the 

mapping language, which we believe is the most appropriate syntax for the integration 

domain we are interested in. This syntax provides a comprehensive view of the mapping 

specification, making it easy to learn and understand. A disadvantage of the graphical 

concrete syntax is that the diagram becomes overcrowded when many mappings are 

created. However, we feel that the benefits of this syntax outweigh its drawbacks.  

Our tool supports the textual concrete syntax for the expression language, as we 

chose Java as our expression language. We have limited the possible number of 

functions that can be used in creating expressions, and each expression can only be 

defined on top of an object that is an instance of the Value<T> class presented in Fig. 3. 

The Reuse module consists of various plug-ins that work together to facilitate 

aligning and reusing schema elements. These plug-ins use different algorithms to 

calculate similarities between schema elements and generate a list of element-mapping 

candidates as an output. Users can then review this list and their probabilities and select 

the most appropriate element candidates for their specific integration scenario. Once 

selected, the AnyMap tool will automatically apply these chosen element mappings to 

the current mapping specification and store them for future reuse in the Mapping 

repository. 

The Generator module consists of plug-ins that can be used to create executable 

transformations for a specific execution environment. The main function of each plug-in 

is to analyze a mapping file, extract the necessary mappings, and generate executable 

transformation code based on these mappings. Each plug-in is designed to improve the 

tool's capabilities in generating code for different execution environments. We have 

only implemented a generator for our custom-made execution environment. 

We have developed a custom execution environment to support the execution of 

generated adapters in a scalable and transparent way. Although a user can provide 

different generators for the AnyMap tool to generate adapters for different execution 

environments, we have implemented an execution environment based on the 

microservice architecture. We chose this architecture to demonstrate that integration 

adapters can be generated as stateless code components and run on demand when a new 

file needs to be transformed. This environment has been developed in the Java 

programming language and using the Spring Cloud library. These components can be 

instantiated on-demand depending on the frequency of input data reception [38]. 

5. Example Usage 

To illustrate the applicability of our approach, we have applied it to a typical device-to-

information-system integration scenario in an industrial context. Such a scenario is 

frequently encountered and entails slight variations in integrated technical spaces, which 

is perfect for effectively demonstrating the full power of our approach. The presented 

use case involves integrating a sensor that measures various characteristics of 

semiconductor wafers and an IS module for data visualization. The integration is 

performed between CSV and XML TSs. The sensors gather data and send it as a CSV 

document. The information system visualizes the data using the JavaScript Chart 

(JSChart) library and expects it to be formatted according to a predefined XML schema. 
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The import mechanism must overcome technical (inter-space) and functional (intra-

space) heterogeneity to import CSV and XML documents. Functional complexity is 

caused by different measurement methods that can result in variability in the structure 

of CSV documents, which means that an IS vendor needs a set of different adapters for 

integrating sensors that use different measuring methods. However, manual 

implementation is often time-consuming, costly, and error-prone. Our approach is used 

to simplify the specification of adapters in the presence of the two heterogeneity 

problems steps, and the tool modules used in this use case are outlined in Fig. 7. 

 

Fig. 7. Importing CSV and XML technical spaces using the AnyMap tool 

Fig. 7 displays the five main steps to merge CSV and XML, numbered in black 

circles. The rest of this section gives a detailed explanation of the steps. In Fig. 8 we 

present the input CSV file and the target XML schema to which the CSV file must be 

transformed. 

Step 1. To work with CSV files, which do not have an explicit schema definition 

language, the schema must be extracted from an example data file. This is done using 

the CSV binder to read the data file and extract schema information. The schema can be 

extracted by reading column names from the file header or by manually specifying 

column names and types. 

Step 2. Creating a generic element tree from an XML schema structure is a simple 

way to load the schema. With the help of the XML binder, a developer can easily 

convert an existing XML Schema Definition (XSD) document into a generic tree 

representation. Unlike the CSV binder, the XSD binder is very simple. A developer 

only provides a path to an XSD document and the mapping side on which this TS 

participates. 

Step 3. After importing data schemas from both technical spaces, the tool provides a 

blank canvas for mapping creation with a generic element tree present on both sides of 

the canvas. In Fig. 9 we captured a mapping state from an ongoing mapping 

specification based on these imported data schemas.  
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Fig. 8. CSV document and XML schema examples 

 

Fig. 9. The mapping specification process 
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On the left side of Fig. 9, there is an element container labeled "CSV file." This 

container holds just one element called Rows, which is an abstract element representing 

the data payload of the CSV document. By payload, we mean the rows that show 

measured values from the System Under Supervision (SUS). Additionally, a CSV 

document may have other top-level meta-attributes that don't represent measured values, 

but instead provide information about the protocol, sensor configuration, and 

manufacturer. If these elements appear in the document, they will be created on the 

same level as the Rows element. Each child element of Rows represents a single column 

from the CSV document, and these elements are not abstract. They can be used in the 

mapping specification, and their type is inferred during the binding process. Their 

binding, or reverse link to the original schema element, is an ordinal number of the 

column they represent. You can see these properties in Fig. 9 in the property view 

located below the generic element tree. The property views displayed show the 

properties of the Ordinal Number and Unit elements. 

On the right side of Fig. 9, there is an element container that is based on the XSD 

document that has been imported. This element container is named "XSD file". The 

only child element of this container is the "JSChart" element. The "JSChart" element is 

created from the "JSChart" root element of the XSD document in Fig. 8. All other child 

elements are created from the XSD sub-elements and their attributes. The binding 

values are XML Path Language (XPath) expressions uniquely identifying each XSD 

document element.  

To create element mappings, the developer must first create the generic element 

representations for both the source and target meta-models. Element mappings are 

comprised of two components - operators and links, which are specified separately. 

Operators are represented as rectangles and must be created first. They are then linked 

to generic tree elements via links, which are represented as lines. Every link connected 

to an operator introduces a new variable that can be used in the operator script when 

writing expressions using the Expression language. The variable name is derived from 

the element name by adding a single character that represents the side of the link in 

comparison to the operator (i.e. "i" for input and "o" for output) and an ordinal number 

of the link at its side of the operator. Examples of link names can be seen in Fig. 9 in the 

opened Script dialog.  

The first few lines of the script are comments with variable names which provide a 

good operator overview to developers. For example, the highlighted rule which is 

marked red on the canvas has two inputs and one output link and therefore has three 

variables: (i) Ordinal_Number_i0, first input variable corresponding to the Ordinal 

Number element, (ii) Weight_i1, second input variable corresponding to the Weight 

element, and (iii) unit_o0, first output variable corresponding to the unit element. Types 

of these variables are inferred from imported schemas and example data files. The types 

are then passed instead of the generic type T in Value<T> (cf. Fig. 2).  The Script dialog 

in Fig. 9 provides an example of the script specification. This transformation rule should 

be executed only when a value of the Weight column is greater than 7000 in the same 

CSV row.  

In the Script dialog, developers can specify whether an operator is executed only 

once or multiple times for each input document. This can be done by checking or 

unchecking the "Executed once?" checkbox in the Script dialog. Operators can be 

executed multiple times for each input document in cases where a single document is 

divided into smaller data units. A data unit refers to an atomic piece of data that is 
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provided as a single input to a transformation system. For instance, in the CSV TS, each 

row of the payload can be sent independently and transformed to a desired target 

structure. However, in many cases, an XML document must be sent to be properly 

interpreted and transformed. 

In the Script dialog, a developer can select an operator from a Parent operator 

combo box and set it as the parent to the current operator. This is necessary when an 

operator's execution depends on another previously specified operator (parent). By 

creating operator hierarchies, a developer can specify groups of operators executed in a 

particular order.  

We should note that in Fig. 9, the manual specification step is denoted as 3a, 

covering the described process. On the other hand, 3b denotes mapping specification 

using the automation facility and is presented in Section 5.1. 

Step 4: Invoke the microservice code generator to generate the microservice code. 

Upon completion, the mapping specification will serve as input to the Generator 

module, which generates an executable integration adapter.  

Step 5 To initiate the integration adapter, it may effortlessly be launched within the 

execution environment. The adapter will then read the input data through the CSV 

binder and apply the relevant transformations based on the generated rules. Once the 

data is transformed, it is written to the target TS. To ensure that the data is written in 

correctly, the adapter utilizes the XML binder in compliance with the specified XML 

schema. 

The left-hand side of Fig. 10 presents the XML document that contains the values 

generated after executing the generated code on top of the CSV file. To avoid repetition, 

we have excluded lines with the same structure as those shown in lines 4-8. The values 

are generated from the columns of the CSV document displayed in the top section of 

Fig. 8. The information system can use the generated XML document to create a line 

chart with the JSChart library. The right-hand side of Fig. 10 shows an example of this 

chart. 

 

Fig. 10. The output XML file (left) and the line chart (right) of the single-layered measurement 

data 

5.1. Automating the Device-to-information-system Integration 

In Industry 4.0, variations in data schema often arise within the same integration 

scenario. This can result from using devices from different vendors or different 
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operation modes of the same device. Adapting existing adapters or creating new ones to 

handle these variations can be laborious and error prone. However, our approach 

provides a more efficient and user-friendly solution, as illustrated in this subsection. 

In certain scenarios, the measurement device in wafer production employs a second 

measuring method as it is considered preferable and potentially ensures higher 

production quality, but at the cost of network utilization since it requires more data to be 

sent. Devices utilizing this measurement method require different configuration than 

those using the first measurement method. This configuration change necessitates the 

development or adaptation of an integration adapter, which can recognize the new data 

structure and transform it into the desired target technical space. 

The new CSV document being sent is called a double-layered CSV, and an example 

is shown in Fig. 11. The wafer's weight is represented by columns titled Weight_A and 

Weight_B, among others. Some column names have been abbreviated in Fig. 11 due to 

space limitations. The full schema element names in the AnyMap tool screenshots are 

provided. In our use case, we require mapping double-layered CSV documents onto the 

same XML schema shown in Fig. 8.  

 

Fig. 11. Double-layered CSV document example 

There are a few ways to specify a mapping for integration. The first option is a 

manual specification, where the developer can specify the mapping from scratch, as 

described in Step 3. The second option is a semi-automatic specification, where the 

developer can rely on a mapping repository and automation algorithms. They can 

provide a set of element mapping candidates, and the developer can select the most 

suitable ones for the current integration task. This approach requires some manual 

intervention from the developer, but the degree of involvement is far lower than with 

the manual specification. The third option is an automatic specification. This requires 

the least amount of user involvement, as all tasks are performed automatically by the 

AnyMap tool based on predefined heuristics. However, for the automatic specification 

to yield satisfactory results, a mapping repository must be populated with enough 

mappings from that domain to steer the process in the right direction. 

As we want to present the automation process in our double-layered example, we 

will present the mapping specification that follows the semi-automatic approach and 

uses the reuse automation algorithm. 

To initiate the mapping specification process, the first step is to load the double-

layered CSV and XML schemas into the AnyMap tools. Once both schemas are loaded, 

the developer selects the reuse automation mechanism and sets it up through a dialog 

box on the left side of Fig. 12.. This can be an alternative to Step 3, as described earlier.  
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Fig. 12. The reuse configuration (left) and the element mapping candidates (right) dialogs 

The first section of the dialog box defines the path to the reuse repository. In this 

example, a local repository is used. In the second section of the dialog box, the 

developer sets the probability threshold that defines a minimum probability at which an 

element mapping candidate is presented to the developer. If the Consider Subset 

checkbox is checked, the algorithm will provide element mapping candidates 

comprising a subset of schema elements the developer selects. Otherwise, only a 

superset or an equal set to the one provided as an input is considered a candidate. 

Selected schema elements provided as input to the algorithm are presented in the 

Selected rules textbox.  

The third section of the dialog box allows the selection and configuration of schema 

matchers (comparators). Schema matchers are used to detect similarities between 

current schema elements and repository schema elements. These similarities are later 

used by the reuse algorithm and combined into a probability of a specific element 

mapping being appropriate for the current mapping context. Schema matchers can 

detect element similarity based on the structure or semantics of the elements.  

In our particular use case, the data sent by the sensors follows strict naming rules. If a 

property is measured multiple times by a single sensor in a single measurement pass, a 

new letter is appended to the property name for each measurement. Therefore, the 

similarity between CSV columns (source schema elements) in this use case can be 

measured using a string comparison mechanism. In Fig. 12, the Jaro-Winkler [45] string 

comparison algorithm is selected as it is the most suitable for short names and strings. 

AnyMap tool enables developers to select multiple schema matchers and use them 

simultaneously. Each selected matcher is assigned a weight value, which modifies the 

result of each comparator. In Fig. 12 there is one matcher, and its weight is set to 1.0. 

Additionally, the developer can set a Comp. threshold value, which determines the 

minimum similarity required for a matcher to report two elements as similar. In this 

example, elements are considered similar if they have a similarity score of 80% (0.8) or 

higher. 

Once the configured reuse algorithm is executed, a dialog appears on the right side of 

Fig. 12, which displays the calculated element mapping candidates. These candidates 

are grouped by the source schema elements. Each group presents target schema 
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elements of the element mapping candidates and their probability of being a suitable fit 

for the current integration scenario. The element mapping candidates highlighted in 

green have the highest probability. 

The developer chooses the most appropriate element mapping candidates for the 

current integration scenario. If an automatic algorithm were used, the candidates 

highlighted in green would be automatically selected. In either case, the selected 

candidates are applied automatically in the mapping canvas. The resulting mapping 

specification is presented in Fig. 13. The element trees on the left and right sides of the 

mapping canvas are created from the double-layered CSV document shown in Fig. 11 

and the XSD document presented in the bottom part of Fig. 8, respectively. Compared 

to Fig. 9, we can observe that more mappings are created, representing the same 

relationships but, in this case, twice as the CSV has two layers of measurements. 

The generated integration adapter takes the CSV document from Fig. 11 as input and 

produces the XML document from the left-hand side of Fig. 14 as output. We have 

omitted repetitive lines. Once the information system receives the XML document, it 

presents the content as a line graph, as shown on the right-hand side of Fig. 14. 
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Fig. 13. The double-layered CSV2XML mapping specification 

 

Fig. 14. The output XML file (left) and the line chart (right) of the double-layered measurement 

data 

6. Conclusion 

In this paper, we propose an approach to specifying and implementing integration 

adapters for any pair of TSs. Our approach employs a common data format to facilitate 

integration across diverse system components. Initially, we established a universal data 

structure onto which all other data formats can be mapped based on the core principles 

of MDSD. Each TS involved in integration is represented as a generic data model. 

Subsequently, integration experts and developers create transformations, i.e., mappings, 

using a declarative mapping DSML with a graphical notation. This allows the 

connection of structures from the source and target TS models, thus representing 

required mappings between them. Ultimately, the integration adapter is automatically 

generated from the mappings, leading to expedited development and reduced errors. 
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One notable aspect of this approach involves reusing existing mappings and creating 

new mappings based on those stored in a repository. Including knowledge and 

derivation functionality also allows for the automated specification of a new mapping. 

This reusability accelerates the integration process and simplifies the development 

process for integration engineers. 

We have developed an integration tool called AnyMap to support our approach. This 

tool consists of the following components: TS importers (binders), a DSML for the 

specification of mappings, alignment and reuse algorithms, and code generators. 

AnyMap allows integration developers to specify mappings between systems at a higher 

level of abstraction and then use code generators to create executable adapters for a 

specific execution environment. In addition to the AnyMap tool, we have also 

developed a microservice-based scalable execution environment in which adapters are 

executed. However, creating other code generators that will generate regular, stand-

alone Java or C adapters is possible. We have successfully applied our integration 

approach to integrate devices communicating via CSV with ISs communicating via 

XML. 

The tool can be very useful to various software engineers and experts from different 

domains who need to integrate arbitrary TSs and do not have an adequate mechanism 

for mutual data exchange. With the tool, users can integrate arbitrary TSs uniformly, 

allowing users to learn the approach and become accustomed to the tooling support 

once and afterward, just spending time on performing the integration tasks without 

learning the implementation and serialization details of each one. AnyMap allows users 

to specify integration adapters at the level of data schemas using a custom DSML. As 

concepts of such a language on a highly abstraction level are tailored to non-

programmers’ needs and skills, by using these concepts, a user does not need to be 

experienced in any of the contemporary programming languages. Also, the reuse and 

alignment algorithms offered by AnyMap alleviate a user of the tedious, error-prone, 

and time-consuming process of creating repetitive mapping (transformation) rules. 

Our approach has a limitation, as it can only be applied to three-level meta-models 

with a graph structure that can be transformed into a tree without losing significant 

semantic properties. This restricts its utility to schemas that can be flattened, i.e., 

schemas without infinite recursions of their elements. However, in our experience, we 

have seldom encountered infinite recursion in the cases where we have used our 

approach. Moreover, in instances where infinite recursion has been encountered at the 

schema level, flattening the structure to a desired depth and breaking the recursion with 

stub elements has proven to be an effective solution. We plan to address this limitation 

as a part of future work by investigating schema representation approaches and their 

implementation possibilities. 

One potential avenue for future research is the development of more advanced and 

effective element-matching algorithms. At present, automation relies on simple 

matching algorithms that gauge element similarity and probability based on individual 

element information without considering the context or relationships of the element 

when determining the probability of it being the right candidate for a new mapping. An 

enhancement could involve semantically describing TSs using a shared ontology or a 

set of ontologies and automatically identifying semantic correspondences between 

source and target elements using ontology alignment methods. 

We also plan to establish metrics and an evaluation framework for qualitative and 

quantitative assessment of our approach in future research endeavors. The research 
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community widely recognizes [46, 47] that evaluating an MDSD approach and 

measuring the quality of DSML are challenging tasks, and to date, only a limited 

amount of research has been conducted on these issues. 

To advance the development of the AnyMap tool, it is essential to implement various 

enhancements to improve its usability, efficiency, and domain coverage. Introducing 

new TS binders would expand the tool's applicability across various use cases. This, in 

turn, would lead to a greater number of mappings in the reuse repository, fostering 

improved mapping automation. Our strategy involves developing binders for the most 

widely used protocols in the Industrial IoT (IIoT) domain, such as Open Platform 

Communications Unified Architecture (OPC UA), Message Queue Telemetry Transport 

(MQTT), and Modbus. With the addition of these protocols to the existing support for 

SEMI Equipment Communications Standard/Generic Equipment Model (SECS/GEM), 

CSV, and XML, we will achieve comprehensive coverage for many common use cases 

in the industrial environment.  

Furthermore, we intend to enhance the tool by integrating a real-time execution 

engine. This functionality will allow users to promptly execute specified mappings and 

observe the results directly within the tool. This improvement will enhance 

debuggability and shorten the feedback loop. Additionally, expanding the tool with the 

new concrete syntaxes and allowing users to customize the graphical syntax for 

specifying the mappings could help increase the developers' efficiency.  

We also need to expand our generator and execution environments. Although our 

current microservice execution environment offers the necessary flexibility and 

scalability, there are industrial settings where the speed of transformation execution is 

crucial. We intend to create a generator for optimized adapters using C or C++ 

programming languages to address this. These adapters will be executed directly on the 

industrial PCs connected to the devices. Running near the machines, these adapters will 

enable real-time or near-real-time data transformation. It's important to note that 

optimizing these adapters is crucial due to the limited resources on which they often 

run. 

An additional enhancement would involve upgrading the tool to enable the 

transformation of streaming data, as opposed to data transferred in files. This 

enhancement would necessitate a comprehensive repository of predefined mappings 

within the domain of the receiving data stream. The tool would need to operate in a 

"headless" manner, without any GUI elements, and in a fully automated mode that does 

not require any user intervention. It would apply existing mappings to all compliant data 

packages within a stream, thereby promptly producing the output data. In the event that 

new, unknown variations of input data are encountered, for which suitable mappings are 

not already executed within the tool, the tool would autonomously create new mappings 

using alignment and reuse algorithms. These newly created mappings would then be 

applied to the input data, ensuring uninterrupted stream processing. 
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