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Abstract. A heart sound signal (HSS) is sensitive to physiological noise and en-
vironmental noise, thereby degrading their quality, which makes the accurate di-
agnosis of machines or doctors difficult and unreliable. To this end, we present a
heart sound denoising method using Parameterless Scale-space Boundary Detec-
tion (PSBD)-Empirical Wavelet Transform (EWT) and Enhancement Generative
Adversarial Network (EGAN) to remove noises that corrupt HSSs in this paper.
First, it introduces PSBD and kurtosis to find boundaries delimiting consecutive
EWT modes. And then, it further selects the relevant modes on the Pearson’s corre-
lation coefficient between each of empirical modes and the original signal to recon-
struct HSSs. Finally, EGAN is proposed to improve PSBD-EWT’s generalization
capacity with regard to different noises. Experimental validation is carried out on
PASCAL, MHSDB and WUPHSD databases. The results show that our proposed
method achieves significant improvements over state-of-the-art methods. In the case
of white Gaussian noise with Signal Noise Ratio (SNR)=5dB, it obtains the best
denoising performance under a SNR of 12.53dB and an Root Mean Square Error
(RMSE) of 0.034.

Keywords: heart sound signals, denoising, empirical wavelet transform, heart sound
signal enhancement.

1. Introduction

As reported by World Health Statistics 2023, in 2019, it is estimated that 17.9 million (UI:
13.4-22.9 million, 27%) people died of chronic diseases. There are 330 million Cardio-
vascular Disease (CVD) patients, including 11.39 million with Coronary Heart Disease
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(CHD), 8.9 million with Heart Failure (HF), 5 million with Pulmonary Heart Disease
(PHD), and 4.87 million with Atrial Fibrillation (AF) in China [1]. Fortunately, the anal-
ysis of Heart Sound Signals (HSSs) has been the primary option for screening and early
diagnosis of heart disease. This is because that heart sound contains a great number of
biomedical signals related to cardiac activity, which can reveal many pathological heart
conditions, such as HF, arrhythmia, and valvular heart disease (VHD).

Traditionally, heart sound was collected from a doctor with a stethoscope. However,
manual auscultation brings about great uncertainty and diagnostic delay because it de-
pends on the auscultation skills and experience. Challenges arise due to the presence of
heart sound (below 600Hz) inaudible to the human ear. Therefore, Internet of Things
(IoT)-based digital stethoscope, due to its non-invasive and easy-to-use nature, is devel-
oping rapidly. IoT-based digital stethoscope can record heart sounds and connect to edge
clouds for real-time remote analysis and diagnosis [2]. Under uncontrolled environments,
it is impossible to capture noise-free heart sound. Heart sounds are affected by respi-
ratory sound, ambient noise and even signals from environments thereby degrading its
quality. There is a significant overlapping frequency between heart sounds varying from
20Hz to 800Hz and respiratory sounds varying from 20Hz to 1600Hz. Besides, when
people are walking or running, Motion Artifact (MA) is easily introduced to heart sounds.
IoT Devices’ circuits also may produce Powerline Interference (PLI) and Additive White
Gaussian Noise (AWGN). These factors have seriously affected the outcomes of heart
sound diagnosis. Due to the chaotic and non-stationary nature of heart sounds and their
variability with changes in human body’s physical conditions, heart sound denoising is a
very complex problem and has become a research hotspot.

Over the past few decades, various techniques have been exploited to denoise heart
sounds. First, various statistical methods, including Non-negative Matrix Decomposition
(NMD) [3] and Singular Value Decomposition (SVD) [4], are usually used to distinguish
HSSs from respiratory sounds, but these methods are difficult in dealing with the dif-
ference between the noise and murmurs [5]. Second, various time-domain methods, in-
cluding conventional filters and auto-correlation methods are exploited to remove noise.
Conventional filters such as Butterworth band-pass filters and Finite Impulse Response
(FIR) filters can only remove noises outside the range of HSS frequency [6]. Empirical
Mode Decomposition (EMD) [7] has good adaptability for non-linear decomposition of
HSSs but suffers from modal aliasing and endpoint effect. Although Variational Modal
Decomposition (VMD) can overcome modal aliasing but its decomposition performance
decreases with the increase of noise intensity. Finally, various frequency-domain, includ-
ing Wavelet transform (WT) [8], Fourier transform [9] and Empirical Wavelet Trans-
form (EWT) [10] were exploited to denoise HSSs. Wavelet transform depends on prede-
fined parameters including mother wavelet, threshold and DL. Similarly, Fourier trans-
form needs fixed basis functions. Therefore, they lack self-adaptability and are difficult in
suppressing the burst noise of HSSs. Compared to WT and Fourier transform, EWT is an
adaptive technique which is more suitable to analyze the non-stationary signals. However,
it has no improper segmentations of Fourier Transform spectrum due to noise interfer-
ence, which directly leads to the failure of EWT decomposition. It is worth mentioning
that the effectiveness of the above methods can be verified under the controlled clinical
environment or simulated noisy conditions. In practice, there are irregular, unpredictable
transient distortions of HSSs under uncontrolled environments. Moreover, in the exist-
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ing techniques, there is no unified denoising method that can be suitable for multi-noise
scenarios.

Notably, deep learning has attracted much attention in various signals denoising in
biomedical engineering such as electrocardiogram (ECG) and electroencephalogram
(EEG), but has rarely involved in the field of HSSs. To the best of our knowledge, only two
works exist in the literature that have exploited deep learning-based denoising methods to
remove noises from HSSs, i.e., Denoising Convolutional Neural Network (DnCNN) [11]
and LU-Net [12]. DnCNN predicts the residual noise, which is the difference between the
noisy HSSs and potential clean HSSs. A deep encoder-decoder-based denoising archi-
tecture, called LU-Net, was utilized to suppress respiratory sound and ambient noise that
corrupt the heart sounds. Among them, sparse categorical cross-entropy and Mean Square
Error (MSE) can be used as loss of useful information to measure the difference between
noise-free and processed signals. In practice, the design of the loss function is difficult
because of the requirement to capture as many details as possible in the fluctuations of
HSSs.

In this work, we develop a new heart sound denoising method called PSBD-EWT-
EGAN, using Parameterless Scale-space Boundary Detection (PSBD)-EWT and Enhance-
ment Generative Adversarial Network (EGAN). First, it introduces PSBD and kurtosis
to find boundaries delimiting consecutive EWT modes. And then, it selects the relevant
modes on the Pearson’s correlation coefficient between each of empirical modes and the
original signal to reconstruct HSSs. Finally, EGAN architecture with an optimized loss
function is presented to further suppress noises rather than directly outputting denoised
HSSs of PSBD-EWT. Our proposed method combines the strengths of PSBD-EWT and
EGAN in HSSs denoising. On one hand, PSBD-EWT decomposes HSSs to sub-band
signals more discriminately than EWT. On the other hand, EGAN can improve PSBD-
EWT’s generalization capacity with regard to different noises, especially under low SNR
(Signal Noise Ratio) environments.

Our contributions are summarized as follows:

– A heart sound denoising algorithm using PSBD-EWT is proposed, in which PSBD
and kurtosis overcome the problem of noise component interference to sub-band seg-
mentations of EWT, especially under varying temporal-spectral characteristics of en-
vironmental noises and physiological sounds.

– An EGAN architecture with an optimized loss function is proposed, which is capable
of better preserving meaningful components of heart sounds while removing noise
under a low SNR environment. EGAN makes the denoised HSSs as similar to the
clean HSSs as possible, which is beneficial to avoid distortion and enhances the qual-
ity of HSSs.

– In order to verify the effectiveness of the proposed method, we have performed sev-
eral experiments on PASCAL [13], MHSDB [14] and WUPHSD [15] databases. The
experimental results show that the proposed method has advantages over the state-
of-the-art methods. In the case of white Gaussian noise (WGN) with SNR=5dB, our
proposed method obtains the best denoising performance under a SNR of 12.53dB
and an RMSE (Root Mean Square Error) of 0.034.

In the following, related work of heart sounds denoising is reviewed in Section 2.
Subsequent to this, Section 3 describes our proposed method. Later, the denoising per-
formance of our proposed method is compared with several state-of-the-art methods on
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publicly available heart sound datasets in Section 4. At the last, Section 5 concludes this
paper.

2. Related work

Denoising methods have been explored in diverse branches of biomedical engineering,
including ECG, EEG, respiratory sounds, and heart sounds.

(i) ECG Denoising. An adversarial denoising convolutional neural network (ADnCNN)
[16] was exploited for a residual signal from noisy ECG to obtain a clean ECG. In a dis-
criminator network, the denoised and clean signals were classified. The network was fed
back to ADnCNN model for parameter adjustment. The work presented in paper [17]
employed Convolutional Neural Network (CNN) based Generative Adversarial Network
(GAN) model for ECG denoising, which was trained end-to-end using the noisy and clean
ECG signals. Recently, a modified lightweight U-Net model called LUNet was exploited
to handle various noises that corrupt ECG signals, including baseline wander, muscle ar-
tifacts, and AWGN [18]. In order to prevent the loss of effective information when the
network is compressed, a deep-wave convolutional neural network called DW-CNN [19]
replaces the simple complete layer with a convolutional layer to build an encoder and a
decoder. Besides, a Cycle-consistent Generative Adversarial Network (Cycle-GANs) [20]
was exploited to improve the quality of ECG recordings suffering from various artifacts,
especially for an accurate arrhythmia diagnosis.

(ii) EEG Denoising. One Dimensional Residual Convolutional Neural Network (1D-
ResCNN) [21] was exploited to remove the EEG artifacts, which included convolutional
layers and Inception-ResNet mapping the noisy EEG signals to the clean ones. Because
a single-channel approach might not extract specific spatial information, IC-U-Net [22]
combined Independent Component (IC) and U-Net architecture to remove EEG artifacts.
Furthermore, IC-U-Net is based on U-Net architecture with a loss function ensemble.
Similarly, a framework based on GANs, called EEGANet [23], was applied to eliminate
the ocular artifacts from EEG signals. In addition, 1D EEG signal denoising network with
2D transformer, called EEGDnet [24], offered a blend of local and nonlocal self-similarity
in feed forward blocks to enhance the denoising performance.

(iii) Respiratory Sound Denoising. Respiratory sounds are recorded in noisy environ-
ments, which overlap with the different types of noises. A unique method, using EMD,
hurst analysis and spectral subtraction, was proposed to denoise the lung sound [25].
Pouyani et al. [26] developed a method based on WT and Artificial Neural Networks
(ANN) to remove noises from respiratory sound signals. Besides, singular spectrum anal-
ysis, combining with Discrete Cosine Transform (DCT), was applied to distinguishing
BV signals from V signals, and finally enhance the quality of lung sounds [27].

(iv) PCG (Phonocardiogram) & HSSs Denoising. Band-pass filters and Butterworth
band-pass filters are common methods of HSSs denoising, which can remove
high-frequency and low-frequency noises with cut-off frequencies. WT, EMD, Power
Law Algorithm (PLA), Hidden Markov Model (HMM) and Short-time Fourier Trans-
form (STFT) [28] are usually used to denoise HSSs. In particular, WT has advantages in
the time-frequency representation of HSSs, but selection of mother wavelet, threshold and
DL is inevitable and excellent domain expertise is also crucial. These parameters of the
wavelet threshold denoising method were optimized for HSSs. In [29], a noise reduction
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method, fusing VMD and the wavelet soft threshold algorithm, was presented to sup-
press the noise contaminants from children’s PCGs, especially crying noise. The method
might effectively improve the performance of intelligent screening for CHD. In addition,
an adaptive denoising algorithm, combining Time Delay Neural Networks (TDNN) and
WT, was employed to denoise mobile PCG [30]. An adaptive noise cancellers-based filter
was utilized to denoise and recover the PCG signal corrupted by Gaussian and pink noise
[19]. In addition, the GAN-based architecture was used to generate synthetic HSSs, while
EWT was used to denoise synthetic cardiac signal and decreased the computational cost
that GAN requires [31].

Additionally, deep neural networks have achieved significant results in image noise
reduction and speech enhancement, such as Residual Dense Generative Adversarial Net-
work [32,33,34], and Speech Enhancement Generative Adversarial Network (SEGAN)
[35][36], but rarely in the field of HSSs noise denoising.

Our work first exploits PSBD and kurtosis to find boundaries delimiting consecutive
EWT modes. Furthermore, in the training phase, it takes the noisy and clean HSSs as input
in a parallel mode instead of only noisy HSSs in an EGAN. From the above discussion,
two novel points highlight the contributions to HSSs denoising.

(i) Our proposed method can separate meaningful and informative components from
noisy HSSs, especially under varying temporal-spectral characteristics of environmental
noises and physiological sounds.

(ii) The robustness of our proposed method will be better than the existing heart sound
denoising methods. Quite a few heart sound denoising methods, such as [37,38], can
achieve good performances in a strictly constrained environment. These methods only
employ simple filters, such as Butterworth bandpass filtering, high-pass filter, etc., in
the pre-processing stage, so their denoising capability is insufficient. PSBD-EWT-EGAN
makes full use of clean HSSs and an optimized loss function to achieve heart sounds
enhancement even under a low SNR environment.

3. Methodology

3.1. PSBD-EWT

EWT is an adaptive decomposition method in which empirical wavelet is used to decom-
pose each signal into its modes. Because each mode revolves around a specific frequency,
EWT can divide the normalized spectrum of each signal into N segmentations to extract
the empirical modes. Extracting the bank of empirical wavelets is equivalent to finding
a set of bandpass filters. In general, EWT determines boundaries of spectral segmenta-
tion based on the local maxima. However, Fourier spectrum is prone to noise and non-
stationary factors. Once the segmentation boundaries are set incorrectly, it will directly
lead to the failure of EWT decomposition.

In Consequence, we introduce PSBD [39] to find local maxima of time-frequency
spectrum. The PSBD-EWT method exploits maxima on a kind of time-frequency spec-
trum based on the frequency-band segmentations, and the filter bank of orthogonal wavelet
was constructed based on the sub-bands to perform EWT decomposition. The method of
determining the boundaries of Fourier spectral segmentation is as follows:

Suppose that the classes of a given Fourier spectrum are represented in L levels, we
have the total number of classes N = n1 + n2 + · · · + nL, where nj is the number
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of classes at level j. We adopt Otsu’s method [40] to find the optimal threshold T such
that the intra-class variances σ2

intra of class A and class B are minimal while inter-class
variances σ2

inter are maximal. This is equivalent to maximizing σ2
intra and its expression

for intra-class variance is given by

σ2
intra = wAwB(µB − µA)

2 (1)

where the probabilities of class occurrence of A and B are wA = 1
N

T∑
j=1

nj , wB =

1
N

L∑
j=T+1

nj , respectively, and the class mean levels of A and B are µA =

T∑
j=1

jnj

T∑
j=1

nj

, µB =

L∑
j=1

jnj−
T∑

j=1
jnj

N(1−wA) , respectively.

Obviously, the optimal threshold T is determined automatically in PSBD on the global
characteristics of the given Fourier spectrum. Notably, one of the limitations of PSBD is
segmentation boundaries under varying temporal-spectral characteristics of environmen-
tal noises and body sounds, such as breathing and intestinal sounds. These noises exhibit
some important transient characteristics, including peak levels, peak intervals, and peak
durations. Kurtosis [41] is a statistical measure, which can fully account for all the three
transient characteristics. Therefore, kurtosis is introduced to PSBD-EWT to enhance the
noises suppression under uncontrolled environments.

In order to describe a heart sound signals denoising algorithm using PSBD-EWT, we
provides the following definitions.

Definition 1. Empirical scaling θi(ϖ) and empirical wavelet φi(ϖ) are expressed as

θi(ϖ) =

 1, |ϖ| ≤ (1− ξ)ϖi

cos(π2Φ(ξ,ϖi)), (1− ξ)ϖi ≤ |ϖ| ≤ (1 + ξ)ϖi

0, otherwise
(2)

φi(ϖ) =


1, (1 + ξ)ϖi≤ |ϖ|≤ (1− ξ)ϖi+1

cos(π2Φ(ξ,ϖi+1)), (1− ξ)ϖi+1≤ |ϖ|≤ (1 + ξ)ϖi+1,
sin(π2Φ(ξ,ϖi)), (1− ξ)ϖi≤ |ϖ|≤ (1 + ξ)ϖi

0, otherwise

(3)

where Φ(ξ,ϖi) = Φ( |ϖ|−(1−ξ)ϖi

2ξϖi
), ξ ensures that there is no overlapping between the

empirical scaling functions and empirical wavelets, and ϖi denotes ith boundary fre-
quency.
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Algorithm 1:Heart sound denoising using PSBD-EWT
Input: An original heart sound signal x(n)
Output: A constructed heart sound signal v(n)
1. Convert an original heart sound signal x into Fourier spectrum ranging [0,π] by
applying fast Fourier transform (FFT).
2. Apply EWT and PSBD to obtain N contiguous segmentations of Fourier spec-

trum, ∆i = [ωi−1, ωi],
N∑
i=1

∆i = [0, π], i = 1, 2, 3, . . . , N . For each ωi, a transi-

tion phase Ti is with width τi = ξωi. Two sequential areas are no overlap if and
only if 0 < ξ < mini

∆i+1−∆i

∆i+1+∆i
< 1.

3. Apply empirical scaling and wavelet functions over N contiguous segmenta-
tions to design bank-pass filters, and obtain detail coefficients Di and approxi-
mation coefficients Al of sub-bands with scaling function and empirical wavelet
function given in Def. 1 [10], i, l = 1, 2, ..., B, where B represents the total num-
ber of detailed sub-bands.
4. Reconstruct time-domain components of N contiguous segmentations, where

detail and approximation signals computed by xD(i)(n) =
Nj∑
j=1

Di(j)Wi(n− j),

xA(l)(n) =
Nl∑
j=1

Al(j)Sl(n − j), where xD(i)(n), xA(l)(n) represents detail and

approximation sub-band signals of ith level [10], respectively.
5. Calculate kurtosis given in Def.2 on all the reconstructed time-domain compo-
nents over N contiguous segmentations, and then find the frequency band with the
maximum kurtosis and its overlapped frequency bands which are further divided.
Set i = i+1, and repeat steps 2 to 4 util i = N . Finally, obtain the optimal bound-
ary {ϖ′

1, ϖ
′
2, ..., ϖ

′
u}, and corresponding detail coefficients and approximation

signals.
6. Obtain empirical modes by convolving the scaling function with the approxima-
tion coefficients and empirical wavelet functions with their corresponding detail
coefficients, which is express as e1 = we(1, t) ∗ θ1(t), ej = we(j, t) ∗ φj(t),
j = 1, 2, . . . ,M , M is the number of empirical modes.
7. Calculate the Pearson’s correlation coefficient given in Def.3 on all the empiri-
cal modes, and select the nth empirical modes en if and only if Cxe > C0, where
C0 is an experimental parameter.
8. Reconstruct and obtain the denoised signal v(n) using the sum of the denoised
empirical modes.

Definition 2. The expressions for Kurtosis are given by

K[|xh(n)|]2 =
E(|xh(n)|4)

[E(|xh(n)|2)]2
(4)

E(|xh(n)|4) =
1

L∆(i)

t+L∆(i)−1∑
n=t

||xh(n)∆(n− t)||4 (5)

[E(|xh(n)|2)]2 = {E[SE(xh(n))]}2 (6)
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where x(n) denotes the zero mean and amplitude normalized signal and xh(n) denotes its
Hilbert transform; SE(xh(n)) and E(xh(n)) denotes absolute squared value and expec-
tation of the signal x(n), respectively, and L∆(i) denotes the length of the ith contiguous
segmentation ∆(i) of Fourier spectrum.

Definition 3. For a sample of N values, the Person’s correlation coefficient between the
original signal and the empirical mode is defined as

Cxe =

∣∣∣∣∣∣∣∣∣∣
N∑

n=1
(x(n)− x)(em(n)− em)√

N∑
n=1

(x(n)− x)
2

√
N∑

n=1
(em(n)− em)

2

∣∣∣∣∣∣∣∣∣∣
(7)

where x and em denote the average of heart sound signal x(n) and the average of the
mth empirical mode em(n), respectively.

The algorithm of heart sound signals denoising using PSBD-EWT is shown in Al-
gorithm 1. It inspired from PSBD and kurtosis. On one hand, PSBD further enhances
EWT’s adaptive abilities to overcome noise interference. On the other hand, kurtosis im-
proves EWT’s robustness due to removal of noises with varying temporal-spectral char-
acteristics, especially in the case of small fluctuations in places where heart sounds are
not present. On basis of the above characteristics, PSBD-EWT can effectively decompose
heart sounds under the noisy HSSs to the maximum extent.

3.2. Enhancement Generative Adversarial Network (EGAN)

Although PSBD-EWT can obtain the shape of HSSs well by decomposing the raw HSSs,
its anti-aliasing ability are still insufficient. Especially under low SNR environments, the
denoised HSSs of PSBD-EWT should be avoided distortion. To overcome such limita-
tions, we here introduce EGAN to PSBD-EWT. It can further reduce the influence of
different EWT mode selections.

The end-to-end architecture of EGAN is composed of a generator (G) and a discrimi-
nator (D). G network utilizes an encoder-decoder fully-convolutional structure. To obtain
better performance of HSSs denoising, the encoder includes k convolutional layers with
a kernel size 1 × 31 and a stride of 4, and Parameteric Rectified Linear Units (PReLUs).
Correspondingly, the decoder has an anti-symmetric structure of the encoder. As the num-
ber of layers in the network is too deep, the features are easily lost. Consequently, a skip
connection was needed between the encoder and decoder which can retain some important
features and convey the details of HSSs. Moreover, it can avoid the vanishing gradients.
The output of each layer of the encoder and the corresponding feature of the decoder are
concatenated as input to the next layer of the decoder. The G network architecture of
EGAN is shown in Fig. 1.

In EGAN, the input of G consists of a noisy HSS ṽ, a clean HSS v and a random
representation z from a distribution Pz(z). The output of G is the denoised HSS G(z, v).
The received input of discriminator D is a pair of signals including a clean HSS and a
noisy HSS (x, ṽ), or a denoised HSS and a noisy HSS (G(z, v), ṽ), respectively, and the
output is 0 or 1. Actually, GANs chooses the sigmoid cross entropy as a loss function,
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Fig. 1. The G network architecture of EGAN

Fig. 2. The D network architecture of EGAN

which leads to vanishing gradients problem. Therefore, L2 − distance between a clean
HSS v and a denoised HSS G(z, ṽ) is introduced to the loss function, which can be defined
as

ldistance =

√√√√ k∑
j=1

|v −G(z, ṽ)|2. (8)

In addition, the L1 − distance between a clean HSS v and a denoised HSS G(z, ṽ)
should be further introduced to the loss function, thereby generating the more realistic
samples. It is expressed as

lsamples = ∥v −G(z, ṽ)∥1. (9)

In low SNR environments, it is easy to bring about an incomplete feature represen-
tation due to difficulties in suppressing noise contaminations. Therefore, a clean HSS is
needed to provide an important reference for the corresponding noisy HSS in the training
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stage. Inspired by SEGAN [35], the clean HSSs and the noisy HSSs are compressed si-
multaneously and independently. They share the same network parameters, which can en-
hance the subsequence effect of reconstructed HSS. In practice, the noisy HSSs and clean
HSSs are spliced at the same width and input into the network as two-dimensional vec-
tors. Through layer-to-layer convolution operations, G network obtain a low-dimensional
feature n k of the noisy HSS and a low-dimensional feature c k of the clean HSS from
the decoder output. In order to force G to learn feature representations of HSSs, it is
obvious that two features need to be as close to each other as possible. Therefore, the
lfeature − distance between n k and c k needs to be introduced to the loss function. It
is expressed as

lfeature = ∥n k − c k∥1. (10)

In this way, a new total loss function of G in EGAN can be represented as

min
G

VEGAN (G) =
1

2
Ez∼Pz(z),vc∼Pdata(vc)[(D(G(z, ṽ), ṽ)− 1)2]

+λlsamples + µlfeature + ηldistance

(11)

where Pz(z) denotes the prior distribution of input variable z; Pdata(vc) denotes the
distribution of the real data vc; λ, µ and η denote the weight factors of lsamples, lfeature
and ldistance, respectively.

To obtain better denoising performance of HSSs, the network architecture for D is
shown in Fig.2. D consists of 3 convolutional layers and 1 fully connected (FC) layer.
Moreover, it employs a batch normalization (BN) and a PReLU activation function after
each convolutional layer. Besides, D uses a sigmod activation function after FC to perform
classification. The loss function of D in EGAN is expressed as

min
D

VEGAN (G) =
1

2
Ez∼Pz(z),ṽ∼Pdata(ṽ)[(D(G(z, ṽ), ṽ))2]

+
1

2
Ev,ṽ∼Pdata(ṽ)[(D(v, ṽ)− 1)2]

(12)

where Pz(z) denotes the prior distribution of input variable z and Pdata(ṽ) denotes the
distribution of noisy HSS ṽ.

In this way, EGAN has the following characteristics:
(i) In uncontrolled environments, especially in low SNR environments, it is difficult to

obtain a complete feature representation from the noisy HSSs alone. EGAN can force the
G network to learn the feature representations from the clean HSSs, thereby compensating
for the loss of important components.

(ii) Through multi-layer convolution operations, the total loss function makes the de-
noised HSSs as similar to the clean HSSs as possible. More importantly, the noise con-
tained in higher-level features is significantly eliminated in low-level features, which is
more conducive to enhancing heart sounds in low SNR environments.
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4. Experiment

4.1. Data Resources

Publicly available heart sound datasets are used to validate the effect of our proposed
method. (i) PASCAL dataset. There are 176 files (Dataset A) and 656 files (Dataset B)
collected from general public and clinical trials, respectively. Dataset A and B are gath-
ered by iStethoscope Pro-iPhone app and digital stethoscope, DigiScope, respectively.
(ii) Michigan Heart Sound and Murmur Database (MHSDB). There are 23 heart sound
recordings with a total duration of 1496.8 seconds (iii) Washington University public
heart sound dataset (WUPHSD). Heart sound records are collected from 50 patients, aged
from 6 to 85 years. In addition, we utilize PyTorch 1.7 to implement deep learning archi-
tectures. The models are trained on the environments with Intel CPU, Nvidia GPU (RTX
2070Super), Ubuntu Server 22.04.

4.2. Performance metrics

SNR and RMSE are exploited to evaluate the noise reduction. SNR and RMSE are ex-
pressed as

SNR = 10 lg

N∑
n=1

(v(n))
2

N∑
n=1

(v(n)− v̂(n))
2

, (13)

RMSE =

√√√√ 1

N

N∑
n=1

(v(n)− v̂(n))
2
, (14)

respectively. Here, N denotes the number of HSS samples, v(n) denotes the original HSS,
v̂(n) denotes the denoised HSS.

4.3. Denoising Results of PSBD-EWT-EGAN

To verify whether our proposed method can perform noise reduction on HSSs in real-
world scenarios, we use noisy HSSs from PASCAL dataset, which are polluted by var-
ious unavoidable entities. Take 201102201230.aif from PASCAL/A as an example, we
first convert heart sound signal into Fourier spectrums and then apply EWT to obtain 97
contiguous segmentations. The resample points are set to 2000. Then, we exploit PSBD
and kurtosis to merge the boundaries of contiguous segmentations and obtain 87 new seg-
mentations. Finally, we exploit PSBD-EWT-EGAN to obtain the final constructed heart
sound. Fig.3 show the segmentations of 201102201230.aif using EWT, PSBD and kur-
tosis, respectively. Some empirical modes are shown in Fig.4. Fig.5 clearly demonstrates
the comparison the original HSS and the reconstructed HSS of PSBD-EWT-EGAN. It can
be clearly observed that the noisy portions of the noisy HSS are effectively suppressed.
Hence, PSBD-EWT-EGAN can denoise HSSs effectively under real-world noisy environ-
ments.
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(a) The segmentations using EWT (b) The segmentations using PSBD kurtosis

Fig. 3. The segmentations of 201102201230.aif from PASCAL/A

Fig. 4. The empirical modes of 201102201230.aif from PASCAL/A

Fig. 5. The original HSSs and the reconstructed HSSs of PSBD-EWT-EGAN
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4.4. Denoising Performance Comparisons

Under the same conditions, we evaluate noise reduction results of PSBD-EWT-EGAN
compared to WT (constant threshold), EMD and AE-CGAN (autoencoder-Conditional
Generative Adversarial Networks) [42]. WT and EMD are two frequently used tools for
non-stationary signals. Compared with the EGAN, the generator network of AE-CGA
only introduces L1 − distance to its loss function. The database of clean HSSs consists
of the recordings from MHSDB and WUPHSD. The recordings were randomly divided
two sets: the testing set and the training set, in a 1:4 ratio. The clean HSSs are mixed
with WGN and pink noise at different SNRs (-5dB, -2.5dB, 0dB, 2.5dB, and 5dB) to
get the noisy HSSs. All the recordings are partitioned into 3-second clips using the non-
overlapping windows.

Figures 6 and 7 showcases the effects of noise reduction of normal HSSs from WUPHSD
and aortic stenosis HSSs from MHSDB by four models when the HSSs are mixed with
WGN noise and pink noise at SNRs=0dB, respectively. The resample points are set to
2000. The time-domain diagram is on the left and the time-frequency diagram is on the
right. It can be seen that the WT denoising can not only remove most of the noise, but
also eliminate meaningful components of the original HSSs, resulting in the waveform
distortion of the denoised HSSs. Although EMD retains most of the original HSSs, it also
retains components of the noise, and the denoised effect is not ideal. The main reasons
for the above phenomenon are as follows:(i) The basis function of WT denoising is pre-
selected and the parameters are fixed manually; (ii) The noise variance of EMD denoising
is contained in the interval threshold, and even seriously destroys the structure of HSSs.
Therefore, WT and EMD denoising of HSSs are difficult to accurately distinguish heart
sounds and noises. Compared with WT and EMD, both AE-CGAN and PSBD-EWT-
EGAN can retain more meaningful components of the original HSSs while removing
noises in a low SNR environment. Notably, compared to AE-CGAN, PSBD-EWT-EGAN
is more capable of preventing excessive distortion.

Table 1. Denoising performance comparison among WT, EMD, AE-CGAN and
PSBD-EWT-EGAN
Noise Type Input SNR(dB) SNR(dB) RMSE

WT EMD AE-CGAN PSBD-EWT-EGAN WT EMD AE-CGAN PSBD-EWT-EGAN

White

-5 -4.08 -4.03 7.77 9.26 0.179 0.178 0.052 0.044
-2.5 -1.69 -1.61 8.19 10.14 0.136 0.134 0.050 0.041

0 0.68 0.85 8.63 11.24 0.103 0.101 0.049 0.037
2.5 3.00 3.30 8.63 11.24 0.079 0.076 0.049 0.037
5 5.28 5.75 9.04 12.53 0.061 0.058 0.047 0.034

Pink

-5 2.5 -3.25 5.63 6.46 0.084 0.162 0.067 0.063
-2.5 3.64 -0.79 6.83 7.95 0.074 0.122 0.058 0.051

0 4.89 1.62 7.64 9.10 0.064 0.093 0.053 0.046
2.5 6.18 4.11 8.49 10.45 0.055 0.070 0.049 0.040
5 7.56 6.51 8.83 11.54 0.047 0.053 0.048 0.037

Table 1 shows performance of different methods for different noise types and the input
SNR levels, including WT, EMD, AE-CGAN and PSBD-EWT-EGAN. Compared with
WT and EMD, our proposed method is advantageous in all aspects. In the case of WGN



252 Jianqiang Hu et al.

SNR=5dB, our proposed method gains a best output SNR (dB) (12.53 vs.5.28 vs. 5.75)
and an RMSE (0.034 vs. 0.061 vs. 0.058). In the case of pink noise SNR=5dB, PSBD-
EWT-EGAN provides a best output SNR (dB) (11.54 vs. 7.56 vs. 6.51) and an RMSE
(0.037 vs. 0.047 vs. 0.053). It demonstrates the superiority of exploiting PSBD-EWT-
EGAN to enhance the quality of the HSSs. Besides, compared with AE-CGAN, PSBD-
EWT-EGAN consistently outperforms AE-CGAN in output SNR and RMSE across all
input SNRs. Overall, PSBD-EWT-EGAN has the highest anti-noise ability compared with
WT, EMD and AE-CGAN. The main reason for the above results is that we replaced the
cross-entropy loss with the least square loss. Moreover, the an optimized loss function
of G combining L1 − distance, L2 − distance and lfeature − distance between the
denoised HSS and the clean HSS is very effective.

(a)

(b)

Fig. 6. The effects of four denoising methods on white noise SNR=0dB
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(c)

(d)

Fig. 7. The effects of four denoising methods on pink noise SNR=0dB

5. Conclusion

Under uncontrolled environments, various uncertain noises inherently corrupt HSSs. In
this work, we take advantage of the interpretability of PSBD-EWT for HSSs denoising.
Furthermore, we design EGAN architecture with an optimized loss function to improve
PSBD-EWT’s generalization capability with regard to different noises. Therefore, PSBD-
EWT-EGAN has both stronger interpretability and higher generalization capability. Be-
sides, we have validated it on PASCAL, MHSDB and WUPHSD databases, and both
healthy and pathological recordings. Both normal and aortic stenosis HSSs contaminated
with AWGN or pink noise at different levels of SNR, our approach achieves significant
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improvements over state-of-the-art methods. In the case of WGN SNR=5dB, our pro-
posed method obtains the best denoising performance, with a SNR of 12.53dB and an
RMSE of 0.034.

PSBD-EWT-EGAN can play a vital role in resisting the noise interference for screen-
ing cardiac diseases in uncontrolled environments. The good effect of heart sound de-
noising lays the foundation for heart sound diagnosis, especially for non-invasive digital
stethoscopes, which is conducive to accelerating the application and promotion of heart
sound diagnosis in home healthcare monitoring.
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