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Abstract. Temporal knowledge graph completion is a technique that uses existing
knowledge to predict or infer the missing information in the temporal knowledge
graph. It combines the technical features of knowledge graph completion and time
series analysis to deal with entities and relationships that change over time. The
existing temporal knowledge graph completion technology fails to make effective
use of the special relationship between relations and time series information, and
it is difficult to fully represent the complex relationships existing in the graph. In
order to solve the above problems, the model based on time probability box embed-
ding (TPBoxE) was proposed. Firstly, the entities and relationships in the temporal
knowledge graph are represented in the vector space by box embedding, so as to
complete the static part of the temporal knowledge graph. Secondly, the head and
tail entities that exist at the same time in a given time period are selected, and the
completed static parts are filtered according to the time information of the entities.
Finally, the Bayesian classification method is used to fully mine the time features
hidden in the relationship, and the completion results are obtained by combining the
confidence scores of the static parts. The link prediction task test of the proposed
model on YAGO11k, WIKIdata12k, ICEWS18 and GDELT datasets shows that the
proposed model has better performance than the existing excellent models, which
proves the effectiveness and advancement of TPBoxE.

Keywords: Temporal knowledge graph, Knowledge graph completion, Temporal
information, Link prediction, Bayesian classification.

1. Introduction

In 2012, Google launched the Google Knowledge Graph, which began to apply knowl-
edge graph to search engines, marking the widespread application of knowledge graph
technology. A knowledge graph is a vast knowledge base that contains information about
entities (such as people, places, organizations, etc.), their relationships, and their at-
tributes, which are structured and organized together to form an integrated knowledge
graph. At present, the more complete knowledge graphs include DBpedia [10], Freebase
[22], Wikidata [30], and YGAO [13]. Temporal knowledge graph (TKG) is formed into
a time-stamped quadruple. Compared with the traditional knowledge graph, the temporal
knowledge graph can express richer information.
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Nowadays, knowledge graphs have been widely used in natural language processing,
search engines, question answering systems, and recommendation systems [21,2,23,31].
Baidu baike is an example of an applied knowledge graph, where users can search for
keywords to obtain rich information including entity definitions, attributes, relationships,
and various related knowledge.

However, real-world data is often incomplete and insufficient, and there may be miss-
ing or wrong information, which will inevitably lead to missing entities or relationships
in the TKG. The above problems will reduce the reliability and application value of the
TKG, and bring trouble and limitations to downstream application tasks. Therefore, it is
of great significance to improve the data quality and content of the TKG.

2018

Teammate

Fig. 1. An example of subgraph completion in a temporal knowledge graph

In order to improve the accuracy and completeness of the temporal knowledge graph,
scholars have proposed various completion tasks. Temporal Knowledge Graph Comple-
tion (TKGC) refers to the filling or prediction of missing entities and relationships in an
incomplete time series knowledge graph through inference, so as to make the TKG more
complete and comprehensive. Compared with the traditional knowledge graph comple-
tion(KGC), the completion of the TKG needs to consider the consistency of time, that is,
the existing TKG and the completed entity or relationship need to be logically consistent
in time. In addition, the dynamic evolution of entities and relationships in the temporal
knowledge graph is also very important. The completed entity or relationship needs to be
able to satisfy the temporal correlation between the facts of the time series, including the
order in which the facts occur, the time interval, and so on. As shown in Figure 1, the
relationship between the connected entities has time information, indicating the point in
time or time period when the fact is established. When the static knowledge graph com-
pletion method is adopted, it can lead to confusion in the semantic information of entities
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or relationships. For example, when completing a missing entity (Messi, teammate, ?,
2018), ignoring the given timestamp 2018 may confuse Luis Suárez with the rest of the
Barcelona team, giving the wrong answer.

TKGC holds significant application value for time-related prediction, recommenda-
tion, inference tasks, and describing the development patterns of entities. Since the con-
cept of TKGC was introduced, the technology for completing temporal knowledge graphs
has rapidly advanced in response to practical application needs. However, most existing
TKGC methods have one or more problems:

• Embedding the time series information into the entities or completely separating
them, and ignoring the special connection between the relationship between the en-
tities and the time series information, will lead to the loss of part of the information.
These connections usually contain a wealth of knowledge, which can provide more
accurate and reliable auxiliary information for reasoning, so as to improve the cor-
rectness of knowledge graph completion.

• The representation of time information is unreasonable, and only how to represent
time information in the form of a point in time (e.g., [2022-12-25]) is not considered,
but how to represent time information in the form of time period (e.g., [2022, 2023])
is not considered.

• The complex relationship between entities cannot be fully represented, such as: 1-n,
n-n, etc, relationship.

• There are few studies on the relationship between entities and temporal information,
and the importance of relationships is ignored in the process of completion.

In order to solve these problems and better improve the ability of KGC, this paper
proposes a Temporal Knowledge Graph Completion based on Time Probability Box Em-
bedding (TPBoxE). The model is based on the box embedding technology, which embeds
the entities and relationships in the temporal knowledge graph into the vector space, and
sets regular functions to capture the complex relationships between the entities. At the
same time, a time scoring method is designed to filter out the correct static facts in a given
time period according to the time series information of the entity. The model also has ex-
cellent universal applicability, and other static KGC models can be migrated to the TKGC
task. The main contributions of this paper are briefly described as:

• In order to solve the problem of missing entities or relationships in the temporal
knowledge graph, a temporal knowledge graph completion model TPBoxE based on
time probability box was proposed, which improved the ability to learn the static part
of the temporal knowledge graph through box embedding, and screened the static
facts of the completion based on the time information as the evaluation basis, which
solved the problem of applying the static knowledge graph completion method to the
completion task of the TKG.

• The relationship between entities and temporal information is studied and verified
by experiments. The feature-weighted frequency naı̈ve Bayes classification method is
used to integrate this feature into the screening process of static facts, which improves
the accuracy of the completion results.

The proposed TPBoxE model is end-to-end in the TKG completion task, and the miss-
ing temporal facts can be automatically predicted by learning the existing TKG data as
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background knowledge, without the need to manually segment and label the data. For
the missing temporal facts, different models output tasks are selected based on the type
of missing data, such as entities, relations, or time information. The missing parts of the
temporal fact quadruple are marked, and the final answer is found by following the scores
of the TPBoxE model. In the completion process, the model will automatically learn the
vector representations of entities and relations and their temporal information from the
TKG background knowledge, and deduce the missing parts of the temporal knowledge
through the above learned information. In this study, experiments are carried out on four
public datasets extracted from the real time series knowledge graph WIKIdata, YAGO,
ICEWS and GDELT, and the results in the link prediction task show that the performance
of the TPBoxE model has obvious advantages over other models. It is compared with the
existing excellent models, which shows that it has low time and space complexity. The
superiority of the model in TKGC tasks was demonstrated.

2. Related Works

Knowledge graphs provide a structured way to organize and store data [25], correlate and
represent a large amount of knowledge and information in the form of graphs, and provide
a rich data foundation for artificial intelligence. However, there are still some problems
with the completeness of the TKG itself, resulting in low availability. Therefore, scholars
have carried out a lot of research on knowledge graph completion, which is divided into
KGC and TKGC according to whether there is timing information inside the graph.

2.1. Knowledge Graph Completion

The model based on the translation approach embeds the entities in the KG into the vector
space and encodes the relationships as translation work between the entities in the vector
space. Representatives include TransE[4], and RotatE[26]. The classical TransE model
embeds entities as vectors and represents relationships as displacements between entity
vectors. This approach is easy to understand and implement but performs poorly when
dealing with 1-n or n-n relationships. To better represent entities and relationships, RotatE
embeds them in complex vector spaces and employs rotation operations to handle the
complexity between relationships. This rotation operation allows it to better represent
binary relations such as symmetry and self-inverse relations in the knowledge graph.

With the advances in artificial intelligence, many deep learning techniques are also
being used to solve the KGC problem. ConvE [9] model is based on the convolutional
neural network, which represents the KG as a two-dimensional matrix, and uses a multi-
layer convolutional neural network to perform feature extraction on the matrix. By using
convolutional layers and fully connected layers, ConvE can capture complex non-linear
interactions between entities and relationships. DistMult [36] noticed the particularity of
the relationship between entities, by representing the relationships as elements on the di-
agonal of the corresponding matrices, which makes it more advantageous in dealing with
the task of KGC with symmetric relationships. Building on DistMult, ComplEx [27] uses
more complex vectors to represent entities and uses complex inner products to predict the
scores of triples, enabling it to represent and reason about more complex relationships. In
recent years, with the wide application of attention mechanism [28], K-Bert [18] based on
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Transformer architecture has been proposed to be applied to KGC tasks. It learns generic
entity and relationship representations by large-scale pre-training on knowledge graph
data with high quality. These representations capture the semantic information between
entities and relationships well but cannot learn the structural information between entities
and relations.

Knowledge graphs are a technical approach to describing knowledge and establishing
relationships between everything in the world using graphical models [25]. The traditional
KGC model cannot make good use of the graphic structure features in KG, which results
in the loss of a large amount of information, including contextual information and entity
features. For this reason, researchers have proposed some models to solve such problems,
among which the representative ones are JGAN [14] based on graph convolutional neural
networks, and GAT [29], which is a graph attention mechanism that applies the attention
mechanism to graphs. The core of the JGAN and GAT model lies in its ability to learn
the representation of a node in the graph by aggregating the features of the node and its
neighboring nodes using a graph convolution model. This enables better use of informa-
tion about nodes and edges in the graph structure data to learn the local features of entities.
The Melo [34] model obtains meta-information and ontological information based on the
contextual structure of entities, and infers high-confidence triples by mining logical rules
within KG knowledge. This approach enables the model to understand how to represent
KG appropriately.

2.2. Temporal Knowledge Graph Completion

Due to the inability of knowledge graphs to represent changes in entities over time, an in-
creasing number of scholars are turning their attention to the task of TKGC. It is common
practice to accomplish TKGC tasks by adding an embedded representation of temporal
information [16] on top of existing KGC tasks.

Leblay et al. proposed the TTransE [17] model, which introduced the time dimension
into the vector representation of entities and relations respectively based on TransE so that
they could change dynamically according to the time interval. However, the shortcomings
of TransE are also inherited, and the representation of entity, relationship, and time in-
formation is relatively isolated, resulting in some missing information. For this reason,
Dasgupta et al. proposed HyTE [7], which is a hyperplane-based embedding method. The
model gets the connection between entities, relationships, and temporal information by
defining temporal information as a hyperplane and relationships as embedded as normal
vectors in a hyperplane onto which entities are projected. Compared with TTransE, it has
a better ability to deal with 1-n and n-n relationships but has some problems in the pro-
cessing tasks of continuous dynamic graphs, large-scale knowledge graphs, and sparse
data. TBoxE [20] proposed by Johannes Messner et al., based on the BoxE [1] model,
embedded timing information into two transfer vectors to find the connection between
entities again. By doing so, the missing relationships in the TKG can be predicted more
accurately, and more complete temporal information can be provided. Existing TKGC
methods embedding knowledge into Euclidean space often have the problem of high-
dimensional nonlinear data and complex geometric structures. To solve this problem,
Wang et al. proposed a multi-curvature adaptive embedding model MADE [33]. MADE
models TKG with multiple geometries in multi-curvature spaces and assigns different
weights to different curvature spaces through data-driven. In order to realize information
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interaction in multiple different geometric spaces, the model independently represents the
embedding of entity, relationship and time information in a specific space, so as to fully
capture semantic information and construct a quadruple distribution network to promote
information aggregation and reasonable distribution between information.

The deep learning model has strong expressive ability and can learn more complex
features and patterns of temporal knowledge graphs [5]. To capture the changes in the
global characteristics of TKG, Mingsheng He et al. proposed a query-aware embedding
model ConvTKG [11] based on convolutional neural network to execute TKGE, thus solv-
ing the TKGC task. In this model, a new temporal information encoder based on gated
recurrent unit and attention mechanism is used to learn the query-aware representation
of temporal information. For the positional semantic information of entities, the model
assigns two independent vectors to each entity and makes use of inverse relations to allow
them to be learned dependently.In order to deal with the problem of interdependence be-
tween timetable features and temporal facts, Yue et al. proposed the CEC-BD [37] model,
which is based on tensor decomposition technology, which uses two-factor matrix and
core tensor embedding to learn the entities and relationships in the temporal knowledge
graph, and proposes a temporal smoothing function to represent the temporal information.
The existing TKGC tasks still have the problems of ignoring the importance of temporal
information and ignoring the location semantic information of entities, so Hao Wang et
al. proposed a linear multi-view representation model MvTuckER [32]. The model treats
various features in TKG as independent views and uses tensor operations to capture the
relationship between different views, which greatly improves the model’s ability to learn
large knowledge graphs.

3. Proposed method: TPBoxE

The existing methods have not paid enough attention to the connection between the rela-
tionships and temporal information, resulting in insufficient utilization of knowledge and
low accuracy of completion. Moreover, excellent KGC models cannot be directly applied
to TKGC tasks. To improve the correctness of the complementation task and increase
the generality of the method, this paper investigates the temporal characterization and
embedding methods of entities and relations and proposes the TPBoxE model.

3.1. Basic Definition

Definition 1: TKG is usually stored as a quadruple [12], and for each fact of the quadru-
ple, it is represented using (h, r, t, [τ1, τ2]). The head entity and tail entity are represented
as h and t respectively, with r representing the relationship between entities, and τ1, τ2
indicating the start time and end time of the fact. where h, t ∈ E, r ∈ R, τ1, τ2 ∈ T .
The temporal knowledge graph can be expressed as G = {(h, r, t, [τ1, τ2])|h, t ∈ E, r ∈
R, τ1, τ2 ∈ T}. Fact G is valid only from the start time τ1 to the end time τ2, if and only
if τ1 = τ2 means that the fact is valid only at τ1 or τ2 time-point.

Definition 2: TKG is typically represented as a collection of entities, relationships,
and time points, denoted as E, R, and T respectively. Where E = e1, e2, ..., en represents
the set of entities, R = r1, r2, ..., rn represents the set of relationships between entities,
and T = τ1, τ2, ..., τn represents the set of time points.
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Definition 3: The head-time and tail-time of an entity in TKG denote the start time
and end time of the entity’s existence in the time dimension, respectively. For each entity,
the set of time information can be represented as Te = {τ1, τ2, ..., τn|e, τi ∈ G}, where
head-time= min(Te), tail-time = max(Te).

3.2. The Overall Architecture of The TPBoxE Model

Firstly, the model represents knowledge by embedding entities as boxes and representing
relationships as affine transformations between entity boxes. At the same time, the regular
definition of relationships is carried out in this paper to enhance the learning of complex
relationships, such as combinatorial, transitive and reflective relations. In addition, the
negative sampling technique is used to optimize the training process of the model, fur-
ther optimize the representation of entities and relationships, and obtain the answer set
independent of time information. Secondly, a scoring approach for temporal information
is proposed, which is mainly for evaluating how closely entities and temporal facts are
linked in time. At the same time, we propose a method to categorize the connection be-
tween different relationships and temporal information. Filter the abnormal answers that
contradict each other in time by the degree of dependence of the relationship on temporal
information, keep compressing the size of the time-independent answer set, and ultimately
obtain the set of answers to be complemented with the TKG. Finally, a score function for
ranking quaternion confidence is designed to rank the set of answers.

The TPBoxE model proposed in this paper based on the assumption of translation in-
variance, models the entities in the TKG using high-dimensional vectors over the entire
feature space for display modeling is represented as entity vector boxes, and relationships
are represented as transfer vectors between entity vector boxes. In this process, the size
and position of entity boxes are two important features of the entity representation pro-
cess. The model determines the degree of correlation between the head and tail entities
by the size and position of the head entity vector box after being updated by the relation-
ship vector transfer and the size of the overlap interval of the tail entity vector box. At
the global level, the goal of the TPBoxE model is to minimize the prediction error of all
correct TKG static triples and to find the optimal entity and relation vector representations
to be able to accurately reconstruct the TKG triples. The model scores of the triples and
their temporal relevance are used as the main features, and the posterior probabilities of
belonging to positive and negative samples in the static training samples are computed
through a classification method. Finally, the samples are classified into the category with
the highest a posterior probability. For the classification method proposed in this paper,
the judgment on the classification of TKG complementary results can be continuously
updated or adjusted by the training set data. This process is dynamic, and with the accu-
mulation of data, the classification results continue to be accurate and reasonably inferred
even in the case of scarce data.

The architecture of the TKG complementary model proposed in this paper is shown in
Fig. 2 Subgraph (a) in the figure above represents the entities, relationships, and tempo-
ral information in the space of real temporal knowledge graphs. Subgraph (b) represents
the correspondence of entities in the embedded vector space. Subgraph (c) represents the
answer set without temporal information obtained by ignoring the time information and
using the KGC method for the task ”What buildings did China construct from year t1
to year t2?” for which the temporal knowledge is to be complemented. The temporal
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characteristics of the temporal facts in the TKGC task make it impossible to directly use
the KGC method to complete the temporal facts. In TPBoxE model, the KGC method
is used to obtain the static partial completion answer set of temporal facts in TKG. In
order to select the correct answers that meet the constraints of time information from the
answer set, TPBoxE learns the distribution probability of all entities in the TKG in the
time dimension, and verifies each candidate temporal fact in the answer set according to
the close relationship between the distribution probability and the relationship with the
time information, and then obtains the time score of the temporal fact. The value range of
the time score is between 0 and 1, and its size means the degree of matching of entities
and relationships in the time dimension, and the higher the value, the greater the proba-
bility that the temporal fact is true. By setting a reasonable time scoring threshold by the
proposed Bayesian classification method, the size of the answer set can be continuously
compressed until the missing temporal fact completion result in the final TKG is obtained.
In subgraph (d), the final answer is obtained by incorporating temporal information and
continuously compressing the set size, which is represented using shaded areas.
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Fig. 2. Overall architecture of the TPBoxE Model

3.3. Knowledge Graph Embedding Method Based on Box Model

The traditional approach embeds entities and relations as vector dot products in a vector
space, but the simplicity of the structure makes it limited in the relationships it can ex-
press. It lacks efficacy in dealing with relations expressing relationships with transitive
properties such as (A, r,B) ∧ (B, r, C) =⇒ (A, r, C), and the geometry of the box can
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make it better to model the relations between entities. Therefore, in this paper, we utilize
the Box Embedding Model to make the entities in the TKG embedded as boxes and learn
each relationship between entities as shape and position transformations between boxes.
The formalization of a box embedding is defined as an n-dimensional hyperrectangle,
which is the product between vectors:

Box(X) =

n∏
i=1

[xmin
i , xmax

i ]. (1)

Where Box(X) ⊆ R , in some cases, two different boxes may have similar local
structures, leading to the disappearance of their gradient signals, which in turn makes it
difficult to train with gradient descent methods. In this paper, the Gumbel Boxes method
[8,3] is used to train entity boxes, where the maximum and minimum coordinates of the
box are denoted as:

xmin
i ∼ MinGumbel(umin

i , β), xmax
i ∼ MaxGumbel(umax

i , β). (2)

In formula 2, ui is a position parameter that determines the distribution location of
the entity box. The exponential function in the Gumbel expectation formula is expanded
using the first-order Taylor expansion as:

E(Box(X)) ≈
d∏

i=1

βlog(2 +
2len(Box(E))

β
− 2γ). (3)

In Formula 3, the len(Box(E)) parameter represents the length of the entity
box E. The β represents the variance of the box and γ is the hyperparameter. In
this research, by using cen(Box(X)) ⊆ Rd to denote the center point of the box,
lenh(Box(X)), lent(Box(X)) ∈ Rd to denote the offsets of the boxes of the head and
tail entities, respectively. For the two cases where the same entity appears at the head or
tail of the fact, we use the same box center, different box positions, and offsets to rep-
resent it. The resulting relationship between the position, center point, and offset of the
entity boxes is:

umin
i = cen(Box(X)− lenh(Box(X))),

umax
i = cen(Box(X) + lenh(Box(X))),

umin
j = cen(Box(X)− lent(Box(X))),

umax
j = cen(Box(X) + lent(Box(X))).

(4)

For head and tail entities in the same fact, fr(Box(X)) is used as the mapping func-
tion of the relation, as follows:

fr(Box(X)) =

{
len(Box(X)) ◦ αr,

cen(Box(X))±∆e.
(5)

Considering that even if the same entity will have different semantic information at
different positions, this paper adds the translation vector parameter ∆e in the process of
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training the box representation vector, which is responsible for adapting to the semantic
information transformation brought about by the transformation of the position of the en-
tity. In order to avoid the problem that the entity representation in the TKG depends too
much on the transformation of the relationship and cannot capture the nonlinear relation-
ship, the model can learn a variety of semantic relationships of entities under different
relations, and proposes the offset vector parameter αr of the entity representation box
according to the characteristics of the relationship, and enlarges or shrinks the size of the
entity embedded in the box. The above parameters, together with the box vector embed-
ded in the entity and the transfer vector of the relationship, constitute the representation
of the temporal facts in TKG. The parameters αr and ∆e are initialized as all 1 and all
0 tensors, respectively, and the shape is consistent with the box vector and participates in
the training with it. In summary, the scoring function formula for the model on entity or
relation completion tasks is as follows:

score(h, r, t) =
E[fr(Box(h))

⋂
Box(t)] ∗ E[fr(Box(t))

⋂
Box(h)]

E[Box(h)] ∗ E[Box(t)]
(6)

The score function simultaneously verifies the correctness of the static part comple-
tion results of temporal facts from both forward and inverse relation perspectives. The
numerator represents the intersection of the head entity box and tail entity box in the bi-
nary random variable set after relation transition vector calculation. The denominator is
the distribution set of binary random variables for the head entity box and tail entity box.

3.4. Regularized Constraints on Relationships

In the temporal knowledge graph, the relationship between entities is the core component,
which determines the semantic information and structural relationship between entities.
The representation of complex relationships has always been a major problem in the exist-
ing TKGC methods, and when the TKGC model often has the risk of overfitting in order
to learn a reasonable relationship representation, the regular constraints of the relation-
ship are helpful to simplify the model and improve the training efficiency of the model.
In order to solve the above problems and ensure that the representation of complex rela-
tions in the temporal knowledge graph satisfies the specific semantic relations, and at the
same time improve the robustness and generalization ability of the model, the regular con-
straints of relations are added to the training process of the model. The additional rules
and constraints are imposed on special relationships, and relationship transfer between
entities is achieved based on the similarity degree between them. Compared to previous
work, the proposed method in this paper is more comprehensive and defines different rule
constraints when treating multiple complex relationships. In addition, the method in this
research is more robust and less affected by sparse and incomplete TKG data. Finally, it
is possible to infer from the training dataset that the entities themselves have, but are not
shown to express, implicit relationships in the TKG.

The work of Chen et al. [3] proves that the rule constraints of relationships are effec-
tive in improving the performance of the model, so this paper conducts further research on
the basis of this. Using A, B, and C to represent entities, r, r

′
, r1, r2, and r3 to represent

relationships, and Box(X) to represent the box representation learned by X entity.
Hierarchical Relations. The relation r holds if it holds for A, B, then the relation r

′

holds for A, B as well. The purpose of learning the relation r is that when (A, r,B) is
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true, then (B, r
′
, A) should also be predicted to be true. This objective is satisfied if for

relations r and r
′

there exists entities A and B with the same probability that the facts
they comprise hold. Therefore, in this paper, we constrain the relations r and r

′
, with u

denoting the set of embedded boxes, and the formula is expressed as follows:

Le(r) =
1

|u|
∑

A,B∈u

∥PBox(fr(A)|fr(B)− PBox(fr′ (A)|fr′ (B)))∥2 (7)

Transfer Relations. The relation r can be passed between entities to each other, such
that (A, r,B) holds if (A, r, C) and (B, r, C) hold, respectively. Then the following rule
constraints are imposed on the boxes A, B, and C that imply the relation r:

Lt(r) =
1

|u|
∑

A,C∈u

∥PBox(A|C)−1∥2 (8)

Combinatorial Relations. The relations r1 and r2 can be deduced from r3, for
(A, r1, B) holds with (B, r2, C), then (A, r3, C) holds. To ensure that entities with com-
binatorial relationships remain unchanged after embedding into the vector space, we use
the method of injecting rules to constrain the relationships as follows:

fr3 = fr1
⊙

fr2 (9)

Where
⊙

is the Hadamard product, i.e., the element-by-element multiplication. For
any box A ∈ u with a combinatorial relation, the expectation is that all have the following
relation fr3(A) = fr1(fr2(A)), which yields the rule constraint formula:

Lc(r1, r2, r3) =
1

|u|
∑

A,B∈u

∥PBox(fr3(A)|fr1(fr2(B)))−1∥2+

∥PBox(fr1(fr2(B))|fr1(A))−1∥2
(10)

In order to fully learn the background knowledge of TKG involved in learning and
training, and to distinguish the correct and wrong temporal facts of the model, this paper
uses the dynamic equilibrium negative sampling method for data augmentation in the
process of model training. The main idea of this method is to make more negative samples
of the same type in the next iteration of training to strengthen the learning of the weakness
of the problem that it is difficult to distinguish specific samples in the process of each
iteration of the model. Algorithm shows the specific process of the dynamic equilibrium
negative sampling method:

Dynamic equilibrium negative sampling method (DEN_sample)
Output The dataset that will participate in the

training in the next iteration;
var Training set data S;

Test set data T;
Number of relationships n;
Trained model BoxTE;
The size of the dataset that each epoch
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participates in the training N;
begin

// num is used to record the amount of training.
data for each relationship

num=Array.full(n, 1);
for (h, r, t, [T1, T2]) in T:

// Stores the inverse of the difference between
the model score and the ideal score.

num[r]=1/abs(1 - BoxTE((h, r, t, [T1, T2])))
or BoxTE((h, r, t, [T1, T2]));

// The reciprocal of the difference is normalized
and the number of training samples is allocated
according to the N-value.

num=normalization(num)*N;
// Initializes an empty collection to store the

training set data.
train_data = set();
for i in num:

// Generate i samples for each relationship.
for j=0 to i:

// Randomly destroy head-tailed entities to
make new negative samples.

set.add((h, r, random(t’ in S && t’ != t),
[T1, T2]) or (random(h’ in S && h’ != h),
r, t, [T1, T2]));

return train_data;
end.

The code in Algorithm specifies the specific process of the dynamic equilibrium neg-
ative sampling algorithm, the 1 to 4 lines are to calculate the number of each type of
relational data participating in the training, and the 5 to 9 lines are the negative sample
making process by randomly destroying the head and tail entities according to the number
of data participating in the training. For positive samples involved in the training process,
positive sample loss L+ is obtained. The loss from the negative sample is L−. Combined
with the losses arising from the logical constraints above, the expression is:

Logic = ωe

∑
r∈Re

Le(r) + ωt

∑
r∈Rt

Lt(r) + ωc

∑
r∈Rc

Lc(r1 + r2 + r3) (11)

Where Re, Rt, Rc ∈ R, represent the set of hierarchical, transfer, and combinatorial
relations, respectively, and the corresponding ωe, ωt, ωc parameters are the regularization
coefficients. The training loss function L = L+ + L− + Logic for the PBoxE model is
finally obtained.

3.5. A Tolerant Intersection over Union Time Information Evaluation Method

The gIOU [24] and aeIOU [15] are two commonly used intersection over union metrics
for target detection tasks in the field of machine vision, which are also applicable to the
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time prediction evaluation task and have achieved good results. Time2BOX [6] proposed
the gaeIOU evaluation method on this basis, and the main idea is that when the size of the
prediction interval is kept constant, the metric scores of the prediction intervals decrease
as the gap to the actual intervals increases in the absence of intersections, and increase as
the gap to the actual intervals increases in the presence of large intersections. Using Igold

to denote the actual time interval and Ipred to denote the predicted time interval, gaeIOU
can be expressed as:

gaeIOU(Igold, Ipred) =


D(Igold

⋂
Ipred)

D(Igold
⊎

Ipred)
, D(Igold

⋂
Ipred) > 0

D
′
(Igold

⋂
Ipred)−1

D(Igold
⊎

Ipred)
, otherwise.

(12)

Where D
′
(Igold, Ipred) = max(Igoldmin , I

pred
min ) − min(Igoldmax, I

pred
max ) + 1 denotes the

size of the gap between the predicted and the actual intervals. The gaeIOU makes some
improvements for the case where the gap between the predicted interval and the actual
interval is very large, but it does not take into account issues such as the size of the gap be-
tween the actual and prediction interval widths. To solve this problem, this paper proposes
the tolerant Intersection over Union (tIOU ). The main idea is to reduce the influence of
the size of the prediction interval range on the tIOU value when the prediction interval
intersects with the actual interval. The Intersection over Union (IoU) metric in existing
machine vision is strict regarding the difference between the predicted image size and the
target image size for accurate target recognition, which is not applicable in the TKGC
task. The reason is that when the predicted time information and the actual time infor-
mation do not intersect in the TKGC task, the confidence of the time of the completed
time series fact depends not only on the difference between the time information and the
real time series fact, but also on the difference between the predicted time interval and the
actual time interval. In order to solve the above problems, we use the tolerance coefficient
λ to dynamically adjust the size of the predicted interval in the tIOU. The magnitude of λ
depends on the difference between the predicted time interval and the actual time interval,
λ = 1 when the two are equal, and tends to λ = 0 when the difference between the two
is large, so as to realize the constraint of the predicted size of the time interval. When
the predicted time interval intersects with the actual time interval, the influence from the
size of the predicted time interval should be reduced. In order to achieve this requirement,
the union of the two types of time intervals in the gaeIOU formula is converted to the
size of the actual time interval only. Through the above methods, the constraints on the
predicted time interval are more tolerant when the predicted time interval is similar to
the actual time interval, and the constraints are stricter when the two types of intervals
are quite different, so as to realize the dynamic adjustment of time confidence. When the
predicted interval does not intersect with the actual interval, the influence from the size
of the predicted interval range is enlarged. Based on gaeIOU , it is generalized to tIOU ,
which is denoted by the formula:

tIOU(Igold, Ipred) =


D(Igold

⋂
Ipred)

Igold
, D(Igold

⋂
Ipred) > 0

λ
D

′
(Igold, Ipred)−1

D(Igold
⋃
Ipred)

, otherwise.

(13)
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Where the coefficient λ = [abs(Ipredmax − Ipredmin − Igoldmax + Igoldmin ) + 1]−1 represents the
difference between the predicted and actual interval widths. For the predicted intervals of
[2015,2018], [2020,2022], [2016,2023], [2016,2017], and [2024,2028], respectively, and
the actual interval Igold is [2018,2022], the results of the three-time scoring methods are
shown in Table 1 below. It can be seen that the difference between the results of the three
scoring methods is small when the time interval is small, while when treating the interval
with the largest time [2016,2023], there is a large difference in the performance of the
three scoring methods, in which the results of both the aeIOU and gaeIOU methods are
0.857, whereas the result of the tIOU method is 1. Therefore, the tIOU method has a
better performance when treating time intervals spanning a wide range of predictions.

Table 1. Comparison of time-scoring methods
prediction interval aeIOU gaeIOU tIOU intersection

[2015,2018] 0.125 0.125 0.167 T
[2020,2022] 0.8 0.8 0.667 T
[2016,2023] 0.857 0.857 1.0 T
[2016,2017] 0.142 0.071 0.014 F
[2024,2028] 0.1 0.05 0.025 F

3.6. Temporal Filters for Feature-weighted Frequency-based Naive Bayesian
Classification Methods

Bayesian classification [35] is a statistical classification method based on Bayes’ the-
orem, which can predict the labels of test set data (data to be predicted) according to
the statistical distribution of training set samples. The Naive Bayesian classification is a
special form of Bayesian classification. It assumes that the dependencies between rela-
tionships are ”naive”, i.e., that each attribute is independent of the other attributes given
the conditions, which greatly reduces the complexity of the problem. The naive Bayesian
classification method achieves good performance in many cases. It can be expressed as:

hnb(x) = argmaxP (c)c∈y

d∏
i=1

P (xi|c). (14)

Where d is the number of attributes, xi is the value of x on the ith attribute, and c is a
sample of a class.

To select the correct temporal facts from the static fact set, this paper proposes a
feature-weighted frequency-based naive Bayesian classification method to compute the
confidence score C between the facts to be tested and the temporal information. For the
temporal fact G and the static fact S, whether G is correct or not is jointly influenced by
the size of the intersection of the temporal scope of action of the entities in G and the
temporal scope of the query about G, and the confidence scores of the static fact S. In
addition, considering that different relationships between entities do not have the same
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level of sensitivity to time, the time scores are integrated according to the different entity
relationships.

When a certain attribute value does not exist simultaneously with other attributes in
the training set, the classifier will get a probability value of 0. Data in temporal knowl-
edge graphs are often missing, which leads to the absence of certain attribute values in
the training set alongside other attribute values. For example, the distribution probability
interval of the time score for the temporal facts formed by the relation r in the training
dataset is [0.7, 1]. When the time score ti ∈ [0, 0.7) of a temporal fact containing relation
r in the test set needs to be predicted, the P (ti|c) probability part value in the classifier
is 0. Even if the static part of the temporal fact is true, the classifier will still judge the
temporal fact as an incorrect completion result, leading to reduced completion accuracy.
To solve the above defect in the effect of one attribute value being completely erased
by other attributes, we introduce the Laplacian correction method. Specifically, denote
N as the number of features that affect the temporal fact G, Ni as the number of pos-
sible categories in a given feature, D as the size of the training set data volume, Dc as
a given feature in the training set, xi as the possible values in a given feature, and fi as
the frequency of occurrence of this value in Dc. The prior probability P (xi|c) and the
conditional probability P (xi|c) are defined as equation (15):

P (xi|c) =
∑D

i=1 fi|Dc, xi|+ 1

|Dc +Ni|
, P (xi) =

∑D
i=1 |Dc, xi|+ 1

|D|+Ni
. (15)

Although the Naive Bayes classification method has achieved good results in some
tasks, it assumes that all features are independent, which is rarely the case in reality. For
this reason, this paper proposes a new feature weighting method, Wi, which is used to im-
prove classification accuracy. The relationship between the confidence scores of the static
triples, the temporal information features of entities, and relationships must be positively
correlated, so in this research, we use the Chi-square statistics feature weighting method
to calculate the weights Wi.

Specifically, the weight size is indicated by the difference between the actual fre-
quency Tp and the predicted frequency Fp. The larger the difference represents that the
feature has a greater impact on the classification result, and the larger the weight it occu-
pies. The procedure for calculating the influence weights of the score sizes of the triples
on the establishment of the temporal facts is shown below. In this paper, we use ctt, ctf ,
cft, and cff to represent the four cases of fact true and score within a certain interval, fact
true and score not within a certain interval, fact false and score within a certain interval,
fact false and score not within a certain interval, respectively. The prediction frequency
Fp and the weight Wi can be defined in the following form:

Fp =
(ctt + ctf )(ctt + cft)− cff

Ni

Wi =
∑
G

∑
Dc

(Tp − Fp)
2

Fp
.

(16)
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Also, the probability values are converted to exponential form to prevent the numerical
lower bound from overflowing. Finally, the above equation (14) can be rewritten as:

hnb(x) = argmaxc∈y[logP (xi) +

N∑
i=1

WifilogP (xi|c)]. (17)

For the treatment of timestamps, in this research, we use T (e) to denote the temporal
range of action of an entity, and for every fact G for which there exists an entity e, T (e)
will completely contain its temporal interval, as defined by Eq:

T (ei) =


T (ei)min =

i<m,j<n∑
ei∈Gj

min(T (ei)min, G
τ1
j )

T (ei)max =

i<m,j<n∑
ei∈Gj

max(T (ei)max, G
τ2
j ).

(18)

The final formula to derive the confidence score C is:

C(S, tpre) = hnb(tIOU(T (S), tpre), ri|True) + hnb(score(S)|True). (19)

Where S stands for the static triples and T (S) = T (eh)
⋂
T (et) denotes the time

horizon of action of the static triples. Whether the completion of the temporal series facts
is true depends on the size of the confidence score. The confidence formula is mainly
composed of two parts, namely the probability value score based on the static fact and the
probability value score based on the time series information. For the probability value of
the static fact, the confidence score of the static part of the completed time series fact is
obtained through the KGE model, and then the probability of the static fact being true un-
der the confidence score is obtained by using the proposed Bayesian classification method
(formula 17), which can bridge the performance gap of different KGE models. The proba-
bility value of the temporal series fact composed of the temporal information and relation-
ship of the entity in the temporal dimension (formulas 13 and 18) is obtained by Bayesian
classification method. The confidence score composed of the above two important parts
can comprehensively consider whether the completion of the timing facts is correct or
not. Finally, the algorithm gives the learning process of the TPBoxE model.

Training the TPBoxE model
Output Confidence ranking of the embedding vectors e

for all entities and relations and all to be
complementary temporal quaternions;

const Tbatch = 2000;
var Training dataset S;

Entity dataset E;
Relation dataset R;
Timestamps dataset T;
Number of training iterations N;
Batch size batch;
Embedding dimension d;
Number of negative samples n;
Relation regularisation coefficients;
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begin
e = [xmin, xmax] in Gumbel(x, y) for each e in E;
r = init_embedding() for each r in R;
for i = 1 to N do

for each batch S in Strain do
data = DEN_sample(S, T, n, BoxTE, N);
Tbatch =Union {data, (h,r,t)};

Calculate the score function score(Tbatch);
Update embeddings e, r, t;
end for

end for
for S = (h, r, ?, T), e in E do

// Calculating confidence model is added
to the answer set.

Sc = C(S, T);
// The score of the quadruple prediction

result and the confidence level of the
model is added to the answer set.

Map = Map intersection {S, Sc};
end for
Sort(Map);

end.

The algorithm is the whole model training process. Lines 1 and 2 are embedding initialization
of entities and relations. Lines 3 to 14 are for representation training of the model using the static
part of the temporal facts to get a fuller representation. The algorithm in lines 15 to 20 obtains the
final set of supplementary results by replacing entities, filtering wrong answers, and categorizing
them.

3.7. Hyperparameter Selection and Its Time and Space Complexity Analysis

In this research, the Stochastic Gradient Descent (SGD) method is used to train the TPBoxE model.
The batch value is 2048, the learning rate lr is 0.0001, the embedding dimension d is 300, and the
number of iterations N is 1000. 25 negative samples are constructed for each positive sample, and
the GUMBEL-BETA of the training gumbel box is set to 1. The regularized constraint parameters
are 0.1, 0, 0 for the YAGO11k dataset; 0.1, 0, 0 for the WIKIdata12k dataset; 0.1, 0.1, 0.1 for the
complex ICEWS18 dataset and 0.3, 0.2, 0.2 for the GDELT dataset.

Time complexity and space complexity are important indicators to measure the performance
of a model. Traditional models such as RotatE and TComplex introduce the concept of complex
numbers to obtain a better representation of entities or relationships, but this greatly increases the
computational effort and the complexity of the model. Other models, such as HyTE’s representation
of temporal information, are imperfect in some respects, and the complexity of the model increases
steeply when the data is denser. Complex models usually have greater expressive and learning capa-
bilities. The uniqueness of the TPBoxE model proposed in this paper is that it strikes a good balance
between expressive power and model complexity, i.e., the model still has excellent expressive power
without requiring too much computational resources.

We analyze and compare the space complexity and time complexity of the TPBoxE model and
several existing state-of-the-art TKGC models. In terms of space complexity, the number of most
model parameters is related to the number of embedding dimensions, entities, relations, and times-
tamps, except for the T-Temp model. In TPBoxE model, time information is used as a way to filter
static triples, reducing the embedding of timestamps. In addition, the number of parameters required
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Table 2. Comparison of time complexity and space complexity of the TPBoxE model
with other TKGC models

Model Time Complexity Space Complexity
TTransE O(Nd) d(E+R+T)

HyTE O(Nd) d(E+R)d(T)
TeRo O(Nd) 2d(E+R+T)

ChronoR O(Nd) 3d(E+R)+3(rR+T)
TIME2BoX O(Nd) 2d(E)+d(R+T)

T-Temp O(Nd) 2d(E+R)+(2rdR+dT)+k(2E+4R)
BoxTE O(Nd) d(E+R)+2d(T)
TLogic O(Nd) 2d(E+R+T)

TPBoxE O(Nd)+O(1) 2d(E+R)+k(E+R+T)

by the model for the way of processing temporal information is k(E+R+T). In general, k is much
smaller than the embedding dimension d, and it can be ignored. Therefore, the space complexity
of the TPBoxE model is much smaller than other similar TKGC models. For time complexity, the
time consumption of all similar models is positively correlated with the embedding dimension and
the number of iterations, so the time complexity is O(Nd). The model additionally computes the
temporal information of entities and relationships than the comparable models, which requires an
additional time complexity of O(1) at the constant level, so that the time complexity of the TPBoxE
model is equal to that of the comparable models.

In conclusion, the TPBoxE model outperforms or equalizes its counterparts both in terms of
time consumption and space consumption, and it has excellent performance. It provides new ideas
for solving the problems of large-scale knowledge graph complementation tasks and models that
are too large to be deployed and require massive computational resources. For detailed information,
please refer to Table 2.

4. Experimental Process and Result Analysis

To evaluate the effectiveness of the TPBoxE model on the task of temporal knowledge graph
complementation, four commonly used datasets are used as experimental datasets in this paper:
YAGO11k, WIKIdata12k, ICEWS18, and GDELT. Cropping out edges that contain individual en-
tities, ensures better connectivity within the temporal knowledge graph. The WIKIdata12k dataset
contains 40,000 triples and 12,554 entities, which is twice the size of the YAGO11k dataset. ICEWS
is a global event database and conflict prediction system widely used in international relations re-
search, of which the ICEWS18 dataset is an updated version of the ICEWS database in 2018. The
ICEWS18 dataset contains data on a wide range of events, political conflicts, social unrest, and
other relevant information about the globe, and the dataset has a large number of complex relation-
ships within it. The GDELT dataset contains events occurring at more than 200 million geographic
locations worldwide from 1979 to 2012, with events updated at 15-minute intervals. The statistical
information for each dataset is shown in Table 3.

4.1. Evaluation Criteria

In this paper, Mean Rank, Hits@1, Hits@3, and Hits@10 are used as evaluation metrics. The
Hits@1 metric represents the number of correct answers predicted by the model to rank first. The
higher the Hits@1, the better the representation model performs in learning and representing the
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Table 3. Statistical information on datasets
Data set YAGO11k WIKIdata12 ICEWS18 GDELT
Entity 10623 12554 23032 7691

Relation 9 23 255 240
Training set 16408 32497 373018 1734399

Validation set 2050 4062 45995 238765
Test set 2051 4062 49545 305241
Interval year year day 15 minutes

relatedness between entities. Hits@n is how many of the n most likely outcomes are correct in total.
Its value ranges from 0 to 1, and the closer it is to 1 the better the predictive ability of the model.

Hits@k =
1

|S|

|S|∑
i=1

{
ranki, if(ranki < k)

0, else
(k = 1, 3, 10). (20)

Mean Rank is a widely used evaluation indicator, which indicates the average ranking of a
model in predicting the correct associated entities for a query entity. The lower the Mean Rank
value, the more it indicates that the model ranks higher in predicting the correct associated entities
of the query entity, that is, the model’s prediction accuracy is higher. The formula is:

MR =
1

|S|

|S|∑
i=1

ranki (21)

4.2. Experimental Settings

In this paper, the model fills entities or relations into missing positions iteratively to obtain the value
of the static triplet score, and finally adds time constraint information to obtain the confidence score.
The confidence score is used as the basis for fact ranking to obtain the set of predicted results.

In the YAGO11k dataset, Fig. 3 is obtained from the trained model and scoring method as
follows. The horizontal coordinates represent the mapped values of the different relationships, and
the vertical coordinates represent the time expectations of the relationship under the fact that it
holds and the weight it carries in the data, respectively. In Fig. 3, it can be concluded that different
relationships rely on temporal information to different degrees, which means that some relationships
treat time leniently. For example, for Relationship 0 and Relationship 6, which have the largest gap
in time expectations, the expectations are 0.98 and 0.506, respectively, nearly double the difference.

To avoid that the above phenomenon is caused by the excessive weight in the dataset where
a certain relation is located. Taking out the facts containing two kinds of relationships, and two
probability values are calculated by using the model and the time scoring method. The first is the
probability value that the triplet model scores in the interval [0.96,1] when the timing facts hold;
The second is to calculate the probability value of its time information within the interval [0.96,1]
through the time scoring method, as shown in Fig. 4.

For relation 7, it can be seen that for the temporal fact that implies this relation only holds if the
time score is approximately 1, and the higher the time score, the higher the probability that the fact
holds. It can therefore be argued that such relationships are more demanding in terms of temporal
information. For relation 8, although the temporal facts containing this relation also follow the law
that the higher the temporal score, the higher the probability of the fact being true, there is also a
probability of about 0.412 that the temporal fact will be true for the scoring interval [0.96, 0.99].
The requirement for temporal information is not as stringent for Relation 8 as compared to Relation
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Fig. 3. The connection between relationships and temporal information in YAGO11k and
their weights

Fig. 4. Probability Plot of the effect of temporal information and static fact confidence on
the establishment of temporal fact
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7. We experimentally observe that the same KGC model for relations with more stringent temporal
information requirements (e.g., ”relation 7”) lags behind that for relations with more relaxed tem-
poral information requirements (e.g., ”relation 8”), which is one of the difficulties in applying the
KGC model directly to the TKGC task.

4.3. Comparison Experiment

In the selection of benchmark models, considering the TPBoxE model as a variant of the box model,
this paper takes BoxTE and TIME2Box as the benchmark models and compares them together with
other TKGC models that perform well. The experimental procedure is to train TPBoxE on three
datasets, and the optimal results are measured against the benchmark model according to three
evaluation metrics: Mean Rank, Hits@1, Hits@3, or Hits@10.

Table 4. Results of the TPBoxE model on the head and tail entity link prediction task

Model
YAGO11k WIKIdata12k ICEWS18 GDELT

MR mean
MR H@1H@10 MR H@1H@10 MR H@1H@10 MR H@1H@10

TTransE 1233 .023 .149 1107 .057 .193 1461 .052 .213 1510 035 .168 1327

HyTE 1160 .026 .161 862 .035 .212 1003 .094 .292 1145 069 .182 1042

TeRo 824 .098 .287 539 .167 .423 82 .146 .355 1052 .097 .202 849.25

TNTComplex 318 .283 .517 361 .284 .496 482 .196 .317 821 .114 .219 495.5

TIME2BoX 232 .273 .561 198 .249 .511 - - - - - - -

BoxTE 201 .259 .497 236 .261 .501 347 .271 .395 569 .231 .372 363.25

TLogic 112 .287 .563 152 .292 .513 441 .201 .425 398 .213 .385 291

TKGC(SOTA) 112 .287 .563 106 .292 .575 347 .271 .425 186 .293 .485 234.75

TPBoxE 86 .288 .559 77 .294 .572 166 .312 .511 144 .326 .487 118.25

From the table 4 above, it can be observed that the TPBoxE model achieves state-of-the-art
performance on the ICEWS18 dataset, and there exists a great advantage over other models. For
the MR (mean rank) evaluation index, the model in this paper improves about 200 ranks compared
with the optimal model BoxTE, and for the indexes Hits@1 and Hits@10, it also improves about
4 and 9 percentage points respectively, which is a big progress. The main reason for this is that the
relationships in the ICEWS18 dataset are diverse and contain a large number of complex types of
relationships, such as ”transfer” and ”self-reversal”. The other models involved in the comparison
do not adequately represent complex relationships due to the simplicity of their modeling, and the
TPBoxE model performs better because of the natural way in which boxes can model the particular
connections between entities and relationships.

In the YAGO11k and WIKIdata12k datasets because of fewer and simpler inclusion relation-
ships, the expressive power requirements of the models are not stringent, and therefore the gap
between the TPBoxE model and the other models is not large. On the YAGO11k dataset, the MR
and Hits@1 evaluation metrics achieve optimal performance, and the results under the Hits@10
evaluation metric have the same small gap with the performance of the current optimal model,
which indicates that the model in this paper is competitive with the optimal model Tlogic[19].

In the WIKIdata12k dataset, the MR and Hits@1 metrics achieved optimal performance at the
same time, and the Hits@10 metrics were almost identical in comparing the optimal performance.
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For the GDELT dataset, which has the smallest time interval, the TPBoxE model achieves
optimal performance and improves over the previous optimal results. Combining the model perfor-
mances on all datasets, for the entity link prediction task, the models in this paper achieve optimal
performance or are on par with the state-of-the-art.

Table 5. Results of the TPBoxE model on the relational link prediction task

Model
YAGO11k WIKIdata12k ICEWS18 GDELT

MR mean
MR H@1H@3 MR H@1H@3 MR H@1H@3 MR H@1H@3

TTransE 1.79 .775 .812 1.47 .821 .887 20.98 .233 .357 18.62 .102 .197 10.76

HyTE 1.68 .782 .836 1.42 .842 .898 20.13 .273 .329 16.91 .116 .202 10.03

TeRo 1.55 .771 .865 1.51 .841 .907 18.26 .302 .498 9.44 .269 .451 7.69

TNTComplex 1.41 .782 .862 1.39 .837 .865 17.56 .369 .502 11.64 .144 .233 8.00

TIME2BoX 1.32 .821 .924 1.22 .913 .922 - - - - - - -

BoxTE 1.44 .779 .839 1.41 .819 .857 16.19 .376 .513 9.62 .251 .366 7.16

TLogic 1.29 .839 .898 1.19 .901 .951 14.55 .349 .498 10.73 .207 .339 6.94

TKGC(SOTA)1.24 .839 .924 1.19 .913 .951 14.23 .376 .513 9.62 .369 .451 6.87

TPBoxE 1.21 .855 .967 1.09 .933 .991 11.21 .411 .579 7.42 .396 .457 5.23

For the link prediction task of relational complementation, TPBoxE performs equally well. The
Hits@10 evaluation metric was replaced with Hits@3 due to the presence of fewer relationships in
the YAGO11k dataset and the WIKIdata12k dataset. For the YAGO11k dataset, this paper’s model
is optimal on all evaluation metrics, leading the baseline model by 0.03 on the MR metric, and
by 2 and 4 percentage points for the Hits@1 and Hits3 evaluation metrics, respectively. On the
WIKIdata12k dataset, the TPBoxE model is also at the optimum on all evaluation metrics, leading
by about 10% on the MR metrics with a large advantage, and also leading by 2 points in Hits@1
and 4 points in Hits@3.

In the GDELT dataset, the lead is about 2 places on the MR metric, about 3 percentage points
on the Hits@1 metric, and the Hits@3 metric is on par with the performance of the state-of-the-art
model. Finally, on the ICEWS18 dataset, which has the most complex relationships, the model in
this paper similarly leads and maintains a large advantage. It leads by about 3 places for the MR
dataset, 4 percentage points for the Hits@1 metric, and 6 percentage points for Hits@3. The model
in this paper achieves optimal results by performing the relational link prediction task on all the test
datasets. For detailed information, please refer to Table 5.

The reason for the advanced results of the model is that the TPBoxE model has excellent porta-
bility of each component through structural modularization, and the excellent KGE model can al-
ways be used to achieve the best effect of the embedded representation of entities and relations in
TKG. Based on the conclusion that the TKG completion results are a subset of the KG completion
results, the model further improves the TKGC completion accuracy through the connection between
entities, relationships and time series information. From the results of multiple experiments, it can
be concluded that the greater the difference in time intervals, the more obvious the improvement
of the TPBoxE model in the TKGC task compared with the existing KGC model and the baseline
model.
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4.4. Ablation Experiment

To analyze the impact of static knowledge graph complementation tasks and time-scoring methods
on the model performance, this paper conducts several ablation experiments based on the model
TPBoxE. First, in this paper, by replacing the static knowledge graph complementation method
with other KG embedding methods, the resulting three model variants, are:

• TP-TransE: The box embedding method is replaced with TransE.
• TP-RotatE: The box embedding method is replaced with RotatE.
• TBoxE: The box embedding method is replaced with BoxE.

The above three static knowledge graph complementation methods are representative in terms
of embedding method, and computational complexity. In addition, by replacing the ways of eval-
uation of temporal information into three ways such as gIOU, aeIOU, and gaeIOU, three variants
of the model are obtained as TPBoxE (gIOU), TPBoxE (aeIOU) and TPBoxE (gaeIOU) respec-
tively. All the above variants of the model are trained on the four datasets presented above. The
variant model evaluates performance by linking prediction tasks through head and tail entities. The
evaluation metric is MR−1, with larger values indicating better modeling.

As can be seen in plot (a) in Fig. 5, the TPBoxE model has a large lead in the results under the
MR−1 metrics on the four datasets. The TPBoxE model leads the state-of-the-art TBoxE model by
about 30 percentage points on the YAGO11k dataset, and by 20, 10, and 20 percent on the WIKI-
data12k, ICEWS18, and GDELT datasets, respectively, over the TBoxE model. On the KGC task,
BoxE has a major advantage over other models in that the model expresses the complex relation-
ships more adequately. Making it effective on the subsequent time-screening task. In Subfigure (b)
of Fig. 5, for different temporal scoring methods, the tIOU method is 30 and 10 percentage points
ahead of the optimal scoring method on the datasets YAGO11k and WIKIdata12k, respectively.
While for the ICEWS18 dataset, the TPBoxE model is about 10 percentages behind compared to
the optimal model. The reason for this is that the data within the dataset was taken from the 2018
Integrated Crisis Early Warning System (ICES) and the timeframe is from January 1, 2018, to De-
cember 31, 2018, which covers the entire 2018 timeframe, but there is a higher density of data
within the same timeframe and a smaller time, so the difference in the results between the different
scoring methods is smaller.

Fig. 5. Comparison chart of the results of ablation experiments
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For the GDELT dataset, the fact that the start times within the dataset are all at the same moment
similarly makes the difference in the results of the time scores smaller, resulting in the TPBoxE
model only equaling the performance of the other similar models.

4.5. Parametric Analysis

In this section, this paper investigates the choice of parameters and their sensitivity of the TP-
BoxE model, including batch size, learning rate, embedding dimension, number of negative sam-
ples, Gumbel-BETA for entity box embedding, and regularization constraint parameter for relations.
The variation of TPBoxE’s performance on the YAGO11k dataset is demonstrated by varying the
hyperparameters.

Training batch size, learning rate, and embedding dimension. The training batch size and
learning rate determine how fast the model is trained, and the embedding dimension determines the
accuracy and expressiveness of the model. Subplot (a) in Fig. 6 demonstrates the effect of different
sizes of parameters on the model. As larger embedding dimensions are used, the initial loss of
the model is larger, and the training speed slows down at the same time as the learning rate and
training batch decrease. The training of the model reaches the optimal loss and levels off when the
parameters chosen are 2048, 0.0001, and 300, respectively.

Gumbel-BETA. The BETA parameter of the solid box is the scale parameter of the Gumbel
distribution, which controls the width of the solid box distribution. In subplot (b) of Fig. 6, it can be
seen that relative to 0.01, as the BETA parameter increases or decreases, it leads to the width of the
bounding box distribution becoming too large or too small, thereby reducing the model’s ability to
complete missing information.

Regularization Constraints for Complex Relationships. For the complex relations in the
dataset, this paper provides a special treatment for them, in which the regularization constraint
parameter indicates the weights occupied by the complex relations. Take the YAGO11k dataset as
an example, in which there are only hierarchical relationships and the number is 1, so the weight
ratio between the three complex relationships is 1:0:0. For the relationship weight settings within
the dataset, as shown in subfigure (c) of Fig. 6, the model achieves an optimal representation for
entities and relationships within the YAGO11k dataset at a weight of 0.1:0:0.

Number of negative samples. Manufacturing negative samples as a method of data augmen-
tation enhances the model’s ability to differentiate between positive and negative samples. Subplot
(d) of Fig. 6 demonstrates that as the number of negative samples corresponding to each positive
sample increases, the correctness of the model increases. However, when the number of negative
samples is after 20, the model accuracy improvement effect is smaller as the number of samples in-
creases. Therefore, considering the model complexity, the number of negative samples in this paper
is chosen as 25.

5. Conclusion

Along with the wide application of temporal knowledge graphs, its complementation task has also
become one of the research hotspots. Because of this situation, this paper proposes a model based
on the temporal probability box for complementing the temporal knowledge graph. The model
proposed in this paper utilizes the full expressive power of box embeddings and accomplishes the
task of temporal knowledge graph completion by introducing a Bayesian classification approach
to model the linkages among static facts, temporal information, and time-series facts. Through
extensive experiments on datasets from three different domains, this paper proves practically that
the model has higher efficiency and better expressive ability in handling the complementary task
compared to the traditional translation model, and theoretically demonstrates the existence of lower
time and space consumption of the model.
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Fig. 6. Parameter sensitivity on TPBoxE

Most scholars have now noted the connection between entities and temporal information, but
they have ignored the temporal properties of the relationship and the fact that it suffers from its prob-
lems of missing data and sparsity. In the future, we hope that we can further excavate the connection
between entities, relationships, and temporal information to find better temporal representations and
improve the expressive power of the model.
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