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Abstract. Object detection is an important computer vision task, which is devel-
oped from image classification task. The difference is that it is no longer only to
classify a single type of object in an image, but to complete the classification and
positioning of multiple objects that may exist in an image at the same time. Clas-
sification refers to assigning category labels to the object, and positioning refers
to determining the vertex coordinates of the peripheral rectangular box of the ob-
ject. Therefore, object detection is more challenging and has broader application
prospects, such as automatic driving, face recognition, pedestrian detection, medi-
cal detection etc,. Object detection can also be used as the research basis for more
complex computer vision task such as image segmentation, image description, ob-
ject tracking and action recognition. In traditional object detection, the feature uti-
lization rate is low and it is easy to be affected by other environmental factors.
Hence, this paper proposes a multimodal deep learning-based feature fusion for ob-
ject detection in remote sensing images. In the new model, cascade RCNN is the
backbone network. Parallel cascade RCNN network is utilized for feature fusion to
enhance feature expression ability. In order to solve the problem of different seg-
mentation shapes and sizes, the central part of the network adopts multi-coefficient
cascaded hollow convolution to obtain multi-receptive field features without using
pooling mode and preserving image information. Meanwhile, an improved self-
attention combined receptive field strategy is used to obtain both low-level features
with marginal details and high-level features with global semantics. Finally, we con-
duct experiments on DOTA set including ablation experiments and comparison ex-
periments. The experimental results show that the mean Average Precision (mAP)
and other indexes have been greatly improved, and its performance is better than
the state-of-the-art detection algorithms. It has a good application prospect in the
remote sensing image object detection task.

Keywords: Object detection, remote sensing image, multimodal deep learning, fea-
ture fusion.
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1. Introduction

In recent years, with the development of remote sensing technology, object detection tech-
nology based on remote sensing image has attracted wide attention. Object detection can
locate the object of interest on the ground from a distance and identify its category. It has
a wide range of applications and prospects in the fields of military defense and civil avi-
ation [1,2]. In particular, the classification and detection of aircraft/airport objects in the
application of high-resolution remote sensing images can provide some new solutions for
the more efficient and scientific organization and management of civil aviation, military
and national defense research and other fields [3].

With the rapid development of deep learning, object detection algorithms based on
deep learning are widely used in various fields. At present, the mainstream object detec-
tion algorithms are divided into two categories: (1) two-stage object detection algorithm
based on candidate regions; (2) single-stage object detection algorithm based on direct re-
gression. Single-stage detection algorithm can achieve a balance in accuracy and running
speed, which is a kind of detection framework widely used in object detection at present
[4].

Single-stage object detection algorithms mainly include SSD [5] series and YOLO
[6] series. Zhong et al. [7] proposed a single-stage rotating object detection method based
on anchor frame transformation. Based on YOLOv3, a new feature extraction Network
Darknet-53-Dense was designed in this algorithm to improve the feature extraction abil-
ity. In addition, an Anchor Transformation Network (ATN) [8] was proposed for the de-
tection head network. The initial horizontal anchor frame was transformed into a rotating
anchor frame to improve the accuracy of object detection. Cao et al. [9] proposed an al-
gorithm for object detection based on Dilated convolution pyramid, introducing different
sizes of hollow convolution layers into Feature Pyramid Networks (FPN). It built a Hy-
brid Receptive Field Module (HRFM). By increasing the receptive field to obtain more
global feature information, the problem of object occlusion was solved. Murthy et al.
[10] proposed an anti-residual object detection algorithm, which was based on YOLOv4.
An efficient Lightweight Ghost Convolution model (LGC) was proposed to obtain more
feature maps with fewer parameters to improve the network’s ability to extract global fea-
ture information and improve the overall object detection performance. Zhao et al. [11]
proposed a object detection algorithm based on improved YOLOv3, added convolutional
layer module to the network structure to classify the object background of samples, and
adjusted the size of the anchor frame on the feature map. After the object background
probability was output, the samples whose background probability value was lower than
the set threshold were filtered out, so as to solve the imbalance of the ratio of positive and
negative samples in the original algorithm.

Kumar et al. [12] proposed an improved object detection algorithm (Single Shot multi-
box Detector (SSD) based on DenseNet [13] and feature fusion. On the basis of SSD net-
work, DenseNetS-31-1 feature extraction network was designed according to DenseNet
dense connection to enhance the feature extraction ability of the model. In the multi-
scale detection part, the fusion mechanism of multi-scale feature layer was introduced to
combine the low-level semantic features and high-level semantic features in the network
structure, and then improved the model performance.

The two-phase object detection algorithms mainly use RCNN [14] as a series. Xiao
et al. [15] proposed an improved object detection algorithm for Faster RCNN, which
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improved the accuracy of the model by introducing two difficult sample mining strategies
and alternate training. Jiang et al. [16] proposed an improved Faster R-CNN algorithm for
multi-scale object detection. By adopting multi-level feature extraction strategy to extract
multi-scale object features and using multi-channel method to generate multi-scale object
candidate boxes, the accuracy of the object detection algorithm could be improved to
some extent. Detection based on the above single or two stage methods can improve the
accuracy of object detection. However, the above improved algorithms have low detection
accuracy when the detection object is different, the background is complex and the object
is blocked. For example, it can be seen from Figure 1 that the scales of Big Ben, dogs and
crowds in the three images from Figure 1(a) to Figure 1(c) are from large to small. The
two images shown in Figure 1(d) both contain objects of multiple scales. For MSCOCO
data sets commonly used in detection tasks, if the scale of all instances is statistically and
sorted according to the pixel ratio of object mask to image, it will be found that 10% of
objects in the data set have a scale smaller than 0.0207, and 10% of objects have a scale
larger than 0.345, with a large scale span.

Fig. 1. Remote sensing image objects at different scales. (a) big object; (b) medium object;
(c) small object; (d) Multi-scale object

Object detection includes two sub-tasks: object location and classification. The scaling
problem lies in the fact that, in the process of deepening convolutional neural networks
[17], the ability to express abstract features becomes stronger and stronger, but the shallow
spatial information is also relatively lost.

In reference [18], deconvolution layer was added to CNN to fuse the deep and shallow
features of CNN network for the detection of buildings in remote sensing images. In ref-
erence [19], optimized ResNet model was introduced to solve the significance detection
problem of remote sensing images. In reference [20], CNN features with moderate sen-
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sitivity field were selected according to the aircraft imaging size in the image, and deep
CNN features and shallow CNN features were sampled for superposition fusion. In refer-
ence [21], Markov random fields and full convolutional neural networks were introduced
to generate high-quality candidate regions. In reference [22], multi-layer CNN features
were integrated to describe vehicle objects in remote sensing images, and the hierarchi-
cal boost classifier was used to discriminate and achieves good results. Reference [23]
used features of different layers of CNN to detect objects of different scales respectively,
and improved the detection effect by combining context information. Reference [24] ex-
panded the sample data and combined the object context features to detect aircraft objects
in remote sensing images. It can be seen that, for the problem of object scale diversity
and small object in remote sensing images, it is a good idea to integrate the corresponding
features of different convolutional layers in CNN network, that is, to integrate the detailed
information rich in shallow convolutional layer and the semantic information rich in deep
convolutional layer in CNN network for feature extraction. However, the use of dimen-
sion splicing or pixel-by-pixel addition/multiplication to fuse multi-layer features rarely
considers the distribution and scale differences of features of different layers, so feature
fusion is still a difficult research task. In addition, the background complexity of remote
sensing image has great interference on object detection, so it is necessary to pay more
attention to the influence of context information on object detection.

Therefore, according to the above analysis, this paper proposes a multimodal deep
learning-based feature fusion for object detection in remote sensing images. In the new
model, cascade RCNN is the backbone network. In the multi-scale object detection task,
the proposed method makes full use of the features of different scales for fusion, which
can greatly improve the robustness of the algorithm.

Our main contributions for this paper are as follows:

1. Parallel cascade RCNN network is utilized for feature fusion to enhance feature ex-
pression ability.

2. In order to solve the problem of different segmentation shapes and sizes, the central
part of the network adopts multi-coefficient cascaded hollow convolution to obtain
multi-receptive field features without using pooling mode and preserving image in-
formation.

3. Meanwhile, an improved self-attention combined receptive field strategy is used to
obtain both low-level features with marginal details and high-level features with
global semantics.

The organizational structure of this paper is assigned as follows. This paper sum-
marizes recent developments in detecting remote sensing objects using deep learning
techniques in section 2. The proposed object detection architecture via multi-modal deep
learning is presented in Section 3. Section 4 presents experiments including various situ-
ations. Section 5 presents the conclusion and future works.

2. Related Works

In order to quantify the scale of the object, usually the area occupied by the object instance
(i.e. the number of pixels occupied by the mask) is divided by the area of the image and
the result obtained is taken as the relative scale of the object instance (between 0-1), which
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is referred to as the scale. Therefore, the relative scales of objects in different images are
very different, or the sizes of multiple objects in the same image are very different, which
is called the scaling problem. It has always been one of the core challenges that affect the
accuracy of object detection.

Table 1 lists the detection results of some object detection algorithms on MSCOCO
test set. The ”++” symbol indicates that the model uses an image pyramid when inferring.
Where, AP refers to the average accuracy when the thresholds of IoU are 0.50:0.05:0.95.
AP50 and AP75 are the accuracy when the IoU threshold is 0.50 and 0.75, respectively.
APS, APM and APL refer to small, medium and large object AP respectively.

It can be seen from the data in Table 1 that the detection accuracy of small objects of
early detectors such as SSD, YOLOv2 and FPN is less than half of that of medium and
large objects [25]. In recent two years, the size of detectors has been improved, but there
is still an obvious gap between the accuracy of small objects and that of medium and large
objects, which seriously affects the improvement of the overall accuracy. Therefore, how
to make detectors better cope with objects of different scales (especially small objects) is
still an important problem in current object detection research.

Table 1. Different object detection models

Model Skeleton network Year AP AP50 AP57 APS APM APL

Faster RCNN VGGNet-16 2015 21.9 42.7 – – – –
SSD512 VGGNet-16 2016 28.8 48.5 30.3 10.9 31.8 43.5
Faster RCNN+++ ResNet-101 2016 34.9 55.7 37.4 15.6 38.7 50.9
R-FCN ResNet-101 2016 29.9 51.9 – 10.8 32.8 45.0
Cascade R-CNN ResNet-101 2018 42.8 62.1 46.3 23.7 45.5 55.2
DES512 VGGNet-16 2018 32.8 53.2 34.6 13.9 36.0 47.6
TridentNet ResNet-101 2019 42.7 63.6 46.5 23.9 46.6 56.6
YOLOv3 DarkNet-53 2019 43.9 64.1 49.2 27.0 46.6 53.4
ATSS ResNet-101 2020 46.3 64.7 50.4 27.7 49.8 58.4
Dynamic R-CNN ResNet-101 2020 42.0 60.7 45.9 22.7 44.3 54.3
YOLOv4 CPSDarkNet-53 2020 43.5 65.7 47.3 26.7 46.7 53.3

In this paper, we mainly focus on the cascade RCNN to perfect the proposed method
in remote sensing images. Cascade RCNN Network consists of feature extraction network
(ResNet101), feature pyramid network (FPN), Region Proposal Network (RPN) layer, and
cascade detector. Feature extraction network ResNet101 is used to extract image features.
The original image is convolved by Conv1, Conv2, Conv3, Conv4 and Conv5 and features
of different levels are fused to obtain feature images P2, P3, P4 and P5 of different scales.
Then, the feature maps of different scales P2, P3, P4 and P5 are input into RPN to obtain
candidate object regions. After the ROI Align [26] operation on the obtained candidate
object region, the feature map of Region of Interest (ROI) with uniform size is obtained.
Figure 2 shows the Cascade RCNN network structure.

In the detection stage, different from Faster RCNN, Cascade RCNN uses cascade de-
tector for detection, and three detectors set different thresholds respectively for detection.
Each detector consists of ROI Align, full connection layer, classification score C and
frame regression position coordinate B. During detection, the candidate object region is
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Fig. 2. Cascade RCNN network structure

re-sampled through the frame regression B output by the detector in the previous stage,
and the new classification score C and frame regression B are obtained by gradually im-
proving the IoU threshold training, and finally the sample quality and network training
effect are improved.

In the process of frame regression, annotated frame P is the predefined anchor, an-
notated frame G is the object frame, and annotated frame G′ is the forecast frame output
by the model, whose ultimate purpose is to bring the forecast frame closer to the object
frame. When the IoU of candidate box and object box is large, the transformation d(·)
from candidate box to prediction box can be regarded as an approximate linear transfor-
mation. Define the object box center (Gx, Gy), width and height (Gw, Gh), candidate box
center (Px, Py), width and height (Pw, Ph), and establish a regression model, as shown
in equation (1). 

G′
x = Px + Pwdx(P )

G′
y = Py + Phdy(P )

G′
w = Pwexp(dh(P ))

G′
h = Phexp(dh(P ))

dx(P ) = WT
∗ ϕ(P )

(1)

Here, ϕ(P ) is the feature of the candidate frame, and is the parameter to be learned.
The loss function of Cascade RCNN mainly consists of two parts, namely classifica-

tion error and coordinate regression error, as shown in equation (2).

L(pi, ti) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i ). (2)

Where pi is the probability that anchor prediction is the object. p∗i is the probability
of the real box. ti = [tx, ty, tw, th] is a vector representing the four parameterized coor-
dinates of the prediction box. t∗i is the coordinate vector of the real box, Ncls and Nreg

both represent the total number of samples, λ is the weight balance factor.
In Formula (2), Lcls(pi, p

∗
i ) is the error between the predicted class confidence and

the object class, and the loss function is the cross entropy loss function. Lreg(ti, t
∗
i ) is

frame regression loss, Smooth is adopted as loss function, as shown in equations (3)-(5).



Object Detection 333

Lcls(pi, p
∗
i ) = − log[p∗i pi + (1− p∗i )(1− pi)]. (3)

Lreg(ti, t
∗
i ) = SmoothL1(ti − t∗i ). (4)

SmoothL1(x) =

{
0.5x2, |x| < 1

|x| − 0.5, others
(5)

3. Multimodal Deep Learning-based Feature Fusion for Object
Detection

Aiming at the problems of low detection rate and object occlusion in Cascade RCNN
network, this paper proposes an improved Cascade RCNN network structure diagram, as
shown in Figure 3. The improved Cascade RCNN algorithm introduces a Dilated convolu-
tion module in ResNet101, which carries out multi-scale feature extraction and enhances
the robustness of the model for slices with different sizes. The coordinate attention mech-
anism is introduced into ResNet101 residual network [27]. The low level features with
edge details and high level features with global semantics are obtained by using axial
self-attention combined with receptive field strategy to improve the accuracy of object
detection.

Fig. 3. Proposed object detection structure. CC is Channel-wise Concat.

3.1. Dilated Convolution Module

Considering the complexity of remote sensing images, the correlation of the whole image
and the difference of the original resolution distribution of each data sample, it is of great
significance to improve the sensing range of the features in the central part of the network
and the feature fusion of multiple receptive fields. Pooling can effectively improve the
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receptive field of the feature map, but at the same time, important spatial information will
be lost due to the decrease of the resolution of the feature map. Therefore, a 3-layer dilated
convolution module (3DCM) with skip connection is designed in the central part of FPN
to obtain the features of three receptive fields. The structure of this module is shown in
Figure 4. C represents the number of output channels of the encoder. It is specifically
defined as:

d = φ(C(σ(g1);σ(g2);σ(g3))). (6)

Where gi represents the output of the i− th layer dilated convolution. σ is the activa-
tion function of ELU (exponential linear units). In this paper, the adjustable parameter α
of the activation function is set as 1. C represents the stacked feature graphs by channel.
φ ∈ R1×1×N/2 is the convolutional parameter matrix, where N is the feature graph size
of input 3DCM module.

Dilated convolution effectively improves the receptive field without introducing new
parameter number by injecting holes into the convolution kernel, which is specifically
defined as:

g[x, y] =

M∑
i

M∑
j

f [x+ r × i, y + r × j] · h[i, j]. (7)

Where x and y represent the coordinates of feature points. i and j are the coordinates
of the convolution point. M is the size of the convolution kernel. r is the void coefficient,
r = 1 in the standard convolution operation. f is the input feature, h is the convolution
kernel and g is the output feature.

Fig. 4. One kernel

However, if the dilated coefficient is set in the continuous dilated convolution layer
without mutual prime, the problem of sampling discontinuity of the feature graph, that is,
grid effect, will be generated, and a large amount of feature information will be lost. In
order to avoid this effect and take into account the segmentation effect of large and small
objects, the dilated coefficient of 3DCM follows the design structure of hybrid dilated
convolution (HDC). The dilated coefficients of three layers are set as 1, 2 and 5 respec-
tively. The size of convolution kernel is 3 × 3 and the step is 1. In this way, the adjacent
information of the feature map can be obtained by the 3DCM module and the recognition
ability of small object can be improved. In addition, it can also obtain deep receptive field
similar to the feature map and improve the recognition ability of large objects.

The receptive field is calculated as:



Object Detection 335

lk = lk−1 + (fk − 1)×
k−1∏
i=1

si. (8)

Where lk is the receptive field of each point in the k − th layer. fk is the size of the
k − th convolution kernel. si is the convolution step of the i − th layer. According to
Formula (8), the actual receptive fields of each layer relative to the output feature map
of the encoder are respectively 3, 7 and 17. Since the size of the output feature graph
of the encoder is 16 × 16, the feature points of layer 3 cavity convolution will cover
relatively complete information in the input feature graph of 3DCM module. In addition,
after stacking channels for feature graphs of different receptive fields, 3DCM uses 1 × 1
convolution instead of channel addition, which improves the ability of the network to
adjust feature weights of different receptive fields adaptively and promotes information
fusion.

3.2. Receptive Field Enhancement in Axial Self-attention

In image segmentation, many researchers are studying how to extract low-level features
with edge details and global semantic high-level features at the same time. Although
self-attention can better achieve the above purposes, this method requires a huge amount
of computation, and axial attention solves the above two problems to a certain extent.
Therefore, based on this, and combining with the receptive field block (RFB) [28] strategy,
this paper designs an axial self-attention receptive field module, as shown in Figure 5.
First, the input feature graphs are respectively passed through the receptive field path of
1× 3, 1× 5, 1× 7, 1× 1 convolution layer. Secondly, the receptive field is expanded by
the cavity convolution layer with cavity rates of 3, 5, 7, 1 respectively, and then the axial
self-attention module is entered. Finally, the channel is spliced with the feature map of
1× 1 receptive field path and output. Among them, axial self-attention is shown in Figure
6.

Fig. 5. Axial self-attention field enhancement module

This module is used to build a rich context-dependent model for local features, model
the remote dependency relationship, and improve the feature representation of remote
sensing image segmentation. Since its purpose is to enhance the features of relatively
small objects, this paper selects parallel strategies to compute both horizontal and vertical
directions for non-local operations to construct axial attention. At the same time, since the
horizontal direction and the vertical direction contribute equally to the output, this paper
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Fig. 6. Axial self-attention module

adopts the method of element by element addition to aggregate the feature maps. The
local feature maps are first sent to the convolution layer to generate feature maps, which
are reconstructed and transposed into H × C ×W and W ×H × C respectively in the
horizontal direction (X-axis) to obtain X1 and X2. The horizontal space feature maps SX

are calculated by Softmax. i and j represent the position of pixel space. The influence of
the j − th position on the pixel of the i− th position can be expressed as:

Sij =
e(X1i,X2j)∑N
i=1 e

(X1i,X2j)
. (9)

The more similar the feature representations of the two locations, the stronger the cor-
relation between them. After matrix multiplication of and the feature map reconstructed
as W ×H ×C, the feature map in the horizontal direction can be obtained by adding the
original local feature element by element.

OX =

N∑
i=1

SijX3i. (10)

Similarly, in the vertical direction (Y-axis), they are reconstructed and transposed as
W × C × H and H × W × C, the vertical spatial feature graph SY is calculated by
Softmax. After matrix multiplication with the reconstructed feature graph H ×W × C,
the vertical feature graph OY is obtained by adding the original local feature element by
element. Finally, it outputs OF by adding the feature graphs horizontal axis and vertical
axis.
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4. Experiment Results and Analysis

4.1. Data Set and Experiment Setting

In order to test the performance of the multi-modal deep learning model, 200 high-
resolution remote sensing images containing different object categories are collected in
the DOTA data set published by Wuhan University [29]. The scale of the original remote
sensing image ranges from 800×800 pixels to 4000×4000 pixels. These remote sensing
images include roads, trees, houses and other types of complex backgrounds. The spatial
resolution range is 0.1-0.3m. Before training, we use DOTA devkit tools to cut the image
into 600×600 pixels, Stride size=100. After data enhancement processing, the images are
divided into three sets, of which 4157 are used as the training set, 1064 as the verification
set and 1234 as the test set. The model is trained on the training set and tested on the test
set. The Non-maximum-suppression (NMS) method with IOU threshold=0.1 is adopted
for the final test results to discard repeated detection.

The experimental operating environment is Intel(R) Core (TM) i79700CPU 3.00GHz
processor, NIVDIA RTX 30608 GB GDDR6 graphics card 64 GB-DDR4 memory. The
environment settings are Cuda10.1 and Cudnn 7.6.4. The network frameworks for deep
learning are Pytorch 1.7.1, Python 3.8.8. During training, batch size is set to 4, learning
rate to 1.25× 10−4 and num epochs to 80. In order to accelerate the model convergence
speed, the pre-training weight of ResNet50 on the ImageNet classification task is also
introduced as transfer learning.

In this paper, Mean Average Precision (mAP) and Frame Per Second (FPS) are used
as evaluation indexes of the model. mAP represents the percentage of the number of
correctly recognized single objects in the total number of recognized objects, which is
used to measure the overall comprehensive performance of the model. FPS is positively
correlated with the speed of model detection.

4.2. Ablation Experiments

In order to verify the effectiveness of multi-scale feature fusion module and spatial and
channel attention module in multi-modal deep learning networks, ablation experiments
are conducted on DOTA remote sensing data sets, and the experimental results are shown
in Table 2.

Table 2. Ablation experiments

Backbone 3DCM Attention mAP/% FPS/s
ResNet101 NO NO 89.64 1.72
ResNet101 YES NO 89.98 1.32
ResNet101 NO YES 90.27 1.37
ResNet101 YES YES 92.76 1.25

After the introduction of dilated convolution and self-attention multi-scale feature fu-
sion modules, the mAP of the model increases by 3.12% when the backbone network is
ResNet101. After adding the self-attention module, the model detection mAP increases
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by 0.63% when the backbone is ResNet101. Through the analysis of experimental data, it
is found that the introduction of multi-scale feature fusion module and attention module
increases the complexity of the whole model, resulting in a 0.47 frame/s FPS reduction,
but the model detection speed can still meet the requirements of real-time detection. Some
results based on the proposed method are shown in Figure 7.

Fig. 7. Detection results

4.3. Comparison Experiments

To verify the effectiveness of the object detection algorithm in this paper, it is compared
with other advanced object detection algorithms containing MSFYOLO, RFEB, ADIR
and MSDA. Under the same training and test data sample conditions, IOU > 0.5 indi-
cates that the detection is correct, and mAP and FPS are used as evaluation indicators. Ta-
bles 3,4,5 show the comparison of detection results between the proposed algorithm and
other algorithms on DOTA data sets. To display the intuitionally results, figures 8,9,10
give the objective results.

As shown in Table 3, in the DOTA data set, the detection model presented in this paper
has the best detection effect on airport targets, and the detection accuracy reaches 93.87%.
In addition, compared with MSFYOLO, RFEB, ADIR and MSDA, the detection model
proposed in this paper increases the average accuracy mAP by 12.33%, 9.63%, 5.88%,
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Table 3. Comparison experiments on airports

Model mAP/% FPS/s
MSFYOLO 81.54 1.97
RFEB 84.24 1.22
ADIR 88.19 2.07
MSDA 90.64 1.73
Proposed 93.87 1.46

Table 4. Comparison experiments on harbors

Model mAP/% FPS/s
MSFYOLO 80.81 1.62
RFEB 76.92 1.84
ADIR 82.13 1.45
MSDA 86.95 2.28
Proposed 91.49 1.27

and 3.23%, respectively. Compared with B algorithm, the detection speed of the model is
increased by 0.24 frame/s. Due to the introduction of void convolution and self-attention
multi-scale feature fusion modules, the model complexity is relatively high, resulting in a
relatively slow model detection speed compared with similar models.

From table 4 and table 5, the mAP values of proposed model are 91.49% and 95.58%
on harbor and aircraft object respectively. It also illustrates the better detection effect on
DOTA.

5. Conclusion

In this paper, an object detection model based on multi-modal deep learning feature fusion
in remote sensing images is proposed. A multi-scale feature fusion module is constructed
by integrating dilated convolution and self-attention mechanism to enrich the spatial and
semantic information of objects and further improve the effectiveness of model detection.
Compared with the traditional detection algorithm ResNet101, the accuracy is improved
by about 3.12%, which proves the effectiveness of the proposed detection algorithm. Al-
though the detection effect of the method in this paper has been significantly improved
on the test set, some problems still exist, and this is also the direction of future research.
1) The detection is time-consuming. Although the detection accuracy of this method has

Table 5. Comparison experiments on aircraft

Model mAP/% FPS/s
MSFYOLO 83.83 1.66
RFEB 86.52 1.95
ADIR 88.27 2.84
MSDA 94.84 1.67
Proposed 95.58 1.48
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Fig. 8. Visualization result for airports

Fig. 9. Visualization result for harbors

Fig. 10. Visualization result for aircraft
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been significantly improved, the calculation amount is relatively large. 2) Context is not
used enough. For example, the distribution of objects such as aircraft and oil-tanks has
certain linear and clustered characteristics. Better use of these characteristics may further
improve the detection accuracy. In the following work, the method of candidate region
generation will be studied to improve the quality of candidate region generation and re-
duce the amount of calculation. At the same time, the application of context information
will be deeply mined to explore the distribution correlation between objects and the use
of context information in position regression, so as to further improve the accuracy of
optical remote sensing image object detection.
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