
Computer Science and Information Systems 15(3):821–843 https://doi.org/10.2298/CSIS180324029V

Extended Tuple Constraint Type as a Complex Integrity

Constraint Type in XML Data Model – Definition and

Enforcement*

Jovana Vidaković
1
, Sonja Ristić

2
, Slavica Kordić

3
, Ivan Luković

3

1 University of Novi Sad, Faculty of Sciences, Department of Mathematics and Informatics

Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
2University of Novi Sad, Faculty of Technical Sciences, Department of Industrial Engineering

and Engineering Management

Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
3University of Novi Sad, Faculty of Technical Sciences, Department of Computing and

Control

Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia

{jovana, sdristic, slavica, ivan}@uns.ac.rs

Abstract. A database management system (DBMS) is based on a data model

whose concepts are used to express a database schema. Each data model has a

specific set of integrity constraint types. There are integrity constraint types, such

as key constraint, unique constraint and foreign key constraint that are supported

by most DBMSs. Other, more complex constraint types are difficult to express

and enforce and are mostly completely disregarded by actual DBMSs. The users

have to manage those using custom procedures or triggers. eXtended Markup

Language (XML) has become the universal format for representing and

exchanging data. Very often XML data are generated from relational databases

and exported to a target application or another database. In this context, integrity

constraints play the essential role in preserving the original semantics of data.

Integrity constraints have been extensively studied in the relational data model.

Mechanisms provided by XML schema languages rely on a simple form of

constraints that is sufficient neither for expressing semantic constraints commonly

found in databases nor for expressing more complex constraints induced by the

business rules of the system under study. In this paper we present a classification

of constraint types in relational data model, discuss possible declarative

mechanisms for their specification and enforcement in the XML data model, and

illustrate our approach to the definition and enforcement of complex constraint

types in the XML data model on the example of extended tuple constraint type.

Keywords: XML Data Model, extended tuple constraint, code generation,

XQuery functions, database triggers.

* This paper is the extended version of the paper [1]

822 Jovana Vidaković et al.

1. Introduction

Data quality is essential for organizations as they try to derive value from data. Integrity

constraints are mechanisms for ensuring data consistency, a very important aspect of

data quality. A data model provides the means to achieve data abstraction and to express

a database schema. The set of supported integrity constraint types is one of the data

model's elements. Some of constraint types are common for several data models and

some of them are specific only for a certain data model. A database management system

should have mechanisms for defining and enforcing integrity constraints.

The relational data model is a superior logical data model and the acceptance of

relational DBMSs (RDBMS) is widespread, too. RDBMSs have support for many

different types of constraints. Some of them are well-known like domain constraints,

key and unique constraints, NULL value constraints and referential integrity constraints.

These constraints are called built-in constraints. The complexity of real world systems

imposes the need for more complex integrity constraint types. They are very often

difficult to define, implement and enforce. Integrity constraint specifications are

translated into constraint enforcing mechanisms provided by the DBMS used to

implement a database. Built-in constraints can be implemented by declarative RDBMSs

mechanisms. It means that they can be specified within CREATE/ALTER TABLE

statement and thereafter RDBMSs automatically enforce them. The declarative

implementation of more complex constraint types is not supported by RDBMSs. Most

of the contemporary RDBMSs offer efficient procedural support for constraint

implementation by means of triggers. Triggers are procedural mechanisms to specify

automatic actions that a DBMS will perform when certain events and conditions occur.

This implies an excessive programmers' effort to maintain integrity and develop

applications.

The eXtensible Markup Language (XML) is a standard widely used for data

representation and interchange. Accompanied with a stack of languages and tools, such

as XML Schema Definition (XSD), XPath and XQuery e.g., it becomes a powerful

technology. XML documents are very often used for data transport between different

databases; between databases and programs; and between different programs. That

phenomena caused the need to store, process and query XML documents, resulting in

DBMSs based on XML technologies. In recent years, XML databases, that have an

XML document as their fundamental unit of logical storage, have been widely in use.

They provide a full range of core database services like persistent storage, ACID

(Atomic, Consistent, Isolated, and Durable) transactions and security. XML schema

definition languages and concepts can be used to represent a set of data types, a set of

data structure types, a set of data operation types, and a set of integrity constraint types.

The four-tuple of these sets represents XML data model. XML DBMSs offer

specification and implementation of several integrity constraints, like keys, foreign keys

and unique constraints. Other constraints that may exist in a large database project are

not supported in XML DBMSs. That is the reason why these kinds of constraints are

ignored by database designers in the way that they do not recognize, specify and

implement them by means of XML DBMSs.

In one of our previous papers [2] we have proposed the constraint taxonomy in XML

databases. The proposed taxonomy relies on the constraint taxonomy in relational data

model. Our decision to rely XML taxonomy on relational data model was motivated by

the fact that in many applications, XML data is generated from relational databases, or

https://en.wikipedia.org/wiki/Saxon_genitive

Extended Tuple Constraint Type as a Complex Integrity Constraint Type in XML Data Model 823

exported to a relational database or target application. In relational database, integrity

constraints like attribute value constraints, key constraints and referential integrity

constraints (also called foreign key constraints) convey a fundamental part of the

information. In this context, integrity constraints play an essential role in preserving the

original semantics of data.

In this paper we propose a classification of integrity constraint types in the relational

data model in order to determine more closely the set of complex integrity types. The

classification is made to generalize results presented in [3] and [1]. In [3] we have

explained the need for introducing the extended referential integrity constraint (ERIC)

type, as a complex constraint type, in the relational and XML data model. We also

specified the ERIC type in the XML data model and proposed two techniques for

implementation of ERIC in XML DBMSs. In [1] we have expanded our research on the

extended tuple constraint (ETC) type that can also be characterized as a complex

integrity constraint type. We defined the ETC in the relational data model, described

two ways for its implementation in RDBMSs, and proposed ETC's specification and

validation in the XML data model. This paper is the extended version of the paper [1].

Here we use ETC type to illustrate how the constraint type characteristics given in [2]

can be applied to define ETC by means of the XML data model and how to enforce it in

an XML database. We extend [1] with the explanation of the extended XML Schema

and the actions in case of violation of the constraint. New sections 5, 6 and 7 are added

and they contain the description of the code generator, which can transform constraint

specifications into error free XQuery functions or triggers for constraint validation in

the XML data model.

In that way, we would like to enhance the usage of more complex constraint types

(ETC type in particular) in the database design theory and practice. The existence of the

automated code generator for ETCs validation in XML database would motivate

designers to identify and specify ETCs in the designed database schema.

Apart from Introduction, this paper is organized as follows. The basic notions about

the data models and constraint types are given in Section 2. In Section 3 we propose a

classification of the integrity constraint types in the relational data model and give the

explanation of the ETC type. The extended tuple constraint in the XML data model is

defined in Section 4, and the architecture of the code generator for constraint validation

in XML databases is proposed in Section 5. In sections 6 and 7 we present the code

generator for ETC validation in XML databases as well as the usage of the generated

code for validation of the extended tuple constraint. Related work is discussed in

Section 8 and Section 9 contains the conclusion and future work guidelines.

2. Preliminaries

In this chapter we introduce some preliminaries that will be used in the rest of the paper.

A database is a collection of related data stored on a storage medium controlled by a

database management system (DBMS). The description of the database that is specified

during database design is called database schema. A data model provides the means to

achieve data abstraction and to a express database schema. According to Date and

Darwen definition [4] revised by Eessaar [5]: “A data model is an abstract, self-

contained, implementation-independent definition of elements of a 4-tuple of sets (T, S,

824 Jovana Vidaković et al.

O, C) that together make up the abstract machine with which database users interact,

where T is a set of data types; S is a set of data structure types; O is a set of data

operation types; C is a set of integrity constraint types.” Numerous data models, like

Entity-Relationship (ER), relational or XML data models are proposed with different T,

S, O and C sets. For example, let CER denote the set of integrity constraint types from

ER data model and CREL denote the set of integrity constraint types from relational data

model. These two sets are different. The cardinality constraint type belongs to CER but it

does not belong to CREL. At the same time, the referential integrity constraint type

belongs to CREL and does not belong to CER.

Here we focus on the relational and XML data models and their sets of integrity

constraint types.

Elmasri and Navathe [6] divide constraints on databases into three main categories: i)

constraints that are inherent in the data model i.e. implicit constraints; ii) constraints that

can be expressed in database schemas of the data model by means of data definition

language (DDL) i.e. explicit constraints; and iii) constraints that must be expressed and

enforced procedurally by the application program i.e. semantic constraints. Semantic

constraints are instances of complex constraint types.

In the paper we deal with the ETC type as the representative of the set of complex

constraint types. ETC type is the extension of a tuple constraint type of relational data

model. A tuple constraint is defined in the context of only one relation scheme while as

an ETC is defined in the context of two or more relation schemes and corresponding

relations. The following two constraints are examples of a tuple constraint and an ETC,

respectively: i) the value of employee's monthly credit installment cannot be greater

than the third of his monthly salary; and ii) monthly salary of an employee should not

exceed the salary of the employee's supervisor. Detail description of ETC type is given

in Section 3.

3. Classification of Integrity Constraint Types in Relational Data

Model

Integrity constraints have been proved as fundamentally important in the database

management. Their extensive study through decades of development and application of

relational data model shows that reasoning about constraints is a non-trivial task and

that even simple constraint languages can have high complexity. In this section we

propose the classification of integrity constraint types in the relational data model.

In this paper we use some basic notions of relational data model that are reused,

among other sources, from [4] and [6] and presented in [7].

Let R be a finite set of attributes. For each attribute A R, the set of all its possible

values is called the domain of A. The domain associated with an attribute A is denoted

by Dom(A), and the set of possible values of attribute A (A-values) is denoted by

dom(A). A domain constraint restricts allowed values within a certain domain. A tuple t

over R = {A1, ..., Am} is a sequence of values (a1, ..., am) where: (i{1, …, m})(ai

dom(Ai)). A relation over R, denoted with r(R), is a set of tuples over R.

Relational database schema describes data stored in a database. Formally, a relational

database schema is an order pair (S, I), where S is a finite set of relation schemes and I a

finite set of multiple relational constraints. A relation scheme is a named order pair N(R,

Extended Tuple Constraint Type as a Complex Integrity Constraint Type in XML Data Model 825

C) where N is the name of relation scheme, R is a finite set of attributes and C a finite

set of relational constraints. C contains attribute value constraints alongside with null

constraints, tuple constraints, unique constraints and key constraints. A set of multiple

relational constraints I, contains extended tuple constraints and inclusion dependencies.

In Fig. 1 the classification of integrity constraint types in relational data model is

presented.

Fig. 1. The classification of integrity constraint types in relational data model

Integrity constraint types can be classified in three classes depending on the

definition scope: out of relation constraint types (OutOfRelationConType), single

relation constraint types (SingleRelationConType) and multi relation constraint types

(MultiRelationConType). Domain constraint type (DomainConT) is an example of out

of relation constraint type, because it is defined without reference on any relation

scheme within a relational database schema. Attribute value constraint type alongside

with null constraint (AttrValConT), unique constraint type (UniqueConT), key

constraint type (KeyConT) and tuple constraint type (TupleConT) are classes of a single

relation constraint type since they are defined within the context of one relation scheme.

The multi relation constraint type may be specialized into two classes: inclusion

dependency constraint type (InclusionDependencyConType) and extended constraint

type (ExtendedConType). They are defined within the scope of more than one, not

necessarily different, relation schemes. All multi relation constraint types, except

referential integrity type (KeyBasedINDT), are complex integrity types. Inclusion

dependency constraint type and its specializations (referential integrity constraint type,

inverse referential integrity constraint type, non-inverse referential integrity type,

extended referential integrity constraint type, extended inverse referential integrity

constraint type and extended non-inverse referential integrity type) are not in the focus

of this paper. Consequently, they will not be described here. Details about inclusion

dependency constraint type and its specializations alongside with examples that

illustrate their application can be found in [7, 8]. The extended referential integrity

constraint type (ExtendedRICT) explanation and its specification in the XML data

model and implementation in XML DBMSs are given in [3]. The extended constraint

type is an abstract constraint type that models multi relation constraint types that are

interpreted over a join between more than one, not necessarily different, relations. In

826 Jovana Vidaković et al.

general, the join may be a theta-join (-join), equijoin or natural join. Here we focus

just on the extended tuple constraints as one of its specializations. In the following text

we will explain the tuple constraint type and extended tuple constraint type that inherits

characteristics of both tuple constraint type and extended constraint type.

For the specification of a relation scheme we use shortened notation N(R, Kp) where

N is the name of relation scheme, R is a finite set of attributes and Kp is a primary key.

A relation over R, denoted with r(R), is a set of tuples over R. We will use the term

“relation N” for the relation r(R) that is a relation over the set of attributes R of the

relation scheme N(R, Kp).

Definition 1. The tuple constraint is a relational constraint type defined over a set of

attributes of a single relation scheme. The syntax of the formula for specifying a tuple

constraint is:

(N) = ({(N, A) | AR}, Con(N)),

where (N) is the tuple constraint defined over the relation scheme N(R, Kp), (N, A) is

the attribute value constraint, and Con(N) is the logical condition of the tuple constraint.

The logical condition is defined over at least two attributes from a single attribute set R.

The tuple constraint is interpreted for each tuple t that belongs to a relation N.

The Example 1 illustrates the usage of tuple constraint. The following examples are

also given in [1].

Example 1. Let the relation scheme Employee model employees of a company:

Employee({EmpId, FirstName, LastName, ManagerId, ManagDate, BirthDate,

EmploymentDate}, {EmpId}).

According to the attribute value constraints (Employee, BirthDate) and (Employee,

EmploymentDate), values of attributes BirthDate and EmploymentDate in a tuple from a

relation Employee should be valid dates and must not contain NULL values. Besides,

there is a mutual conditionality between the values of BirthDate and EmploymentDate

in a single tuple. An employee must be at least 16 years old at the beginning of the year

of employment. This constraint cannot be specified by means of an attribute value

constraint. It can be formally expressed by means of a logical condition:

Con(N): year(EmploymentDate) – year(BirthDate

A tuple constraint is defined in the context of one relation scheme. It cannot be used

to mutually constrain values of attributes which belong to different attribute sets. The

different attribute sets may be the attribute sets of different relation schemes (Example

2), or they may be attribute sets of a single relation scheme that appears in different

roles (Example 3). Extended tuple constraint is used to specify such kind of data

constraint. The Example 2 and Example 3 illustrate the usage of ETC.

Example 2. Let the relational database schema model persons and their documents like

ID card, driving license, and passport. The relation database schema contains two

different relation schemes: Person and Document:

Extended Tuple Constraint Type as a Complex Integrity Constraint Type in XML Data Model 827

Person({PersId, FirstName, LastName, Gender, BirthDate}, {PersId}); and

Document({DocNum, DocType, IssueDate, PersId}, {DocId}).

The relation scheme Person has a primary key PersId and the relation scheme

Document has a primary key DocNum. The attribute PersId is a foreign key in the

relation scheme Document which is specified with the referential integrity constraint

Document[PersId] ⊆Person[PersId].

There is a mutual conditionality between the values of the attributes BirthDate and

IssueDate. The issue date of a document must be greater than or equal to the birth date

of a person to whom that document belongs. This real word constraint can be expressed

by an extended tuple constraint. It is extended since it constrains values of the attributes

from two different relations. At the same time, it is a tuple constraint since these values

are from only one tuple that belongs to a join (in this example it is a natural join) of two

relations. This constraint can be formally expressed as follows:

ex(PersonDocument) = Con(PersonDocument): IssueDateBirthDate.

There are several database operations that could violate the aforementioned ETC: i)

tuple insert in the relation Document; ii) tuple update in the relation Document that

changes values of attributes IssueDate or PersId; and iii) tuple update in the relation

Person that changes values of attributes BirthDate (under the assumption that values of

primary key cannot be changed). Implementation of the ETC would support constraint

Example 3. Let us consider relation scheme presented in Example 1. ManagerId is a

foreign key in the relation scheme Employee, which is specified with the referential

integrity constraint Employee[ManagerId] ⊆Employee[PersId]. It models relationships

between the employees and theirs direct superior managers (one direct superior manager

per an employee). The attribute ManagDate in a tuple t represents the day from which

the employee, represented with tuple t1, has got the manager with the actual

t1(ManagerId) value. The value of ManagDate must be greater than or equal to the

value of EmploymentDate of that manager. This value is stored in the tuple t2 of the

Employee relation, that obeys the following condition: t2(EmpId) = t1(ManagerId). The

Employee relation has two roles: EmployeeEmp role models all employees, and

EmployeeMan role models all managers. The aforementioned ETC is formally expressed

as follows:

ex(EmployeeEmpEmployeeMan) = Con(EmployeeEmpEmployeeMan):

ManagDateEmpEmploymentDateMan.

The join between relations is not a natural, but an equijoin with the join condition

that equals value of attribute ManagerId from EmployeeEmp role and value of attribute

EmpId from EmployeeMan ro

The three presented examples illustrate the importance of an efficient recognition,

specification and implementation of complex constraints.

828 Jovana Vidaković et al.

The universal syntax of the formula for specifying an extended tuple constraint is

given by the expression:

ex(N1 ... Nm) = Con(N1 ... Nm),

where ex(N1 ... Nm) is the extended tuple constraint over the relation schemes

N1(R1, Kp1), ..., Nm(Rm, Kpm), and Con(N1 ... Nm) is the logical condition over a

subset S of union of attribute sets R1,..., Rm. Relation schemes N1,..., Nm do not need to

be different. This constraint is validated for each tuple t that belongs to the join of

relations N1,..., Nm respectively:

tr(R1) ... r(Rm), ex(N1 ... Nm)(t) = Con(N1 ... Nm)(t).

Critical operations that can violate an ETC are tuple insert into relations N1,..., Nm

and tuple update that changes values of attributes from the subset S.

Most of the contemporary RDBMSs offer declarative definition and implementation

of domain, unique, key, tuple and referential integrity constraints. The implementation

of constraints of other types presented in Fig. 1 is supported only by the procedural

mechanisms.

In the current XML specifications, XML Schema definitions include type definitions,

occurrence cardinalities, unique constraints, and referential integrity. In this paper the

discussion about possible declarative mechanisms for specification of more complex

integrity constraints and their enforcement in the XML data model, is presented. As an

example, the extended tuple constraint type is used.

4. The Extended Tuple Constraint in XML Data Model

In the XML Schema, three constraint types can be expressed as schema elements. The

primary key constraint can be defined with the xc:key element in an XML Schema

document. The foreign key constraint can be defined with the xc:keyref element in an

XML Schema document. The unique constraint can be defined with the xc:unique

element in an XML Schema document. Other constraint types that can be defined for

the XML data model cannot be expressed in the current XML Schema specification. For

that reason, in this paper we propose some extensions for the XML Schema

specification that can enable the specification of more complex constraint types, like the

extended tuple constraint.

In [1] we defined the extended tuple constraint (ETC) both in the relational and XML

data model. There are no declarative mechanisms for the specification and enforcement

of this type of constraints in the XML data model. For that reason we have decided to

specify the ETC for the XML data model. In this section, we will repeat the definition

of this constraint and in the Section 4 we will explain the code generator for the

constraint validation in the XML DBMSs. The concrete example is the code generation

for the validation of the extended tuple constraint, but this way of code generation is

also applicable for other constraints we defined in our previous papers [2, 9]. It is also

extendible since it can be done for every new defined constraint type.

Extended Tuple Constraint Type as a Complex Integrity Constraint Type in XML Data Model 829

The definition of the extended tuple constraint for the XML data model is similar to

the definition of this constraint for the relational data model. ETC is defined between

two or more element types. The mutual conditionality between the attribute values from

different element types is specified by a logical condition. In [2] the constraint

taxonomy and the constraint type formal specification for the XML data model are

proposed. According to [2], the constraint type formal specification is a named 5-tuple.

Therefore, the formal specification of the ETC type for the XML data model is given in

the Definition 2.

Definition 2. Let E be an element type and Attr(E) be a set of attributes specified within

the element type E. The definition scope of an ETC in the XML model is an array of

element types E1,..., Em. The logical condition is defined over a subset of the union of

attribute sets Attr(E1), …, Attr(Em). The formal specification of an ETC is named 5-

tuple:

ExTupleCon(n,

t,

 τex(E1,..., Em) = Constraint(E1,..., Em):Condition,

 τex(E1,..., Em)(е) = Constraint(E1,..., Em)(е),

 (e, unimportant role, {(insert,{Restrict}), (update, {Restrict})})),

where:

– ExTupleCon is the name (label) of the ETC type;

– Value n for the first tuple element specifies that more than one (at least two) element

types have to be included in the specification of the ETC type;

– Value t for the second tuple element indicates the scope of the constraint type

interpretation. For the ETC type it is a tuple constraint since it is interpreted over the

values from only one tuple (element) gathered as the result of join operation between

the instances (elements) of element types E1,..., Em;

– The third tuple element is the formula pattern τex(E1,..., Em)=Constraint(E1,...,

Em):Condition, specifying that this constraint is defined over element types E1,..., Em,

i.e. over the subset S of the union of attribute sets Attr(E1), … Attr(Em);

– The fourth tuple element indicates that constraint is interpreted over a tuple specified

as e, that is gathered as the result of join operation between the instances (elements) of

element types E1,..., Em and whose set of attributes is the union of attribute sets Attr(E1),

… Attr(Em); and

–The last tuple element is 3-tuple containing a tuple specified as e, role and set of pairs

(critical operation, set of actions). For the ETC, role is not important, which means that

each element type has the same role in the constraint. The critical operations for the

ETC are insert or update of one of the instances (elements) of element types E1,..., Em.

The critical operations may violate database consistency in regard to the ETC. For each

critical operation, actions can be defined that would be carried out to maintain database

consistency when this violation occurs. For both ETC type critical operations, the set of

possible actions is a singleton that contains action Restrict. It means that if an ETC is

violated the critical operation will not be executed.

The extended tuple constraint is not supported in the XML Schema. As we have

already mentioned, we propose the extension of the XML Schema with the element

830 Jovana Vidaković et al.

xc:constraint where we can define which elements are involved in the ETC, as well as

the additional condition that has to be satisfied. This extension is given in Fig. 2.

<xc:constraint

xmlns:xc="http://www.extendedconstraints.org/constraint"

type="xc:exTupleCon">

 <xc:condition from="<XPath>"

 fromName="<fNname>" to="<XPath>"

 toName="<tName>"

 toPK="<toPK>" keyref="attributes"

 additional="condition"/>

</xc:constraint>

Fig. 2. The extension of the XML schema for the extended tuple constraint type

The xc:constraint element has a child element xc:condition. The value

xc:exTupleCon of the attribute type in element xc:constraint denotes that this is the

extended tuple constraint. The xc:condition element in case of this constraint contains

the following attributes: from, to, fromName, toName, toPK, keyref and additional. The

values of these attributes are used in the process of the code generation.

The attributes to and from contain the XPath expressions used for selection of the

nodes involved in the ETC check in the XML document. The to attribute denotes the

XPath expression of the referencing (child) element and the from attribute denotes the

XPath expression of the referenced (parent) element. The attributes fromName and

toName contain names of the parent and child elements and are used for the message

generation (when ETC is violated). The toPK attribute contains the name of the primary

key in the child element. This attribute is used to identify the child element. The

attribute keyref contains the name of the attribute which is the foreign key. The

connection between the referenced and the referencing elements is described using the

keyref attribute. The attribute additional contains the condition which is checked when

connecting parent and child elements. This attribute is the core of the ETC check. It

contains the condition which must be satisfied when the referenced and the referencing

elements are paired.

Critical operations that can violate the extended tuple constraint are insert and update

of a child element, denoted with the value of the to attribute, and update of a parent

element, denoted with the value of the from attribute. If a child element is updated, that

means that values of its non-key attributes or a value of its foreign key can be updated.

If a parent element is updated, only values of the non-key attributes can be updated.

In order to generate the code for the validation of this, and in a similar way, other

constraints, we need to describe in a formal way how these critical operations will be

processed. We use a pseudo-code to explain what happens when a critical operation

occurs. This pseudo-code will be used by the code generator to produce a code for

validation of a certain constraint.

The pseudo-code for the validation of the extended tuple constraint when a new

element, denoted with the value of the to attribute, is inserted, is given in Fig. 3. If a

new referencing (child) element is inserted, first we have to check if there is a

corresponding referenced (parent) element, denoted with the name of the from attribute.

That is the referential integrity constraint. After that, an additional condition has to be

checked and in this case this is the extended tuple constraint. If that condition is

Extended Tuple Constraint Type as a Complex Integrity Constraint Type in XML Data Model 831

satisfied, the insertion of the child element is enabled. This constraint is validated using

XQuery function or trigger depending on the desired XML DBMS. The pseudo-codes

for the validation of ETC in cases of update of parent or child element are given in [10].

input: eto∈Eto
BEGIN insert_to

 IF(∃efrom∈Efrom)(efrom@PK=eto@FK)∧

 additional_condition=true

 THEN enable insert

 ELSE report error

END

Fig. 3. The pseudo-code for validation of ETC when a new element to is inserted

5. The Architecture of Code Generator for Constraint Validation

The main motivation for developing this code generator was to automate the process of

the constraint validation. A constraint has to be specified with a pseudo-code, and then

trough the code generator, using the extended XML Schema document, corresponding

program code is generated. The generator produces two kinds of program code: XQuery

functions and triggers. Two representative XML DBMSs are chosen: eXist [11] and

Sedna [12]. eXist DBMS does not have a good support for triggers, so XQuery

functions are generated for it. Sedna DBMS supports triggers completely and it can use

generated triggers. The component diagram of the code generator is given in Fig. 4.

Fig. 4. The component diagram of the code generator

The main purpose of this generator is to automate the process of the constraint

validation, using the proposed constraint notation. In that way, the code is generated

instead of manual programming. The realization of the generator is based on the

appropriate pseudo-code, such as the example of pseudo-code given in the Fig. 3. Other

examples of pseudo-codes for validation of different constraint types and critical

operations can be found in [10]. Based on the the pseudo-code, the appropriate

templates are developed. During code generation, templates are filled according to the

specification of the constraint type given in the extended XML Schema. In the case of

ETC type it will be the extended XML Schema presented in Fig. 2. In sections 6 and 7

Pseudo-code

Extended XML Schema

Code generator Pattern

Trigger XQuery function

832 Jovana Vidaković et al.

we demonstrate the process of the code generation for the ETC validation in the case of

the target (child) element update.

The code generator is a Java application organized in modules. For each constraint

type there is a specific package as well as a specific set of templates. In Fig. 5. there is a

class diagram from the package for the generation of the code for validation of the

extended tuple constraint type.

Fig. 5. The class diagram for the code generation for the validation of the extended tuple

constraint

The main class in this package is the Main class. The method createModel reads the

extended XML Schema, given in Fig. 2, and fills the template for generating of the

description of the XQuery code. An example of such a description is given in Fig. 6.

The method createTriggers reads the generated description of the XQuery code and

according to the value of the attribute type of element xc:trigger (Fig. 6, lines 4, 12 and

20 of XQuery code description) instantiates the corresponding class from this package.

If the value of the attribute type is Source, the object of the class SourceTrigger is

created. If the value of the attribute type is destination, the object of the class

DestinationTrigger is created. Both these two classes have the method createTrigger,

which, according to the input parameters, fills the template and generates a trigger or an

XQuery function.

The class SourceTrigger has methods that generate a trigger or a function, which are

activated when a parent element is added or updated. The class DestinationTrigger

generates a trigger or a function, which is activated when a child element is being

processed. The described way of the code generation is extendible, because for each

new constraint type a new package with its set of templates can be made.

DestinationTrigger

*

*

*

*

*

*

*

*

*

*

*

insertBeforeName

xqueryInsertBefore

insertBeforeMessage

updateBeforeName

xqueryBeforeUpdate

updateBeforeMessage

action

target

time

root

cfg

: String

: String

: String

: String

: String

: String

: String

: String

: String

: Map<String, String>

: Configuration

 = new HashMap<String, String>()

+

-

+

<<Constructor>> DestinationTrigger (Node constraint,

 Configuration cfg)

replaceOperators (String s)

createTrigger ()

: String

: void

Main

* cfg : Configuration

+

-

-

-

+

<<Constructor>> Main ()

createTriggerDescription ()

createModel ()

createTriggers ()

main (String args[])

: boolean

: Map<String, String>

: void

: void

SourceTrigger

*

*

*

*

*

*

*

*

triggerName

time

action

target

message

xquery

root

cfg

: String

: String

: String

: String

: String

: String

: Map<String, String>

: Configuration

 = new HashMap<String, String>()

+

+

-

<<Constructor>> SourceTrigger (Node constraint,

 Configuration cfg)

createTrigger ()

replaceOperators (String s)

: void

: String

Extended Tuple Constraint Type as a Complex Integrity Constraint Type in XML Data Model 833

6. The Code Generator for the Validation of the Extended Tuple

Constraint

According to the pseudo-code with the description of the critical operations and the

actions that have to be done, the code generator generates the description of the XQuery

code. The description of the XQuery code is generated using the FreeMarker Java

Template Engine library [13]. This library uses templates written in the FreeMarker

notation. These templates are filled with the concrete data and according to them the

output code is generated. The FreeMarker template for the XQuery code generation is

given in Fig. 6.

<xc:triggers

xmlns:xc="http://www.extendedconstraints.org/constraint"

 type="xc:exTupleCon">

 <xc:trigger type="source"

name="ExTupleCon${fromName}" time="xc:before"

action="xc:update" target="${from}"

 xquery="($NEW/@${keyref}=$OLD/@${keyref}) and

count(${docName}${to}[@${keyref} = $NEW/@${keyref} and

not(${additionalSource})]) = 0" message="${fromName}

cannot be updated, it does not satisfy additional

condition" />

 <xc:trigger type="destination" name="

ExTupleCon${toName}BeforeInsert" action="xc:insert"

target="${to}" time="xc:before"

 xquery="exists(${docName}${from}[@${keyref} =

$NEW/@${keyref}]) and ${docName}${to}[@${keyref} =

$NEW/@${keyref}]/${additionalDestination})"

message="${toName} cannot be inserted, it does not

satisfy additional condition" />

 <xc:trigger type="destination"

name="ExTupleCon${toName}BeforeUpdate" action="xc:update"

target="${to}" time="xc:before"

 xquery="exists(${docName}${from}[@${keyref} =

$NEW/@${keyref}]) and ${docName}${to}[@${keyref} =

$NEW/@${keyref}]/${additionalDestination})"

message="${toName} cannot be updated, it does not satisfy

additional condition" />

</xc:triggers>

Fig. 6. The FreeMarker template for the XQuery code generation

The xc:triggers element can contain several xc:trigger elements. Each xc:trigger

element describes the XQuery code that will be activated when the concrete action

happens (insert, update, delete). The attributes time and action in the element xc:trigger

define time and the type of the concrete action. The value of the attribute time can be

xc:before or xc:after, which depends on the time of the trigger or function execution:

before or after the concrete action. The value of the attribute action can be xc:insert,

xc:update or xc:delete. The attribute xquery contains the XQuery code which will be

834 Jovana Vidaković et al.

executed in the trigger or the function, and which will validate the given condition. The

message attribute contains the text of the message that will be written to the user if the

constraint is not satisfied. The type attribute determines which template will be used to

create the trigger.

The trigger type can be source or destination. If the type is source, that trigger is

generated when an action is done over the parent element. If the type is destination, that

trigger is activated when an action is done over the child element.

Values in the expression ${name} denote the variables which will be replaced with

the concrete values by the FreeMarker Template Engine. Those values are generated by

the code generator, based on the XML Schema document.

The template given in Fig. 6 describes three critical operations that can violate the

extended tuple constraint, as well as the time of the actions that are done to prevent the

constraint violation. The first described action is taken before update of the parent

element (Fig. 6, code line 6). The second and the third xc:trigger element contain the

code generated for the insert or update of the child element (Fig. 6, code lines 13 and 21

respectively). Both actions are started before critical operation is done. The xquery

attribute value contains the XQuery code generated according to the pseudo-code for

certain critical operation. For example, the xquery attribute of the second xc:trigger

element (Fig. 6, code lines 15–19) is generated based on pseudo-code presented in Fig.

3.

In this way, templates for all defined constraint types could be designed. From these

templates, XQuery functions or triggers will be generated, which depends on the level

of support for triggers in the selected XML DBMSs.

In Fig. 7. we present the template for the trigger that is generated based on the

description given in the third xc:trigger element in Fig. 6, code lines 20–27. This trigger

is executed before the update.

CREATE TRIGGER "${updateBeforeName}"

BEFORE REPLACE

ON ${collectionName}${target}

FOR EACH NODE

DO {

 if (${xqueryBeforeUpdate})

 then

 ($NEW)

 else

error(xs:QName("${updateBeforeName}"),"${updateBeforeMess

age}");}

Fig. 7. The template for before update trigger of the target (child) element

The variable ${updateBeforeName} contains the name of the trigger and it is filled

from the name attribute in the xc:trigger element. The variable ${collectionName} is a

global variable that contains the path to the collection in which the XML document is

set. It is global because it does not exist in concrete nodes in the XML Schema

documents and it cannot be read from them. The XPath expression to the node which is

affected by the trigger, is in the variable ${target}. The variable

${xqueryBeforeUpdate} contains the XQuery code mentioned in the description of the

XQuery code, i.e. in the xquery attribute in the xc:trigger element. Similarly, the

Extended Tuple Constraint Type as a Complex Integrity Constraint Type in XML Data Model 835

variable ${updateBeforeMessage} is filled based on the message attribute in the

xc:trigger element.

If the corresponding XQuery function has to be generated based on the description

given in the third xc:trigger element in Fig. 6, code lines 20–27, then the template given

in Fig. 8 is used.

declare function local:canUpdate${toName}($OLD as

element(${toName}), $NEW as element(${toName}))

 as xs:boolean {

 let $ret := ${xquery}

 return $ret

};

declare function local:doUpdate${toName}($OLD as

element(${toName}), $NEW as element(${toName})) as

xs:boolean{

 let $i := update replace

${docName}${to}[@${toPK}=$OLD/@${toPK}] with $NEW

 return true()};

declare function local:update${toName}($OLD as

element(${toName}), $NEW as element(${toName})) as

xs:boolean{

 let $can := local:canUpdate${toName}($OLD, $NEW)

 let $res := if ($can)

 then local:doUpdate${toName}($OLD, $NEW)

 else false()

 return $res};

Fig. 8. The template for the XQuery function

The variable ${docName} is a global variable that contains the name of the

document. The variable ${toName} contains the name of the element in the XML

document, for which the XQuery function is declared and it is obtained from the XML

Schema. The variable ${xquery} is filled from the element with the same name in the

template (given in Fig. 6). The variable ${to} contains the XPath expression for

selection of the node, which has to be updated. This value can be found in the extended

XML Schema. The variable ${toPK} contains the name of the primary key from the

parent element. Its value is also obtained from the extended XML Schema.

7. The Validation of the Extended Tuple Constraint by Generated

Triggers and Functions

In the this section we describe what generated code looks like for the extended tuple

constraint. The example corresponds with the Example 2, given in the Section 3. First

we give the part of the XML Schema document extended with the xc:constraint

element. The complete XML Schema document is given in [1].

836 Jovana Vidaković et al.

The code generation for the extended tuple constraint validation starts with reading

the XML Schema document. According to the constraint description given in the

element xc:constraint, the description of the XQuery code, which is going to validate

the constraint, is generated. In Fig. 9 the part of the XML Schema document, extended

with the description of the condition for certain constraint, is given. This extension is

used in the process of the code generation. This XML Schema document contains two

element types: Person and Document. The primary key of the Person element is PersId.

The primary key of the Document element is DocNum. There is a foreign key constraint

in the Document element: PersId is the foreign key of the Document element. The

additional condition is that the issue date of a document must be greater than or equal to

the birth date of a person to whom that document belongs.

<xc:constraint type="xc:exTupleCon">

 <xc:condition from="/PDoc/Person"

fromName="Person" to="/PDoc/Document" toName="Document"

toPK="DocNum" keyref="PersId"

additional="${from}/@BirthDate ?lt; ${to}/@IssueDate"/>

</xc:constraint>

Fig. 9. The part of the XML Schema document with the extension for the extended tuple

constraint

The xc:constraint element has an attribute xc:exTupleCon which means that it refers

to ETC. As it is given in Fig. 2, the xc:condition element contains attributes: from, to,

fromName, toName, toPK, keyref and additional. The from and to attributes contain the

XPath expressions for the parent and child elements, respectively. In this example, these

are /PDoc/Person and /PDoc/Document. The fromName and toName attributes have the

names of the parent and child elements and in this example those are Person and

Document. The keyref attribute contains the foreign key in the child element, and here it

is PersId. The toPK attribute contains the name of the child element, and here it is

DocNum. The additional attribute contains the condition that has to be satisfied: the

BirthDate from the Person element has to be less than the IssueDate from the

Document element. This condition connects the attributes from two element types –

Person and Document, and this constraint is the extended tuple constraint.

Based on the XML Schema and the templates, the code generator generates the

description of the XQuery code, which will be used either in trigger or in XQuery

function. The description of the XQuery code is the XML document whose example is

presented in Fig. 10. This document has all elements like the template given in Fig. 6,

but all variables are now replaced with the concrete values by the FreeMarker Template

Engine, i.e. names of the elements and attributes from the XML Schema document.

<xc:triggers

xmlns:xc="http://www.extendedconstraints.org/constraint"

type="xc:exTupleCon">

 <xc:trigger type="source"

name="ExTupleConPerson" time="xc:before"

action="xc:update" target="/PDoc/Person"

 xquery="($NEW/@PersId=$OLD/@PersId) and

count(doc('PDoc.xml')/PDoc/Document[@PersId =

$NEW/@PersId and not($NEW/@BirthDate ?lt; @IssueDate)]) =

Extended Tuple Constraint Type as a Complex Integrity Constraint Type in XML Data Model 837

0" message="Person cannot be updated, it does not satisfy

additional condition" />

 <xc:trigger type="destination"

name="ExTupleConDocumentBeforeInsert"

 action="xc:insert" target="/PDoc/Document"

time="xc:before"

 xquery="exists(doc('PDoc.xml')/PDoc/Person[@Per

sId = $NEW/@PersId]) and

doc('PDoc.xml')/PDoc/Document[@PDoc =

$NEW/@PDoc]/@BirthDate ?lt; $NEW/@IssueDate)"

message="Document cannot be inserted, it does not satisfy

additional condition" />

 <xc:trigger type="destination"

name="ExTupleConDocumentBeforeUpdate" action="xc:update"

target="/PDoc/Document" time="xc:before"

 xquery="exists(doc('PDoc.xml')/PDoc/Person[@Per

sId = $NEW/@PersId]) and

doc('PDoc.xml')/PDoc/Document[@PersId =

$NEW/@PersId]/@BirthDate ?lt; $NEW/@IssueDate)"

message="Document cannot be updated, it does not satisfy

additional condition" />

</xc:triggers>

Fig. 10. The description of the XQuery code for realization of the extended tuple constraint

Based on this document either trigger or the XQuery function will be generated using

FreeMarker Template Engine library. The trigger generated according to the template

that is specified in the third xc:trigger element in Fig. 10, is given in Fig. 11.

CREATE TRIGGER "ExTupleConDocumentBeforeUpdate"

BEFORE REPLACE

ON collection('ExTupleCon')/PDoc/Document

FOR EACH NODE

DO {

 if (exists(fn:doc('PDoc',

'ExTupleCon')/PDoc/Person[@PersId = $NEW/@PersId]) and

fn:doc('PDoc', 'ExTupleCon')/PDoc/Document[@PersId =

$NEW/@PersId]/@BirthDate < $NEW/@IssueDate))

 then

 ($NEW)

 else

 error(xs:QName("ExTupleConDocumentBeforeUpdate"

)," Document cannot be updated, it does not satisfy

additional condition");}

Fig. 11. The trigger generated according to the described template in Fig. 10

The XQuery function generated according to the template that is specified in the third

xc:trigger element in Fig. 10 is given in Fig. 12.

838 Jovana Vidaković et al.

declare function local:canUpdateDocument($OLD as

element(Document), $NEW as element(Document)) as

xs:boolean {

 let $ret :=

exists(doc('PDoc.xml')/PDoc/Person[@PersId =

$NEW/@PersId]) and doc('PDoc.xml')/PDoc/Document[@PersId

= $NEW/@PersId]/@BirthDate < $NEW/@IssueDate)

 return $ret

};

declare function local:doUpdateDocument($OLD as

element(Document), $NEW as element(Document)) as

xs:boolean{

 let $i := update replace

doc('PDoc.xml')/PDoc/Document[@DocNum=$OLD/@DocNum] with

$NEW

 return true()};

declare function local:updateDocument($OLD as

element(Document), $NEW as element(Document)) as

xs:boolean{

 let $can := local:canUpdateDocument($OLD, $NEW)

 let $res := if ($can)

 then local:doUpdateDocument($OLD,

$NEW)

 else false()

 return $res};

Fig. 12. The XQuery function generated according to the described template in Fig. 10

In this example we have demonstrated the process of the code generation. This is

only the part of the generated code that refers to the validation of the extended tuple

constraint when the element is updated. The main purpose of this generator is to

automate the process of the constraint validation, using the presented notation. That

way, instead of manual programming, the code for of trigger and XQuery functions for

constraint validation is generated. The same principle can be used for validation of any

type of constraint.

8. Related Work

The extended tuple constraint is one of the constraints that is used in practice but there

are few papers that define and explain this type of constraint. In [8] authors give an

example of the relational database schema where one of the constraints is the extended

tuple constraint. A common classification scheme for data integrity constraints in

relational data model, according to the scope of data that is being constrained,

comprises of: attribute, tuple, table and database constraints. ETC can be classified as a

database constraint. The SQL2 standard [14] has introduced the ASSERTION construct

as the most general means to express arbitrary integrity constraints declaratively in

Extended Tuple Constraint Type as a Complex Integrity Constraint Type in XML Data Model 839

SQL. Assertions are defined on database schema level and therefore can be used to

declare complex constraints, including ETCs. Most current RDBMSs do not support

CREATE ASSERTION at all. Even if the support exists, like in the Ocelot DBMS [15],

it is limited. Koppelaars explains in [16] why it is hard to develop the algorithms that

parse an assertion and then figures out when and how to most efficiently validate the

assertion. There are alternative solutions to simulate assertions using some mechanisms

available depending on the RDBMS used. Using of updateable views with the check

option to simulate assertions is limited on cases where the assertion only depends on

updates in one table. ETCs are constraints that tackle at least two (not necessarily

different) tables and therefore mechanisms based on the updateable views are not

sufficient.

Although DBMSs have offered a few declarative mechanisms to implement

constraints, they are still limited on built-in constraints. For the vast majority of

constraints database designers and programmers have to develop their own mechanisms

to implement them. One of the main problems in the context of ETCs is the scope of

data that is being constrained. For a DBMS vendor it is hard to come up with an

efficient ETC's implementation. The algorithm would be developed that parses an ETC

specification and then figures out the events that will trigger the action of constraint

validation and how to most efficiently validate the ECT. According to Koppelaars

DBMSs vendors have not been able to develop such an algorithm for an arbitrary

assertion, yet. It is one of the reasons for the lack of the literature that tackles more

complex constraint types in general, and ETCs in particular. RuleGen [17] is an

example of a framework, written in PL/SQL that aids in implementing data integrity

constraints inside the Oracle RDBMS. It generates PL/SQL code to maintain some

kinds of database type of data integrity constraints that could be applied for ETCs

implementation, too.

In current XML specifications, XML Schema definitions include type definitions,

occurrence cardinalities, unique constraints, and referential integrity. There are multiple

papers dealing with these types of XML constraints [18–22]. A generic constraint

definition language for XML, with expressive power comparable to aforementioned

assertions in relational DBMSs, is still not present in the XML Schema specification. To

the best of our knowledge there are no papers on more complex constraint types, like

the extended tuple constraint in the XML data model.

XML/XQuery code generator [23], provides the synthetic XML data generation. It

has rich support for data types and generates complex XQueries that are compatible

with generated XML data. This generator does not have any support for generating code

for the constraint validation of that XML data. In [24] generation of the complex XML

content is available, and the tool allows the specification of most common integrity

constraints over the data in lists, like ID, IDREF, uniqueness. Integrity constraints over

element or attributes can also be specified, which allows the generation of consistent

documents. There is no support for more complex constraints in the XML document.

In [25], an approach for defining inclusion dependencies for XML in XML Schema,

which is based on paths, is proposed. Two existing components, selector and field, are

used to locate the information items, which use restricted XPath as a path description

language. The semantics of the field components to support a set (list) of nodes and

node with complex type is extended. Dealing with null values and comparing element

nodes with complex type are also discussed.

840 Jovana Vidaković et al.

XML documents can have relational or hierarchical structure [26]. In [2] we have

discussed these two structures. We have concluded that the relational structure is a

better way of creating XML documents if we want to specify different types of

constraints. Documents created in relational way avoid redundancy, but they are large.

If the hierarchical structure is used, documents are more readable, but it is impossible to

specify and implement constraints in the way we used to do in [2, 9]. That is the reason

why we have adopted the relational way of modeling XML documents. It means that all

elements are on the same level under the root element.

The conclusions presented in [16] can be applied in the context of the constraint

implementation in XML DBMSs. The usual way of implementing constraints in XML

DBMSs is using triggers, as stated in [27]. The XML DBMS that supports triggers in a

way similar to relational databases is Sedna [12]. On the other hand, there are XML

DBMSs which do not support triggers in the appropriate extent, such as eXist [11] and

for those XML DBMSs, we implement constraints by means of XQuery functions [28].

In this paper we present the code generator that can generate both triggers and XQuery

functions.

9. Conclusion

Integrity constraints have always been an important part of the database design and

implementation. Its importance grows with increasing demands regarding the quality

and reliability of data. Integrity constraint specifications are translated into constraint

enforcing mechanisms provided by a DBMS used to implement a database. Most of the

commercial DBMSs offer efficient declarative support for the well-known constraint

types like domain constraints, attribute and tuple constraints, uniqueness constraints and

foreign key constraints. More complex constraint types, like the extended tuple

constraint, are mostly disregarded by actual RDBMSs and XML DBMSs forcing the

users to manage them via custom procedures or triggers. That is the reason why these

types of constraints are ignored by database designers in a way that they do not

recognize, specify and implement them.

In this paper we have presented the classification of the constraint types in the

relational data model, discussed possible declarative mechanisms for their specification

and enforcement in the XML data model, and illustrated our approach to the definition

and implementation of complex constraint types in the XML data model on the example

of the extended tuple constraint type. We have also proposed one approach to the

generation of program code for enforcing constraints in XML DBMSs. In order to avoid

a lot of manual programming we have proposed a code generator which can generate

code for any specified constraint type. The extension of the XML Schema must be

defined for a certain constraint type, as well as a pseudo-code with the critical

operations and actions undertaken in the case of violation of that constraint type. The

generated code can be applied to any constraint of that constraint type in the XML

document. We have also given the example of usage of this code generator for

enforcing the extended tuple constraint.

Our approach offers control of constraints using XQuery functions and triggers,

depending on the level of support for triggers in XML DBMSs. The usual way of

implementing constraints in XML DBMSs is using triggers, but not all XML DBMSs

Extended Tuple Constraint Type as a Complex Integrity Constraint Type in XML Data Model 841

have support for triggers in the appropriate extent. We have chosen eXist DBMS to

implement constraints using XQuery functions, and Sedna DBMS to work with triggers.

Further development is directed towards comparing presented implementations and

getting experimental results based on the benchmark data.

During and after the development of the presented code generator, we have tested it

on various examples. The main drawback of the evaluation by example is that it is

performed by the authors of the generator and therefore may be biased. The objective

qualitative evaluation of generated artifacts for both ETCs presented in this paper and

ERICs presented in [3] would be conducted. The number of code lines in handmade

code vs. number of code lines in generated code could be informative, but not

substantial. Therefore, we plan to perform the evaluation of the presented code

generator with the evaluation participants with different levels of knowledge and skills

concerning database design and programming. Characteristics that would be evaluated,

beyond others, are functional suitability, usability, trustworthiness, expressiveness, and

productivity.

Acknowledgments

The research presented in this paper was supported by the Ministry of Education,

Science and Technological Development of Republic of Serbia, Grant OI-174023.

10. References

1. Vidaković, J., Ristić, S., Kordić, S., Luković, I.: Extended Tuple Constraint Type in

Relational and XML Data Model – Definition and Enforcement. In Proceedings of BCI '17,

September 20–23, 2017, Skopje, Macedonia, 8 pages.

https://doi.org/10.1145/3136273.3136294

2. Vidaković, J., Luković, I., Kordić, S.: Specification and Implementation of the Inverse

Referential Integrity Constraint in XML Databases, 7th Balkan Conference in Informatics,

2015, ACM New York, USA, ISBN 978-1-4503-33351, DOI: 10.1145/2801081.2801111

3. Vidaković, J., Ristić, S., Kordić, S., Luković, I., The Extended Referential Integrity

Constraint Type – Specification and Implementation in Relational and XML Database

Management Systems, Proceedings of the 8th International Conference on Information

Society and Technology, 2018, Kopaonik, Serbia, Vol.1, pp.143-148

4. Date, C. J., Darwen, H.: Types and the Relational Model. The Third Manifesto, 3rd ed.

Addison Wesley, 2006.

5. Eessaar, E.: “Using Meta-modeling in order to Evaluate Data Models”, In Proceedings of the

6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases,

Corfu Island, Greece, February 16-19, 2007.

6. Elmasri, R., Navathe, B.S.: Database Systems: Models, Languages, Design and Application

Programming, Sixth Edition, Pearson Global Edition, ISBN 978-0-13-214498-8. 2011.

7. Ristić, S., Aleksić, S., Čeliković, M., Luković, I.: Generic and Standard Database Constraint

Meta-Models, Computer Science and Information Systems 11(2):679–696, June 2014,

doi:10.2298/CSIS140216037R

8. Ristić, S., Aleksić, S., Čeliković, M., Luković, I.: An EMF Ecore based Relational DB

Schema Meta-Model, 6. International Conference on Information Technology - ICIT,

Amman: AL-Zaytoonah University of Jordan, 8-10 May, 2013, pp. 1-12, ISBN 978-9957-

8583-1

842 Jovana Vidaković et al.

9. Vidaković, J., Luković, I., Kordić, S., Specification and Validation of the Referential

Integrity Constraint in XML Databases, Proceedings of the 6th International Conference on

Information Society and Technology, 2016, Kopaonik, Serbia, ISBN 978-86-85525-18-6, pp.

197-202.

10. Vidaković, J.: Specification and Validation of Constraints in XML Data Model, Ph.D. thesis,

University of Novi Sad, Faculty of Technical Sciences, 2014. (In Serbian)

11. eXist, http://exist-db.org/exist/apps/homepage/index.html (July 2018)

12. Sedna, Native XML Database System, www.sedna.org (July 2018)

13. FreeMarker Java Template Engine, http://freemarker.org/ (July 2018)

14. SQL92 (SQL2) ISO (International Standards Organization) 9075: 1992, Database Language

SQL; ANSI (American National Standards Institute) X3.135-1992, Database Language SQL

15. Ocelot: OCELOTSQL Homepage (2001). On-line, available at: https://ocelot.ca/dbms.htm

16. Koppelaars, T.: CREATE ASSERTION: The Impossible Dream?, NoCOUG Journal, Vol.

27, No.3, Avgust 2013, pp. 13–15. 2013.

17. RuleGen, data quality assurance, https://github.com/Mrvek/RuleGen (July 2018)

18. Fan, W.: XML constraints: Specification, analysis, and applications. In H. Christiansen, & D.

Martinenghi (Eds.), LAAIC’05, Proceedings of the 1stInternational Workshop on Logical

Aspects and Applications of Integrity Constraints. Included in Proceedings of DEXA 2005,

International Workshop on Database and Expert Systems Applications, Copenhagen,

Denmark, pp. 805-809, 2005.

19. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.: Reasoning about keys for XML.

Information Systems, 28(8), pp. 1037-1063, 2003.

20. Buneman, P., Fan, W., Weinstein, S.: Interaction between path and type constraints. ACM

Trans. Comput. Log., 4(4), pp.530-577, 2003.

21. Alon N., Milo, T., Neven, F. , Suciu, D., Vianu V.: XML with data values: Typechecking

revisited. J. Comput. Syst. Sci., 66(4), 688-727, 2003.

22. Klarlund, N., Schwentick, T., Suciu, D.: XML: Model, schemas, types, logics, and queries.

In J. Chomicki, R. van der Meyden, & G. Saake (Eds.), Logics for Emerging Applications of

Databases [outcome of a Dagstuhl seminar]. Springer. 2003.

23. Todić, M., Uzelac, B.: Combined XML/XQuery generator, DBTest'12 Proceedings of the

Fifth International Workshop on Testing Database Systems, Scottsdale, Arizona, ACM, May

2012, doi: 10.1145/2304510.2304519

24. Barbosa, D., Mendelzon, A., Keenleyside, J., Lyons, K.:ToXgene: a template-based data

generator for XML, Proceedings of the 2002 ACM SIGMOD international conference on

Management of Data, Madison, Wisconsin, doi: 10.1145/564691.564769

25. Chen, H., Liao, H., Integrity constraints for XML, Proceedings of the 2010 IEEE

International Conference on Software Engineering and Service Sciences, Beijing, 2010, pp.

331-334, doi: 10.1109/ICSESS.2010.5552445

26. Chaudhuri, N., Glace, J., Wilson, G.: Hierarchical vs. Relational XML Schema Designs, A

Study for the environmental Council of States, Report ECO41T1,

http://www.exchangenetwork.net/dev_schema/schemadesigntype.pdf, June 2006.

27. Grinev, M., Rekouts, M., Introducing Trigger Support to XML Database Systems,

Proceedings of the Spring Young Researcher’s Colloquium on Database and Information

Systems SYRCoDIS, St. Petersburg, Russia, 2005.

28. XQuery, http://www.w3.org/TR/xquery/ (July 2018)

Jovana Vidaković received her bachelor and Mr (2 years) degrees from the Faculty of

Sciences, University of Novi Sad, and Ph.D. degree from Faculty of Technical Sciences,

University of Novi Sad. Currently, she works as an Assistant Professor at the Faculty of

Sciences, University of Novi Sad, where she lectures in several Computer Sciensec and

Informatics courses. Her research interests are related to Database Systems and

Information Systems.

Extended Tuple Constraint Type as a Complex Integrity Constraint Type in XML Data Model 843

Sonja Ristić works as a full professor at the University of Novi Sad, Faculty of

Technical Sciences, Serbia. She received two bachelor degrees with honors from UNS,

one in Mathematics, Faculty of Science in 1983, and the other in Economics from

Faculty of Economics, in 1989. She received her Mr (2 year) and Ph.D. degrees in

Informatics, both from Faculty of Economics (UNS), in 1994 and 2003. From 1984 till

1990 she worked with the Novi Sad Cable Company NOVKABEL–Factory of

Electronic Computers. From 1990 till 2006 she was with High School of Business

Studies–Novi Sad, and since 2006 she has been with the FTS (UNS). Her research

interests are related to Database Systems and Software Engineering. She is the author or

co-author of over 70 papers, and 10 industry projects and software solutions in the area.

Slavica Kordić received her M.Sc. degree from the Faculty of Technical Sciences, at

University of Novi Sad. She completed her Mr (2 year) and Ph.D. degrees, both from

Faculty Technical Sciences, University of Novi Sad. Currently, she works as an

Assistant Professor at the Faculty of Technical Sciences at the University of Novi Sad,

where she lectures in several Computer Science and Informatics courses. Her research

interests are related to Information Systems, Database Systems and Model Driven

Software Engineering.

Ivan Luković received his M.Sc. degree in Informatics from the Faculty of Military and

Technical Sciences in Zagreb in 1990. He completed his Mr (2 year) degree at the

University of Belgrade, Faculty of Electrical Engineering in 1993, and his Ph.D. at the

University of Novi Sad, Faculty of Technical Sciences in 1996. Currently, he works as a

Full Professor at the Faculty of Technical Sciences at the University of Novi Sad, where

he lectures in several Computer Science and Informatics courses. His research interests

are related to Database Systems, Business Intelligence Systems and Software

Engineering. He is the author or coauthor of over 150 papers, 4 books, and 30 industry

projects and software solutions in the area.

Received: March 24, 2018; Accepted: September 3, 2018

