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Abstract. Traditional lane-changing (LC) behavioral researches usually focus on
the driver’s cognitive performance which includes the driver’s psychological and be-
havioral habit characteristics, rarely involving the affection of expert driver’s com-
prehensive behavioral preferences, such as: safety and comfort performance in LC
process. Towards the free LC process, a novel LC safety and comfort degree index is
proposed in this paper, as well as, the novel definition of LC driving behavioral pref-
erences is described in detail. Taking advantage of interactive evolutionary comput-
ing (IEC) and real-time optimization (RTO) metrics, a kind of LC behavioral pref-
erences on-line learning agent extending traditional Belief-Desire-Intention (BDI)
structure is explicitly proposed, which can perform behavioral preferences learn-
ing activities in the LC process. In addition, driving behavioral preferences learning
strategies are introduced which can gradually grasp essentials in driver’s subjective
judgments in decision-making of the LC process and make the LC process more
safety and scientific. Specifically, a conceptual model of the agent, driving behav-
ioral preferences learning-BDI (DpL-BDI) agent is introduced, along with corre-
sponding functional modules to grasp driving behavioral preferences. Furthermore,
colored Petri nets are used to realize the components and scheduler of the DpL-BDI
agents. In the end, to compare with the traditional LC parameters’ learning methods
(such as: the least squares methods and Genetic Algorithms), a kind of LC problems
is suggested to case studies, testing and verifying the validity of the contribution.

Keywords: Agent, Driving behavioral preferences, Interactive learning, Colored
Petri Nets (CPN).

1. Introduction

It is acknowledged that intelligent transportation systems (ITS) are always correspond-
ing to multi-attribute decision-making (MADM) problems with its focus on using intel-
ligent methodologies. The driving behavioral preferences researches are concerning with
the driver’s psychological and behavioral habit characteristics, which tend to be the con-
straints of ITS’ decision-making process. Therefore, the definition of driving behavioral
preferences which corresponds to the driving safety and comfort performance has not
been described in detail until now.
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Currently, majority of lane-changing (LC) modeling methods’ researches are con-
cerned with theoretical relevance and simulation issues. Rahman et al. conducted a de-
tailed review and systematic comparison of existing microscopic LC models that are re-
lated to roadway traffic simulation to provide a better understanding of respective prop-
erties, including strengths and weaknesses of the LC models, and to identify potential for
model improvement using existing and emerging data collection technologies [26]; Zheng
comprehensively reviewed recent developments in modeling LC behavior and categorized
the major LC models in the literature into two groups: models that aim to capture the LC
decision-making process, and models that aim to quantify the impact of LC behavior on
surrounding vehicles [39].

Therein, towards the driving safety [19][15] and comfort performance [14][23][21]
assessment, the three risk indicators (time-to collision (TTC), time headway (TH), and
safety margin (SM)) and some scales (such as: driving comfort scales (DCS), perceived
driving abilities (PDA) scale, situational driving avoidance (SDA) scales, et al.) are re-
spectively employed in a large scale. However, how to construct the LC decision-making
problems constrained with the driving behavioral preferences still represents a challenge.

Therein, agents are effective methods to construct the human-computer interaction
(HCI) model. Sardina & Padgham developed a typical BDI-style agent-oriented program-
ming language that enhances usual BDI programming style with three distinguished fea-
tures: declarative goals, look-ahead planning, and failure handling [28]. Additionally, Wu
et al. presented a new-complete first-order temporal BDI logic and forest multi-agent sys-
tem and shown how to characterize the forest multi-agent system by using the hierarchical
structure of modules [34]. Nonetheless, there is little literature focus on establishing the
LC driving behavioral preferences interactive learning agent.

In order to effectively perform human-computer interactions in the LC process, this
paper proposes a novel driving behavioral preferences’ definition to study the driving be-
havioral preference’s influence on the LC process, which includes the safety and comfort
performance assessment methods. A new kind of interactive driving behavioral prefer-
ences learning agent based on (Belief, Desire and Intention) BDI structures is established.
Under the real-time optimization (RTO) [4][1] framework, driving behavioral preference
learning algorithms are proposed in this paper. Conceptual agent models and correspond-
ing functional modules are explicitly introduced along with preference learning algo-
rithms. Colored Petri nets are employed to realize and analyze the agent.

The remainder of this paper is organized as follows: Section2 reviews related re-
searches on LC driving behavioral preferences learning. Section 3 presents the basic free
LC models, as well as the proposes the free LC MADM problems. In Section 4, the def-
inition of free LC driving behavioral preferences is proposed, as well as, the DpL-BDI
agent’s conceptual model with its corresponding functional modules and associated al-
gorithms is explicitly introduced. Section 5 presents an approach of how to apply the
interactive learning agents in LC process. Section 6 concludes the article and assesses the
future perspectives.

2. Related work

In accordance with recent literatures, researches on Lane-changing (LC) process show
that the development trend is being shifted from researches on the modeling and perfor-
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mance assessment methods in the early period to current researches on the LC driving
behavioral preferences. A lot of new technologies and intelligent optimization algorithms
are widely applied to identify the parameters of LC model and the LC driving behavioral
preferences, such as: the least squares methods, genetic algorithm [8] etc. This section not
only summaries recently published researches on LC driving behavioral preferences but
also focuses on learning methods based on human-computer interaction.

Lane-changing’s model and performance- Currently, lane-changing (LC) researches
become a new-emerging research issue that targets the quantitative relations of the driv-
ing process. Specifically, Laval & Leclercq introduced a framework to solve this problem
using a macroscopic theory of vehicle LC inside microscopic models, as well as, in their
theory, lane changes take place according to a stochastic process that has been validated
in the field, and whose mean value is a function of lane-specific macroscopic quantities
[17]; Jin proposed a simple model for studying bottleneck effects of LC traffic and ag-
gregate traffic dynamics of a roadway with LC areas [9]; Jin considered weaving and
non-weaving vehicles as two commodities and develop a multi-commodity, behavioral
Lighthill-Whitham-Richards (LWR) model of LC traffic flow and derive a fundamental
diagram with parameters determined by LC and LC characteristics as well as road ge-
ometry and traffic composition [10]; Zheng et al. proposed a neural network (NN) model
to capture the complexity of LC, and large-scale trajectory data are employed for model
estimation and validation [38]; Lv et al. developed an integrative traffic model, in which
a method to calculate the LC probability and the merging probability was proposed [20];
Patire & Cassidy introduced a key mechanism of the vehicular LC: LC can be induced by
speed disturbances (SDs) that periodically arise in the expressway’s median and center
lanes [25]. It is conceivable that how to comprehensively quantify the driving behavioral
preferences with the safety and comfort performance in the ITS’ models still remains a
challenge.

Driving behavioral preferences- Alternatively, a lot of researches are concerned with
the relations between driving behavior and the performance of LC process. For example,
Hidas introduced the Simulation of Intelligent TRAnsport Systems (SITRAS), a massive
multi-agent simulation system in which driver-vehicle objects are modeled as autonomous
agents [6]; Tang et al. proposed a macroscopic model of LC that is consistent with LC be-
havior on a two-lane highway [31]; Tideman et al. presented a new approach for determin-
ing users’ preferences and finding the best compromise between those preferences when
designing a new driver support system [32]; Schubert et al. described a system that can
perceive the vehicle’s environment, assess the traffic situation, and give recommendations
about lane-change maneuvers to the driver [29]; Peng et al. built a new cellular automaton
(CA) model, based on the driving decision (DD), as well as, in the DD model, a driver’s
decision is divided into three stages: decision-making, action, and result [37]; Zheng et
al. investigated the effects of LC in driver behavior by measuring (i) the induced transient
behavior and (ii) the change in driver characteristics and the changes in driver response
time and minimum spacing. Nonetheless, these researches need the large scale samples,
suffering the approaches to grasp the driving behavioral preferences based evolutionary
strategies [40].

HCI and Agent-Human-computer interactive (HCI) models concerning human behav-
iors, languages, etc. can be classified into three categories: artificial action cycle models,
GOMS (Goals, Operators, Methods, and Selection rules) models, and artificial process
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models [5][7][22][33]. Typically, BDI (Belief, Desire and Intention) agent models are
extensively employed to demonstrate rational reasoning abilities of agents, attracting in-
creasing attention in both academia and application fields recently. For example, Casalia
et al. introduced a graded BDI agent development framework and proposed a sound and
complete logical framework for it [3]. Thereafter, a lot of agent’s applications [27][35][13]
are developed. However, the applications rarely involved the driving behavioral prefer-
ence. Meanwhile, the Petri nets are usually employed to establish agent models [18][24].
At present, little literature reported the methods in establishing the driving behavioral
preferences learning agent.

Parameters identification-With the development of probe vehicle technologies and the
emerging connected vehicle technologies, applications and models using trajectory data
for calibration and validation significantly increase. Traditional parameters’ identification
based vehicle trajectory always focuses on the car-following process. Jin et al. proposed
the error dynamic model based on an acceleration-based generic car-following model
formulation, as well as, they explore the mechanism and countermeasures of the error
accumulation problems of car-following models calibrated with microscopic vehicle tra-
jectory data[12]; to deal with traveler behaviors in transport studies, Kim et al. proposed
a rigorous methodology to calibrate a GM-type car-following model with random coeffi-
cients, which could account for the heterogeneity across drivers who respond differently
to stimuli [12]. In addition, the lane changing process can be divided into two coordinates:
horizontal and vertical motion model, as well as, the horizontal motion model can be re-
garded as a car-following process. Because the lane changing process is complex, there is
little literature reports the related parameters’ interactive learning methods.

Thereafter, a novel driving behavioral preferences’ definition and a new kind of inter-
active driving behavioral preferences learning agent based on (Belief, Desire and Inten-
tion) BDI structures are proposed to study the driving behavioral preference’s influence
on the LC process.

3. The mathematical formulation of Lane-changing

3.1. The free Lane-changing model

The classical free Lane-changing (LC) model (in [26][39]) is presented as follows in Fig.
1:

gDna = max{gDa , gDa + βD
a1vn + βD

a2(vn − va) + εna}
gDnb = max{gDb , gDb + βD

b1vb + βD
b2(vn − vb) + εnb}

Where, gDna is critical lead gap; gDnb is critical lag gap; gDa is minimum lead gap; gDb
is minimum lag gap; va is speed of the lead vehicle; vb is speed of the lag vehicle; vn is
speed of the lane changer; β are parameters, εna, εnb are error terms.

The acceleration of the lane changer is:

dvj−1(t)

dt
= h[v(∆xj(t))− vj−1(t)] + τ(∆vj(t)) (1)

where,∆xj(t) is described as the distance between the lead car and the participant car,
v(∆xj(t)) is an optimize real-time speed function corresponding to the distance between
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Fig. 1. The classical free Lane-changing model

the two vehicles; vj−1(t) was the speed of participant car at the time t, ∆vj(t) is the
relative speed of the two vehicles (∆vj(t) = vj(t)− vj−1(t)), h is the synthesized index
corresponding to the safety and economy performance, τ is the delay factor, j is the
vehicle number.

Nonetheless, v(∆xj(t)) in the formula is described as:

v(∆xj(t)) =

{
vj−1(t){1 + tanh[G(∆xj(t)− hc(t)]} ∆xj(t) < hc(t)

vj−1(t) + (vmax − vj−1(t)) · tanh[G(∆xj(t)− hc(t))] ∆xj(t) > hc(t)
(2)

where, hc(t) is described as a safe distance at time t between the two vehicles (To
simplify the study, hc(t) is defined as a constant), G and h are both dynamic unknown
parameters, vmax is the maximum freedom speed of the participant car, tanh is the dual
music function.

3.2. The free lane-changing multi-attribute decision-making (MADM) problems

The free lane-changing (LC) is a kind of uncertainty MADM problems involving human-
computing interaction, where human’s preferences tend to be constraints of the decision
solutions. Therefore, it is necessary to discuss the decision-making mechanism based on
driver’s behavioral preference interactive learning in LC process.

To solve uncertainty LC MADM problems with experiential knowledge and behav-
ioral preferences, it is corresponding to a class of multi-attribute fuzzy mathematical pro-
gramming problems. Thereafter, we can conceptually give the formal description as fol-
lows:
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OPT:
OBJno(x, y) < Ono, no = 1, 2, ... (3)

s.t.

lane-changing model
safety indicator

comfort indicator
x ∈ R, y ∈ {0, 1}

µpre(x, y) = Driving − preference

Where, x and y are described as continuous and discrete operating variables (x ∈
R, y ∈ {0, 1}); Ono(no = 1, 2, ...) are key quantitative objective; µpre is described as
fuzzy membership functions corresponding to the decision-making vectors, which reflects
the decision-making behavioral preferences.

4. Driving behavioral preferences learning BDI (DPL-BDI) Agent

Towards the objective whose optimal values are unknown and dynamic, human usually
tends to solve it by subjective experience. In addition, based on the definition of driving
behavioral preferences, computer can track and learn the free LC multi-attribute decision-
making (MADM) process, as well as make the driving process more personalized and
comfortable.

Time to collision (TTC) [36][30] has been a key vehicle safety metric for decades.
With the increasing prevalence of advanced driver assistance systems and vehicle automa-
tion, TTC and many related metrics are being applied to the analysis of more complicated
scenarios, as well as being integrated into automation algorithms.

The traditional TTC index [2] is described as follows:

THWn = tn,l1 − tn−1,l1 (4)

The time headway and vehicle speed can be determined:

Vn =
D

(Tn,L2 − tn,L1)
(5)

Where, n refers to the vehicle identification (assigned by the order of appearance), L1
is the upstream reference line, L2 is the down stream reference line, and D corresponds
to the distance between the two reference markings. The length of D used in this study is
15m.

The distance gap DX between two vehicles is determined by

DXn = THWn × Vn − lcar (6)

Where,
the average car length lcar is taken to be 4.5 m.
TTC is then estimated using

TTCn =

{DX
DV = DX

vn−vn−1
, vn > vn−1

N.A., otherwise
(7)
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While the TTC metric was originally conceived to be a mandatory constraint in the
car-following process, its applications rarely involving the driver’s expectations for the
TTC index based driving behavioral preferences within the safe consideration.

Definition 1 (Lane-changing safety degree index):

SI =

√
1
N

∑N
i=1(TTCi − T T̄C)2

ξ̂
(8)

Where, i corresponds to the ith time in the car-following process; TTCi is the time
to collision index at the ith time in the car-following process; T T̄C is described as the
average TTC index; ξ̂ is the expected variance of TTC.

Definition 2 (Lane-changing comfort degree index):

CI =

√
1
N

∑N
i=1(ai − ā)2

σ̂
(9)

Where, i corresponds to the ith time in the car-following process; ai is the participa-
tion car’s acceleration at the ith time in the car-following process; ā is described as the
average acceleration (ai); σ̂ is the expected variance of the acceleration.

Definition 3 (Free Lane-changing driving behavioral preferences):
Towards the dynamic free lane-changing MADM problems, driver’s concern degree

of safety and comfort performance are defined as driving behavioral preferences.
Driving behavioral preference is a two-tuple: Driving − preference = {Ei, λi}.

Where, i is the attributes’ number of the MADM problem. Only the safety and comfort
degree index are discussed in this paper, so, i = 2;Ei is described as the optimal value of
each attribute in the free LC MADM problems; λi is described as the weight coefficient
of each attribute in the free LC MADM problems.

4.1. Agent’s model and function

4.1.1. Conceptual model

Real-time optimization (RTO) [24][12], which refers to the online optimization of a
process plant, RTO attempts to optimize process performance (usually measured in terms
of profit or operating cost) thereby enabling companies to push the profitability of their
processes to their true potential as operating conditions change. The control problem is
solved apart from the optimization problem at different frequencies and using different
models.

Based on real-time optimization (RTO) [24] theory, driving behavioral preferences
learning can be transformed to a class of RTO problems whose conceptual model is shown
in Fig. 2.

Where, the arc in Fig. 2 corresponds to the driving behavioral preferences’ model
changing and evolution, while driver has more experience in the LC process. In order to
learn the driver’s preference based HCI, the Auto-Lane changing computer continuously
track and identify the parameters of the driving behavioral preferences’ model. Fig. 2
represents the driving behavioral preferences’ tracking and learning process.
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Fig. 2. Driving behavioral preferences learning conceptual model

4.1.2. Driving behavioral preference learning (DpL-BDI) Agent

In regard to traditional BDI models, Belief corresponds to the information that agents
have about the goal and circumstance; Desire signifies the states of affairs that agents
would wish to be brought; Intention indicates the desire that agents have committed to
achieve. In this sense, driving behavioral preferences interactive learning models can
be considered as that the agents can constantly update the driving behavioral preference
states in achieving objectives and interacting with the driver by belief, desire and inten-
tion.

In order to make the Agent have similar driving behavior and human preferences,
interactive learning (L) and driving preferences (Dp) tuples are added in traditional BDI
models to constitute DpL-BDI Agent model.

Definition 4 (DpL-BDI models):
A DpL-BDI model is a five-tuple, DpL−BDI = {Dp,L,B,D, I}, where

1. B is the Belief set, including the LC goals that agents wish to achieve and the related
data, i.e. for Bi ∈ B we have Bi = {[gi, datai|gi ∈ G, datai ∈ Data, }. G is the
goal set, Data is the data set;

2. D is the Desire set, including the assessments of agents’ achievements and related
data, i.e. for Di ∈ D we have Di, Di = {[gei, dataj |gei ∈ GE, dataj ∈ Data}
GE is the assessment set, is the data set;
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3. I is the Intention set, including the algorithms that are employed to accommodate
Belief set and Desire set, i.e. for Ii ∈ I we have Ii = {ali(Di, Bi|ali ∈ AL}, AL is
the algorithm set;

4. Dp is the driving behavioral preferences set, corresponding to the goals’ assessment
and process data, as well as identifying the parameters of driving behavioral prefer-
ences model. For Dpi ∈ Dp we have Dpi = {ai = Model(Bi, Di, Ii)}, Model is
the driving behavioral preference model; B, D and I, i.e. correspond to the interactive
parameters;

5. L is the Learning set, including the driving behavioral preferences learning algo-
rithms in response to Bi, Di, Ii, DPi and Dpi, i.e. for Li ∈ L we have Li = {li =
Algorithm(Bi, Di, Ii, DPi)}, L is the Li = {li = Algorithm(Bi, Di, Ii, DPi)}
learning algorithms.

To clarify the relationship among the components of DpL-BDI models, it is imperative
to investigate the expected nominal activities of the agents, which motivates the following
concepts.

DPL-BDI Agent’s conceptual models are shown as follows in Fig. 3.

 

Belief- Desire- Intention 

 

 

Driving
preferences

 

 

 

 

Learning 

Goal  

 

Fig. 3. DpL-BDI Agent’s conceptual models

4.1.3. Functional modules

According to the philosophy of DpL-BDI models, a kind of driving behavioral pref-
erences learning agent is designed to solve the LC MADM problems. In what follows, we
introduce the major functional modules in turn.
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(1) Multi-attribute decision-making algorithms
To identify the Driving−Preferences parameters Ei and λi, the LC problems can

be formulated as a constrained nonlinear MADM statement, described as follows:

opt.

{
min SI
min CI

s.t.


VM−1(t)
Vm(t)
VM (t)
s(t)

Where, the objective consists of two sub-objectives: minimum the LC safety degree
and comfort degree; the constraints consist of four models: speed of the lead vehicle
(VM−1(t)), speed of the lane changer (Vm(t)); speed of the lag vehicle (VM (t)); the
critical lead gap model s(t). The parameters to be identified are the weight coefficient
(λi, i = 1, 2) of each attribute in this lane-changing MADM problems, as well as, the
unknown parameters in the four constraint models, such as: G, H and τ of Vmt; β11 and
β12 of s(t).

Interactive evolutionary computing (IEC) [16][11] is a kind of evolutionary computing
method that the fitness function evaluation needs human to review. In addition, IEC’s other
theories and operation parts are as same as the traditional evolutionary computing (such
as: Genetic algorithms).Taking advantage of IEC, the procedure towards multi-attribute
decision-making algorithms is presented as follows.

Step 1: Initiate t = 0 and create an initial population āt of candidate solutions
randomly over the global searching space;

Step 2: Specify an importance degree for each objective, and, in regard to ev-
ery individual, calculate corresponding objective fitness index K based on multi-
attribute assessment module;

Step 3: Aided by agents, human operators evaluate the excellent individu-
als of candidate solutions in terms of fitness index K. At the same time, agents
perform driving behavioral preferences computing and learning algorithms, gen-
erating evaluations of individuals for human references;

Step 4: Select excellent individuals based on HCI;
Step 5: Perform crossover and mutation operations to generate the offspring;
Step 6: Decode and return to Step 2.

(2) Multi-attribute assessment
Considering a decision-making problem with n attributes, specify an objective fitness

index as:

k =

n∑
i=1

λiϕi (10)

Where, λi is defined as the relative importance degrees of objective pi that are con-
strained by

∑n
i=1 λi = 1; ϕi is the achievement degree of pi. For the proposed methods

in this paper, ϕ1 = ŜI
SI and ϕ2 = ĈI

CI , where, ŜI is the desired safety degree index, SI
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is the realistic safety degree, as well as, ĈI corresponds to the desired comfort index, CI
corresponds to the realistic comfort index.

(3) Driving behavioral preference learning
The aim of this module is twofold, obtaining human’s driving behavioral preferences

and updating the adjustable parameters of preference computing models. Driving behav-
ioral preferences’ learning helps agents get access to driver’s preferences towards decision
making so as to learn from them, gradually replacing human’s subjective judgment and
lessening human’s subjective fatigue and promoting more scientific implementations.

According to the driving behavioral preferences models, interactive learning prob-
lems can be formulated as a constrained nonlinear programming statement, described as
follows.

min

n∑
m=1

[µ(km)− µ′(km)]2(m = 1, ..., n)

s.t.

{∑2
i=1 λi = 1
τ 6 2

(11)

Where, µ(km), (m = 1, ..., n) corresponds to the Agent’s performance optimal as-
sessment sequences in lane-changing process; µ′(km), (m = 1, ..., n) correspond to the
expert driver’s satisfaction degree sequences in LC process. Additionally, genetic algo-
rithms can be invoked to solve this optimization problem?whose implementing steps are
shown in Fig. 4. A simplified functional structure of the DpL-BDI agents is shown in Fig.
5.

4.2. Agent’s analysis based on Colored Petri nets

Petri nets are used to describe the mathematical model of the parallel and discrete sys-
tem, which is suitable for constructing the concurrent and asynchronous computer system
model. To study the driving behavioral preference learning algorithm’s rationality and the
triggering process, petri nets are employed to realize the components and scheduler of the
driving behavioral preferences’ learning (DpL)-BDI agents.

As a kind of high-level Petri net, colored Petri net (CPN) is capable of descrip-
tion and analysis of large and complex Agent’s systems. A well-formed CPN,

∑
=

(C,P, T,A, F,M), is made of six components, where, C indicates color functions; P is a
finite set, called place set; T is a finite set, called transition set; A is a finite set, called arc
set; F ⊆ (P×T )∪(T×P ) is defined as the flow relationship;M : P → {0, 1, 2, 3, ...} is
defined as the network functions (Marking). In this context, CPNs based DpL-BDI agents
could be specified as follows.

Definition 5 (Places of agents):
PB is a Belief color set,
PB = {PB1 (MADM algorithms),PB2 (solutions of MADM)},
PD is a Desire color set,
PD = { PD1

(multi-attribute fitness index algorithms), PD2
(multi- attribute fitness in-

dex values)}.
PI is an Intention color set,
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Fig. 4. Driving behavioral preferences’ learning algorithms
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Intention Set

Learning Set

Desire Set

Belief Set

LC Decision Making Algorithms

LC Performance assessments

Human-computer interaction Giving human’s 
preference of lane-changing satisfaction index

Driving preference learning Algorithms

Fig. 5. Functional structure of the DP-L BDI agents

PI = { PI1 (LC assessment index algorithms), PI2 (Agent’s assessment index se-
quence)}.

PDp is a driving behavioral preferences’ color set,
PDp = { PDp1 (Human-computer interaction), PDp2 ( Driver’s satisfied degree index

sequence) }.
PLis a driving behavioral preferences’ learning color set,
PL = { PL1

( Preferences’ learning algorithms), PL2
(updated parameters λ1, λ2)}.

CPN-Tools software is originally developed by the CPN Group at Aarhus University
from 2000 to 2010. The tool features incremental syntax checking and code generation,
which take place while a Petri net is being constructed. We could in turn build all func-
tional modules of agents by CPN metrics. As an exemplary case, the scheduling model
for functional modules of agents is presented based on CPN-Tools software in Fig. 6, as
well, in which the associated notations are interpreted in Table 1.

5. Case studies

The integrated LC driving behavioral preferences learning experiments are presented in
this paper. Three contrast experiments are constructed to identify the driving behavioral
preferences’ parameters by the least squares methods, the traditional GA algorithms and
the methods proposed in this paper, as well as, the results’ discussion is given in this
section.
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Table 1. Interpretations of places and transitions associated with the CPN models

Place Color Set Messages Transition Messages

p1 (mode1sta) Model of the
Agent’s goal

LC math models
ready

T1 Executing the
interactive decision
making algorithms

p2 (PB1sta) State of the first
component in Belief
set

Multi-attribute
decision-making
algorithms ready

T2 Executing the LC
performance fitness
index computation
algorithms

p3 (PB2sta) State of the second
component in Belief
set

Achievement of a
set of evolutionary
solutions

T3 Sending the fitness
index

p4 (PD1sta) State of the first
component in Desire
set

LC performance
fitness index
computation
algorithms ready

T4 Interacting

p5 (PD2sta) State of the second
component in Desire
set

Accomplishment
of the
multi-attribute
fitness index

T5 Executing the
interactive
preference learning
algorithms

p6 (PI1sta) State of the first
component in
Intention set

Transferring
commands

p7 (PI2sta) State of the second
component in
Intention set

Agent’s
assessment index
sequence ready

p8 (PDp1sta) State of the first
component in
Driving behavioral
preference set

Interaction

p9 (PDp2sta) State of the second
component in
Driving behavioral
preference set

Driver’s satisfied
degree index
sequence ready

p10 (PL1sta) State of the first
component in
Learning set

Interactive
preference
learning
algorithms ready

p11 (PL1sta) State of the second
component in
Learning set

Update of the
preference
parameters λ1, λ1
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Fig. 6. Scheduling model for functional modules of agents

5.1. The least squares methods

In the experiments, traffic simulation software Q-Paramics v6.9.3 and VC++6.0 are em-
ployed to build the experimental platform in this paper. Paramics was developed for mi-
croscopic traffic simulation by the British company Quadstone, as well as, it provided a
new-computational tool for the traffic engineers and researchers to understand and analyze
the real conditions. Thereafter, a two-way road network model is established, including
some constraint such as the road length is 80km, the maximum speed is 120km/h, there’re
two intersections on the network.

The total simulation time is defined as 30s; the sampling time is defined as 0.5s. The
experimental data consists of vehicle number, road number, the speed of following the
vehicle, the forward vehicle number, headway, and the speed of the forward vehicle.

The least square methods are the most commonly traffic trajectory model parameters’
identification method in the LC process [13]. Based on the optimization model and the
experimental data (the lane changer is a car, the lead vehicle is a car), Fig. 7 shows the
fitting curve of the acceleration in the LC process.

5.2. Traditional GA algorithms

To analyze the LC driving behavioral preference parameters’ difference between different
types of vehicles, three common vehicles are selected in this experiment, such as: cars,
buses and trucks. Based on the Q-Paramics software, nine LC scenes are performed in this
paper, such as: (the lane changer is a car, the lead vehicle is a car; the lane changer is a
car, the lead vehicle is a truck; the lane changer is a car, the lead vehicle is a bus; the lane
changer is a truck, the lead vehicle is a car; the lane changer is a truck, the lead vehicle is
a truck; the lane changer is a truck, the lead vehicle is a bus; the lane changer is a bus, the
lead vehicle is a car; the lane changer is a bus, the lead vehicle is a truck; the lane changer
is a bus, the lead vehicle is a bus).

Along with software Paramics, human-computer interactive evolutions are being per-
formed. Based on the experimental data and the traditional GA algorithms, we specify
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Fig. 7. The fitting curve of the acceleration

20 generations and 40 individual species to identify the parameters in driving behavior
preference LC model. The performances of nine LC scenes are shown in figures 8-16 re-
spectively. Fig 17 shows the fitting curve of the acceleration in the LC process (the lane
changer is a car, the lead vehicle is a car). In addition, Table 2 presents key data associated
with the interaction.
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Fig. 8. The profiles of parameters’ evolution (the lane changer is a car, the lead vehicle is a car)

5.3. Using the proposed methods

Along with the proposed driving behavioral preference learning algorithms, human-computer
interactive evolutions are being performed. Thereafter, a two-way road network model is



A Lane-Changing Behavioral Preferences Learning Agent with its Applications 365

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

Individuals

P
ar

am
et

er
s 

of
 D

riv
in

g 
be

ha
vi

or
al

 p
re

fe
re

nc
e 

m
od

el

 

 

Weights of safety index
Lane changing parameter B11
Lane changing parameter B12
Car following parameter G
Car following parameter h

(a) A (parameters’ evolution of the preference
and the acceleration model)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7
x 10

6

Searching generations

O
bj

ec
tiv

e 
va

lu
e

 

 

The change of solutions
The change of average solutions

(b) B (Objective value’s evolution)

Fig. 9. The profiles of parameters’ evolution (The lane changer is a car, the lead vehicle is a truck)
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Fig. 10. The profiles of parameters’ evolution (The lane changer is a car, the lead vehicle is a bus)
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Fig. 11. The profiles of parameters’ evolution (The lane changer is a truck, the lead vehicle is a car)
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Fig. 12. The profiles of parameters’ evolution (The lane changer is a truck, the lead vehicle is a
truck)



366 Wang Jian, Cai Baigen, Liu Jiang, and Shangguan Wei

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

Individuals

P
ar

am
et

er
s 

of
 D

riv
in

g 
be

ha
vi

or
al

 p
re

fe
re

nc
e 

m
od

el

 

 

Weights of safety index
Lane changing parameter B11
Lane changing parameter B12
Car following parameter G
Car following parameter h

(a) A (parameters’ evolution of the preference
and the acceleration model)

0 2 4 6 8 10 12 14 16 18 20
4

4.5

5

5.5

6

6.5
x 10

6

Searching generations

O
bj

ec
tiv

e 
va

lu
e

 

 
The change of average solutions

(b) B (Objective value’s evolution)

Fig. 13. The profiles of parameters’ evolution (The lane changer is a truck, the lead vehicle is a bus)
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Fig. 14. The profiles of parameters’ evolution (The lane changer is a bus, the lead vehicle is a car)
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Fig. 15. The profiles of parameters’ evolution (The lane changer is a bus, the lead vehicle is a truck)
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Fig. 16. The profiles of parameters’ evolution (The lane changer is a bus, the lead vehicle is a bus)
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Table 2. Key data associated with the interaction

The lane changer The lead vehicle λ1 λ2

Car Car 0.23 0.77
Car Truck 0.25 0.75
Car Bus 0.31 0.69

Truck Car 0.21 0.79
Truck Truck 0.20 0.80
Truck Bus 0.19 0.81
Bus Car 0.18 0.82
Bus Tuck 0.19 0.81
Bus Bus 0.21 0.79

Fig. 17. The fitting curve of the acceleration
(Based on the experimental data in 4.1 (the lane changer is a car, the lead vehicle is a car)
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established, including some constraint such as the road length is 80km, the maximum
speed is 120km/h, the minimum critical lag gap is 150m. In this experiment, the lane
changer and the lead vehicle are both cars. Speed model of the lead car is defined as
|50× sin(πt)|.

Specify ten generations and eight individual species The performances of initial, third
and the last generation are shown in Figures 18, 19 and 20 respectively. In each figure, the
first line displays eight speed individuals of the lead car; the second line corresponds to 8
speed individuals of the lane changer, as well as, the third line corresponds to the multi-
attribute assessment index(formula (4)). In addition, Table 3 presents key data associated
with the interaction. The expected SI index (which is ŜI in the formula (4)) is described
as 5, as well as, the expected CI index (which is ĈI in the formula (4)) is described as 2.
In the end, using the same experimental data of section 4.1 (the lane changer is a car, the
lead vehicle is a car), the fitting curve is shown in Fig. 21.
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Fig. 18. Objectives of the initial population

Table 3. Key data associated with the interaction

Interaction Number λ1 λ2

1 0.235 0.765
2 0.248 0.752
3 0.273 0.727
4 0.296 0.704
5 0.303 0.697
6 0.312 0.688
7 0.335 0.665
8 0.339 0.661
9 0.343 0.657

10 0.345 0.655
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Fig. 19. Objectives of the 7th population
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Fig. 20. Objectives of the 10th population
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Fig. 21. The fitting curve of the acceleration

5.4. Discussion

Based on the three experiments in section 5.1-5.3, we can get the analysis results as fol-
lows:

Towards a kind of LC scene, the traditional least squares methods are used to identify
the LC model parameters. Because the LC model is nonlinear seriously, the fitting effect
of acceleration is not good (Fig. 7).

In order to reflect the different driving behavioral preferences in the different LC
scenes, GA is used to get the driving preferences for nine cased based on Q-Paramics.
In addition, Fig.17 is compared with Fig.8 to verify that GA is better than the traditional
least square methods in fitting the LC process acceleration curve based on the same data
in section 5.1.

Finally, we design a kind of LC scene, give the lead car’s velocity equation and set
the corresponding LC constraints. Based on the proposed method, we obtain the driving
behavioral preferences and the LC model parameters within finite interactions. Fig.21
shows the best fitting effect of LC acceleration based on the same data in section 5.1.

It’s obviously that all the traditional optimization process (the least squares methods
and GA) requires historical data which is suffering the flexibility and speediness.

In addition, the proposed driving behavioral preferences’ learning algorithms do not
decrease the parameters’ identification accuracy, as well as, they also have the ’online-
learning’ characteristics. The complexity of the algorithms does not increase.

6. Conclusions

In order to provide agents with ability of learning driving behavioral preferences towards
MADM, the interactive learning mechanism has been integrated into traditional agent’s



A Lane-Changing Behavioral Preferences Learning Agent with its Applications 371

BDI models. In contrast to the traditional free LC model, the proposed preferences mod-
els are recognized capable of gradually grasping essentials in driver’s subjective judgment
in decision-making, as well as helping drivers make decisions more objective and scien-
tific. Additionally, colored Petri nets are employed to build driving behavioral preferences
(DpL)-BDI agent’ model, as well as, the learning algorithm’s logic is correct based on the
CPN-Tools software. The proposed driving behavioral preferences’ learning algorithms
do not decrease the parameters’ identification accuracy, as well as, they also have the
’online-learning’ characteristics. To exemplify applications of the approaches, a kind of
LC problem is suggested to case studies, giving rise to satisfied results and showing va-
lidity of the contribution.

Furthermore, it should be pointed out that this research remains rather fundamental
currently, which is in desperate need of further investigations on some key issues, such
as: how to record the driver’s preference information, how to design more complex LC
model and how to realize the driving behavioral preferences learning algorithms with the
wireless vehicle communication equipment in the multi-vehicle environment.
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