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Abstract. The greater the number of devices on a network, the higher load in the
network, the more chance of a collision occurring, and the longer it takes to transmit
a message. The size of load can be identified by measuring the network occupancy,
hence it is desirable to minimize the latter. In this paper, we present an approach for
network occupancy minimization by optimizing the packing process while satisfy-
ing multiple constraints. We formulate the minimization problem as a bin packing
problem and we implement a modification of the Best-Fit Decreasing algorithm to
find the optimal solution. The approach considers grouping signals that are sent to
different destinations in the same package. The analysis is done on a medium-sized
plant model, and different topologies are tested. The results show that the proposed
solution lowers the network occupancy compared to a reference case.
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1. Introduction

Increasingly different types of information are required in industrial processes and engi-
neering systems, resulting in the diverse and widespread use of networks. Today, there
are about 25 billion Internet of Things (IoT) devices deployed in the world, and that num-
ber has increased for about 20 billion in the last five years [31]. Thus, we can expect
communications-capable machines to be the most common type of device in the future,
leading to a considerable growth of the data volume. A significant increase of the network
traffic and network load may limit and even decrease the network speed while increasing
the data loss. Therefore, powerful data communication is necessary to handle this growth.

Network occupancy can show how large is the network load. Although network speeds
are getting higher, it is always desirable to minimize the network occupancy, as data vol-
umes and the number of related critical features are also increasing. Thus, network op-
timization plays a vital role in many applications that have certain speed and reliability
requirements. Such requirements refer to accurate delivery of packages to their destina-
tion, in some guaranteed time frame.

⋆ Extension of the article published in the 7th Conference on the Engineering of Computer Based Systems
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Problem formulation. Our work is triggered by a move from the classical Control-
Centric System Model towards a Network-Centric Control Model in the context of in-
dustrial automation systems (IAS). An IAS is concerned with the acquisition, delivery,
and processing of input signals from sensors to controllers and delivery of the controller
signals to actuators. Such a distributed system is usually deployed on the Open Platform
Communications Unified Architecture (OPC UA) [1] protocol, running on top of Ether-
net network technology. We discuss here about the part of the model between sensors and
controllers. The reverse communication, plus additional - management related communi-
cation - can be covered by an extension of the proposed solution.

The sensors provide the process data to the control system. Their signals are aggre-
gated in Field Control Interface devices (FCI) and grouped in larger, as possible, disjunc-
tive datasets. FCIs in the network have registers for storing signal values. Each dataset has
an ideal frequency at which the FCI assembles them into packets. However, for most of
the signals, values packed at different than ideal time moments may still provide for good
process management. On the other side of the network, there are controllers responsible
for specific tasks. For each task, a dataset of signals is assigned to the process. These
datasets overlap with datasets of signals sourcing at potentially different FCIs.

Further, task allocation is a problem that can be identified in multiple domains, and
acknowledgment of the related complexity has long been on researchers’ agendas. From
a technical perspective, task allocation is considered an ”essential problem” in the area
of parallel computing [26], resurfacing with the advent of multi-core processors [15],
and today also being “one of the most fundamental classes of problems in robotics” [4].
Moreover, scheduling task execution in distributed systems is, for a long time now known
as an NP-hard problem [12]. Task allocation is also raising aspects of performance, the
“optimality” of the action being one crucial step in the design of modern systems [28].

We identify our problem as both an allocation issue and a scheduling and performance
issue. We study the above both considering an ideal network - where no packages are
lost, as well as a “lossy” network, where a certain number of packages don’t reach their
intended destination. However, we do not propose here a solution for task allocation -
there are several options to follow in the research literature, but, at the moment, we just
want to illustrate the effect of this at the levels we discuss.

Our goal is to find a (close to) optimal packing schedule, maximize the packet uti-
lization, thus minimizing the number of packets sent, so that the network occupancy,
expressed in Bytes (B), is minimized.
Contribution. We consider to address the following topics:

– Determine a suitable optimization algorithm that minimizes network occupancy given
multiple constraints.

– Investigate how different data packing methods affect the network occupancy in a
network-centric model.

– Study the impact of network topology on the network occupancy in a network-centric
model.

– Study the impact of different task-controller allocation on the network occupancy in
a network-centric model.

– Study the impact of package loss on network occupancy and investigate how a suit-
able optimization algorithm handles package loss.
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The considered constraints can be identified as: the size of the package, the assignments of
datasets to tasks, the various timing specifications (reading times, packing times, expected
arrival times), data updates.
Solution space. The first direction of study brings us to the rich body of research related
to bin packing [16], [21], [8], [9]. There are many variants and forms of “bin packing”
problem and solutions to it. However, each of them tries to fit the finite number of items
into the finite number of bins of a fixed volume so that the number of bins is minimal.
This problem fits in the class of the 1D packing, where only one dimension varies, and
that is the size of the signal. In this problem, packets represent bins of a fixed maximum
size, while signals from sensors represent the items whose size varies.

Heuristic and meta-heuristic algorithms and approaches [18] are generally used for
finding sub-optimal solutions or solutions that are good enough under given conditions
when classical approaches are too slow or fail to find optimal solutions. Alternative ap-
proaches are also studied for speeding-up bin packing solutions [10], [13].

Another direction is to investigate the use of various artificial intelligence approaches
(e.g. genetic algorithms [24]), or more sophisticated approaches. These approaches can be
applied to large-scale optimization problems, specifically if problem-specific algorithms
do not yield satisfactory results. The main drawback of these algorithms is that they are
typically more complex and require adjustment to fit the needs of the specific problem.

For the size of the problem here, we pursue the bin packing approach initially, remain-
ing to look into further solution dimensions if the results are not sufficiently useful.

2. Background

Industrial plants are usually very complex systems, including a large number of devices
such as sensors, controllers, and actuators. An important task is to connect all devices into
a single infrastructure to make industrial communication work from the field level up to
the management level [2]. The switching technology is one among many used in modern
industrial networks, built with the support of devices such as hubs and switches. A hub
forwards the packet to all its ports. When a packet enters a switch, the switch reads the
Medium Access Control (MAC) address stored in the packet header, and, based on the
value, it takes decisions on which of its ports to send the packet through.
Controller-Centric Systems. Devices in a controller-centric architecture - CCA (Fig. 1)
- are directly connected to controllers, thus making controllers to “own” devices. Config-
uration data from the engineering to devices is deployed over controllers. Controllers not
only focus on control logic execution, but also require certain knowledge about device-
specific implementations. Routing of device information goes through the controllers.
Network-Centric Systems. The logical topology of the network-centric architecture -
NCA (Fig. 1) - brings several benefits compared to CCA. As devices and controllers are
logically on the same bus, any controller can use signals from any device. Thus, the system
is more flexible. However, this also brings some drawbacks, one of which is the possible
network congestion, especially in large systems.
The bin packing problem. Items of different volumes must be packed into a finite num-
ber of bins or containers each of a fixed given volume in a way that minimizes the number
of bins used (Fig. 2).
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Fig. 1. Controller-Centric vs. Network-Centric Architectures

The total size of the items assigned to one bin should not exceed its capacity. This
problem is known as bin packing, and it is a very popular challenge amongst the re-
searchers across various domains. It comes in multiple variants, such as three-dimensional
packing [25], packing by weight [19], and packing by cost [22].

The bin packing problem has many applications, such as filling up containers [27],
loading trucks with weight capacity constraints [17], and job scheduling [6].
Heuristic algorithms. Bin packing is a NP-hard problem, and it is proven that no al-
gorithm can achieve a performance ratio better than 3

2 (unless P = NP ) [5]. Heuristic
methods are most commonly used to find the optimal solution to this problem.

Fig. 2. The Bin packing problem.

One of the simplest heuristic algorithms for bin packing is probably Next-Fit (NF)
[5]. NF places an item in the currently ”opened” bin, if the item fits inside. Otherwise, the
current bin is closed, and the item is placed inside a new bin. A NF modification, Next-
k-Fit (NkF) [20], holds k containers open instead of only one. First-Fit (FF) [8] is one of
the most commonly used heuristic algorithms for solving the bin packing problem. Here,
each item is placed into the first bin in which it will fit. If there is no such bin, it puts
the item inside a new bin. Another well-known algorithm that provides a fast but often
non-optimal solution is Best-Fit (BF) [9]. The idea is to put the item in the fullest bin in
which it fits. Worst-Fit (WF) [5] is very similar to BF. Instead of putting an item in the bin
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where it leaves the smallest space, it is placed in the bin with minimum load. All these
algorithms belong to a group of so-called online algorithms, and they consider items in
an order defined by a list L.

To measure the performance of online algorithms, two terms are defined:

– A(L). The number of bins used when algorithm A is applied to list L.
– OPT (L). The optimum number of bins for list L.

Table 1 shows the upper bounds for each of the mentioned algorithms. Since the upper
bounds on FF and BF algorithms are lower than those on NF and WF, the two most com-
monly used algorithms are Best-Fit Decreasing (BFD) and First-Fit Decreasing (FFD).
Both algorithms initially sort the items in decreasing order of size and assign the larger
items first. In this way, a lower upper bound is achieved [7]:

FFD(L) ≤ 11

9
OPT (L) +

6

9
.

Note that the complexity of the Best-Fit Decreasing (BFD) algorithm is O(n log n) for n
objects, which is greater than the O(n) running time of the NF algorithm.

Table 1. Upper bounds of several algorithms.

Algorithm Upper bound
Next-Fit NF (L) ≤ 2OPT (L)− 1 [5]
First-Fit FF (L) ≤ ⌊1.7OPT (L)⌋ [8]
Best-Fit BF (L) ≤ ⌊1.7OPT (L)⌋ [9]
Worst-Fit WF (L) ≤ 2OPT (L)− 1 [5]

3. Related Work

We divide this section on two of the main topics that we address in our study, traffic
optimization and package loss. As observable in the next paragraphs, these are strongly
correlated, but also independent solutions can be identified, in specific contexts.
Traffic optimization. Leinberger et al. [16] proposes a new multi-capacity aware bin
packing algorithm for job management systems (JMS). Multi-capacity refers to different
resource requirements, such as the number of CPUs and amount of memory. The “bin”
represents the parallel system, while the job wait queue is represented by an item list. The
specific heuristics are though too heavy for the topic we address in this work.

In [27], the container loading problem with expiring orders is addressed. The authors
classified this problem as a three-dimensional optimization problem with constraints such
as orientation, stability, and loading priority. The items of an order must be entirely placed
in the container or entirely be left behind. A heuristic algorithm handles first the expiring
and then the non-expiring orders. The timing constraints make this approach not suitable
in our context.
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In [21], the bin packing problem is formulated as a multi-objective optimization prob-
lem: minimizing the bins used and minimizing the heterogeneousness of the elements
in each bin. These two conflicting goals are formulated as a vector optimization problem.
The authors emphasized the importance of trade-offs in this kind of optimization problem,
which is the same we do here (by allowing some signals to not be sent over the network).

The bin packing problem under linear constraints is presented in [29], where the size
of items to be packed is not given in advance. A modified Next-Fit algorithm is proposed.
Linear programming computes the optimal value for size of items, and then the Next-Fit
algorithm is deployed to solve the bin packing problem. The algorithm runs in polynomial
time and has the same approximation ratio as CNF. The specifics of our application area
- especially timing and package targeting - make the CNF not suitably.

A meta-heuristic approach for real-time task scheduling problems is employed in [24],
guaranteeing end-to-end tasks’ deadlines in distributed environments. Two different ex-
ploration scenarios are analyzed, single (looking for the minimal number of processing
units for all the tasks) and multi-objective exploration (considering the total number of
processing units and the end-to-end finishing time for all the jobs). Our problem is placed
at a different level of granularity (tasks vs. packages), hence not benefiting enough from
this approach.

Task allocation. There is a rich body of research focusing on the optimality of task al-
location in networked environments. For on-chip networks, for instance, greedy network
layer-based algorithms are found to be one solution [14]. Multiple criteria (distance to
other nodes, energy levels, energy consumption, position) are analyzed when operating
robotic networks [3]. A graph based framework is defined here for dynamically assigning
tasks to set(s) of robots. For mesh networks, an interesting research [23] stresses the im-
portance of architectures and algorithms, when considering the introduction of two new
allocation algorithms.

We presented the above as just a (very) small part of what researchers focus on when
discussing task allocation. We will not try to identify here a (new) allocation policy, but
are illustrating the impact of allocation decisions on network occupancy.

Package loss. Several reasons are identified as leading to packages losses in modern day
networked systems. As described in popular literature (e.g. [11]), some of the most im-
portant ones are network congestion, defective hardware, outdated hardware and / or
software. Immediate solutions for the last two causes come from replacements and / or
updates, respectively.

Packet loss is addressed at physical network levels [32], when some information is
available on the forecasted data, or additional controls are necessary when such data is
not available. Differently with the cited work, the transfers we intend to schedule are
time-triggered and not event-triggered. Hence, we believe we do not need such a complex
approach.

A new end-to-end congestion control algorithm is proposed in [30], based on a Naive
Bayesian model. The approach analyzes both wired and wireless systems. The approach
does apply priority features to the packets, and provides an identification of ”where”
(wired/wireless) the losses appear. The priority schemes are used to improve traffic con-
ditions when the congestion is high. In our approach, we try to build the system such that
congestion is controlled from the beginning, and thus packet losses are only very rare.
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4. Building the approach

The Network-Centric Control Model (NCCM) allows us to model the acquisition and
delivery of the input from sensors to controllers, their processing and the delivery of the
controller signals to actuators on the Smart Control Platform. Fig. 3 depicts the NCCM,
with the virtual paths that some packages travel.

Fig. 3. Network-Centric Control Model

We focus here on the part of the model between sensors and controllers. Sensors are
directly connected to the network bus, or via the FCIs - the approach we consider. Signals
from assigned sensors are aggregated by the FCI in larger datasets to reduce the network
load. Datasets in one FCI are disjunctive to datasets in any other FCI in the network. The
time period in which the signal sends the data is negligible, and it is assumed that the
FCI’s registers contain the latest values of every assigned signal.

The network is modeled as an ideal system without delays. The network occupancy
is defined as a number of bytes that flows through the network over a specified time
interval. There is a number of switches that forward packets to the targeted controllers, and
each switch is directly connected to at least one controller, and an FCI or another switch.
Depending on the network topology, the number of network elements, their connections,
and their disposition varies. At the other side of the network are controllers running tasks.
Each task is defined by its period and execution time and is assigned a dataset of signals
to process. These datasets overlap with datasets of signals in the FCIs.
The network package. The term message can have multiple meanings in networking.
In this paper, we consider payload as a message. So, the data read from the sensor is a
payload that is sent on the network together with the rest of the package. The network
package also includes protocol, security, and encoding-specific data. Within the FCI, the
entire package is created and sent to the appropriate controller. The DataSetMessage is
actually data from a single sensor, while the NetworkMessage is the overall payload that



258 Amar Halilovic et al.

contains all signals. The Unified Access Data Plane (UADP) dataset payload and other
parts of the network package are shown in Fig. 4-A.

The thus package consists, in addition to the payload, of different types of headers,
security footer and signature. Everything except payload can be considered a fixed size.
A simple representation of the resulting abstract package is shown in Fig. 4-B. The mes-
sages contained in the payload are sensor signals. The data size of the signal is marked as
DS, and it depends on the type of signal.

Fig. 4. A: The UADP dataset payload [1]; B: The abstract package structure.

Working example. In Fig. 5, we introduce a simple network topology, which we will
use to present the algorithm. Each controller-controller, switch-switch, and the switch-
controller connection is marked with a number. These numbers represent network lines
/ segments. Any information sent on the network travels some of these segments to its
destination (one of the controllers). For example, let us assume that FCI 1 sends data
to controller 1 and controller 4. When FCI 1 sends data to controller 4, packages pass
through segments 3, 4, and 5. When a package is sent to controller 1, it only passes through
segment 1. If any of the FCIs attached to switch 2 (SW 2) or switch 3 (SW 3) sends data
to controller 1 or controller 2, this would occupy segments 1 and 3. It is expected that the
segments connecting the three switches will be the most loaded with data. What further
affects the occupancy of the segments is the frequency of packages being sent. The higher
the frequency, the higher the network occupancy.
The mathematical model. The package size is defined by

pi = H +

s∑
k=1

xikDSk

where
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Fig. 5. Simple network

–
∑n

i=1 xik = 1 (each signal is only included in one package) with xik = 1 if signal k
is put into package i and xik = 0 otherwise.

– pi - the size of package i (bytes)
– H - the size of header and other constant (non-data) parts of the package
– DSk - the data size of the signal k
– s - the number of signals inside the package
– n - the number of packages

Note that pi ≤ 1500 ensures that the total size of the loaded signals is not greater than
the size of the package. Next, we try to optimize the network occupancy at a specific time
interval (based on the repetitiveness of the signal activities). The relations below define
segment occupancy as well as total network occupancy.

Oi =

n∑
j=1

⌈ T

Tj

⌉
pj , Otot =

∑s
i=1 Oi

where

– Oi - Occupancy of the segment i
– Otot - Total network occupancy
– s - The number of segments
– T - The time over which the network occupancy is observed
– Tj - Reading (packing) period of the package j

–
⌈

T
Tj

⌉
- The maximum number of times package j is sent within a specified time

interval
– pj - Size of the package j
– n - The number of different packages that are sent through segment i

Packaging considerations. Consider next the same system of Fig. 5, where three con-
trollers run each one task, with the characteristics illustrated in Table 2. The signals pro-
viding these datasets are attached to FCI1, and their ideal reading (and packing) periods
are provided considering the Nyquist sampling theorem.
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Table 2. Example of dataset assignment in FCI1

Task Period (ms) Controller Dataset from sensors Ideal reading period (ms) FCI
T1 100 CTRL1 S1-S20 50 1
... ... ... ... ... ...
T3 100 CTRL3 S1-S20 50 1
T4 200 CTRL4 S15-S40 100 1
T5 300 CTRL5 S41-S70 150 1
... ... ... ... ... ...

Observe that, in the case of Controler 1 (CTRL1), all data does not fit into one package
(as often is the case). Therefore, multiple packets are created, with the risk that some are
not used to the maximum capacity. The packing mechanism advances through the dataset
and packs the signals one by one. If the signal does not fit into the package, a new one is
opened, and the packing procedure is continued. This packaging procedure applies the NF
algorithm - and we use it as a reference case. Fig. 6 shows the result of the NF algorithm
applied to the data sent from FCI1 to CTRL1.

Fig. 6. Reference case packing procedure

Notice next the overlap in the data sampling for sensors S15 to S20, required basically
every 100ms, by T3 and every 200ms, by T4 - hence read and ideally packed every 50ms.

If the respective data is packed in different packages (for T3 and T4, respectively),
we can see that these datasets will travel through segments 3 and 4 at the same time,
even though they contain the same information. This will result in an increase of the
occupancy of these segments. However, data may be sent together in the same package to
reduce network occupancy, with some timing, and / or package size penalties (in general,
when periods don’t match into some mathematical integer relation).

The drawback of such an approach is that controller 4 would, in addition to the re-
quested data, also receive data intended for controller 3. Therefore, the occupancy of
segment 5 will increase.

This example demonstrates the importance of trade-offs in this type of optimization
problem. Using our algorithm, we will try to find a solution that minimizes the number of
packages and thus the network occupancy.
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The proposed approach. As seen above, often datasets from the same FCI are sent to
different controllers at the same time. As a result, some network lines may become con-
gested. Given that there are dozens of such FCIs in the network, the load on the respective
segments becomes enormous. One way to influence network occupancy is to consider
merging data from different datasets into the same package. If data intended for different
controllers share most of the way through the network, putting them together instead of
in separate packets can reduce network occupancy, with some potential minor drawbacks
- also the occupation of leaf branches of the network would increase. This is a trade-off
that must be taken into account when solving this issue.

The packing algorithm in the reference case leaves the packages unfilled. This can
lead to unnecessary splitting of the dataset into multiple packages.

One interesting feature of task execution is that it does not require to run on the newest
values of sensor data every time. For each signal (and corresponding task), it is specified
how many times in a row data can be lost (or not sent in the network). We call this param-
eter the number of allowed misses, referred as such henceforth. Since we are considering
an ideal network, in which data cannot be lost, we will use this parameter to intentionally
not package some signals. In this way, network occupancy can be significantly reduced.

FCIs represent nodes in this network-centric system. They calculate and create tables
according to which they send data to the network. Therefore, the output of the algorithm
should provide a schedule for sending packets as well as their content.
The algorithm. The goal of the algorithm is to minimize the number of packets in the
network. We describe here the implementation of the algorithm.

Depending on the need of the individual tasks, the signals within the FCI are collected
in datasets. The FCI has information on the ideal reading period of these datasets. Based
on this information, we can calculate a hyperperiod of reading (packing):

hyperperiod = LCM(T1, . . . , Tn),

where T1, . . . , Tn are the ideal reading periods of respective datasets.
The hyperperiod represents the interval at which the entire schedule of packing and

sending in the FCI is repeated. During this time, each dataset will be packed at least once
and sent to the controller. It also covers all cases of sending different datasets at the same
time. Therefore, the algorithm will calculate and use this interval in each FCI to determine
the respective package-transmission schedule. Using the data in table 2, the hyperperiod
of FCI1 is:

hyperperiod = LCM(50, 100, 150) = 300

Then we can determine time moments within hyperperiod in which each of data sets
will be packed.

tS1−S20 = [50, 100, 150, 200, 250, 300]

tS15−S40 = [100, 200, 300]

tS41−S70 = [150, 300]

At any given time, the algorithm will attempt to pack the data so as to reduce network
occupancy. The algorithm consists of two stages:

1. Determine all possible combinations of packing data for different controllers into the
same package.
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2. Perform bin packing algorithm to put as much data in as few packages as possible,
taking into account the parameter of allowed misses.

The first part of the algorithm is illustrated in Fig. 7. For each time in which the
packing and sending of data in the network take place, the algorithm performs all possible
combinations of packing. The number of combinations is determined by the number of
different datasets being sent at that time point. Since we consider a medium-sized plant
model and FCIs do not supply a large number of different controllers, it is possible to test
all combinations and thus find optimal solution. In large-sized plant models and wider
networks, this exhaustive search can lead to the algorithm running for too long. In that
case, one possible approach is to test a limited number of randomly selected combinations.

The second part of the algorithm addresses packing. A modified BFD algorithm has
been implemented for this purpose. Depending on the size, the signals ready to be packed
at a certain point in time are arranged in descending order. Instead of packing all the
signals, the algorithm first checks if it is necessary to send a signal and then puts it in a
packet. Depending on the requirements from tasks, some signals may be omitted from the
packet for several consecutive times.

After packing, the we compute the cost function:

f =

n∑
j=1

∑
i∈P (j)

Ljpi

where n is the number of different paths, and Lj is the number of line segments that
belong to the path P (j) from FCI to the controller.

The cost function basically calculates the network occupancy caused by a particular
packet type. The type of package with the lowest value of the cost function is chosen as a
best solution. This procedure is repeated for each FCI.
Package loss handling. The presented algorithm calculates the packing schedule for each
FCI before commissioning. The resulting schedule implies that each packet will be sent at
a specific time of sending and thus allow the tasks to operate with new data when needed.
Losing a packet can result in tasks operating on old data or even task failure. In time and
safety-critical systems, this temporary disruption of the proper operation is a potentially
serious hazard. In addition, the network occupancy increases due to the data to be re-
transmitted to the controllers. The classic approach to addressing this issue is to resend
the lost packets in the next sending period. Our strategy for package loss handling is based
on the packaging algorithm itself. Once a lost packet is identified, the FCI will associate it
with packages that are sent at the next sending time according to a schedule. All datasets
contained in the packages are re-grouped into new packages in the manner described in
the algorithm. The FCI packing schedule is then updated for the next sending time. There
are many advantages to this approach over classic re-sending.

Consider the case where the same packet is sent in two consecutive time moments as
shown in Fig. 8. The packet P1 that is lost at time kT is marked in red, where T is the
packet sending period. At the moment (k + 1)T , the result of both approaches is shown,
where the classical approach is marked in yellow and our strategy in blue.

On can notice that re-sending the packet will result in two of the same packets being
sent to the same location (the re-sent packet is highlighted in green). The proposed algo-
rithm identifies the same data in two packets and decides not to send them again. In this
way, network congestion can be reduced.
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Fig. 7. Representation of the first phase of the algorithm

Fig. 8. Re-sending the same package.
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Some systems are designed in such a way that devices that collect and package data
send new data at each time of packaging. This avoids re-sending the packages and pre-
vents the issue presented above. The disadvantage of such a design is that data is sent to
controllers/tasks even when they do not need fresh data.

Apart of not sending the same data, the algorithm tries to merge datasets into the same
packets. This is illustrated in Fig. 9, where Fig. 9.a shows part of the schedule of one FCI
for two consecutive time moments, while Fig. 9.b and 9.c compare different approaches
after losing a package with dataset DS1.

Fig. 9. a) No package loss case. b) ”Re-send” approach after package loss. c) Proposed
solution with merging datasets into a new package.

If calculated as a better option the algorithm will create a new package and not just
re-send the lost one. The newly created package contains the data of the lost package and
the packages scheduled at the time of sending. The schedule is being updated and the goal
is to reduce network occupancy.

There is one drawback to this approach. If the new packet is lost, it will result in the
loss of more data than in the case of just re-sending the packet. Also more controllers
will be affected and left without fresh data. However, taking into account that the ex-
pected packet loss in the network is less than 10% the observed impact of this drawback
is negligible.

In real-time systems, it is very important that tasks are executed using fresh data.
Missing a deadline can lead to task failure and, in some cases, catastrophic consequences.
Consider the case of 2 packages, P1 and P2 sent with different periods T1 and T2. Sup-
pose a task that receives package P1 executes also with period T1. For the task to be
executed in real-time it is necessary that a new data contained in package P1 is delivered
before task starts to execute. In an ideal network that would always be fulfilled. However,
in case package P1 gets lost it must be sent again before time period T1 expires. Using
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Fig. 10. Package delivery in time

our approach, packet P1 will be sent the next time any packet is sent from the FCI. In the
case shown in Fig. 10 packet P1 is sent together with packet P2 before the deadline.

In general, it is guaranteed that package Pi with period Ti will arrive on time in case
of loss if there is a package or set of packages that have a sending period less than Ti.
Network and devices. The algorithm is implemented in the Python 3.8 with OOP paradigm.
We used Python classes to model the system.

For network and device modeling, we created classes: Segment, Switch, Controller,
FCI. Each of these elements has an ID represented as an integer and which serves to
distinguish elements in the network. Segments are also specified with two nodes, which
can be either switches or controllers. Each controller has a list of tasks assigned to it and
the ID of the switch to which it is directly or indirectly connected via other controllers.
Switches contain a list of all devices (FCIs and controllers) connected to them.

Each instance of the FCI class, in addition to the ID, also contains datasets it creates
after reading the sensors. The list of packages and their contents, as well as the schedule
for sending packages, are also filled in after the execution of the algorithm. FCIs later use
this information for network routing purposes.
Package, Signal, Task, Dataset. For the modeling of other important elements, we cre-
ated the following classes.

A Package instance is defined with its size, a list of signals it contains, its packing
period, and a list of paths to intended controllers through a network. Methods are defined
for adding a signal into the package and assigning a packing period.

Classes Signal and Task have their IDs represented as integers, which serve to dis-
tinguish class instances. Signals are further specified with a number of allowed misses,
and its size.Each instance of the Task class, in addition to the ID, contains its period, its
execution time, and a dataset of signals the task processes.

A Dataset instance contains the period, a list of signals in the dataset, and FCI and
controller to which that dataset is allocated. There is also a list of time moments in which
the dataset should be packed during the FCI hyperperiod and a path through which the
dataset propagates in its packet from FCI to the controller that requires that dataset.

The above contribute, together with algorithm specific procedures, to the realisation
of a small tool, with the interface shown in Fig. 11. At this moment the files used for
input are hard-coded. The application expects the introduction of the execution time, and
can run both the reference case (NF algorithm for the ideal network case without data
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losses) and also the proposed solution for both the ideal network case and the case with
data losses, calculating the network occupancy and allowing saves into Microsoft Excel.

Fig. 11. The application GUI.

5. Simulation Results

To validate our working example, we apply the algorithm on a medium size plant use
case, containing 2400 sensors (and associated signals), 80 control tasks, 24 FCIs and 10
controllers.

The input data is fed to the algorithm in the form of Excel datasheets. Three sheets
correspond to 3 types of network devices (FCIs, controllers, and switches), and two sheets
correspond to signals and tasks. The program reads data from tables and initialize class
instances with needed data. Once all needed class instances are created, the optimization
procedures can run. We organize the following based on 2 perspectives of the network
operation.

1. ideal: No packages are lost. This is meant to help us create a picture of what benefits
we can extract from our approach without a more complex context;

2. real: A “normal” loss of packages is considered and implemented by the simulation
tool.

I both the above situation, the input data must be entered correctly in tables in the re-
quired format for the algorithm to work as expected. The 2nd perspective above requiring
registration of the additional information concerning the percentage of data loss across
the network, which we modeled as an input to our graphical tool.

As shown in Fig. 11, a user can input the desired loss percentage as an integer. Below
that are the buttons for running reference and our approach considering package losses.
Ideal network operation. The algorithm is tested on three different topologies (T1. T2,
T3), illustrated in Fig. 13. In all topologies the network is composed of 13 segments. The
values of input data used for evaluation are:

– Allowed misses - random integer in range [1, 5] for every signal
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– Task period – period of the task in ms. Random integer between 100 and 500 with the
step of 50.

– Task execution time – expressed in ms. Random number between 10 and 50 with the
step of 10.

– Signals reading period – an ideal reading period of the set of signals allocated to the
task expressed in ms. Defined as one-half of the task period signals are allocated to.

We chose an execution time of 9s, because it is the largest hyperperiod of all used FCIs
and represents the shortest time unit after which the packing of all packets is repeated. The
output of the algorithm consists of:

– The time moments in which packages should be packed and sent for each FCI
– The content of the packets which are packed and sent in computed time moments for

each FCI
– The network segment occupancy
– The total network occupancy

Both the reference case and the proposed solution are executed, and results are ex-
ported to Excel datasheets, each file consisting of R + 1 sheets. First R sheets represent
time moments, sizes of the packets, and packets’ content that are sent from the R FCIs in
the network (one sheet per FCI). The last sheet contains the network occupancy for every
FCI and total network occupancy as a sum of occupancy of each network segment. An
example of the packets in the datasheet is given in Fig. 12.

Fig. 12. Sending schedule of packages and their content

Results for each topology are shown in Table 3, considering the packet header size
33B. The occupancy in the proposed solution is lower than the occupancy in the respec-
tive reference. The allowance and the selection of “no-send packages” is application and
system specific, and is defined by system owners or designers - see also Table 5, further
down.
Considering package losses. The algorithm is tested on topology 1 (Fig. 13) of the
medium-sized plant without the allowance and selection of “no-send packages”, described
by the parameter ”Allowed misses”, as we focus our attention here on strategies to deal
with package losses leaving aside the impact and discussion of different network topolo-
gies and allowance of ”no-send packages” for the case of the ideal network.

As shown in Fig. 11, a user can enter loss percentage, after which one of the algorithms
(”reference case” or ”proposed approach” - described in detail in the previous section) is
called. The lost packets are chosen randomly from the sending schedule created by the
proposed solution without data losses until the limit of lost packages is reached, defined by
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Table 3. Network occupancy relative reduction, on each topology (T1, T2, T3).

No misses allowed (%) Misses allowed (%)
Segments T1 T2 T3 T1 T2 T3

Segment 1 0.283 0.283 0.283 68.145 68.145 68.145
Segment 2 0 0 0 66.383 66.336 66.383
Segment 3 0 0 0 70.732 70.650 60.572
Segment 4 0.132 0 0 67.798 68.592 68.592
Segment 5 0.010 0.019 0.025 68.178 67.707 66.267
Segment 6 0.124 0.124 0.124 72.184 71.752 71.752
Segment 7 0.064 0.064 0.064 69.564 69.149 69.149
Segment 8 0 0 0 66.035 66.058 66.059
Segment 9 0 0 0 63.129 63.123 70.321
Segment 10 0.020 0.029 0.142 68.852 67.143 66.498
Segment 11 0.273 0.273 0.273 67.484 67.680 67.680
Segment 12 0 0 0 71.220 71.227 71.227
Segment 13 0 0 0 62.292 62.292 62.292

Total
network 0.055 0.039 0.052 67.723 67.465 67.282

Fig. 13. Topologies

the entered loss percentage. Consequently, the calculation occupancy of network segments
and total network is computed, and results are exported together with the packing schedule
for every FCI as an Excel file.

An acceptable (depending on the application) loss rate in networks should be below
10%. With respect to that, we run our experiments with integer loss percentage rates from
1% to 10% including both limits. For every loss percentage rate from the closed interval
[1%, 10%] we run reference case and proposed solution 30 times each so that we have
enough samples for treating results as a Gaussian distribution model. For every particular
sample, we calculate occupancies of segments and the total network. Here we present
averaged results. We test results on three different versions of the topology 1 (Fig. 13).
The first version is one also used in the experiments without data losses, while the other
two are created by different allocations of tasks to controllers, as discussed further down.

We plot in Fig. 14 the network occupancy change with respect to loss percentage for
both the reference case and all the discussed versions. The right side column in the same
Fig. shows the absolute network occupancy difference change with respect to loss per-
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centage between the proposed solution and the reference case for three different versions
of topology 1 (Fig. 13).

Fig. 14. Simulation results considering packet losses. Column A: Network occupancy of
the proposed versions and the reference case. Column B: Absolute network occupancy
difference between the proposed versions and the reference case.

Impact of task allocation. In the following, we observe the task allocation impact on the
network occupancy, in the context of topology 1. We consider the impact on the already
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optimized solution, which we use as a reference. Differently from the already analyzed
system, we allocate now the tasks such that on any given controller, there are either tasks
which process signals with at least two different reading periods (if these are among the
low values), or the tasks process relatively many signals with high reading periods, as
the system version 2. The version 3 of the system has the tasks allocated based on their
respective signal reading period.

We run the simulation of the system versions, both in the ideal situation as well as
considering losses, and the results are presented in Fig. 15.

Fig. 15. Network occupancy in the 3 analyzed system variants, no package losses.

6. Discussion

For studying how the different packing of input data affect the network occupancy, let us
consider the reference case and the proposed solution without allowed misses, running
on topology 1. Here, one dataset from FCI1 is assigned an ideal period of 75ms, while
another one is assigned an ideal period of 175ms. FCI will pack and send signals only
from these datasets at 525ms, because in that time moment there are no other signals
from other datasets scheduled for packing. The difference between the reference case and
the proposed solution is that:

– Reference case: two packets will be created at 525ms
– The proposed solution: one packet will be created at 525ms.

The algorithm tested both variants: with one packet and with two packets. In each variant,
the algorithm calculated the network occupancy and decided in favor of the variant with
less network occupancy. As the variant with one packet produced less network occupancy
than the variant with two packets, as shown in table 4, the algorithm decided to proceed
with the creation of only one packet.

The sum of packet sizes in the reference case is 1428 B, which is higher than the
packet size in the proposed solution by 33 B, corresponding to one less header size.
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Table 4. Reference vs. proposed solution.

Case Time moment (ms) Number of packets Packets’ size (B)
Nr. of packets

Reference 525 2 843, 585
Proposed solution 525 1 1395
Packet utilization

Reference 1125 6 1500, 1494, 552, 1332, 1431, 1221
Proposed solution 1125 6 1500, 1500, 546, 1332, 1500, 1152

Influence of the BFD algorithm on package utilization. The BFD algorithm is chosen
as a heuristic approach in the proposed solution. It achieves better results than the NF
algorithm used in the reference case. A modified version of the BFD algorithm is imple-
mented: instead of packing all the signals, the algorithm first checks if it is necessary to
send a signal and then places it in a packet.

Let us consider the reference case and the proposed solution of the described use
case, without allowed misses, running on topology 1. At time 1125ms, at FCI18, we have
the packet utilization as shown in Table 4. In the proposed solution, three packages are
fully utilized, while only one package is fully utilized in the reference case. Although the
number of packages in this example is not reduced, the BFD algorithm has been shown to
maximize package utilization. In larger networks, where a larger number of packages are
sent at the same time, by applying BFD, we can also expect a reduction in the number of
packages. This also shows us that using “plain” bin packing algorithms is not sufficient.
They require modification and combination with other algorithms to achieve a significant
reduction in packets in the network.
Impact of the Allowed Misses parameter. We observe here the packing of the S1-S20
dataset at three consecutive time points. The size and number of allowed misses are speci-
fied for each signal and shown in Table 5. Since the sending period of this dataset is 75ms,
we are interested in time moments of 75ms, 150ms, and 225ms. Table 6 shows both the
content and timing of packets within FCI1 when data freshness at controllers is not con-
sidered (always required to have new data), and when the allowed misses are taken into
account.

Table 5. Allowed misses and signal (S1-S20) data-size

Signal S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
Allowed
misses 5 3 4 3 1 3 4 3 2 5 4 4 1 3 4 5 4 2 4 1
Size 12 15 105 105 12 15 15 15 15 15 15 15 12 105 12 12 15 12 15 15

When the allowed misses are taken into account, at 150ms, the new values of some
signals from the dataset are not sent, as planned by the algorithm. At such moments,
the affected tasks will process the signal values previously received and saved in specific
registers of the controllers. At 225ms, only three fresh signal values from the dataset (S5,
S13, S20) are sent. The reason is that these signals are allowed to skip transmission only



272 Amar Halilovic et al.

once, as the receiving tasks can use an old value of the signals for one cycle only (see
Table 5).

Table 6. Part of FCI1 packing schedule.

Time moment Nr. of packets Packet 1 size Packet 1 signals
No misses allowed

75 1 585 3,4,14,2,6,7,8,9,10,11,12,17,19,20,1,5,13,15,16,18
150 2 585 3,4,14,2,6,7,8,9,10,11,12,17,19,20,1,5,13,15,16,18
225 1 585 3,4,14,2,6,7,8,9,10,11,12,17,19,20,1,5,13,15,16,18

Misses allowed
75 1 585 3,4,14,2,6,7,8,9,10,11,12,17,19,20,1,5,13,15,16,18
150 1 405 71,72,73,68,69,74,70
225 1 72 20,5,13

Even though we observed a very short time interval, we can conclude that this feature
significantly reduces the network occupancy.
Influence of topology on network occupancy. The relative placement of elements in the
network affects the occupancy of some segments in the network. Analyzing the obtained
results, we can see that the segments that connect the switches are the most loaded. In
our network model, these are segments 4, 5, and 10. This is expected because switches
together with segments create a fundamental network tree. All other segments with con-
trollers represent smaller branches of this tree. The idea is that just by moving certain
elements to other switches tries to reduce the amount of data on these segments. It should
be emphasized that there are also specific physical limitations among the elements in the
network. The sensors are usually located in predetermined locations and cannot be de-
ployed. Therefore, clusters of FCIs are formed that collect data from a specific group
of sensors. FCIs belonging to one cluster cannot be moved to others. Therefore, moving
any FCI to another location in the network in other topologies involves moving the entire
cluster.

In topology 2, the occupancy of segments 4 and 10 is significantly reduced (see Table
7). This reduction is due to the shift of controllers 2 and 8 to switches 2 and 3, and the
replacement of FCIs clusters on switches 1 and 3. In this way, the number of elements on
external switches is reduced, thus reducing the number of devices sending or receiving
data through segments 4 and 10. Although a significantly lower occupancy of segments
4 and 10 was achieved, the occupancy of segments 5 increased. This trade-off may be
unacceptable because segment 5 is the busiest segment in the network.

Table 7. Occupancy of segments 4, 5, and 10: T1 vs. T2

Segment T1 T2

Segment 4 1003725 B 868707 B
Segment 5 1421127 B 1463913 B

Segment 10 736698 B 517059 B
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Subsequent movements of the controller in topology 3 resulted in a reduced network
occupancy of 14% compared to topology 1. With an additional reduction in the payload
in segment 4, a significant difference is also noticeable in segment 5 (see Table 8).

Table 8. Difference between T2 and T3 in occupancy of segments 4,5, and 10

Segment T2 T3

Segment 4 868707 B 868707 B
Segment 5 1463913 B 1162998 B

Segment 10 517059 B 442233 B

Adding new segments or switches can further reduce the payload in the network, but
this would significantly change the network structure, and thus the results would not be
comparable. The cost of new elements in the network should also be taken into account,
and we leave that as future work.
Considering package losses. Analyzing the plots in Fig. 14 A and B, it results that the
proposed solution achieves lower network occupancy than the reference case with data
losses. Additionally, it is visible that the absolute difference between the proposed so-
lution and the reference case increases with the loss percentage - as expected. Table 9
presents percentage-wise the relative differences between the proposed solution and the
reference case. The relative difference increases monotonically with the loss percentage
increase. Even if these relative differences are not high percentage-wise, given the huge
amount of data in real industrial networks, there will still be achieved a high absolute
reduction in network occupancy.
Impact of task allocation. We refer in the following to the numbers presented in Fig. 15
and in Table 9. We notice, thus, that version 3 of the task allocation offers a 3+% decrease
of the overall traffic, while version 2 increases the traffic by a 0.8%. At the same time,
traffic on some segments vary in much larger amounts.

It is important to remind here that the allocation versions are selected on a semi-
random basis. The fact stands to only show that a good algorithm for allocation of tasks,
would be a good complement to the work described in this report.

Table 9. Network occupation: Version 1 (reference) vs. Version 2 and Version 3.

Differences in network occupation (%)
Segment 1 2 3 4 5 6 7 8 9 10 11 12 13 Total
Version 2 -45,6 85,2 133,5 -3,9 15,8 31,7 -25,7 -72,9 -85,3 49,2 171,3 -6,9 -57,5 0,8
Version 3 9.8 -70,6 -69,8 -19,3 -6,1 73,6 -11,2 -35,9 -42,2 54,6 6,9 66,0 182,6 -3,3

7. Conclusions

We addressed here a multi-constrained network occupancy optimization problem, where
a set of signals from different sensors have to be packed into a set of network packages.
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We proposed a heuristic approach over two phases. The algorithm first determines all
possible combinations of packing data for different destinations into the same package.
The second phase is based on a modification of the BFD algorithm. Based on the tasks’
requirements on data freshness, the algorithm verifies the necessity of sending a signal,
and only if so, it assigns the signal to a package. A reference case was also implemented,
according to current industrial practices. The packaging procedure is based on the NF
algorithm. The use of the BFD algorithm in the proposed solution shows the increase
in package utilization while merging datasets into same packets has reduced network
occupancy. The obtained results showed that network occupancy could be significantly
reduced by bringing the end nodes closer to the sources. This is not always possible, as
controllers may require data from variously placed FCIs. We showed that our approach
achieves lower network occupancy in case of data losses and that different task-controller
allocations can additionally increase or decrease network occupancy. A good algorithm
for allocation of tasks would a good addition to our algorithm.
Future work. Our approach currently did not include several aspects of networked com-
munication, such as propagation time and communication from controllers to actuators.
Future research will be conducted to include these aspects. Note also that we only consid-
ered one-way communication, but a bi-directional perspective is necessary. However, the
same approach can be extended to cover controllers as sources and FCIs as destinations -
though with a reduced set of options for packing, as the number of signals at controllers
(as sources) is considerably lower than what we see in the other direction. When two-
way communication is considered, links between FCIs and switches should be modeled
as segments.
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