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Abstract. The temporal world is characterized by dynamic and variance. A lot of
machine learning algorithms are difficult to be applied to practical control applica-
tions directly, while hierarchical reinforcement learning can be used to deal with
them. Meanwhile, it is a commonplace to have some partial solutions available,
called options, which are learned from knowledge or predefined by the system, to
solve sub-tasks of the problem. The option can be reused for policy determination
in control. Many traditional semi-Markov decision process methods take advantage
of it. But most of them treat the option as a primitive object. However, due to the
uncertainty and variability of the environment, they are unable to deal with real
world control problems effectively. Based on the idea of interrupting option under
the prerequisite for dynamic environment, a Q-learning control method which uses
temporal abstraction, named as I-QOption, is introduced. The I-QOption approach
combines the idea of interruption with the characteristics of dynamic environment
so as to be able to learn and improve control policy in dynamic environment. The
Q-learning framework helps to learn from interaction with raw data and achieving
human-level control. The I-QOption algorithm is applied to grid world, a bench-
mark dynamic environment evaluation testing. The experiment results show that
the proposed algorithm can learn and improve policy effectively in dynamic envi-
ronment.

Keywords: hierarchical reinforcement learning, option, reinforcement learning, on-
line learning, dynamic environment.

1. Introduction

Reinforcement learning provides a framework to learn directly from the interaction and
achieve goals. Reinforcement learning has been widely studied due to its great ability
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of generalization. The reinforcement learning algorithm take advantage of reinforcement
learning agent to constantly interact with the unknown environment during the process
of solving the problem [2],[31]. As an important algorithm of reinforcement learning, the
temporal difference (TD) learning is capable of learning directly from raw experience
without determining dynamic model of environment in advance. Moreover, the model
learned by temporal difference is updated by estimation which is based on part of learn-
ing rather than final results of the learning. TD learning is particularly suitable for solving
the prediction problems and control problems in real-time control applications. The Q-
learning, which is an off-policy version of TD learning, is capable of reducing the com-
putational complex, and achieving human-level control.

However, as the scale of the problem to be solved gets larger and larger, the rein-
forcement learning agent requires more and more time, computation and information to
learning and make decisions. As a result,the agent usually fails to work because it cannot
handle mountains of data efficiently [14],[29]. Therefore, it seems to be essential to learn
knowledge by interacting with the environment so as to attain a better policy for temporal
decision making [20],[28]. As it has been revealed that the world is organized by some
structures which contain information to help to make decision, we anticipate that the agent
requires less computation by fully taking advantage of the structure of environment [13].
Botvinick et al. uses hierarchical reinforcement learning to make decisions [4]. Further-
more, the hierarchical reinforcement learning methods proposed by Bakker et al. made use
of sub-goal discovery and sub policy specialization [1]. More recently, Jardim et al. [10]
extended the abstraction to state and then put forward an algorithm to learn sub-goals and
sub-states in the hierarchical reinforcement learning. The option frameworks reviewed
by Barto et al. [3], which were based on temporal abstraction proposed by Sutton et al.
[27], have been used in many systems. Although options provides a very useful frame-
work for temporal abstraction, most work used sub-task to represent options [30],[11],
correspondingly, many work aimed to find the sub-tasks [7]. For example, McGovern et
al. used diverse density to automatically find sub-goals of reinforcement learning tasks
[17]. Menache et al. put forward a Q-cut-dynamic method to discovery sub-goals [18];
Şimşek et al. introduced a method which used relative novelty to identify useful temporal
abstraction [23] and a method which utilized local graph partitioning [24]. There are also
lots of other work to extract options such as the value function [6], bisimulation metrics
[5], visit frequency [26], via clustering[16], Using Ant System [8] and graph theory based
method [12],[22].

An available temporal abstraction option is very critical to solve the problem effi-
ciently [19]. The work [28] have had a preliminary study on it. However, his research was
based on the setting of an ordinary simple condition, and therefore can not be applied in
the real dynamic environment. Hence, in this work, we introduce the idea of interrupting
to solve learning and controlling problems in dynamic environments, which brings two
advantages: extending the ability of agent to solve the problems by introducing the idea
of interrupting, which traditional option-based methods cannot deal with, and reducing
the efforts by using SMDP methods.

This paper is organized as follows. After a brief introduction to reinforcement learn-
ing, options and SMDP framework in Sect. 2. We describe our algorithm and the dynamic
environment in which we applied our algorithm. Finally, we use a few reinforcement
learning tasks [17] to illustrate the usefulness of our algorithm.
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2. Related Work

2.1. Reinforcement Learning

Reinforcement learning is a kind of machine learning method by interacting with the
environment and mapping the states to the actions. In reinforcement learning, the agent
evaluates the quality of actions by reward function and then takes the action that brings
about the maximum returns, and thus the action will not only affect the immediate reward
but also affect the reward of the next step, which is also known as reward of the next
state [15]. Trial and error search as well as delayed reward are the important features of
reinforcement learning. The reinforcement learning framework has five fundamental ele-
ments: controller, environment, state, reward, and action, showed as Fig. 1. The controller,
which learns knowledge by interacting with outside environment and then chooses an ac-
tion in accordance with the decision made by established controlling model, is the agent
of the system; accordingly, the state will then be changed; the environment will return a
reward for evaluating. Most of reinforcement learning methods are based on Markov De-

 

Fig. 1. The Framework of reinforcement learning.

cision Process (MDP) which is represented by a tuple < X,U, f, ρ, γ >, where X and U
respectively represent a finite set of states and a set of actions, f ∈ [0, 1] represents tran-
sition probability, ρ : X × U → ℜ denotes the rewards received by agent, and γ ∈ [0, 1]
represents discounted factor. At each time step, agent observes system state x ∈ X then
takes an action, and then the state of the system transfers to next state x′ ∈ X with
probabilityf(x, u, x′), and agent will get an immediate reward. The goal of the agent is to
find the optimal policy h∗ : X×U → [0, 1] through maximizing the cumulative expected
reward [25].

At each time step t, the agent selects an action ut ∈ U from action space U . As a
result, the state of the system transfers to xt+1 ∈ X from xt ∈ X in accordance with a
function of transition probability f(xt, ut, xt+1):

xt+1 = f(xt, ut) (1)

The agent attains a reward rt+1 according to rewarding function ρ:

rt+1 = ρ(xt, ut) (2)



564 Yuchen Fu et al.

The state-action value function Qh : X×U → ℜ under policy h is denoted as follows:

Qh(x, u) =
∞∑
t=0

γtρ(xt, ut) (3)

where γ ∈ [0, 1] is a discount rate which shows how far sighted the agent is in considering
the rewards and is also a factor for increasing uncertainty on future rewards.

TD is capable of learning directly from raw experience without determining dynamic
model of environment in advance. Moreover, the model learned by temporal difference is
updated by estimation which is based on part of learning rather than final results. These
two characteristics of TD make it particularly suitable for solving the prediction and con-
trol problems in real-time control applications. Given some experience with policy h,
temporal difference learning updates estimated V-value function as:

V (xt)← V (xt) + α[Rt − V (xt)] (4)

where Rt is actual return after time step t, α is a step size parameter. TD estimates V (t)
in step t+ 1 using the observed reward rt+1.

Let Qh(x, u) be the value of taking action u ∈ U under a policy h. Qh(x, u) is defined
as:

Qh(x, u) = ρ(x, u) +
∞∑
k=1

γkρ(xk, uk) (5)

Q-learning is an off-policy version of TD method, which is defined by:

Q(xt, ut)← Q(xt, ut) + α[rt+1 + γmax
u

Q(xt+1, u)−Q(xt, ut)] (6)

The ultimate goal of reinforcement learning agent is to get an optimal policy h∗. The
corresponding optimal value function V ∗(x) and state-action value function Q∗(x, u) can
be represented as:

V ∗(x) = max
u∈U
{ρ(x, u) + γ

∑
x∈X

f(x, u, x′)V ∗(x′)} (7)

Q∗(x, u) = ρ(x, u) + γ
∑
x∈X

f(x, u, x′)max
u∈U

Q∗(x′, u′) (8)

2.2. Options

In this work, we use Markov option [31] to represent the terms of temporal abstraction.
Temporal abstractions and primitive actions are both actions selected by the agent. During
the execution of an option, agent takes policy h of the option until the terminal condition
of the option is satisfied. Generally, an option can be modeled by a triplet < I, h, β >.
The input set of option is expressed by I , I ∈ X , which means an option < I, h, β > is
available at x ∈ I . Policy h : X×U → [0, 1] denotes the internal policy of o and terminal
condition β : X → [0, 1].

The implementation process of Markov option is as follows: if agent chooses option
o at state xt, then agent will choose next action according to the policy of option o, that is
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ut ← h(xt); and the state of the system will transfer to xt+1, namely (xt, h)
ut−→ xt+1.

Agent will determine whether to end the execution of o at xt+1 according to the termi-
nal condition β. If the execution is not interrupted, o will continue to be executed until
a terminal condition β(xt+k) → 1 is satisfied. So there exists β(x) → 0 for all primi-
tive actions. When an option terminates, agent could choose another option or choose a
primitive action. We will use an example to illustrate option. A robot is required to open
a door. The whole process is composed of inserting the key, holding the lock, rotating the
lock, and opening the door. If we use the concept of option, the process can be regarded as
an action sequence: inserting the key, holding the lock, and rotating the lock. During this
process, agent standing by the door can starts with an initial state of option o. The next
action executed by the agent could be inserting the key according the o’s policy and then
get to the next state recursively. The terminal state of the system should be that rotating
the lock and o is terminated at the time. Consequently the agent will then select the next
option or primitive action. In fact, the option also includes primitives actions, where all
the primitive actions meet β(x)→ 0.

Now we can define policy on option. Let the available option set be Ox at xt, when the
agent starts from state xt, an option o will be chosen with probability of v(xt, o), where
o ∈ Ox and v is a Markov policy. Then actions will be selected according to policy h of
option o until o is terminated at state xt+k after k steps; and then the next option o′ will
be selected according v(xt+k). Actually, the policy v defined over option o determined
the flat policy y defined on primitive actions, and we can get y = f(v). So we can define
the value of a state under the flat policy at state xt:

V y(xt) = E{rt+1 + γrt+2 + γ2rt+3 + · · · |ε(y, xt, t)} (9)

where ε(y, xt, t) denotes the history that agent start from state xt at time t under policy
y. Due to this formula is based on the primitive actions, but policy y is determined by v,
so there exist V y(xt) = V f(v)(xt). Similarly we can get:

Qv(xt, o) = E{rt+1 + γrt+2 + γ2rt+3 + · · · |ε(vo, xt, t)} (10)

where ε(yo, xt, t) denotes the process that agent select option o first under policy v until
o is terminated and select other options.

2.3. Semi-Markov Decision Problems (SMDPs)

A reinforcement learning task which satisfies the Markov property is considered as Markov
decision processes (MDPs). We believe that a semi-Markov Decision Process (SMDP)
can be constituted by any MDP and a fixed set of options [27]. Cnventional SMDP theory
is associated with the actions and related methods can be extended to options [21]. Thus,
for any option o, if ε(o, xt, t) denotes the process that o starts from state xt at time t, then
the corresponding reward model will be:

ρ(xt, o) = E{rt+1 + γrt+2 + γ2rt+3 + · · ·+ γk−1rt+k|ε(o, xt, t)} (11)

where t + k represent termination time of option o. Similarly, the transition probability
model will be defined as follows:

f(xt, o, xt+k) =
∞∑
k=1

f(xt+k, k)γ
k (12)
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where f(xt+k, k) denotes the probability that o terminates after k steps at state xt+k.
Then according to Bellman equation, for any Markov policy h, the state value function
can be defined as:

V h(xt) =
∑

o∈Oxt

h(xt, o)[ρ(xt, o) +
∑

xt+k

f(xt, o, xt+k)V
u(xt+k)] (13)

Corresponding state-action value function can be defined as:

Qh(xt, o) = ρ(xt, o) +
∑

xt+k

f(xt, o, xt+k)V
h(xt+k) (14)

On the basis of the value function, we can get the optimal value function. In MDPs, we
select optimal action, correspondingly, we select optimal option. We denote options set
by O here. According to Bellman optimal equation, we can obtain the optimal state value
function:

V ∗(xt) = maxo∈Oxt
ρ(xt, o) +

∑
xt+k

f(xt, o, xt+k)V
∗(xt+k) (15)

And the optimal state-action value functions:

Q∗(x, o) = ρ(xt, o) +
∑

xt+k

f(xt, o, xt+k)V
∗(xt+k)

= ρ(xt, o) +
∑

xt+k

f(xt, o, xt+k)maxo′∈Oxt+k
Q∗(xt+k, o

′)
(16)

According to the optimal value function, we can get updating formula of Q:

Qh(xt, o)← Qh(xt, o) + α[ρ(xt, o) + γkmax
o′

Qh(xt+k, o
′)−Qh(xt, o)] (17)

If the option set has already been obtained, then we can compute the optimal state value
function and the optimal action value function. Finally we can obtain the optimal pol-
icy through interacting with the environment. Moreover, the standard SMDP theory can
guarantee that such process can converge.

3. Algorithm description

3.1. Interrupting Option

By using option, agent is more efficient in dealing with exploration tasks [9], so the al-
gorithm can converge faster [27]. At the same time, knowledge can be reused in solving
duplicate tasks when options are utilized [6],[30]. As a result, agent doesn’t have to learn
from scratch. Option is also introduced in SMDP methods. However, most traditional
SMDP methods with option take option as an opaque indivisible action, which makes the
agent clumsy. Therefore, we change the structure of the option. Here we consider using
the interrupting options proposed in [28], that is, before option terminates according to
its terminal condition, we could interrupt the execution of an option if there is a need.
For example, in the room navigation task, we assume that if we treat the action sequences
that agent from the door entrance to entering into the room as an option, when agent is
executing the option and the moment that the agent just ready to step into the room. If the
door is closed unexpectedly, according to the definition of traditional SMDP, the option
will continue without considering termination, which is in fact the fit action as it is able
to greatly reduce useless computation and thus improve the efficiency. Meanwhile, the
problem is able to be easier to solved if we use the concept of interrupting options.
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3.2. Incremental Batch Updating Approach

Batch reinforcement learning is often used to describe a set of reinforcement learning
that complete learning from a group of samples, the key lies in batch mode algorithm is
the way it processes a batch of sample and gets the best results from it. The benefits of
batch updating are the stability of the learning process and the validity of the data, and
reinforcement learning methods using batch updating usually converge faster to a certain
extent. By using batch reinforcement learning all of the observed transition samples are
stored and synchronous updating on the entire sample. However, if it is in accordance
with the first storing all the samples and then updating to learn a good policy, policy of
reinforcement learning agent will not be updated during sampling. In practice, sampling
has a great influence on the quality of policy. At the same time, the samples for reinforce-
ment learning agent must be similar to the actual transition sample of the system in order
to get a good policy. The simplest way to solve it is to interact with the system to sample,
which gives rise to incremental batch updating methods between online learning methods
and batch updating methods. The process of incremental reinforcement learning methods
for batch updating learning is shown in Fig. 2.

policy 
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Fig. 2. The process of incremental batch reinforcement learning methods.

3.3. Algorithm I-QOption

In traditional reinforcement learning algorithm, agent learns value function and policy
through interacting with the environment constantly. However in the environment of large
scale, agent requires a lot of time and knowledge to interact with the environment in order
to obtain a better policy. In this work, we utilize the SMDP to model the system and
use the option to improve the efficiency of exploration the environment so as to speed
up the convergence and ensure the stability of the early learning algorithm performance.
Conventional SMDP methods take option as a whole and rather than a fissile one such
that once the option is getting started, the agent must carry on the the option until it is
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finished without any termination halfway. As a matter of fact, this approach is known to
be confronted with the problem in both cases. Firstly, the efficiency will be very poor in
a dynamic environment as usually the option has been stalled before it ends as planned;
secondly during the execution of the option, in certain states, it would be better to select
another option. In this case, our algorithm should be applied to interrupt current option at
appropriate time.

Suppose we’ve got the value function of an option under policy h, where h is a global
policy and (x, o) is a state option pair. The state-option value function Qh(x, o) cannot
only evaluate the quality of current policy h, but also evaluate the quality of every step we
take. Assume that at time step t, according to policy h, agent has selected option o, then
we can compare the value that agent execute o with the value that interrupt o and select
new option:

V h(x) =
∑

o′
u(x, o′)Qh(x, o′)

If V h(xt) > Qh(xt, o) or Qh(xt, ot) < Qh(xt+1, ot) when xt+1 = xt, we will interrupt
o and complete an incremental batch updating, and then select another option to continue.
The description of the algorithm is given as follows.

Algorithm 1 I-QOption
Require: discounted factor γ, learning rate α, option set Og

1: Initialize Q(x, o) arbitrarily,where o ∈ O
2: repeat
3: Initialize xt

4: repeat
5: Select an option o(according to the initial exploration strategy h)
6: Execute option o
7: repeat
8: Select action u (according to ho(xt))
9: Observe next state and reward xt+1, r

10: Save xt, xt+1, r
11: xt ← xt+1

12: if Qh(xt, ot) < Qh(xt+1, ot) when xt+1 = xt or V h(xt) > Qh(xt, o) or
β(xt+1) = 1 then

13: Batch updating Qh(xt, o) for every xt in o
14: β(xt+1) = 1
15: end if
16: until o ended
17: Select new option o′ according to Q(xt, o)
18: until xt+1 is the terminal state
19: until convergence

3.4. Algorithm Analysis

Definition 1. For any MDP, any option set O and arbitrary Markov policy h, we define
a new option set O′, there is an one to one mapping between the two option sets: we
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denote a corresponding o′ ∈ O for every o =< I, ho, β >∈ O, where β = β′ except
Qh(ho, o) < V h(x), H represents history and x represents the last state of history H .
We will terminate o′ at state x, namely β′(x) = 1. All of the history interrupt like this is
called interrupting history.

Theorem 1. Let h′ over o′ to be the corresponding policy of h : h(x, o) = h′(x, o′),
then: 1.V h′

(x) ≥ V h(x) for all x ∈ X; 2.there is a non-zero probability to encounter
interrupting history if initialized from state x ∈ X , then there is V h′

(x) > V h(x);
3.limk→∞Vk(x) = V ∗

o (x) for all of x ∈ X, o ∈ O, that is the algorithm can converge to
a fixed point.

Proof. The idea is to execute improved policy h′ by improving its terminal condition for
any state x, that is, we need to prove that the following inequality is satisfied∑

o′
h′(x, o′)[ρ(x, o′) +

∑
x′
f(x, o′, x′)V h(x′)] ≥ V h(x) (18)

where V h(x) =
∑

o h(x, o)[ρ(x, o)+
∑

x′ f(x, o′, x′)V h(x′)], if inequality (18) is satis-
fied, we can use it to extend the left part by using∑

o′
h′(x, o′)[ρ(x, o′) +

∑
x′
f(x, o′, x′)V h(x′)]

constantly. In the limit case, the left formula turns to be V h. Then we can get V h′ ≥ V h.
Because of h′(x, o′) = h(x, o),∀x ∈ X , we need to proof :

ρ(x, o′) +
∑

x′
f(x, o′, x′)V u(s′) ≥ ρ(x, o) +

∑
x′
f(x, o, x′)V h(x′) (19)

Let Φ denote all the interrupting history Φ = {H ∈ Ω : β(H) ̸= β′(H)}, then the left
side of inequality (19) can be rewritten as:

E{r + γkV h(x′)|ϵ(o′, x),Hxx′ /∈ Φ}+ E{r + γkV h(x′)|ϵ(o′, x),Hxx′ ∈ Φ} (20)

where x′ denotes the next state, r denotes the immediate reward and k denotes step num-
ber after following option o from state x respectively. The history from state x to x′ is
denoted by x′. Due to encounter the trajectory Hxx′ /∈ Φ, so the trajectory will be ter-
minated, and it will be occur with the same probability and expectation after execute o at
state x. Therefore, the right side of the inequality (19) can be rewritten as:

E{r + γkV h(x′)|ϵ(o′, x),Hxx′ /∈ Φ}+
E{β(x′)[r + γkV h(x′)] + (1− β(x′))[r+

γkQh(Hxx′ , o)]|ϵ(o′, x), hxx′ ∈ Φ}
(21)

Because Qh
o (Hxx′ , o) ≤ V x(x′) for any history Hxx′ ∈ Φ, so inequality (18) is proofed

which is V h′ ≥ V h. If there exist at least one history of trajectory produced by o′ with
probability non-zero, then the inequality strictly holds, that is V h′

> V h
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4. Experiment and Results

As the uncertainty of the environment in the real world, conventional SMDP methods ap-
plied to options cannot be utilized efficiently, we use the option in a dynamic environment
here to solve the task better. We will use the famous gridworld simulation experiment to
evaluate the behaviour of I-QOption compared with Q-learning, and then we will give the
experimental results below.

In the simulation experiment, agent uses the ε − greedy policy to complete explo-
ration, the initial exploration probability is set to be ε = 0.1 and the learning rate is
set to be α = 0.1. In order to let the algorithm to get a better convergence, the explo-
ration probability will decay with the increase of the number of the episode. Here we set
ε← ε/episode. All of the Q value will be initialized to 0.

4.1. Dynamic Environment Description

So far, most of the reinforcement learning methods are applied to some simple learning
task or learning in a static environment, such as balancing pole, DC motor, roller coaster,
etc. However, real-world environment is usually not static. For example, in the room nav-
igation task, there is no obstacle besides wall in general environment, even if there are
obstacles, the position of those obstacles will not change over time. In real-world room
navigation task, the random appearance of obstacles are very normal. Our target is to find
optimal policy in a dynamic, ever-changing environment.

Fig. 3 gives an example of dynamic environment, it is a grid of 21×21. There are two
kinds of objects in this environment: agent and obstacles. The uppercase letter o in the
left lattice in Fig. 3(a) indicates the position of the obstacle at episode t while the letter o
in the right lattice in Fig. 3(b) indicates the position of the obstacle in episode t + k. As
can be seen that in a different episode the location of the obstacle may not be the same.

S

O

G

(a)

S

O

G

(b)

Fig. 3. The dynamic environment of a 21 × 21 grid where S is the start position, G is
the target position and O is the obstacle. The difference between the two figures is the
position of O, which means that in different episode, agent will be in different situation
even if the position of the agent is the same, because the obstacle set O has changed.
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4.2. Four-Room Dynamic Gridworld

We give a four-room dynamic gridworld environment shown in Fig. 4(a). The goal state
G is placed in the lower right corner and the initial state S is placed in the upper left
corner. At the beginning of each episode, we will provide random obstacles, besides the
fixed obstacles, to represent the random environment. The primitive action consists of
four direction actions: up, down, left and right. The selection probability of greedy action
(primitive action or option) is 1 − ε + ε/(|U |x + |O|x), and the selection probability of
other action or option is ε/(|U |x + |O|x). The reward is set to be -1 except the step to the
goal state which has been set to be 1.

W

(a) 4-room dynamic environment
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G

(b) Pre-defined options

10
0

10
1

10
2

10
3

10
4

0

500

1000

1500

2000

2500

3000

3500

Episode

S
te

p
s
 t

o
 G

o
a
l

I−QOption

Primitives

(c) Comparison of experimental results

Fig. 4. Comparison of I-QOption algorithm and Q-learning in four-room dynamic envi-
ronment.

Since the focus of this paper is the application of option in dynamic environments,
therefore, the options here are predefined. We provide six options as prior knowledge in
the four-room gridworld shown in 4(b).

Fig. 4(c) shows the average step number, agent from the initial state to the goal state
based on 10 repeated experiments, which compares the performance of I-QOption and
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Q-learning in the dynamic gridworld. As can be seen from Fig. 4(c), the step I-QOption
needs to reach the goal state is far less than Q-learning in the first few episodes. In the
first episode I-QOption needs only 1829 steps while Q-learning needs 2542 steps. The
Fig. 4(c) also shows that the convergence rate of I-QOption is slightly faster than Q-
learning. I-QOption converges at the episode 3708 while Q-learning converges at episode
3787.

As can be seen from Fig. 4(c), in the four-room dynamic environment, the perfor-
mance of I-QOption is significantly better than Q-learning which based on primitive ac-
tions in the first few episodes, and this phenomenon is particularly evident in the first 10
episodes. After 10 episodes, the performance of I-QOption and Q-learning is roughly
equal, but I-QOption still has a faster convergence rate than Q-learning for about 80
episodes. The simulation results indicate the effectiveness of the algorithm in dynamic
environments.

4.3. Six-Room Dynamic Gridworld

In the second experiment described in this paper, we use six-room dynamic gridworld
to simulate experiments. The task of the agent is the same as that of four-room dynamic
gridworld. Fig. 5(a) shows the experimental environment, the initial state close to the
upper left corner while the goal state near the lower right corner. Dynamic environment
and primitive actions are set to be the same as introduced before.

As described in the previous section, the number of option pre-defined here will be a
corresponding increase due to the number of room increased. In the six-room experiment,
10 options will be pre-defined while six options are provided in the four-room experiment
as Fig. 5(b) shown. Fig. 5(c) shows the average step number that agent from the start state
to reach the goal state, based on 10 repeated experiments. The difference with Fig. 4(c)
is that the number of steps that agent needs to reach the goal state at early moment has
increased due to the increasing of the state number. At the same time, the convergence
rate also has slowed down, but the trend is the same overall.

We can draw the similar conclusion with the experiment results in the previous sec-
tion, in the early stages of learning, I-QOption is much better than Q-learning, and in the
latter study, the convergence rate of I-QOption is slightly better than Q-learning.

4.4. Results by Different Parameters Settings

There are three parameters in our algorithm: step size α, exploring probability ε, and
discounted factor γ, where ε and γ usually have a general value, such as ε = 0.1.

The Table 1 shows learning result with different learning rate. In the case of learning
rate a = 0.1, I-QOption only requires 1855 time steps to get to the goal state in the first
episode while Q - learning needs 3827 time steps. It indicates that I-QOption has more
than twice high efficiency of Q-learning. In the 10th episode, I-QOption becomes more
efficient and only requires 1064 time steps to get to the goal, while Q-learning still needes
1485 time steps. It shows that in both algorithms, the previous knowledge is fully utilized
so that it needs less time steps to complete carrying out the task during episode iterations.
At the same time, it also shows that even at the beginning of the learning phase, the I -
QOption algorithm, which is based on the interrupt mechanism, surpasses Q-learning in
learning efficiency.
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Fig. 5. Comparison of I-QOption algorithm and Q-learning in six-room dynamic environ-
ment.

In the case of learning rate a = 0.9, I-QOption only requires 1687 time steps to reach
goal in the first episode, while Q-learning needes 2995 time steps. The results suggest that
we can accelerate the convergence by increasing the learning rate when the rate is within
the acceptable range.

As can be seen from Fig. 6, both in the four-room and six-room experiments, the
effects of different values of the algorithm are great. We can conclude that the learning
speed of the agent has accelerated with the increase of α. Agent learns faster than other
parameter values when α = 0.9, and the performance is better in the learning phase.
The proposed algorithm converges in the eightieth episode and maintain stability when
α = 0.9.

We can also see from Fig. 6(b) that, the larger value of α results in fast convergence
speed of I-QOption. The convergence speed of algorithm with α = 0.1 is much slower
than that with α = 0.9; and with more episodes for iteration, the fluctuation range of the
algorithm is much smaller than that with α = 0.9. When the algorithm converges to a
certain extent, the performance of algorithm with α = 0.1 appears to be more steady. As
for convergence speed, the parameter setting with α = 0.9 is faster, which is because in
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Table 1. Comparison of I-QOption algorithm and Q-learning with different parameters in
the 4-room experiment.

algorithm parameter

steps
first

episode
needs

steps
tenth

episode
needs

episode
number

convergence
required

I-QOption
α = 0.1 1855 1064 3201
α = 0.9 1687 555 398

Q-learning
α = 0.1 3827 1485 3245
α = 0.9 2995 555 410
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(a) Different α on learning speed in 4-room experiment

10
0

10
1

10
2

10
3

10
4

0

500

1000

1500

2000

2500

3000

3500

Episode

S
te

p
s
 t

o
 G

o
a
l

α=0.1

α=0.3

α=0.5

α=0.7

α=0.9

(b) Different α on learning speed in 6-room experiment

Fig. 6. Effects of different parameters on the I-QOption algorithm.
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the earlier learning phase, the value of Q(x, u) with a large value of α tends to update
quickly, which leads to the algorithm convergence in a short period of time. But because
of the exploration of our algorithm, after the convergence of the algorithm, the large value
of α leads to a more updating on exploration actions, which will causes larger fluctuation
range.

5. Conclusions

Reinforcement learning enables to learn and optimize control from the interaction with
environment. It is flexible and can be applied in many different applications. As a fa-
mous algorithm of reinforcement learning, Q-learning is able to learn directly from raw
experience like human and does not need to know the environment model in advance.

In this work we introduce interrupting mechanism to SMDP option on the basis of Q-
learning to address dynamic environments. The algorithm, called interrupting Q-learning
option, is able to better solve the problem in a dynamic environment which traditional op-
tion based methods are unable to deal with. The experiment results show that the appro-
priate use of interrupting option can accelerate solving tasks in a dynamic environment,
and also it will be help for agent to keep stability during the process of learning.
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