
DOI: 10.2298/CSIS121210062N

Requirements-Level Language and Tools
for Capturing Software System Essence

Wiktor Nowakowski1, Michał Śmiałek1, Albert Ambroziewicz12, and Tomasz
Straszak1

1 Warsaw University of Technology
pl. Politechniki 1, 00-661 Warsaw, Poland

{nowakoww, smialek, ambrozia, straszat}@iem.pw.edu.pl
2 Infovide-Matrix S.A.

ul. Gottlieba Daimlera 2, 02-460 Warsaw, Poland

Abstract. Creation of an unambiguous requirements specification with
precise domain vocabulary is crucial for capturing the essence of any
software system, either when developing a new system or when recov-
ering knowledge from a legacy one. Software specifications usually main-
tain noun notions and include them in central vocabularies. Verb or ad-
jective phrases are easily forgotten and their definitions buried inside im-
precise paragraphs of text. This paper proposes a model-based language
for comprehensive treatment of domain knowledge, expressed through
constrained natural language phrases that are grouped by nouns and in-
clude verbs, adjectives and prepositions. In this language, vocabularies
can be formulated to describe behavioural characteristics of a given prob-
lem domain. What is important, these characteristics can be linked from
within other specifications similarly to a wiki. The application logic can be
formulated through sequences of imperative subject-predicate sentences
containing only links to the phrases in the vocabulary. The paper presents
an advanced tooling framework to capture application logic specifications
making them available for automated transformations down to code. The
tools were validated through a controlled experiment.

Keywords: requirements engineering, use cases, domain engineering,
model-driven software development, model transformation, application logic,
metamodel, formal languages.

1. Introduction and Related Work

As pointed out by Brooks back in the eighties [6], software systems possess
essential (inherent) and accidental (technological) complexity. The essential
complexity cannot be removed without reducing the problem at hand. In or-
der to understand any software system we thus need to “extract” this essential
complexity and make it clearly visible. This is especially important when mod-
ernising the existing systems. We normally would like to remove all the code,
related to the old technology and retain just the problem-related essence. Then,

Wiktor Nowakowski et al.

we could transfer this essence (after possible improvement and extension) into
a new technology.

An important attempt to enable capturing essential knowledge about soft-
ware systems is the Knowledge Discovery Metamodel (KDM), as explained by
Pérez-Castillo et al. [29]. Unfortunately, KDM operates mainly at quite low levels
of abstraction, concentrating e.g. on defining a metamodel for abstract syntax
trees capturing the code structure of the system. It also contains structures to
represent conceptual-level artifacts but this part of the standard is very roughly
defined. Moreover, it can be argued that capturing the detailed internal structure
does not reduce the accidental complexity associated with the “twisted” inter-
nals of a legacy system. We need means to capture the essence of the system’s
logic and not e.g. the detailed code breakdown structure as implemented in the
legacy system.

An innovative method for improving software application comprehension in
order to simplify its maintenance was proposed by Vagač and Kollár in [38] and
[24]. In this approach a legacy system, composed of well-known classes and
standard libraries, is analysed and a metamodel for the selected features repre-
senting functional aspects of the system is automatically created. This provides
feature-specific visualization which is closer to the application domain level than
to implementation level. The main difficulty in this approach is associated with
the construction of a knowledge base – for each recognized feature there must
be aspects defined to trace feature implementation and algorithms to model
traced implementation details in metamodel.

A very comprehensive approach to capturing essential knowledge (Domain
Driven Development - DDD) was proposed by Evans [10]. He postulates organ-
ising software development around rigorously defined domain models. These
models capture the domain logic of the system at a high level of abstraction. At
the same time, the domain logic is the foundational basis to specify the appli-
cation logic describing the observable interaction of the users with the system
(called “workflow logic” by Fowler [13]). This approach was even strengthened
in rigour by Bjôrner [4] who advocates mathematical precision in domain engi-
neering. He identifies serious flaws in system specification whenever domain
specifications are treated without enough care.

Domain engineering is thus argued as an important element in capturing
the essential complexity. Unfortunately, it is normally treated as a second-class
citizen in specifying systems. It is equated with a more-or-less complete list of
noun-related domain elements with their definitions, placed somewhere close
to the end of the overall specification (be it requirements, design or business
description) and soon forgotten. Worse still, in many cases the vocabulary is in
fact buried in text throughout the whole specification. All the definitions of do-
main notions are scattered everywhere leading in many places to contradictions
(e.g. different definitions of the same term). This all calls for a tooling framework
where the various domain notions could be used consistently through referring
to a central vocabulary, as postulated by Śmiałek et al. [36].

1500 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

The tooling for DDD has been developed in the context of the Romulus
project (see work by Iglesias et al. [16]). However, the domain models in Ro-
mulus are at the level of design models rather than pure domain descriptions.
A domain-driven approach was also taken by the creators of the Requirements
Specification Language (RSL, see section 2 for an overview of the language
basic constructs) within the ReDSeeDS project (www.redseeds.eu). The do-
main models in this language rely heavily on verbs used within requirements
specifications. This is also similar to knowledge engineering approaches like
the one described by Chan [7] and also pure ontology languages like RDF [1].
In effect, we result with a constrained language with embedded semantics, ca-
pable of representing domains along the proposition by Evermann and Wand
[11]. Moreover, the language introduces a very strict relation between the do-
main logic (expressed through verbs associated with nouns) and the application
logic.

In the current work we use RSL to enable capturing the essential complex-
ity at the level of application logic of either existing or new systems (see sec-
tion 2 for more details on this subject). This kind of “essential complexity” is
meant as sequences of user-system, system-system and system-user interac-
tions defining the observable system behavior. We propose to capture it through
constrained-natural-language sentences that refer (hyperlink) directly to a do-
main model based on nouns, verbs and other parts of speech. Similar usage of
hyperlinks was proposed by Kaindl [20], but such a comprehensive treatment
with an extensive tooling environment is not found in the literature according to
our best knowledge. What is more, we propose a method for capturing and mi-
grating the essence from legacy systems. It is unique in generating application
logic scripts from UI/GUI-ripping results. The users record their activity in the
legacy system and this is transferred to the application logic (essential) specifi-
cation. Due to precision of such specifications, this can be brought to the level
of code in an MDA-style transformation process [22].

This paper constitutes a significant extension to a paper published at the
Model-Driven Approaches in System Development workshop at the FedCSIS
conference [35]. It provides details on the slightly improved RSL metamodel
and gives more examples. It also presents an advanced version of the tools
both for recovery and transformation of application logic to code. There are
also presented in detail the results of a controlled experiment to validate the
presented approach and tools.

2. Basic RSL Constructs for Specifying System Essence

The Requirements Specification Language (RSL) is a formal language for spec-
ifying software requirements. An important idea in the RSL approach is sepa-
ration of concerns in regard to descriptions of the system’s behaviour and de-
scriptions of the system’s domain. The behaviour in RSL is specified through
use cases and their textual scenarios consisting of sentences in constrained

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1501

Wiktor Nowakowski et al.

Show

course list

Add new

course

course list

button

course list

page

«invoke»

Course

manager

course list

1. Course manager selects course list button

2. System fetches course list

4. System shows course list page

==> invoke: Add new course

1. Course manager selects course list button

2. System fetches course list

3. System shows course list page

=> invoke: Add new course

course

U
se

ca
se

s
a

n
d

 s
ce

n
a

ri
o

s
D

o
m

a
in

sp
e

ci
fi

ca
ti

o
n

Fig. 1. Example RSL specification – use case scenarios linking to a domain vocabulary

natural language. Words and phrases used in scenario sentences are linked to
elements of a separate domain model, as presented in Figure 1.

Such notation, with a centrally defined vocabulary, is easily understandable
by different audiences – analysts, developers, architects and end-users. The
aim is to facilitate communication during the software development process.
The main focus of this communication is usually the outlining of the application
logic. The application logic of an IT system defines sequences of interactions
between the user and the system in relation to the domain logic within which
this system operates. That is the exact information that is captured at the level
of requirements through the use of RSL (more on capturing the application logic
can be found in section 2.6).

In addition to being human-readable, the RSL notation is also very precise.
All the language constructs are defined in a formal way through a grammar ex-
pressed as a MOF [27] metamodel. This allows automatic processing of speci-
fications written in RSL (like, for example, MDA-style transformations [26]).

In sections below we describe basic RSL constructs in a bottom-up manner.
Due to the extensiveness of the language, the description is limited only to the
constructs that are used directly for capturing the software “essence” at the level
of application logic. For the extended overview of the RSL language please refer
to [34] and to [19] for the complete formal language definition.

2.1. Phrases – Basic Building Blocks for Specifications

In order to describe a domain, people normally use certain natural language
phrases. Any entity in a given domain is expressed through a phrase contain-
ing prominently a noun. In sentences, nouns are normally used in the role of
subjects or objects. Noun phrases are obviously not satisfactory to express the
domain logic – its dynamics. We need verbs that can be composed of many
words (e.g. phrasal verbs or aggregates of the Dixon’s primary and secondary
type verbs [8]). In a sentence, a verb occurs as a part of its predicate. It is

1502 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

enroll selected student for course

Noun phrase Noun phrase

Simple verb phrase

Complex verb phrase

Verb Modifier Noun Preposition Noun

enroll selected student for course

Fig. 2. Phrase structure example

strongly relevant to the noun: it describes behaviours, functions and events of
the entity represented by that noun. These are important elements of domain
descriptions as defined by Bjôrner [3]. One noun can have any number of be-
haviours, functions or events associated (“read book”, “write book”, “buy book”).
Sometimes there is a need to enrich nouns with modifiers (“single book”, “old
book”).

To capture the application logic we will thus define a language capable of
expressing noun-based phrases. This is illustrated in Figure 2. A noun phrase
contains just a noun (“course”) possibly preceded by a modifier (“selected stu-
dent”). A modifier is most often an adjective or an adverb. A simple verb phrase
consists of a noun phrase preceded by a verb (“enroll selected student”). A
complex verb phrase supplements a simple verb phrase with an additional noun
phrase. These phrases are conjoined with a preposition, thus making a com-
plex verb phrase capable of expressing constructs with a direct object and an
indirect object (“enroll selected student for course”).

The above can be seen as a constrained language and we can define a
grammar for it. We want the language to be used for automatic transformations
and thus we will use a metamodel to define it (work by Kleppe [23] can be used
as a good introduction on this). This is shown in Figure 3.

All phrases are represented by an abstract metaclass Phrase, which has two
subtypes: NounPhrase and VerbPhrase. A NounPhrase consists of exactly one
NounLink that points to a specific Noun. A NounPhrase can also contain at most
one ModifierLink pointing to a Modifier. Such NounPhrases are satisfactory for
representing entity names (eg. “course”, “selected student”). A VerbPhrase, in
turn, describes some behaviour that can be performed in association with an
entity represented by a NounPhrase. In the metamodel, VerbPhrase is an abstract
subtype of Phrase and it exists in two concrete variants: SimpleVerbPhrase and
ComplexVerbPhrase. The SimpleVerbPhrase is the basic structure for expressing
the entity behaviour. It contains a NounPhrase in the role of its object (inher-
ited from VerbPhrase), but it also includes a VerbLink pointing to a Verb (eg.
“enroll selected student”). A ComplexVerbPhrase describes behavioural relation
between two entities. It contains its own (inherited) NounPhrase which plays the
role of the indirect object, but also contains a SimpleVerbPhrase possessing an-
other NounPhrase – the direct object (eg. “enroll selected student to course”).

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1503

Wiktor Nowakowski et al.

VerbPhraseNounPhrase

ComplexVerbPhrase SimpleVerbPhrase

Phrase

complexVerbPhrase

0..1 simpleVerbPhrase

1

object

1

verbPhrase

0..1

source

1

source

1

source 1source 1

TermHyperlink

NounLink

TermHyperlink

VerbLink

Term

Noun

Term

Verb

Term

Modifier

Term

Preposition

TermHyperlink

ModifierLink

TermHyperlink

PrepositionLink

target 1

*

target 1

* *

target 1

*

target 1

modifier 0..1 noun 1 verb 1preposition 1

Fig. 3. Phrase metamodel

It is worth noting that the phrases constitute sequences of hyperlinks (sub-
classes of TermHyperlink) pointing at external terms (subclasses of Term – see
Figure 4). These terms (with their forms, which depend on the context) can
be stored in an external, global structure (Terminology). This structure defines
the semantics of the terms through giving relations between them, and can
be based on existing dictionaries/ontologies (e.g. WordNet [12]). This way, the
phrases can be subject to semantic-based matching, as described by Wolter et
al. [40].

2.2. Domain Specification – Phrases Grouped within Notions

To organise the phrases we will group them by the nouns defining the described
domain entities. We will call such group a “notion”. The appropriate metamodel
for this part of the presented language is shown in Figure 5. Every Notion can
include any number of DomainStatements referring to the same noun (eg. “save
course”, “enroll student for course”). Each DomainStatement contains exactly
one Phrase – its name. It can also have a textual description of behavioural fea-
tures of the related nouns. For example, “validate course” has a different mean-
ing than “save course”. The common Noun pointed by all the phrases grouped
within the Notion as its statements is used as the name of that notion (see the
relevant NounPhrase). Moreover, a notion can contain textual description that
defines the notion in the context of the current domain.

1504 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

Termionology

PrepositionModifierNounVe rb

Term

- na me :String
*1

Fig. 4. Terminology metamodel

DomainElement

NounPhrase

Notion

DomainElementRelationship

sourceMultipl icity :String

targetMultiplicity :String

directed :Boolean

toSource

*

target

1

toTarget

*

source

1

domainElement

name

1notion0..1

DomainStatement Phrase

NotionAttribute

typeName :DataTypes

«enumeration»

DataTypes

Text

Number

Boolean

Date

name

1statement

1statements

*1

attribute *

Fig. 5. Notion metamodel

To complete the domain structure, we need to define relationships between
notions. This is done through DomainElementRelationships which denote rela-
tionships between two DomainElements. Both the source and the target of Do-
mainElementRelationship can have constrained multiplicity described respectively
by the sourceMultiplicity and the targetMultiplicity property. The directed property
indicates whether a relationship is directed (from source to target) or is bidirec-
tional.

In addition to domain statements and relationships, notions can also have
attributes which characterize domain entities. Attributes are represented by No-
tionAttribute metaclass. The type of an attribute is specified by one of the val-
ues from the DataTypes enumeration. For example, the “student” can have such
attributes as “name” or “index number” of primitive type Text and Number re-
spectively.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1505

Wiktor Nowakowski et al.

Course

Atomic unit of learning and marking for the

[n:students] at the Faculty. The [n:courses] are

taught by [n:academic teachers] to the [n:students].

The [n:courses] result in [n:marks]. Every course can

have different [n:classes].

[v:enroll n:student p:for n:course]

[v:validate n:course]

[v:save n:course][v:save n:course]

[v:add n:class p:to n:course]

Fig. 6. Example of textual notation for notions

course list page

show course list page

course list

fetch course list

*

1

course list button

select course list button1 1

1 1

* *

course

validate course

student
index number

* * *

save course

validate course

enroll student for course

save student

delet student name

Fig. 7. Example of graphical notation for notions

The above abstract syntax calls for appropriate concrete syntactic elements.
Our metamodel introduces a special kind of structural domain representation
that explicitly focuses on domain elements. It can be seen as possessing some
of the key object-oriented principles: domain elements can be connected through
domain element associations adorned with multiplicities. We could thus simply
use UML class model notation. However, where a graphical notation is nec-
essary, we propose a notation clearly distinguishing domain elements from
classes. This is to stress its domain modelling (cf. ontological modelling) pur-
pose. This is illustrated in Figures 6 and 7. The first Figure presents a textual
description of the notion “course” with several phrases. It can be noted that
the notion description contains phrases (represented by hyperlinks in the de-
scription). In Figure 7 we can see a graphical notation that includes the same
notion. The phrases have a notation that clearly distinguishes them from e.g.
class operations.

2.3. Hyperlinking Phrases to Build Sentences

The metamodel we have presented allows to organise the domain definition in
the form of a dictionary of phrases. We have already shown that the phrases
can be hypelinked from within the domain element descriptions (see Fig. 6).
However, this can be easily extended to any textual specification. For instance,

1506 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

SVOSentence

PhraseHyperlink

Subject

PhraseHyperlink

Predicate

Phrase

NounPhrase

Phrase

VerbPhrase

HyperlinkedSentence

ConstrainedLanguageSentence

target

1

predicate

*

object 1

verbPhrase 0..1

target

1

subject

*

predicate

1

1

subject

1

1

Fig. 8. Constrained language sentence metamodel

we could organise this way the functional requirements. Through consistent
use of hyperlinks we could significantly raise precision and unambiguity of such
specifications. For this purpose we will thus extend the presented language to
allow formulating full sentences constructed out of hyperlinks.

We have already seen that all the elements used in phrases link to Terms
in the terminology. In fact, phrases consist only of hyperlinks to specific Terms
through the TermHyperlink construct. This idea is extended to use phrases as
targets of hypelinking and to construct specifications as sequences of hyper-
links to phrases. Now, instead of copying the same phrase in many places, we
just point to its definition placed in a central domain specification. This provides
consistency as every hyperlink may point at exactly one element. This is in line
with the findings by Kaindl [18] which indicate that hyperlinks applied in require-
ments specifications are basic facilitators of coherence. However, the approach
is beneficial only with strong tool support, which we will discuss in Section 3.

The precision of system specifications is assured by using hyperlinks that
link interaction flow descriptions with definitions of phrases. In textual specifica-
tions, this leads to the idea of a wiki-like language. Hyperlinks can be inserted
into free-form text using the notation presented in the previous section (see Fig-
ure 6). They can consist of linked term names preceded by a letter with a colon
(“:”) indicating the term type (“n:” for a noun (NounLink), “m:” for a ModifierLink,
“v:” for a VerbLink, “p:” for a PrepositionLink. Each hyperlink text is surrounded
by a pair of square brackets.

Unfortunately, free (although hypelinked) text used in specifications has se-
rious limitations. Namely, it is not suitable for automatic processing (e.g. transla-
tion into design or code, comparison, structured editing, semantic operations),
and it can be formulated still in an unreadable way. To cater for these two prob-
lems we would need to introduce much more rigour and limit the language used.
We will now present such a limited language with SVO sentences. They will use
phrases (or rather: hyperlinks to phrases) as their atomic “lexemes”.

The overall structure of an SVO sentence is shown in Figure 8. It consist of
a Subject that points to a regular (noun-only) Phrase and a Predicate that points
to one of the concrete subtypes of VerbPhrase.

In the simplest case, the Predicate points to a SimpleVerbPhrase. This results
in a grammar that follows the Subject – Verb – Object (SVO) scheme, as pro-

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1507

Wiktor Nowakowski et al.

SVO sentence

System shows course list page

Subject Predicate

Noun phrase Simple verb phrase

Noun Verb Noun

Subject Predicate

Fig. 9. Example of SVO sentence with simple verb phrase

posed by Graham [15]. An example of such a sentence structure is illustrated
in Figure 9. It can be seen that the Predicate of this sentence is a hyperlink to
a SimpleVerbPhrase, and the Subject hyperlinks to a NounPhrase. These phrases
are further hyperlinked to appropriate terms in the terminology.

In a more complex case, the Predicate points to a ComplexVerbPhrase. In
such situation, the sentence is extended by an additional indirect object (SVOO)
allowing to express more complex behaviour involving more than one noun
phrase (eg. “System adds class to course”).

2.4. Use Case Scenario – Sequence of Sentences

It can be argued that most of the observable behaviour of a software system
(its application logic) can be described at the level of requirements with sen-
tences presented in the previous section. For the purpose of defining system’s
behaviour, RSL employs use cases as units of system’s functionality. Each use
case can be detailed with one or more textual scenarios consisting of sentences
in constrained natural language that links to elements of the domain model. RSL
defines only one type of relationship between use cases – the �invoke� rela-
tionship. This relationship denotes the situation where scenarios of a use case
can be invoked from within another (invoking) use case. A detailed example of
notation for use cases and scenarios is shown in Figure 10.

Figure 11 shows a fragment of the RSL metamodel that deals with use case
scenarios. Every RSLUseCase contains at least one ConstrainedLanguageSce-
nario. Scenarios, in turn, are composed of ordered set of scenarioSteps form-
ing paths of scenario execution. Every such step is a subtype of an abstract
ConstrainedLanguageSentence: an SVOSentence, InvocationSentence or Condition-
Sentence. The two latter sentences are special types of ControlSentence.

As it was explained above, the predicate of an SVO sentence in a scenario
describes an operation that can be performed in association with some entity
(eg. “fetch course list”, “save course”). The subject, in turn, indicates who per-
forms the action (eg. “course manager” or “system”).

Every such action can be performed under a certain condition. Condition in
a scenario can be expressed with a ConditionSentence. It is a point where the
scenario flow is determined: a scenario step that follows the ConditionSentence

1508 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

1. Course manager selects course list button

2. System fetches course list

3. System shows course list page

⇒ invoke Add new course

1. Course manager selects add course button

2. System shows add new course page

3. Course manager enters course

4. Course manager selects save course button

5. System validates course

⇒ cond: course valid

6. System saves course

Course Manager

Show course

list

Add new

course

«invoke»

6. System saves course

Fig. 10. Concrete syntax for use case scenarios

HyperlinkedSentence

ConstrainedLanguageSentence

SVOSentence

ContrainedLanguageScenario

RSLUseCase ControlSentence

ConditionSentenceInvocationSentenceInvocationRelationship

scenarioStep

* {ordered}

scenario

0..1

scenarios 1..*

1

invoke *

source 1

invoked*

target1

0..*1 0..*1

Fig. 11. Use case and scenario metamodel

can be executed only if the condition is met. ConditionSentences always exist in
sets of at least two such sentences causing alternative scenarios. The concrete
notation for this type of sentence comprises the “cond” keyword followed by a
single free-text word, as illustrated in Figure 10.

The �invoke� relationship has simple abstract syntax reflected through
the InvokeRelationship metaclass. What is important, every invocation relation-
ship can have several related InvocationSentences within the invoking use case
scenarios. In concrete syntax, such sentences are denoted with the “invoke”
keyword, followed by the name of the invoked use case, as illustrated in Figure
10.

The presented simple constructs are satisfactory for capturing even complex
application logic expressed through related use case scenarios. By the fact that
the RSL grammar is precisely defined through a metamodel, such logic can be

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1509

Wiktor Nowakowski et al.

Re quire mentsSpe cific ation DomainSpecification

DomainElementRe quire mentsPac kage Requirement

RSLUse Case

DomainElements Pack age

Notion

req uirem entsPackages
*

1

1

do main Specificat ion

1

ne stedPacka ge
* 0..1

*

*

1

*

ne stedPacka ge
* 0..1

Fig. 12. Requirements specification metamodel

R
e

q
ir

e
m

e
n

ts
sp

e
ci

fi
ca

ti
o

n ALU
Start

(User) wants to browse

offers

(System) shows offers

browser

(User) uses offers browser

(User) selects offer

End

D
o

m
a

in
X

v
o

ca
b

u
la

ry

D
o

m
a

in
Y

v
o

ca
b

u
la

ry

Application Logic Unit

Domain

vocabulary

Use case model and

interaction description

Y

v
o

ca
b

u
la

ry

Fig. 13. Levels of application logic management

automatically transformed into design-level models and fully operational code
as well.

2.5. Requirements Specification – Container for Requirements and
Notions

All the use cases and their scenarios along with linked notions are contained
within a requirements specification (see RequirementsSpecification metaclass
in Figure 12). It consists of RequirementsPackages that groups Requirements –
RSLUseCases in particular. RequirementSpecification also includes a vocabulary
of notions used in use case scenarios. These notions are grouped in DomainEle-
mentPackages within DomainSpecification. The example structure of requirements
specification in the form of a project tree is shown in Figure 14.

2.6. Application Logic Extension to RSL

To fully facilitate creating solution-independent application logic descriptions,
core RSL was extended with elements enabling efficient management of the

1510 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

application logic building blocks. This extension (called RSL-AL) builds upon
RSL concepts – mainly the separation of system’s dynamics description and
the domain it pertains to (see Figure 13). This gives the possibility of utilizing
patterns of behaviour, to apply the application logic elements at different levels
of abstraction: at the level of individual interactions (described as a scenario),
at the level of functional units (through use cases) and at the level of application
logic units (groups of use cases). The separation between the dynamics and the
domain description facilitates using similar interaction flows in different business
domains, which leads to defining patterns. As core RSL is sufficient to capture
requirements and basic application logic structures, further explanation of RLS-
AL concepts is out of scope of this paper; for more details on the subject please
refer to Ambroziewicz and Śmiałek [2].

3. Process and Tools

In order to evaluate the presented approach, a tooling framework was con-
structed. The intent was to enable processing the models according to the no-
tation and metamodel presented in the previous sections. This included sup-
port for automatic transformations to design-level artifacts and the process of
recovery and migration of the legacy systems to a new architectures. In the
paragraphs below we explain the tooling framework based on these objectives.

3.1. Model-driven Development with ReDSeeDS

The central part of the tool chain is the ReDSeeDS tool, that implements the
RSL metamodel (see sections 1 and 2). The tool offers a set of editors dedi-
cated to different types of domain elements (see Figure 14, bottom-right). The
central point of the tool is the use case scenario editor (as illustrated in Figure
14, top-right). It allows for writing use case scenarios in RSL. The sentences are
referencing domain specification elements and marked with colours according
to hyperlink types. The tool allows to manage the domain specification elements
directly from the use case editor or using a typical tree-like browser (see Figure
14, left).

The process from requirements to code using the ReDSeeDS tool is shown
in Figure 15. The first step is to produce the RSL model from the user require-
ments using the RSL Editor. The second step is to execute a transformation us-
ing a transformation engine that produces target models and code. The engine
developed within this work uses transformation programs written in MOLA [21]
that is a graphical language with an activity-diagram-like notation. Any transfor-
mation expressed in MOLA consists of the meta-models for the transformation
source and target models, together with one or more transition procedures. The
MOLA meta-modelling language is close in its specification to that of EMOF
(Essential MOF [27]). MOLA procedures form the executable part of the MOLA
transformation.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1511

Wiktor Nowakowski et al.

S
ce

n
a

rio
e

d
ito

r
N

o
tio

n
 e

d
ito

r

Project browser

Fig. 14. Editors and browsers of the ReDSeeDS tool

The structure and notation of the target model depends on the chosen trans-
formation profile as shown in Figure 16. Currently “RSL to UML” and “RSL to
Java” transformation profiles are ready to use and “RSL to SoaML” is planned.
The “RSL to UML” transformation profile (see work by Śmiałek [34]) implements
the MDA concepts (according to [9]) with the requirements specification as the
CIM (Computation Independent Model), 4-layer solution architecture as the PIM
(Platform Independent Model) and detailed design based on abstract factory in
Java as the PSM (Platform Specific Model) [5]. The target models also contains
sequence diagrams describing the behaviour based on use case scenarios. All
messages exchanged in sequence diagrams are generated as operations in the
corresponding interfaces thus keeping the target model coherent.

The “RSL to Code” transformation generates full structure of the system
following the MVP architectural pattern (see [30] for the pattern definition), in-
cluding complete method contents for the application logic (Presenter) and pre-
sentation (View) layers. It also provides a code skeleton for the domain logic
(Model) layer. This is presented in Figure 17, that has been generated from the
model in Figure 10. According to one of the transformation rules, each use case
is transformed into an application logic class. The realisation of this simple rule
is the generation of classes CAddNewCourse and CShowCourseList in Figure 17.
We can even go further and generate important parts of dynamic code, as it
was shown recently by Šimko et al. [39] and Śmiałek [33]. For instance, Figure

1512 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

ReDSeeDS Framework

MOLA transformation

engine

RSL

model

User

requirements

RSL Editor

Target models

+ code

1

2
3

Fig. 15. Model-driven forward engineering with ReDSeeDS

RSL to

Java

Component

architecture

model in UML

Design model

based on

Abstract

Factory pattern

Java application

specific design

model in UML

Runnable

application

code

in Java

Code skeleton

in an object-

oriented

language

RSL to

UML

RSL

model
model in UML

in Java

SOA model

in SoaML

Specific cloud

platform model
RSL to

SOA

Fig. 16. Transforming RSL-AL model into different target models

18 presents a small fragment of application logic code generated automatically
from the model in Figure 10. As it can be seen, all the “user” sentences (1, 3
and 5) were transformed into operations in the presenter classes. Furthermore,
the “system” sentences (2, 4 and 6) were transformed into operation calls to
appropriate “view” (denoted by “v”) or “model” (denoted by “m”) objects. The re-
sulting code can be fully operational in regard to the application logic, i.e. it can
fully control all the flows of user-system interaction. What is important, the code
can also contain decisions (“if” statements) that control the interaction flow de-
pending on the user decisions or the current system state. Such decisions can
be generated on the basis of alternative scenarios, but a detailed discussion
is out of scope of this paper. A more detailed description of use case scenario
translational semantics can be found in [37].

The planned “RSL to SoaML” transformation, similarly to the “RSL to UML”
transformation, will implement the MDA concepts. The Service oriented archi-
tecture Modeling Language (SoaML) is a new specification from the Object
Management Group (OMG) that provides a metamodel and a UML profile sup-
porting different service modelling scenarios [28]: single service description,
service-oriented architecture modelling, or service contract definition. Due to
the fact that SoaML and UML have the common metamodel, transformations

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1513

Wiktor Nowakowski et al.

CAddNewCourse

_SelectsAddNewCourseOption() : void

_SelectsAddNewCourseOption(invokingUC :IInvoke) : void

SelectsOK(pCourse :XCourse) : void

SelectsOK_2() : void

CShowOwnedCourseList

_SelectsShowCourseListOption() : void

SelectsOK() : void

invokeAddCourse() : void

invokeEditCourse() : void

returnInvokeResult(res :int) : void

JFrame

VCourseForm

displays(aCourse :XCourse) : void

JFrame

VCourseListForm

shows(aCourseList :XCourseList) : void

JFrame

VErrorMessage

shows() : void

vCourseForm

cAddNewCourse cAddNewCourse

vErrorMessage

cShowOwnedCourseList

vCourseListForm

P
r
e
s
e
n
te
r

V
ie
w

MCourse

fetches(aCourse :XCourse) : void

getResult() : int

saves(aCourse :XCourse) : void

validates(aCourse :XCourse) : void

MCourseList

builds(aCourseList :XCourseList, aTeacher :XTeacher) : void

getResult() : int

returnInvokeResult(res :int) : void
cAddNewCourse

mCourse

cAddNewCourse

cShowOwnedCourseList

cShowOwnedCourseList

mCourseList

M
o
d
e
l

Fig. 17. Fragment of the Java application design model generated with the RSL to Java
transformation

into SoaML UML are expected to be similar. The output model of both groups
of transformations is an UML-based logical system design at different levels
of abstraction, relevant to the structure of the source requirements specifica-
tion (use cases, notions and packages). The “RSL to SoaML” transformation is
expected to generate the structured model of services constructed with stereo-
typed packages, components, interfaces and classes.

3.2. Recovery and Migration of Legacy System Essence with TALE

The recovery and migration process outline, supported by the tool-chain, is pre-
sented in the Figure 19. The main objectives of the process are recovery of the
system essence and migration of application logic information from the existing
systems, with an intermediate step of storing the application logic information
using the RSL metamodel and its RSL-AL extension.

The recovery phase encompasses the idea of semi-automatic reverse en-
gineering while the migration phase is based on model-driven forward engi-
neering techniques described in the previous section. In the process we first
analyse the legacy system’s UI by using a GUI-ripping tool (see a discussion
on this notion by Memon et al. [25]). While performing this step, the GUI-ripping
tool records the interactions representing the system’s application logic. This
includes the user inputs (buttons clicked, data entered, widget focus gained,
etc.) and respective system responses (windows displayed, messages shown
to the user or even textual console behaviour). An example of such “recorded”

1514 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

class VCourseForm {

...

JButton btnSaveCourse = new JButton(„Save course");

btnSaveCourse.addActionListener (new ActionListener() {

public void actionPerformed(ActionEvent evt) {

...

cAddCourseList.SelectsSaveCourseButton(course);

}

});

...

}

class CAddNewCourse {

...

public void SelectSaveCourseButton(XCourse course) {

int res = 0;

res = mCourse.validates(course);

if (res == 0 /*course valid*/) {

mCourse.saves(course);

} else if (res == 1 /*course invalid*/) {

vErrorMessage = new VErrorMessage();

vErrorMessage.shows();

}

}

...

Fig. 18. Fragment of the code generated automatically from Java application design
model

Legacy

system

GUI-ripping

tool

ReDSeeDS Framework

R
e
co
v
e
ry

1

2

MOLA transformation

engine

Refined

RSL model

Recovered

RSL model

RSL Editor

TALE

XML

scripts

R
e
co
v
e
ry

M
ig
ra
ti
o
n

2

3

4

Target models

+ code

5

Fig. 19. Overview of the recovery and migration process and tools

interaction is illustrated in Figure 20a. This flow of event concerns functionality
of searching a client (in Polish: Wyszukiwanie klienta) in our case study legacy
banking system. During this, the GUI-ripping tool records the flows of interaction
representing the system’s application logic.

In our evaluation, for GUI-ripping we have used a commercial test manage-
ment tool (Rational Functional Tester, www.ibm.com/software/awdtools/
tester/functional/). However, any tool allowing for interaction recording
to some form of structured text files can be integrated with our software. The
tool we used, records sequences of interactions into XML-based scripts (see 2
in the process outline in Figure 19).

The next step of the recovery process is to transform scripts obtained from
the GUI-ripping tool into an RSL model (see 3 in Figure 19). This is done with
the TALE – Tool for Application Logic Extraction. This novel tool automatically
extracts sequences of user-system interactions producing scenarios with SVO

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1515

Wiktor Nowakowski et al.

a

b

c

Fig. 20. An example of GUI interaction (a), the automatically recovered RSL-AL model
(b) and the manually refined final model (c)

sentences. Figure 20b shows an automatically extracted scenario representing
the interaction illustrated in Figure 20a. All the extracted scenarios are attached
to use cases, which are grouped within the “Functional Requirements” package
forming the recovered model (see the project tree in Figure 20b).

Furthermore, the TALE tool also re-creates the domain vocabulary contain-
ing domain notions (created mainly based on data passed to and from the user)
and UI elements (windows, buttons, input fields, etc.) used in the recovered in-
teraction description. All this elements are stored in the “Domain Specification”
package. The important capability of the tool is ability to extract information
about the composition of specific notions. For example, when there is a form

1516 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

displayed to enter personal data (such as first name, last name, PESEL num-
ber, etc. – see the “Osoba fizyczna” tab in Figure 20a), a composite notion for
“Osoba fizyczna data” is created. Such notion contains attributes for every field
filled on the form, instead of a number of unrelated notions coresponding to
these fields. This reduces the unnecessary complexity of the recovered model
by minimizing the amount of simple notions created from the GUI recordings.

The recovered initial model, thanks to the characteristics of the RSL lan-
guage, is easily understandable to people (even those barely knowledgeable
of the original system internals) thus giving the possibility of its easy exten-
sion and modification. This can be made in the ReDSeeDS tool. First of all,
some modifications are needed because not all of the application logic infor-
mation can be automatically retrieved from the recording scripts. This includes
sentences that control flow of scenario execution (conditions and �invoke�
sentences) and sentences expressing internal system operations (eg. calls to
business logic operations), such as “System verifies data”, “System stores in-
formation”, “System deletes item from item list” etc. Also the domain vocabu-
lary usually needs renaming some of the automatically recovered notions. The
generated use case specification can also be subject to manual modifications
and additions. Changes can be done to cater the migrated system for new or
changed functionality or just to optimize some scenario flows, eg. by applying
standard application logic patterns [2]. Also, we need to reorganise the model
according to the needs of the selected transformation rules. Figure 20c shows
the recovered model after refinements.

The refined model (see 4 in the process outline in Figure 19) contains both
the still relevant “legacy” specifications and the “new” ones. This constitutes
the “essence” of the application logic. We can now use this essence to migrate
to a new system design. The migration phase is realised as described in the
previous section (as denoted in Figure 19).

4. Evaluation

By using the presented tooling environment several studies are currently un-
dertaken. First, there is performed a larger case study based on a legacy credit
management system, used by several banks in Poland (see examples in the
previous section). This study is performed in cooperation with Infovide-Matrix
S.A. (large Polish software consultancy/provider). The system’s observable ap-
plication logic has been already recovered into RSL models. The current work
focuses on improving existing transformation programs in order to enable mi-
gration of the legacy system to the new system architecture fulfilling specific re-
quirements. The current results show very promising levels of application logic
that can be recovered from a legacy system. What is important, this recovery
is to large extent automatic. Furthermore, the recovered logic is brought to the
level of requirements understandable to the users. It was already shown by
Jedlitschka et al. [17] that such structured specifications with precisely defined
domain vocabularies are well accepted as simply being a better way of express-

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1517

Wiktor Nowakowski et al.

ing requirements. While working within such a “discover notions – write struc-
tured sentences” framework, the analysts are encouraged to be acquainted with
software system’s environment and are stimulated to write precise, clearly for-
mulated requirements statements.

Further studies, in order to validate the ReDSeeDS model-driven software
development approach, were performed with students attending the “Model
Driven Software Engineering” course at the Warsaw University of Technology.
The students were instructed on RSL constructs and had previously gained
knowledge about constructing Model-View-Controler/Presenter style systems,
using UML and Java. During the classes, they were formed into 8 groups con-
sisting of 3-4 students each. All the groups were assigned a ready use case
model of a Campus Management System, containing 12 use cases with invoke
relationships. The first assignment consisted in writing scenarios for the use
cases. Four groups wrote the scenarios using the ReDSeeDS tool, while four
other groups used a structured use case editor built into Enterprise Architect
(EA). The EA editor did not enforce any syntax for the story sentences, although
allowed for almost identical structure of scenarios with conditions and notation
for alternatives. Moreover, it allowed for hyperlinking of sentence parts to other
model elements and the students were asked to introduce links to classes that
represented concepts.

The students had 4 hours (2 lab sessions) to write their scenarios and were
asked to write them only during the classes. All the groups managed to write
good quality scenarios for all the assigned use cases. There were no signif-
icant differences between the groups using EA and ReDSeeDS. The groups
produced from 121 to 159 scenario sentences (more than 10 sentences per
use case) of all types. The average values are illustrated in Figure 21. Based
on this, the groups were asked to implement their systems in Java having 10
hours (5 lab sessions). Each scenario sentence was treated as complete if the
system managed to pass appropriate data between layers and output “debug”
messages. Two of the groups used the RSL to Java transformation, two groups
used the standard RSL to UML transformation. The remaining four groups per-
formed manual translation into UML and then code generation within the EA.
The first two groups of students managed to implement almost half of the func-
tionality, where on average 68 out of 141 sentences were implemented. It has to
be noted that these two groups had extended acceptance criteria where the “de-
bug” messages for the presentation layer were substituted with Swing-style GUI
forms. The last four groups of students managed to implement 21 sentences on
average. The groups that used the standard RSL to UML transformation per-
formed somewhat better with the average of 28 sentences. A visual comparison
is given in Figure 21.

The above simple experiment shows significant improvement in productivity
when using fully automatic transformation from RSL to code. However, it needs
to be pointed out that it has certain threats to validity. First, the groups could be
composed of students with imbalanced qualifications. This was reduced by se-
lecting eight team leaders that performed best during previous classes. These

1518 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

0 20 40 60 80 100 120 140 160

ReDSeeDS RSL to Java

(2 groups)

ReDSeeDS RSL to UML

Average sentences

written
ReDSeeDS RSL to UML

(2 groups)

Enterprise Architect

(4 groups)

Average sentences

implemented

Fig. 21. Student group performance during the evaluation experiment

team leaders chose their group members during a “draft” session thus balanc-
ing qualifications between teams. Second, the results could be influenced by
lack of necessary proficiency in software design by the groups not using the
fully automatic translation. This threat is to some extent reduced by the fact that
all the students had previous experience in designing non-trivial three-tier de-
sign models during a “Software Design” course. Third, the tooling environment
could influence the students’ performance. The EA system was stable and no
problems were reported, but the ReDSeeDS system caused some issues due
to its prototypical characteristics. In order to assess the last two threats, certain
additional (“anecdotal”) information from the students was collected. This con-
firms that the students from the “EA” and “RSL to UML” groups had problems
in designing the systems (or implementing the application logic code within the
generated design) by hand and this took most of their implementation time.
The automatically generated code gave significant guidance thus improving the
performance of the respective groups. The students using ReDSeeDS have re-
ported several problems with using the system, although this did not interfere
significantly with their flow of work.

5. Conclusion and Future Work

The presented language aims at capturing the essence of the system’s function-
ality. It can be noted that the specifications are written at the level of detailed
functional requirements. What is important, these requirements are written in
near-natural language thus making it accessible to the end-users (see relevant
work by Śmiałek [32]). At the same time, specifications are based very coher-
ently on the domain definition by pointing to centrally defined domain state-
ments (phrases). To define the application logic, the specifications can contain
only pointers (hyperlinks) to centrally defined noun and verb phrases. A se-
quence of such hyperlinks forms a scenario describing the user-system inter-
actions. Our experience shows that such application logic scenarios are easy

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1519

Wiktor Nowakowski et al.

to write by inexperienced developers (analysts) and even the end-users. This
can be done using any tool that allows for hyperlink management. This promi-
nently includes wiki systems, but also some CASE tools enable this (see e.g.
the scenario editor of Enterprise Architect, www.sparxsystems.com).

Writing scenarios hyperlinked to a central vocabulary gives important ele-
ment of coherence to specifications. However, in order to be able to perform
automatic transformations or semantic-based matching [40], we need a tool
that implements the presented (or analogous) metamodel. In the current work
we have shown that it is also possible to use such a tool as a repository for es-
sential application logic recovered from legacy systems. This repository gives
an additional advantage of generating code directly from high-level scenarios.
This includes not only the code structure (classes, method signatures) but also
the dynamics (method bodies) for the application logic layer.

It can be noted that the presented results can be extended in the direction
of creating a more expressive language at the “essential” level. It has to be
stressed that the language is not meant for data processing. Thus, it will not
possess typical data-processing constructs like loops or variables. Instead, it
concentrates on capturing application logic, where loops are implicit through
repeated system-user interaction. The currently ongoing work focuses on im-
proving utilization of application logic patterns as proposed by Ambroziewicz
[2]. The presented language can be used as a pattern language where the noun
and verb phrases can be abstracted from a particular problem domain. The pat-
terns can operate on a generalised domain and then can be instantiated for a
specific domain.

Future work will also include extending the TALE tool to be able to recover
scenarios combined into use cases on the basis of analysis of GUI-ripping re-
sults. It will also consist in extending the language into a language fully capable
of performing “programming” at the level of essential application logic. The goal
is to move much of such programming activity to a significantly higher level of
abstraction than currently. This way, the application logic programming can be-
come accessible even to the end-users. It has to be noted that this language
would not yet capture all the essence of a software system functionality. The
domain logic will not be expressed in any way. The domain statements would
indicate the necessary domain functionality (data processing algorithms etc.),
but not define this functionality.

modifier

noun

verb

modifier

noun

preposition

modifier

noun

Fig. 22. SVO sentence grammar state machine

1520 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

Finally, it has to be noted that the SVO grammar is a kind of controlled
language with formal grammar as presented in Figure 22 (see also e.g. work by
Fuchs et al. [14] or Sleator and Temperley [31]). In this grammar, subclasses
of Term metaclass in Figure 3 are terminal symbols. We can thus use a simple
analyzer based on a finite state machine to parse SVO sentences.

The grammar as such does have some difficulties with reflecting different
natural languages. Some heavily inflected languages, like Polish, need suffixes
and prefixes for words, even in sentences with similar structure and meaning.
Another problem is that some languages (e.g. German, Turkish) allow for differ-
ent order of words in a sentence. This can be solved by adding, for example,
attributes to sentence classes, indicating word order or language used for this
sentence. Nonetheless handling of multi-language specifications is a very inter-
esting challenge for future research and should be investigated further.

Acknowledgments. This research has been carried out in the REMICS project (http:
//www.remics.eu) and partially funded by the EU (ICT-257793 under the 7th Frame-
work Programme).

References

1. Resource Description Framework (RDF), http://www.w3.org/RDF/
2. Ambroziewicz, A., Śmiałek, M.: Application logic patterns – reusable elements of

user-system interaction. In: Model Driven Engineering Languages and Systems,
Lecture Notes in Computer Science, vol. 6394, pp. 241–255 (2010)

3. Bjôrner, D.: Software Engineering 3: Domains, Requirements, and Software Design.
Texts in Theoretical Computer Science. An EATCS Series, Springer (2006)

4. Bjôrner, D.: Rôle of domain engineering in software development. why current re-
quirements engineering is flawed! Lecture Notes in Computer Science 5947, 2–34
(2010), PSI 2009

5. Bojarski, J., Straszak, T., Ambroziewicz, A., Nowakowski, W.: Transition from pre-
cisely defined requirements into draft architecture as an MDA realisation. In:
Smiałek, M., Mukasa, K., Nick, M., Falb, J. (eds.) Model Reuse Strategies Work-
shop, Beijing. pp. 35–42 (2008)

6. Brooks, F.P.: No silver bullet: Essence and accidents of software engineering. IEEE
Computer 20(4), 10–19 (April 1987)

7. Chan, C.W.: Knowledge and software modeling using UML. Software and Systems
Modeling 3(4), 294–302 (2004)

8. Dixon, R.M.: A new approach to English Grammar, on semantic principles. Oxford
University Press (1991)

9. Elvesaeter, B., Berre, A.J., Sadovykh, A.: Specifying services using the service
oriented architecture modeling language (SoaML) - a baseline for specification of
cloud-based services. In: Leymann, F., Ivanov, I., van Sinderen, M., Shishkov, B.
(eds.) CLOSER. pp. 276–285. SciTePress (2011)

10. Evans, E.: Domain Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley (2004)

11. Evermann, J., Wand, Y.: Toward formalizing domain modeling semantics in lan-
guage syntax. IEEE Transactions on Software Engineering 31(1), 21–37 (January
2005)

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1521

Wiktor Nowakowski et al.

12. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press (1998)
13. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA (2002)
14. Fuchs, N.E., Höfler, S., Kaljurand, K., Rinaldi, F., Schneider, G.: Attempto controlled

english: A knowledge representation language readable by humans and machines.
Lecture Notes in Computer Science 3564, 213–250 (2005)

15. Graham, I.M.: Task scripts, use cases and scenarios in object-oriented analysis.
Object-Oriented Systems 3(3), 123–142 (1996)

16. Iglesias, C.A., Fernández-Villamor, J.I., Pozo, D., Garulli, L., Garcı́a, B.: Combining
domain-driven design and mashups for service development. In: Dustdar, S., Li, F.
(eds.) Service Engineering, pp. 171–200. Springer Vienna (2011)

17. Jedlitschka, A., Mukasa, K.S., Weber, S.: Case reuse verification and validation
report. Project Deliverable D6.2, ReDSeeDS Project (2009), www.redseeds.eu

18. Kaindl, H.: Using hypertext for semiformal representation in requirements engineer-
ing practice. The New Review of Hypermedia and Multimedia 2, 149–173 (1996)

19. Kaindl, H., Śmiałek, M., , Wagner, P., et al.: Requirements specification language
definition. Project Deliverable D2.4.2, ReDSeeDS Project (2009), www.redseeds.eu

20. Kaindl, H., Snaprud, M.: Hypertext and structured object representation: A unify-
ing view. In: Proceedings of the Third ACM Conference on Hypertext. pp. 345–358
(1991)

21. Kalnins, A., Barzdins, J., Celms, E.: Model transformation language MOLA. Lecture
Notes in Computer Science 3599, 14–28 (2004), MDAFA’04

22. Kleppe, A.G., Warmer, J.B., W, B.: MDA Explained, The Model Driven Architecture:
Practice and Promise. Addison-Wesley (2003)

23. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Addison-Wesley Professional, 1 edn. (2008)

24. Kollár, J., Vagač, M.: Aspect-oriented approach to metamodel abstraction. COM-
PUTING AND INFORMATICS 31(5), 983–1002 (2012), http://www.cai.sk/
ojs/index.php/cai/article/view/1184

25. Memon, A.M., Banerjee, I., Nagarajan, A.: GUI ripping: Reverse engineering of
graphical user interfaces for testing. In: Proceedings of the 10th Working Confer-
ence on Reverse Engineering. pp. 260–269 (2003)

26. Miller, J., Mukerji, J. (eds.): MDA Guide Version 1.0.1, omg/03-06-01. Object Man-
agement Group (2003)

27. Object Management Group: Meta Object Facility Core Specification, version 2.0,
formal/2006-01-01 (2006)

28. Object Management Group: Service Oriented Architecture Modeling Language
(SoaML) Specification, version 1.0, formal/2012-03-01 (2012)

29. Pérez-Castillo, R., de Guzmán, I.G.R., Piattini, M.: Knowledge Discovery
Metamodel-ISO/IEC 19506: A standard to modernize legacy systems. Comput.
Stand. Interfaces 33(6), 519–532 (2011)

30. Potel, M.: MVP: Model-View-Presenter the taligent programming model for C++ and
Java. Taligent Inc (1996)

31. Sleator, D.D.K., Temperley, D.: Parsing english with a link grammar. Tech. Rep.
CMU-CS-91-196, Department of Computer Science, Carnegie Mellon University
(1991)

32. Śmiałek, M.: Accommodating informality with necessary precision in use case sce-
narios. Journal of Object Technology 4(6), 59–67 (2005)

33. Śmiałek, M.: Requirements-level programming for rapid software evolution. In:
Barzdins, J., Kirikova, M. (eds.) Databases and Information Systems VI, chap. 3,
pp. 37–51. IOS Press (2011)

1522 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Requirements-Level Language and Tools

34. Śmiałek, M., Ambroziewicz, A., Bojarski, J., Nowakowski, W., Straszak, T.: Introduc-
ing a unified requirements specification language. In: Proc. CEE-SET’2007, Soft-
ware Engineering in Progress. pp. 172–183. Nakom (2007)

35. Smialek, M., Ambroziewicz, A., Nowakowski, W., Straszak, T., Bojarski, J.: Using
structured grammar domain models to capture software system essence. In: FedC-
SIS. pp. 1349–1356 (2012)

36. Śmiałek, M., Bojarski, J., Nowakowski, W., Straszak, T.: Writing coherent user sto-
ries with tool support. Lecture Notes in Computer Science 3556, 247–250 (2005),
XP’05

37. Smialek, M., Jarzebowski, N., Nowakowski, W.: Runtime semantics of use case
stories. In: VL/HCC. pp. 159–162 (2012)

38. Vagač, M., Kollár, J.: Improving program comprehension by automatic metamodel
abstraction. Computer Science and Information Systems 9(1), 235–247 (2012)

39. Šimko, V., Hnětynka, P., Bureš, T.: From textual use-cases to component-based ap-
plications. Studies in Computational Intelligence 295, 23–37 (2010)

40. Wolter, K., Śmiałek, M., Hotz, L., Knab, S., Bojarski, J., Nowakowski, W.: Map-
ping MOF-based requirements representations to ontologies for software reuse. In:
CEUR Workshop Proceedings (TWOMDE’09). vol. 531 (2009)

Wiktor Nowakowski is currently pursuing his PhD at the Institute of Theory
of Electrical Engineering, Measurement and Information Systems at the War-
saw University of Technology. His main area of research interest is in Require-
ments Engineering, Model-Driven Software Development, metamodeling and
Software Language Engineering. He is also engaged in teaching in these areas.
Wiktor has an extensive experience working on small- to large-scale projects in
roles covering all stages of the software development life cycle.

Michał Śmiałek is a Professor of Computer Science at the Warsaw University
of Technology. He lectures mainly in the area of Model-Driven Software Devel-
opment both in the academia and for software professionals. Prof. Śmiałek has
also over 20 years of experience in software development as a programmer,
analyst, process engineer and project manager. He has published over 70 peer
reviewed papers and a popular book on UML. Michał Śmiałek leads the SMoG
research group that is involved in research and international projects in the area
of Model-Driven Requirements Engineering.

Albert Ambroziewicz is professionally engaged in software engineering, mostly
in topics related to modeling and metamodeling. He is interested in practical im-
plementations of solutions connected with Model Driven Architecture issues, as
well as CASE tools support for industrial usage of UML. Currently he partici-
pates in the REMICS project. In the past he took part in several commercial
projects, mostly in the fields of enterprise architecture, analysis, R&D and pro-
totyping.

Tomasz Straszak is a researcher interested in software modeling, require-
ments engineering and test engineering. He is an active member of the Soft-

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1523

Wiktor Nowakowski et al.

ware Modeling Group at the Warsaw Unieversity of Technology. He gained pro-
fessional experience in telco and banking sectors working as a system/business
analyst, software and solution architect and programmer.

Received: December 10, 2012; Accepted: July 3, 2013.

1524 ComSIS Vol. 10, No. 4, Special Issue, October 2013

