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Abstract. Many efforts have been deployed by the IR community to extend free-

text query processing toward semi-structured XML search. Most methods rely on 

the concept of Lowest Comment Ancestor (LCA) between two or multiple 

structural nodes to identify the most specific XML elements containing query 

keywords posted by the user. Yet, few of the existing approaches consider XML 

semantics, and the methods that process semantics generally rely on 

computationally expensive word sense disambiguation (WSD) techniques, or 

apply semantic analysis in one stage only: performing query relaxation/refinement 

over the bag of words retrieval model, to reduce processing time. In this paper, we 

describe a new approach for XML keyword search aiming to solve the limitations 

mentioned above. Our solution first transforms the XML document collection 

(offline) and the keyword query (on-the-fly) into meaningful semantic 

representations using context-based and global disambiguation methods, specially 

designed to allow almost linear computation efficiency. We use a semantic-aware 

inverted index to allow semantic-aware search, result selection, and result ranking 

functionality. The semantically augmented XML data tree is processed for 

structural node clustering, based on semantic query concepts (i.e., key-concepts), 

in order to identify and rank candidate answer sub-trees containing related 

occurrences of query key-concepts. Dedicated weighting functions and various 

search algorithms have been developed for that purpose and will be presented 

here. Experimental results highlight the quality and potential of our approach. 

Keywords: Semi-structured data, XML, Semantic Analysis, Semantic 

Disambiguation, Keyword Search, Query Processing. 

1. Introduction 

Various methods have been proposed for XML ranked retrieval. While most approaches 

consider content-and-structure features in specifying XML query constraints, few 

approaches have targeted semantic XML search based on simple keyword queries. Most 

approaches in this category exploit the concept of LCA (Lowest Common Ancestor) 
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between two or multiple structural nodes to identify the most specific XML elements 

containing query keywords posted by the user. Yet LCA-based methods underline 

various limitations: i) each result candidate must contain all query keywords, which is 

not always intuitive since a candidate result (element or sub-tree) containing most (and 

not necessarily all) keywords might be deemed relevant by the user; ii) some 

meaningful results might be missed: as XML trees underline different nesting 

hierarchies, restricting results to the LCA encompassing all keywords might miss some 

more general, and yet relevant results; iii) few of the proposed approaches consider 

semantics: for instance, when submitting sample keyword query “Universities in Sao 

Paulo”, the user is probably interested in information concerning universities, academies 

and colleges in Sao Paulo, and cities in its vicinity such as Campinas, Sao Carlos, etc. 

Hence, semantic analysis becomes essential in such a context in order to improve search 

results; iv) the few existing methods that do target XML semantics generally rely on 

word sense disambiguation (WSD) and are computationally expensive, or v) apply 

semantic analysis in one stage only, performing query relaxation/refinement over the 

bag of words retrieval model, to reduce processing time. 

In this paper, we introduce XSemSearch, a semantic-aware XML keyword search 

solution aiming to solve the limitations mentioned above. We propose to integrate 

semantic analysis and structural clustering in formulating an efficient solution to the 

problem. Our solution first transforms the XML document collection (offline) and the 

keyword query (on-the-fly) into meaningful semantic representations using context-

based and global disambiguation methods, specially designed to allow almost linear 

computation efficiency. The semantically augmented XML data tree is processed for 

structural node clustering, based on semantic query concepts (i.e., key-concepts), in 

order to identify and rank candidate answer sub-trees containing related occurrences of 

query key-concepts. The overall architecture of our approach is depicted in Fig. 1 

An initial description of XSemSearch’s architecture is given in [84]. This paper adds: 

i) a dedicated inverted index structure to handle semantically augmented XML data, ii) 

an dedicated query formalism to allow structure-and-content queries with only partial 

knowledge of the data collection structure and semantics, iii) two alternative query 

processing algorithms including Query As You Type Search and Parallel Semantic 

Search, and iv) an extended empirical study to evaluate query processing time and 

quality. 

 

Fig. 1. Overall architecture of our XML semantic-aware search approach 

The remainder of the paper is organized as follows. Section 2 reviews the 

background in XML and query semantic analysis. Section 3 provides an overview of 

our solution framework. Sections 4 and 5 respectively describe the XML semantic 

analysis and keyword query semantic analysis components. Section 6 describes the 
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query processing component. Section 7 provides experimental results, before 

concluding in Section 8. 

2. Background 

In this section, we review the background in semantic information retrieval, while 

focusing on XML and keyword query semantic analysis and disambiguation. 

2.1. Semantic Information Retrieval 

The retrieval model for an information retrieval system specifies how documents and 

queries are represented, and how these representations are compared to produce relevant 

result estimates [7]. A core problem in this context is lexical ambiguity: a word may 

have multiple meanings (homonymy), a word maybe implied by other related words 

(metonymy), and/or several words can have the same meaning (synonymy) [42]. 

The lexical ambiguity problem becomes even more acute on the Web, with the 

latter’s heterogeneous and unstructured nature which makes it even more difficult to 

query and retrieve meaningful information. Semantic IR is part of the Semantic Web 

vision [76] that promises to solve the retrieval ambiguity problem, by i) associating 

terms in Web pages and queries with explicit semantics (i.e., word senses or concepts), 

and then ii) performing search functions based on document/query concepts rather than 

plain terms [55]. A core challenge in this context is word sense disambiguation (WSD): 

how to resolve the semantic ambiguities and identify the intended meanings of 

document terms and query keywords [11]. Various methods have been proposed for 

WSD in the literature [42, 53, 75]. They fall in two main categories: corpus-based WSD 

and knowledge-based WSD. The corpus-based approach is data-driven, as it involves 

information about words previously disambiguated and requires supervised learning 

from sense-tagged corpora to enable predictions for new words. Knowledge-based 

methods are knowledge-driven, as they handle a sense inventory and/or a repository of 

information about words that can be exploited to distinguish their meanings in the text. 

Machine-readable knowledge bases (e.g., dictionaries or semantic networks: thesauri, 

taxonomies, or ontologies) provide ready-made sources of information about word 

senses to be exploited in knowledge-based WSD. While corpus-based methods have 

been popular in recent years [6, 38], they are generally data hungry and require 

extensive training, huge textual corpora, and/or a considerable amount of manual effort 

to produce a relevant sense-annotated corpus, which are not always available or feasible 

in practice. Therefore, knowledge-based methods have been receiving more attention 

[16, 42]. In the remainder of our study, we focus on knowledge-based WSD and 

semantic analysis. 

2.2. XML Semantic Analysis and Disambiguation 

While a considerable amount of research has been undertaken around (knowledge-

based) WSD in flat textual data [53], yet few approaches have been developed in the 
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context of XML and semi-structured information [75]. The main difference resides in 

the notion of XML (structural) contextualization. The context of a keyword, in 

traditional textual data, consists of the set of terms in the keyword’s vicinity (i.e., terms 

occurring to the left and right of the considered keyword, within a certain predefined 

distance from the keyword [11]). However, there is no clear definition regarding the 

context of a node in an XML tree. The authors in [72, 73] consider the context of an 

XML data element to be efficiently determined by its parent element, and thus process a 

parent node and its children data elements as one unified (canonical) entity, using 

context-driven search techniques for determining the relationships between the different 

unified entities, so as to identify related semantic labels.  

In [70, 71], the authors extend the notion of XML node context to include the whole 

XML root path, i.e., path consisting of the sequence of nodes connecting a given node 

with the root of the XML document (or document collection). They consequently 

perform per-path sense disambiguation, comparing every node label in each path with 

all possible senses of node labels occurring in the same path (using a gloss-based 

WordNet similarity measure [8]) in order to select the most appropriate sense for the 

label at hand. Different from the notions of parent context and path context, the authors 

in [85] consider the set of XML tag names contained in the sub-tree rooted at a given 

element node, i.e., the set of labels corresponding to the node at hand and all its 

subordinates, to describe the node’s XML context. The authors apply a similar 

paradigm to identify to contexts of all possible node label senses in WordNet. 

Consequently, they perform label sense disambiguation by comparing the XML label 

context to all candidate sense contexts in WordNet, identifying the sense (semantic 

concept) with the highest similarity.  

In [49], the authors combine the notions of parent context and descendent (sub-tree) 

context in disambiguating generic structured data (e.g., XML, web directories, and 

ontologies). The authors consider that a node’s context definition depends on the nature 

of the data and the application domain at hand. They propose various edge-weighting 

heuristics (namely a Gaussian decay function) to identify crossable edges, i.e., nodes 

reachable from a given node through any crossable edge belong to the target node’s 

context. Consequently, structure disambiguation is undertaken by comparing the target 

node label with each candidate sense (semantic concept) corresponding to the labels in 

the target node’s context (using an edge-based semantic similarity measure [43], 

following the hypernymy/hyponymy relations in WordNet) in order to identify the 

highest matching semantic concept. 

Another concern in XML-based WSD is how to effectively process the context of an 

XML node taking into account the structural dispositions of XML data. In fact, most 

existing WSD methods developed for flat textual data [42, 53], and those developed for  

XML-based data [70-73], follow the bag-of-words paradigm where the context is 

processed as a plain set of words surrounding the term/label (node) to disambiguate. In 

other words, all context nodes are treated the same, despite their structural positions in 

the XML tree. We encountered an approach in [49] which extends the traditional bag-

or-words paradigm with additional information considering distance weights separating 

the context and target nodes (identified as relational information model [49]). The 

authors employ a heuristic Gaussian distance decay function estimating edge weights 

such that the closer a node (following a user-specified direction, e.g., ancestor, 

descendent, or both), the more it influences the target node’s disambiguation [49]. The 
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semantic contribution of each context node is weighted by its position in the context 

graph of the target node. 

2.3. Query Semantic Analysis and Disambiguation 

Semantic query analysis in information retrieval usually involves two steps: i) WSD to 

identify the user’s intended meaning of query terms, and ii) semantic query 

representation/expansion in order to alter the query so that it achieves better (precision 

and recall) results [67]. As described in the previous section, traditional semantic 

analysis and disambiguation techniques usually rely on the notion of context such that 

terms (e.g., node labels in the context of XML) that appear together in the same context 

have related meanings [11]. While context-based solutions are applicable with classic 

IR queries which are rather lengthy (e.g., 15 terms on average for short queries [91], 

reaching up to 50-85 terms for long queries [12]), nonetheless, keyword queries on the 

Web are usually 2-3 words long [15] which is generally insufficient in identifying a 

meaningful context [42, 49]. In fact, lexical ambiguity with Web search is often the 

consequence of the low number of query words entered on average by Web users [40]. 

Therefore, some sort of user interaction is usually required to counter the lack of 

contextualization, and more accurately identify the intended senses of Web query terms 

[24, 89].  

Various methods for interactive keyword querying have been proposed in the 

literature, e.g., [41, 66] [30, 74]. Most existing approaches are corpus-based in that they 

expand user queries by adding words that co-occur with the query terms in a given 

corpora, i.e. words that, on a probabilistic ground, are believed to describe the same 

semantic concept (e.g. car and driver). Here, expansion terms are usually identified 

from i) user feedback: extracting frequent terms occurring in previous results deemed 

relevant by the user [41, 66], and/or ii) query logs: identifying frequent terms in the 

document collection based on the associations between past queries and the documents 

downloaded by the user [30, 74]. Yet, the extensive training and huge corpora 

requirements of corpus-based methods makes them less practical in the context of Web 

search applications, which has led to a growing interest in knowledge-based solutions 

[35, 61]. The latter family of methods investigates the use of ontological information to 

assist the user in formulating and/or expanding keyword queries by: i) allowing user 

interaction to identify the intended senses of query-terms, and then ii) 

expanding/modifying query keywords via their most related semantic concepts in the 

reference semantic source (e.g., WordNet) [67].  

Following [14], a keyword query is first processed for lexical normalization, and then 

presented to the user as a set of lexical tokens, where each token is associated with a set 

of possible semantic meanings (identified using WordNet and/or domain specific 

ontologies). Consequently, the user is asked to select the most relevant sense for each 

lexical token. The system then exploits the selected user senses to reformulate the query 

using dedicated heuristics (e.g., replacing actual keywords via their synonyms with 

highest frequency of usage in WordNet, identifying negative keywords, i.e., the terms 

corresponding to the highest frequency synset remaining beside the one selected by the 

user, etc.), thus obtaining a semantically augmented keyword query. A similar approach 

is adopted in [45] with a special emphasis on failed-query reformulation. The authors in 

[45] assume that the reformulation of a failed query without help from the system can 
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be frustrating to the user, and thus suggest to assist the later by proposing semantically 

meaningful keywords selected from WordNet (using heuristics similar to those adopted 

in [14]). The method in [45] is developed in the context of the NALIX project for 

building an interactive natural language interface for querying XML [44]. 

A fully automated approach to knowledge-based query disambiguation is introduced 

in [54], where the authors exploit structural pattern recognition [25] in mapping query 

keyword senses. The proposed method creates a local semantic network for each 

keyword-sense in the query, including most semantic relations utilized in WordNet [28] 

(hypernymy, hyponymy, meronymy, etc.). Then, for each possible configuration of 

senses, the system identifies the intersections between corresponding pair-wise local 

semantic networks using an adapted structure pattern recognition algorithm. Common 

nodes are those that can be reached through both semantic networks being compared. 

The configuration with the highest intersection score (i.e., highest number of 

intersecting nodes) is selected as the one encompassing the most relevant keyword 

senses. In a subsequent step, the authors propose various heuristics to expand the query 

using synset, hyponymy and/or gloss information. Experimental results in [54]  show a 

26.85% improvement in retrieval precision over the plain query words.  

Note that most existing studies targeting knowledge-based query semantic analysis, 

e.g., [35, 61] [14, 45, 56], do not evaluate the complexity (or execution time) levels of 

their proposed methods. Nonetheless, time complexity is critical for on-the-fly 

execution on the Web (in comparison with document semantic analysis which could be 

performed offline). The time complexity of query semantic analysis might even prove to 

be problematic in the case of the pattern recognition-based methods [19, 54], since 

traditional structure pattern recognition problems are usually of exponential complexity 

[25, 58]. 

3. Proposal Overview 

Semantic similarity evaluation between two terms usually consists in looking up each 

term’s lexical concept in a reference knowledge base (e.g., a semantic network such as 

WordNet), and consequently comparing the underlying concepts. Nonetheless, semantic 

similarity evaluation has been proven to be an expensive task: comparing two semantic 

concepts following one of the most prominent semantic similarity measures in the 

literature, i.e., [47], requires O(|SN|×Depth(SN)) time where |SN| is the size (i.e., 

cardinality in number of concepts) of the reference semantic network SN, and 

Depth(SN) its maximum depth. Evaluating the semantic similarity between query 

keywords and each label/term in the XML document collection becomes extremely 

complex, and practically unfeasible. 

A way of getting round the complexity problem would be to perform semantic 

analysis of the XML document collection, offline, and prior to the retrieval phase. This 

consists in transforming the XML documents into weighted semantic trees (graphs), and 

transforming and expanding the keyword query into a set of weighed semantic concepts. 

Consequently, an adapted XML IR engine (cf. Section 6) processes the semantically 

indexed documents and queries, so as produce more meaningful results. Our semantic 

analysis processes are depicted in Fig. 2. 
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Fig. 2. Semantic analysis of XML document and keyword query 

Note that while semantic query indexing is performed online, XML document 

indexing is performed offline, and does not affect the complexity of the approach. As 

shown in Fig. 2, semantic indexing consists of three main phases: i) Linguistic 

Normalization, ii) Sense Disambiguation, and iii) Semantic Representation. While the 

first phase (Linguistic Normalization, including tokenization, expansion, stop word 

removal, and stemming) is similar for both document labels and query keywords, yet, 

we design the latter two (sense disambiguation, and semantic representation) differently 

following the data models and requirements at hand. Sense disambiguation usually 

relies on the notion of context, where terms that appear together in the same context 

have related meanings [11]. While context information is available for XML document 

nodes (e.g., the context of a node could be its parent node, its root path, the whole 

document tree containing the node, etc.), yet, keyword queries on the Web are usually 

two-to-three words long [15] which is generally insufficient in identifying a meaningful 

context [42, 49]. Hence, we introduce two different methods for document and query 

sense disambiguation: i) Context-based Sense Disambiguation (CSD) for XML 

documents, ii) Global Sense Disambiguation (GSD) for keyword queries.  

In the following, Sections 4 and 5 present the XML document semantic analysis and 

the keyword query semantic analysis processes respectively 

4. Semantic XML Document Analysis 

Our XML document semantic analysis process consists in: i) disambiguating each label 

following its context, to associate each label with the proper semantic concept in the 

reference knowledge base (e.g., WordNet), and ii) producing a semantically indexed 

XML tree, with the corresponding index structures and pair-wise concept semantic 

weights, to be consequently utilized in the query processing task. We describe the latter 

in the following sub-sections. 

4.1. XML Data Model 

XML documents represent hierarchically structured information and are generally 

modeled as ordered labeled trees (cf. Fig. 3). In a traditional DOM (Document Object 

Model) ordered labeled tree [87], nodes represent XML elements, and are labeled with 

corresponding element tag names, ordered following their order of appearance in the 

document. Attributes usually appear as children of their encompassing element nodes, 

sorted by attribute name, and appearing before all sub-element siblings [57, 93]. Other 
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types of nodes, such as entities, comments and notations, are commonly disregarded in 

most XML comparison approaches, e.g., [22, 36], since they underline complementary 

information and are not part of the core XML data. 

 

Fig. 3. A sample XML document with corresponding tree 

In general, element/attribute values are disregarded when evaluating the structural 

properties of heterogeneous XML documents (originating from different data-sources 

and not conforming to the same grammar), so as to perform XML structural 

classification/clustering [22, 36, 57, 59] or structural querying (i.e., querying the 

structure of documents, disregarding content [10, 63]). Nonetheless, values are usually 

taken into account with methods dedicated to XML change management [18, 20], data 

integration [32, 46], and XML structure-and-content querying applications [64, 65], 

which is the main application in our current study. More formally: 

Definition 1 - XML Tree: We represent an XML document as a rooted ordered 

labeled tree T = (NT, ET, LT, T, gT) where NT is the set of nodes in T, ET  NT × NT is 

the set of edges (element/attribute containment relations), LT is the set of labels 

corresponding to the nodes of T (LT = ElT U EvT U AlT U AvT such as ElT (AlT) and EvT 

(AvT) designate respectively the labels and values of the elements and attributes of T), 

T is the set of data-types associated to the elements and attribute nodes of T (T= 

{Concept} U E U A, having E = A = {Text, Number, Date}), and gT is a function 

gT : NT LT, T that associates a label lLT and a data-type tT to each node nNT. 

We denote by root(T) the root node of T, and by T’  T a sub-tree of T ● 

Value data-types in the XML tree model are extracted from the corresponding XML 

schema. In other words, during XML tree construction time, the XML document and 

corresponding schema are assessed simultaneously so as to build the XML tree. Textual 

values are treated for stemming and stop word removal, and are mapped to leaf nodes of 

type Text in the XML tree. Numerical and date values are mapped to leaf nodes of types 

Number and Date respectively. As for the disambiguated element/attribute nodes, they 

are assigned the data-type Concept, their labels corresponding to the semantic concepts 

defined through the reference knowledge base. To model the XML data repository, we 

connect all XML trees to a single root node, with a unique label (e.g., ‘Root’). 
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4.2. Semantic Knowledge Representation and Indexing 

Semantic knowledge bases (i.e., thesauri,  taxonomies, and/or Ontologies such as 

WordNet [51], Roget’s thesaurus [90], and Yago [37]) provide a framework for 

organizing words/expressions into a semantic space [13]. A knowledge base is usually 

modeled as a semantic network made of a set of entities representing semantic concepts 

(or groups of words/expressions), and a set of links between the entities, representing 

semantic relationships (synonymy, hyponymy, etc.). We adopt a graph-based structure to 

model a semantic network from, where entities are represented as vertices, and the 

semantic relationships between entities are represented as directed edges. Formally:  

Definition 1 -– Semantic Network: A semantic network is represented as a graph 

SN (V, E, L, fV, fE) where: 

 V is a set of vertices (nodes), designating entities in the semantic network. V 

includes both: i) sense nodes, representing semantic senses (synsets) with glosses, 

and ii) term nodes, representing literal words/expressions. 

 E is a set of directed edges, an edge consisting of an ordered pair of vertices in V.  

 L is a set of edge labels denoting semantic/lexical relationships. For WordNet, L 

includes: semantic relationships between concepts (e.g., hyponymy, hypernymy, 

meronymy), semantic relationships between concepts and terms (e.g., has-sense 

and has-term), and  lexical relationships between terms (e.g., derivation). 

 fV is a function defined on V, designating the string value of each node in V. For 

WordNet, string values include: i) glosses/definitions, when dealing with sense 

nodes, and ii) and literal words/expressions,  

 fE is a function defined on E, assigning a label from L to each edge in E. Multiple 

edges may exist between the same pair of vertices when dealing with term nodes, 

which makes SN a multi-graph  

An extract from the WordNet lexical ontology is shown in Fig. 4, where S1, S2 and S3 

represent senses (i.e., synsets), and their string values (i.e., the synsets’ 

glosses/definitions), and T1, T2, …, T11 represent terms, and their string values (i.e., 

literal words/expressions) shown along aside the nodes. Given that most 

semantic/lexical relationships are symmetrical (hyponymy/hypernymy, 

meronymy/holonymy, has-sense/has-term, etc.), and given that a relationship cannot 

exist without its symmetrical counterpart, we simplify our graph model by representing 

each couple of symmetrical relationships between senses and/or terms with one edge 

having opposite directions (instead of two edges), labeled with the names of the 

symmetrical relationships.  

A simple inverted index InvIndex(SN) can be subsequently built for the textual 

tokens of each SN entity (i.e., string values of term nodes and sense nodes, cf. Fig. 4b) 

to speed up term/sense lookup when creating and then querying the XML structure. 
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 a. Sample graph SN representing an extract from WordNet 
 

Term Sense IDs[] 

“acid” S1, S3 

“clean” S2 

“light” S2 

“lsd” S3 

“lysergic” S1, S3 

“window pane” S1 

… … 
 

b. Extract of inverted index 

InvIndex(SN) connecting terms 

in SN with corresponding senses 
(to speed up term/synset 

lookup) 

Fig. 4. Extract from the semantic graph of WordNet, with the corresponding index 

4.3. XML Context-based Sense Disambiguation 

Our XML sense disambiguation approach was introduced in [17, 78]. Here, we only 

provide an overview of the approach describing the constructs and methods required in 

our current study.  

Different from previous approaches which limit XML context to the parent node [72, 

73], to the root node path [70, 71], to the node sub-tree [85], or to nodes reachable 

through heuristically identified crossable edges [49], we introduce the notion of XML 

Sphere-Ring context, inspired from the sphere-search paradigm in XML IR [31], to 

consider the whole structural surrounding of an XML node, including its ancestors, 

descendants, and siblings, tuned to better describe the node’s context. An XML ring 

w.r.t. to a given node consists of the set of nodes situated at a specific distance from the 

center node. An XML sphere encompasses all rings contained at distances lesser or 

equal to the size (diameter) of the sphere. The size of the XML sphere is tuned 

following the nature of the XML data at hand (e.g., certain XML trees might underline 

specialized and domain-specific data, and thus would only require small contexts so as 

to achieve relevant WSD results, whereas more heterogeneous and generic XML data 

might require larger contexts to better describe the intended meaning of each node 

label). 

In addition, we extend the traditional bag-of-words WSD paradigm, adopting a 

relational information approach, i.e., considering the interconnections among XML 

nodes in computing disambiguation scores (in contrast with the classic bag-of-words 

approach [70-73], where all context nodes are treated as a homogeneous set of words 

regardless of their proximity/relations with the target node). We consider the structural 

distance separating the center node and each of its context nodes, following the intuition 

that the farther the context node from the sphere center, the lesser should be its impact 

in determining the semantic meaning of the center node label. Formally, consider Rd(n) 

to be the ring corresponding to the center node n at distance d, i.e. the set of all nodes 

whose distance from n is d. Hence, the context sphere SD(n) of node n, with size D, 

consists of all the rings contained in SD(n), such that SD(n) = {all Rd(n) / d  D}. 

Following our Sphere-Ring context model, node scores can be weighted following the 

sizes of the sphere rings to which they correspond, such that the larger the sphere ring 
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radius, the lesser the node weight. Hence, we can represent the context of a node n as a 

weighed vector, whose dimensions correspond to the all distinct nodes in its sphere 

context, weighted following their distances from the center node. In short, our approach: 
- Integrates all notions of XML context, including ancestor, decedent, and sibling 

structural relations, which were considered separately in existing studies [70-73, 
85], 

- Allows the user/system administrator to manually and/or automatically tune the 
size of the XML context window following the nature and properties of the XML 
data at hand, in comparison with most existing static methods [70-73, 85], 

- Extends the traditional bag-of-words WSD paradigm, adopting a relational 
information approach so as to consider the interconnections among XML nodes in 
computing disambiguation scores, in contrast with most existing methods using the 
traditional bag-of-words approach [70-73]. 

Once the contexts of all XML nodes have been determined, we process each target 

node label and its context node labels for WSD. Here, we evaluate the semantic 

similarity/relatedness between the target node label and each of its context node labels, 

by comparing the node’s context with the context of each of its potential senses, 

extracted from the reference semantic source (a similar paradigm is utilized in [85] for 

XML node annotation). The idea is to first identify all possible senses of the target word 

node label in the reference semantic network. Consequently, we exploit the same notion 

of Sphere-Ring, which we adopted for XML trees (graphs), to identify the context of 

each potential sense in the reference semantic network (e.g., WordNet). Having 

computed the weighted context for the XML target node in the XML document tree 

(graph), and each of its possible senses in the semantic network, we compute the 

similarity between the node vector and each of its sense vectors. The sense vector 

yielding the highest similarity would underline the most meaningful sense describing 

the XML node label. This approach requires polynomial complexity: 

O(|senses(x.)|×(|SD(n)|+|SD(sp)|)), where |SD(sp)| designates the maximum context 

sphere cardinality for any sense (concept) in the semantic network. 

Note that to our knowledge, existing approaches have seldom provide a complexity 

and time performance analysis of their WSD methods. Despite being performed offline, 

nonetheless, WSD time performance remains potent w.r.t. practicability, when indexing 

documents published on Web. The proposed approach has to be: i) effective in 

identifying the correct senses, but also ii) reasonably efficient in order to be practically 

applied to the large corpora of XML documents published online. Here, the complexity 

of our combined XML sense disambiguation approach is polynomial and simplified to 

O(|X|×|senses(x.)|×(|SD(n)|+|SD(sp)|)), where |X| represents the number of nodes to be 

disambiguated in the target XML document. 

4.4. XML Document Semantic Indexing 

Having disambiguated all XML labels, the latter are replaced with their corresponding 

semantic concepts extracted from the reference semantic network (e.g., WordNet). 

Dedicated index structures (Concept-Doc and Concept-SN indexes [79-81], cf. Fig. 5) 

are utilized to handle the mapping between XML document labels and semantic 

network concepts. The output of the semantic document indexing process is a 

conceptual XML tree, i.e., an XML tree which labels consist of concepts with explicit 
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semantic definitions (which is at the core of the vision of the Semantic Web: Extending 

the WWW by giving information well defined meaning [76]). 

Given an data collection C, an inverted index (also referred to as a posting file, or 

inverted list) built upon C, is (in its most basic form) a sorted list of index terms 

associated each with a set of object identifiers from C, disregarding structural 

information. In this study, we extend the basic inverted index to handle semi-structured 

data elements, introducing an element-attribute (OA) index:  

Definition 2 - Element-Attribute (EA) Inverted Index: Given a XML data 

collection C, an EA inverted index built on C, denoted as InvIndexEA(C), is a structure of 

the form (dom(A), EAs, f) where: 

 dom(A) designates the set of values within the domains of all attributes  Aj  

C.A. Considering text-only domains, values come down to textual tokens, i.e., 

terms (words/expressions), 

 EAs designates the set of element (identifier)-attribute doublets, i.e., EAs = 

{(id(Ei), Aj)}   Ei  C  and   Ej  C.A /  Ei .aj  , where Aj is an attribute for 

which object Ei has a non-null value, 

 f is a function mapping each term  dom(A) with a list of element-attribute 

doublets EAs[] designating the term’s occurrence locations in C, i.e., EAs[] =  

(id(Ei), Aj)   / term  Ei .aj   

A term used as textual token in the inverted index is referred to as index term, 

whereas the list of element-attribute doublets, i.e., EAs[], mapping to each index term is 

referred to as the term’s posting list  

Consequently, we compute the semantic relatedness between each pair of node 

concepts in the XML tree. The idea is to produce a semantically weighted XML tree to 

be consequently exploited in keyword query processing (cf. Section 6). Here, various 

semantic similarity measures can be used (as briefly mentioned in the previous section): 

i) edge-based measures (computing semantic similarity based on the distance separating 

the concepts in the semantic network) [88], ii) node-based (computing semantic 

similarity based on the information content of each concept in the semantic network, 

w.r.t. a given text corpus) [47], and iii) gloss-based (comparing the glosses associated 

with each concept definition in the semantic network)  [8]. Gloss-based approaches are 

particularly interesting in the context of WSD since they allow ‘semantic relatedness’ 

evaluation, which is a more general notion than ‘semantic similarity’, including the 

latter as well as any kind of functional relation between terms [39] (e.g., penguin and 

Antarctica are not necessarily similar, but they are semantic related due to their natural_ 

habitat connection), particularly antonymy (e.g., hot and cold are semantically 

dissimilar since they have opposite meanings, but they are semantically related). 

A simple example depicting the semantic indexing of a sample XML tree is shown in 

Fig. 5. The sample XML document describes the movie Rear Window, one of Alfred 

Hitchcock’s masterpieces. While the XML labels seem meaningful and straightforward 

for a human user, nonetheless, they are highly ambiguous for a computer system. Most 

labels can be associated with more than 2 or 3 semantic senses (concepts) in WordNet 

reference. For instance, the label Stewart is associated with 2 semantic concepts: i) 

James Stewart (the leading actor who starred in Rear Window), and ii) Dugald Stewart 

(an 18
th

 century Scottish philosopher). Likewise for most remaining labels in the input 

tree (e.g., Kelly underlines 3 semantic concepts, among which is Grace Kelly, the co-
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star of Stewart in Rear Window; plot underlines 4 different senses, among which movie 

plot, etc.).  

Recall that semantic XML document indexing is performed offline, as a pre-

processing step prior to query evaluation, and does not affect the online computational 

complexity of the approach. 

 

Fig. 5. Semantic analysis of XML document 

5. Semantic Query Analysis 

While semantic XML document analysis relies on the notion of XML context (e.g., the 

surroundings of a given node) in identifying the meanings of XML labels, nonetheless, 

semantic keyword query analysis differs in the lack of sufficient contextualization 

(keyword queries on the Web are usually 2-3 words long [15], which might not be 

sufficient in identifying a meaningful context [42, 49], cf. background in Section 2). To 

get round the lack of keyword contextualization in identifying meaningful query 

keyword senses, we introduce a method to global query sense disambiguation. Our 

proposal is based on the following assumption: A keyword query on the Web usually 

conveys a certain global semantic meaning, reflecting a certain global information 

need. Hence, rather than analyzing the individual senses of each query-term separately, 

considering each term’s context information (similarly to most existing approaches, 

e.g., [35, 61]), we evaluate the aggregate semantic meaning of the query as a whole such 

that: the higher the semantic homogeneity of the query, the higher the consistency of the 

unified global semantic meaning conveyed by the query, and thus the more likely the 

query reflects the user’s need. This is in accordance with the traditional assumption in 

WSD: the most plausible assignment of senses to multiple co-occurring words is the one 

that maximizes the relatedness of meaning among the chosen senses [52]. 
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In short, we disambiguate the query as a whole, by i) pinpointing all possible 

configurations of query-term senses, and ii) consequently estimating a global semantic 

relatedness score (given a reference information source, e.g., WordNet) for all senses 

combined in each configuration. The configuration with the highest score would 

underline the most semantically meaningful query. Global query sense ranking can also 

be performed to identify the top most meaningful query sense configurations.  

A major problem with the above approach is its computational complexity. In fact, 

computing semantic similarity/relatedness for all possible sense configurations for a set 

of lexical terms was shown to be intractable [52] due to its best case exponential 

complexity (i.e., O(senses(k)
N
) where N is the number of query keywords, and senses(k) 

is the maximum number of senses per keyword). A few approximation methods have 

been proposed, such as computing pair-wise keyword similarities [52], and evaluating 

the similarity between each keyword sense and all remaining node senses [9]. 

Nonetheless, in contrast with existing approximation solutions, e.g., [9, 60], we 

introduce a sense disambiguation method to solve the computational complexity 

described above, producing optimal results similarly to the initial (exponential 

complexity) approach, while confining to polynomial complexity. We do so by 

transforming the problem of identifying all possible sense configurations, into that of 

identifying the shortest (semantic) path in a (semantically) weighted graph, using an 

adaptation of Dijkstra’s shortest path algorithm [21]. In short, we capitalize on 

Dijkstra’s polynomial computation approach to eliminate all unnecessary similarity 

computations, while still considering all possible query sense configurations. 

Our query semantic analysis approach is described in the following sub-sections. 

Sub-section 5.1 presents our global query sense disambiguation approach, while Sub-

section 5.2 describes our semantic query representation method. Recall that linguistic 

normalization (including tokenization, expansion, stop word removal, and stemming) is 

similar for both XML documents labels and query keywords, and will not be discussed 

hereunder 

5.1. Structure-and-Content Query Model 

In addition to the keyword query model, we put forward a structure-and-content query 

model to allow a higher level of expressiveness in querying semi-structured XML data. 
We suggest a simple model consisting of an XML tree variant with special leaf nodes to 

represent query predicates. A query with an Or logical operator is decomposed into a 

disjunctive normal form [64], and is thus represented as a set of XML trees, corresponding to 

the set of conjunctive queries. 
Definition 3 – Structure-and-Content Query: It is expressed as an XML tree, Q 

= (NQ, EQ, LQ, TQ, gQ, nd) encompassing a distinguished node nd underlining the 

matches in the data tree that are required as answers to the query (i.e., the query’s return 

clause). The query’s root node R(Q) designates its search scope/context. Its set TQ 

encompasses the node type for distinguishing disambiguated XML nodes, and predicate 

types P_ti corresponding to every value data-type ti considered in the data model (e.g., 

TQ = {Concept} U {P_Text, P_Number, P_Date}) ●  

Definition 4 - Query Node: It is a XML tree node with additional properties to 

represent predicates. With n.t = P_ti (predicate corresponding to data-type ti), the node’s 
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label n.l underlines a composite content made of the predicate operator n.l.op and value 

n.l.val (e.g., leaf node Q1[2] of query Q1 in Fig. 6 is of Q1[2].l.op = ‘<’ and Q1[2].l.val 

= ‘1965’, having Q1[2].t = P_Date, which underlines that the predicate value ‘1965’ is 

of type Date) ●   

 

Fig. 6. Sample XML query trees 

Note that each data-type has its own set of operators (e.g., {=, , ≤, , ≥, ≠} for 

numbers and dates, and {=, like} for text). Sample query trees are depicted in Fig. 6. 

Recall that query trees can be constructed via a dedicated GUI, which would suggest, 

on-the-fly, the list of possible query nodes following the context of the query at hand. 

Definition 5 – Predicate Satisfaction: Given a predicate XML query node qi, and 

a data node sj, sj satisfies qi (sj  qi) if: 

 The data node type corresponds to that of the query (si.t  qi.t, i.e.,  tr 
{Text, Number, Date},  qi.t = P_tr  sj.t = tr), 

 The data node label sj.l verifies the logical condition defined by qi.l ● 
For instance, leaf node T[13] of data tree T2 in Fig. 3, having T2[13].l = ‘1954’ and 

T2[13].t = ‘date’, satisfies predicate node Q1[2] of query Q1 in Fig. 6, with Q1[2].l = 

‘<1965’  and Q1[2].t = ‘date’. 

Definition 6 - Query Scope: Given a structure-and-content query Q, the scope of 

Q is identified by its root node R(Q), and corresponds to the XML sub-trees, in the data 

collection, having identical or semantically similar root nodes as that of the query ● 

We assume that the user defines, with the query, the kind of XML data she is looking 

for, i.e. the scope/context of her query. If for instance the root of the query is labeled 

University, then XML data in the context of XML data entity University, or 

semantically similar entities such as College, Academy, etc., would naturally interest the 

user. 

Definition 7 - Template and Minimal constraint querying: An structure-and-

content query Q could be either evaluated as a i) template of the XML data the user is 

searching for, ii) or could represent the minimal constraints the data should meet to 

belong to the query answer set. In the former case, all query and data nodes would be 

considered in query/data similarity evaluation. Following the latter strategy, only 

elements required by the query tree are taken into account in query/data similarity 

evaluation, additional elements in the data tree being disregarded in the evaluation 

process ● 

Note that XML queries most likely follow the minimal constraint style, the user 

usually specifying her information needs in the simplest form possible (cf. queries Q1, 


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Q2 and Q3 in Fig. 6). Nonetheless, template querying could be particularly useful in 

search-by-document and search-by-image systems for instance, where the query could 

be a whole document or an SVG image [62] the user is searching for in the XML 

repository. A template style query could be any of the sub-trees in the XML tree of Fig. 

3. 

5.2. Global Query Sense Disambiguation 

As mentioned previously, we assume that a query on the Web conveys a certain global 

semantic information request. The main objective is to associate each query-term with 

the appropriate semantic sense (concept) maximizing global query sense homogeneity. 

To do so, we proceed as follows: 

Step 1 – Identifying Keyword Senses: The first step consists in identifying the set 

of possible senses corresponding to each individual query-term (keyword). Formally, 

for each keyword kr, we obtain a set of senses Sr = {s
r
1, s

r
2, …, s

r
|Sr|} where s

r
i underlines 

the ith possible sense of keyword kr extracted from the reference semantic network (e.g., 

WordNet), and |senses(kr)| the maximum number of possible senses corresponding to kr. 

This first step is similar to most existing semantic based approaches, and the process is 

applied to structure-and-content queries. 

Step 2 – Building the Semantic Query Graph: Having identified all possible 

senses for each query-term, we construct a semantic graph where each node represents 

of a possible keyword sense. The graph is structured in different layers, such that: 
i. Each layer corresponds to a query-term, and consists of nodes representing all 

possible semantic senses for that query-term,  
ii. The layers are ordered following the order of appearance of the query-terms in 

the keyword query, 
iii. Nodes within the same layer (i.e., representing possible senses for the same 

term) are not connected to each other. In fact, same layer nodes underline senses 
of the same query-term and thus should not appear simultaneously in the same 
path (i.e., same query sense configuration),  

iv. Each pair of nodes corresponding to two consecutive layers (i.e., describing the 
possible meanings of two consecutive query-terms), are connected together via 
a weighted edge, underlining the semantic distance (as an inverse function of 
semantic similarity/relatedness) between node senses,   

v. Two virtual start and end nodes are added to the graph, connected to the nodes 
of the first/last graph layers respectively, via edges of null distances. These are 
introduced to guide the execution process of our adapted shortest path discovery 
algorithm (described hereunder), 

vi. With content-and-structure queries, the query tree structure is considered when 
ordering the query nodes. 

Step 3 - Identifying the Shortest Semantic Path: Consequently, the problem of 

identifying the most homogeneous configuration of query-term senses, simplifies to that 

of identifying the shortest semantic path in the semantic query graph. Here, we 

introduce an adaptation of Dijkstra’s famous shortest path algorithm [21]. Our approach 

can be summarized as follows: 
i. Initialize node distance scores such that: the start node score is set to zero, and 

all other node scores are set to infinity, 
ii. Mark all nodes as unvisited, and set the start node as current node, 
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iii. For current node nc, calculate the semantic distance with each of its connected 
nodes nj in the consecutive layer, and preserve minimum distance scores, i.e., 
for each nj,  Dist(nj) = Min{ Dist(nc) + Weight(Egde(nc, nj)), Dist(nj) }, 

iv. When scores for all nodes connected to the current node nc have been computed, 
nc is marked as visited. A visited node would have a minimal and final distance 
score, 

v. Select the unvisited node with the smallest distance score (from the initial node, 
considering all nodes in the graph) as the current node and continue from step 3, 

vi. Terminate the algorithm when end node is deemed visited. 
Consider keyword query ‘Stewart Mystery Films’ (a similar process is applied to 

structure-and-content queries). The corresponding semantic query graph, built based on 

query-term semantic senses extracted from WordNet [50], is depicted in Fig. 7. Each 

graph layer corresponds to a query-term, and each node in a given layer underlines a 

semantic sense (concept) corresponding to the term at hand. The weight of an edge 

underlines the semantic distance between the connected nodes. Semantic distance can 

be computed as an inverse function of semantic similarity/relatedness, e.g., DistSem = 1 - 

SimSem. Recall that we adopt an aggregate semantic similarity/relatedness function 

combining edge-based methods [88], node-based methods [47], and gloss-based 

methods [8], w.r.t. WordNet. For ease of presentation, Fig. 7 shows sample semantic 

weight values for some (and not all) of the graph edges (e.g., weight(edge(n1, n4)) = 0.3 

indicating that semantic concepts James Stewart and Mystery story are more similar 

than James Stewart and Enigma, having weight(edge(n1, n3)) = 0.5). 

 

Fig. 7. Semantic analysis of keyword query 

The result of applying our adapted shortest path algorithm to the semantic query 

graph in Fig. 7 is highlighted in the graph, and consists of nodes: n1, n4 and n5. These 

underline the (WordNet) semantic concepts maximizing global query sense 

homogeneity: James Stewart, Mystery story, and Movie. 

5.3. Semantic Query Representation 

Having identified the best (i.e., most homogeneous) query sense configuration, we 

represent the query as a set of weighted semantic concepts (i.e., key-concepts), allowing 

the user to semantically expand the query, including additional concepts related to those 

originally conveyed by the query, in order to improve search result precision/recall.  
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Formally, a user keyword query Q consisting of a sequence of lexical keywords kr,  

Q = p k1, k2, … kN f is transformed into a semantic query representation QSem 

consisting of a set of weighted concepts, QSem(D)= {(c1, w1), (c2, w2), …, (cM, wM)} 

where ci is a key-concept, wi is the weight of ci, and D is the query semantic depth 

parameter. The number of resulting key-concepts M  N since additional key-concepts 

can be added following the user-chosen D expansion parameter as explained in the 

following. Semantic query expansion is performed using our Sphere-Ring model (cf. 

Section 4.1) to consider the semantic context of each query key-concept in the reference 

semantic network (e.g., WordNet). Note that the semantic contexts of query concepts 

can be determined, since the latter have already been disambiguated (as opposed to the 

pre-disambiguation keyword query where the semantic meanings of query-terms were 

undefined). The idea is to expand the query with additional concepts within the 

semantic vicinity of the original query key-concepts. Following our Sphere-Ring model, 

a semantic ring Rd(c) w.r.t. to a given concept c consists of the set of concept nodes, in 

the reference semantic network, situated at a specific distance d from the target concept 

node c. The semantic context sphere SD(ci) encompasses all semantic rings contained at 

distances lesser or equal to the size (diameter D) of the sphere, such that SD(c) = {all 

Rd(c) / d  D}. The sphere context size is specified by the user as a query semantic 

depth parameter: 
- For D = 0, the query is represented with it original key-concepts, associated 

maximum (unit, =1) weights, 
- For D > 0, the query is expanded with concepts situated within each original key-

concept’s semantic sphere (in the reference semantic network). Expanded query 
concepts are weighted such that concepts farther away from the semantic sphere 
center have a larger semantic distance w.r.t. the sphere’s center, and hence should 
have a lesser impact on the query’s semantic meaning. Following our Sphere-Ring 
context model, concept weights can be computed following the sizes of the sphere 
rings to which they correspond, such that the larger the sphere ring radius, the 
lesser the concept weight (e.g., a given weight decay function could be computed 
as weight(ci) = wi = 

 

     
  [0, 1] having ci  Rd(c)  SD(c)). Note that parameter D 

can be normalized in the [0, 1] interval, following the maximum depth of the 
reference semantic network SN at hand (e.g., 

 

         
 ), to simplify the user’s task 

in specifying the expansion threshold. 
Consider for instance the sample keyword query Q = ‘Stewart Mystery Films’: 

- For D = 0, QSem(0) = {(James Stewart, 1), (Mystery story, 1), (Movie, 1)}, 
 

- For D = 1, the resulting query representation includes all semantic concepts 

appearing in the unit (D=1) semantic context spheres of each original key-

concept. Here, following the WordNet extracts in Fig. 8, the semantic context of 

concept James Stewart includes concept Actor (cf. Fig. 8.a). Likewise, the 

semantic context of concept Mystery movie includes Story, Detective story and 

Murder story (Fig. 8.b). The semantic context of concept Movie includes Show, 

and 17 children (hyponym) concepts including Telefilm, Feature film, Final cut, 

Home movie, etc., (the remaining child concepts are omitted here for ease of 

presentation, cf. Fig. 8.c). The weights of all expanded concepts are equal to 
 

     
 = 

 

     
 = 0.5, following our adopted decay function. Hence, the semantic query 

becomes:    
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QSem(1)={ (James Stewart, 1), (Actor, 0.5), (Mystery story, 1),  
                (Story, 0.5), (Detective story, 0.5),  
                (Murder story, 0.5), (Movie, 1), (Show, 0.5),  
                (Telefilm, 0.5), (Final cut, 0.5), (Home movie, 0.5) } 

The time complexity of our global query disambiguation approach comes down to 

that of the shortest path computation process, which comes down to almost linear 

O(N×log(N)) time where N=|SD(c)|×|Q|×|senses(kr)|. The latter simplifies to 

N=|SD(c)|×|senses(kr)| since |Q| is usually limited to 2-3 keywords [15] and can be 

omitted as a fixed parameter. 

 

Fig. 8. Taxonomy fragments extracted from WordNet, covering the key-concepts in our example 

6. Semantic Query Processing 

6.1. Candidate Answer Tree 

The first step in assessing a query is to identify its search scope. Following the 

traditional IR logic, whole physical files are considered as candidate answers. 

Nonetheless, XML documents differ in their structural organization and granularity: 

some documents may contain information about movies, while others include 

information about actors acting in many movies. Hence, it is not relevant to retrieve the 

entire movie when the user is searching for certain actors. Hence, the XML query search 

scope should be identified dynamically, considering the query at hand.  

Following our XML data and query models, the query scope can be identified as 

the set of XML data sub-trees (which we identify as Candidate Answer Trees, CATs), in 

the data repository, having identical, or semantically similar enough, root nodes as that 

of the query (i.e., same/similar label, with the same data-type). Consider for instance 

query Q1, searching for movies that have certain characteristics. When considering root 
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node identity, query Q1’s CATs would be all data sub-trees having root node movie. 

When taking into account semantic similarity, Q1’s CATs would also encompass subtree 

T1 of root node picture from Fig. 5. 

Definition 8. Candidate Answer Tree: Given an XML node similarity measure 

SimSemantic, and reference semantic network SN for evaluating the semantic similarity 

between XML concept and node labels, and a semantic similarity threshold α, the set of 

candidate answer trees QCAT, for a given query Q, in an XML data collection C, QCAT = 

{S / S  C   ((R(Q) = R(S)  if α =1)   SimSemantic(R(Q), R(S), SN) ≥ α otherwise)} ● 

The semantic similarity threshold also serves as a structural/semantic similarity 

parameter, underlying the extent of structural/semantic similarity considered while 

identifying candidate answers. It allows the user to assign more importance to the 

structural or semantic characteristics of XML data in answering the query at hand: 
 For α = 1, only CATs with root nodes identical to that of the query are the only 

ones considered. This corresponds to purely structural querying. 
 For 0 < α <1, CATs with root nodes of semantic similarity higher than α are 

considered. As α decreases, the size of the answer set QCAT will increase, 
following the semantic similarities between query and CAT root nodes. 

 For α = 0, all data sub-trees in the XML data collection are considered as 
CATs. 

As for the semantic similarity measure SimSemantic, it is evaluated w.r.t. the nodes’ 

constituents, i.e. their concepts and tag labels, where existing semantic similarity 

measures (e.g. Lin [47], Wu and Palmer [88]) can be exploited (cf. background in 

Section 2), taking into account the concerned reference semantic network. In our 

approach, our measure consists of a linear combination of Lin [47], and Wu and Palmer 

[88]), assigning equal weights to both measures. Other measures can be used according 

to the admin user’s preferences. 

6.2. Relevance Weight Function 

We introduce a set of weighting functions to assign weight scores to XML nodes and 

edges, allowing to weight and rank the candidate answer trees. Considering an XML 

node ni in the semantic XML tree, the weight of ni is computed according to the below 

formula where we consider “Fan-in” to be the number of nodes connected with the 

target XML node: 
 

WXMLNode(ni) = 

 

( )
    [0,1]

( ( ))
j index

i

j
v V

Fan in n

Max Fan in n
 






 (1) 

The rational is that an XML node is more important if it shares more links from other 

XML nodes. Given an XML edge  

j

ie  connecting XML nodes ni and nj in the XML tree, 

we define the weight of  

j

ie as follows:  

WXMLEdge (  

j

ie )= 1       ]0,1]
( )Label iFan out n




 (2) 

The weight of an XML edge is inversely proportional to the number of links from a 

certain node to another, taking into account the semantic relation type of the link at hand 

(e.g., parent-child, element-attribute, element-value). The rationale here is that an XML 

edge designates a stronger connection between two XML nodes when it carries most of 
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the descriptive power from the source node to the destination node, such that the source 

node has few other out-going connections. 

The scores of XML nodes/edges returned as query answers are computed using 

typical Diskstra-style shortest distance computations. Yet, instead of identifying the 

shortest (smallest) distance, we identify as answers XML sub-tree root nodes having the 

maximum similarity (similarity being the inverse function of distance) w.r.t. the starting 

nodes (mapping to keyword queries). In other words, given the sample CAT T in 0, with 

root node nd = root(T) and leaf nodes ni…j, we define the relevance score of nd w.r.t. ni…j 

as follows: 

...

XMLNode XMLEdge XMLNode XMLEdge

...
...

...
1 1W ( ) W ( ) W ( ) W ( )
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(7) 

 

where d(ni, nd) is the distance in number of edges between two nodes, and |ni…j| is the 

number of leaf nodes in the CAT T rooted at nd. In other words, in the following 

example, d(np, nd) =1, d(nj, nd) =2, and d(ni, nd) =3. 

 

Fig. 9. Sample node linkage in an XML candidate answer tree 

6.3. Semantic Query Processing 

Having transformed the XML document collection and the keyword query into 

meaningful semantic representations, XML semantic search comes down to identifying 

and ranking the most relevant semantic XML sub-structures encompassing the semantic 

key-concepts in the query. Our extended framework includes three query processing 

algorithms: i) the core semantic search algorithm and two other variants designed to 

improve: ii) user involvement, and iii) query efficiency: 
i. Core algorithm: titled Semantic Search and originally described in [84], it 

performs semantic-aware search using shortest path navigation in the SemIndex 
graph, 

ii. User involvement: Query-As-You-Type Search, allows users to manually choose 
the meanings of query keywords before performing semantic search, aiming to 
involve the user in improving search result quality, 
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iii. Query Efficiency: Parallel Semantic Search is a parallel processing 
(multithreading) version of SI_SS, aiming to reduce query execution time.  

6.4. Semantic Search 

Our main querying method is based on a structural clustering technique to group 

together key-concept occurrences, in the XML data collection, which are structurally 

close. Our objective is to identify and rank the most prominent candidate answer sub-

trees, in the XML data set, containing related occurrences of query key-concepts. Our 

semantic search algorithm is shown in Fig. 10 and is described below: 

Step 1 - Identifying concept occurrences: The first step consists in pinpointing 

the XML nodes, in the data collection, containing occurrences of the query key-

concepts. 

Step 2 - Performing XML node clustering: Having identified the XML nodes 

encompassing key-concept occurrences, we perform structural clustering [55] to group 

together the XML nodes which are closest in the XML tree. The algorithm is applied on 

the weighted distances separating concept occurrences (cf. Section 6.2). 

Step 3 – Constructing Answer Trees: We construct candidate answer trees based 

on the XML node clusters. An answer tree consists of the sub-tree rooted at the lowest 

common ancestor of all concept occurrences in the corresponding cluster.  

Step 4 – Ranking Answer Trees: Having identified the candidate answer sub-

trees, we rank them following their relevance to the query. Here, we utilize an 

integrated function combining various ranking criteria including i) weights of semantic 

concepts; ii) answer tree size (compactness), iii) common usage of senses (e.g., 

WordNet estimates the average usage frequency of word meanings in the English 

language, following the Brown corpus [29]), where the most commonly used senses are 

deemed more relevant in ranking results [49]. Other weighting functions can be used. 

 
 

Algorithm SemanticSearch 
Input:   T          // Semantic XML tree 

             K          // Set of query selection terms  

             D             // Sphere diameter designating query context size 
 

Ouput: NOut     // List of ranked trees from T designating query answers  

 
Begin 

 

NOut =                                                                                                                         
 

Step 0:  S = getSemanticQuerySenses(K)   // Global disambiguation 
 

For each term si  S                          // For each keyword sense                                                       

{                                                                                                                                       
Step 1: nIn = getNodeID(si, T)    // Identify concept occurrences              

Step 2: SP = PerformClustering(nIn, D, T)         

Step 3: Ninit = constructAnswerTree(SP, T)          
Step 4: NOut = rankAnswerTree(Ninit, T)                                                         

}                                                                                                                                  8 

   Return NOut 

                                                                                                                                   9 

End 
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Fig. 10. Pseudo-code of Semantic Search algorithm 

Note that the complexity of the semantic search algorithm comes down to the 

complexity of the structure clustering algorithm in Step 2. We utilize Lloyd’s heuristic 

algorithm [48] to bound clustering complexity to O(N  C  I) where N is the number of 

XML nodes to be clustered, C the number of produced clusters, and I the number of 

iterations to reach convergence. 

6.5. Query As You Type Search 

This algorihtm allows the user to choose the proper meaning for every query keyword, 

by allowing her to choose the intended sense from the set of all possible senses provided 

by WordNet. Once the senses have been chosen, the algorithm pinpoints in semantic 

network graph the indexing nodes corresponding to the chosen senses, and then runs 

typical shortest patth search starting from the chosen nodes. The pseudo-code of is 

basically the same as that of Semantic Search, except for adding a step 0: nIn = 

manual(K, SN), i.e., allowing the user to manually choose the proper meaning of every 

query term, among the list of possible meanings presented to the user through the 

system’s GUI (cf. Fig. 11). Then, Semantic Search resumes by identifying and only 

processing the starting nodes corresponding to the term senses (synsets) chosen by the 

user. The algorithm’s main steps can be described as follows:   

i. Allow the user to choose the sense of each term in the query according to 
WordNet, 

ii. Identify in the semantic XML tree the nodes corresponding to the chosen 
senses, 

iii. Run the resulting query, starting from the identified index nodes, as a typical 
semantic keyword query search. 

 

Fig. 11. Query-As-You-Type sub-interface 

6.6. Parallel Semantic Search 

We have also introduced a parallelized version of algorithm Semantic Search (cf. Fig. 

12), which preserves (more or less) the same workflow of the original algorithm except 
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that it processes query terms and starting XML nodes using multiple threads running in 

parallel. The algorithm’s main steps are described as follows:  
 

i. Every query term is assigned a dedicated thread, and is thus processed 
independently from other threads (lines 1-2), 

ii. After identifying the starting nodes for a query term (line 4), every starting node is 
then assigned its own dedicated thread (line 5), allowing to: compute the shortest 
paths from the starting node to data nodes in the XML tree (line 7), and then 
identify the reached data nodes designating potential query answers (i.e., CATs, 
line 8), 

iii. Results are gradually merged (line 9) as they are produced by each thread, to rank 
and select (lines 10-12) query answers. 

The implementation of the algorithm is configured to run as many threads as there 

are terms in the user query, where thread scheduling and parallel execution is left to the 

operating system.  

 
 

Algorithm ParallelSemanticSearch 
 

Input:   T          // Semantic XML tree 

             K           // Set of query selection terms  
             D             // Sphere diameter designating query context size 

 

Ouput: NOut      // List of ranked trees from T designating query answers  
 

Begin 

 

NOut =                                                                                                                         

 

Step 0:  S = getSemanticQuerySenses(K)   // Global disambiguation 
 

Create Thread for each term si  S        // For each keyword sense                                                       

{                                                                                                                                       
Step 1: nIn = getNodeID(si, T)   // Identify concept occurrences                

Create Thread for each ni  nIn 

{ 
Step 2: SP = PerformClustering(ni, D, T)         

Step 3: Ninit = constructAnswerTree(SP, T)          

Step 4: NOut = rankAnswerTree(Ninit, T)   
}                                                       

}                                                                                                                                  8    

Return NOut 

                                                                                                                                      9 

End 
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Fig. 12. Pseudo-code of Parallel Semantic Search algorithm 
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7. Experimental Evaluation 

7.1. Experimental Scenario 

We conducted a battery of experiments to test and evaluate our approach. We used a 

collection of 80 test documents gathered from several data sources having different 

properties1. Target XML nodes were first subject to manual disambiguation (12-to-13 

nodes were randomly selected per document, yielding a total of 1000 target nodes, 

allowing human testers to annotate each node by choosing appropriate senses from 

WordNet) followed by automatic disambiguation. We formulated different with varying 

numbers of keywords, e.g., from 1 (single term query) to 5, where each query expands 

its predecessor by adding an additional selection term to the latter cf. sample queries in 

Table 1). We then compared user and system generated senses to compute precision 

(PR), recall (R), f-value, and mean average precision (MAP) scores.  

Table 1. Sample test queries used in our experiments 

Query Q1  Query Q2 

ID Terms  ID Terms 
Q1_1 “music”  Q2_1 “play” 

Q1_2 “music”, romance”  Q2_2 “play”, “theater” 
Q1_3 “music”, romance”, “dinner”  Q2_3 “play”, “theater”, “scene” 

Q1_4 “music”, romance”, “dinner”, “trip”  Q2_4 “play”, “theater”, “scene”, “hero” 

Q1_5 “music”, romance”, “dinner”, “trip”, “Paris”  Q2_5 “play”, “theater”, “scene”, “hero”, “climax” 

7.2. Query Result Quality 

We first tested the effectiveness of our approach considering its different features and 

configurations: i) the properties of XML data (w.r.t. ambiguity and structure), and ii) 

context size (sphere neighborhood radius). Results in Fig. 13 show that precision levels 

increase with the number of query terms k. This is due to the human testers’ 

expectations: given that queries are expanded versions of one another, result quality is 

evaluated based on the user’s intent: which is expressed with the most expanded (i.e., 

most expressive) query (e.g., Q1_5 and Q2_5). One can realize that using fewer query 

terms produces lower precision levels, which is due to the system returning more results 

which are (semantically related to the query terms but which are) not necessary related 

to the user’s intent. As for recall, one can realize that levels steadily increase with 

concept depth D, where the number of correct (i.e., user expected) results returned by 

the system increases as more semantically related terms are covered in the querying 

process. F-value results increase with the increase of context depth D, and they slightly 

decrease with the increase of the number of query keywords k. This confirms the 

precision and recall results, where the determining factor affecting retrieval quality 

                                                           
1 Shakespeare collection http://metalab.unc.edu/bosak/xml/eg/shaks200.zip, Amazon product files simply-

amazon.com/content/XML.html,SIGMOD Record, http://www.acm.org/sigmod/xml, Niagara collection 

http://www.cs.wisc.edu/niagara/ 
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remains context depth D. An increase in the number of keywords k tends to reduce 

system recall with higher values of k (queries becoming very selective, thus missing 

some relevant results). F-value levels are significantly higher than those obtained with 

the legacy inverted index, highlighting a clear improvement over syntactic retrieval 

quality. Also, mean average precision levels seem to concur with those of f-value, such that 

the ranking of relevant results compared with non-relevant ones in the queries’ result lists 

seems to increase with the increase of Dand fluctuate (based on the values of D) with the 

increase of K. In other words, increasing D not allowed retrieving more relevant results and 

improved the ranking of relevant results w.r.t. non-relevant ones in the query result list. 

 

  
 

  a. Precision results 
 

  b. Recall results 
 

 

 
 

 

 
 

c. F-value results c. MAF results 
 

Fig. 13. Comparing Semantic Search average precision (PR), recall (R), f-value, and mean 

average precision results with legacy inverted index syntactic search 
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c. F-value results d. Mean average precision results 
 

 

Fig. 14 Comparing Semantic Search (SS), Query As You type Search (QAYTS), and Parallel semantic 

Search (PSS) average precision (PR), recall (R), f-value, and mean average precision (MAP) 

results when varying semantic depth D 

 

 
 

 

 
a. Precision results b. Recall results 
 

 
 

 

 
 

c. F-value results d. Mean average precision results 
 

Fig. 15. Comparing Semantic Search (SS), Query As You type Search (QAYTS), and Parallel semantic 

Search (PSS) average precision (PR), recall (R), f-value, and mean average precision (MAP) 

results when varying semantic depth D 
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7.3. Query Processing Time 

We evaluated our solution’s almost linear efficiency. Results in Fig. 16 highlight the 

polynomial (almost linear) complexities of both our (offline) XML document 

disambiguation and (online) global query disambiguation approaches, considering 

different parameter configurations for both processes. Results in Fig. 16.b show total 

query execution time including online disambiguation, by varying both the number of 

keywords and query semantic depth D (i.e., semantic context size).  

 
 

 
 
 
 

 

 

 
 
 

 

 

a. XML document disambiguation 
 

b. Query disambiguation and execution 
 

Fig. 16. XML document disambiguation time (a) and query disambiguation and execution time 

(b) 

We ran the same queries through the three querying algorithms: SS, QAYTS, and PSS. 

Fig. 17 provides average processing time results for all queries, plotted by varying the 

number of query terms K and link distance threshold D. First, results of all three 

algorithms show that query execution time increases almost linearly with the number of 

query terms K (when fixing link distance D), and increases linearly with D(when fixing 

K), highlighting the algorithms quadratic complexity levels. Second, results show that 

all three algorithms have very close query time levels when both K and D are small (=1 

and 2), such that time difference increases as both K and D increase. This is due to the 

fact increasing either K or D means increasing the number of nodes to be navigated in 

the semantic XML tree: increasing k means navigating the XML tree starting from a 

larger number of initial nodes, and increasing D means reaching deeper into the tree 

structure to identify more semantically relevant results. Third, algorithms SS and 

QAYTS produced almost identical time levels (disregarding the manual effort required 

in QAYTS2), whereas the parallel processing PSS algorithm is clearly the most efficient 

of its counterparts, requiring almost 33.34% less time than SS and QAYTS with 

maximum k=5 and D=5.  

 

                                                           
2 QAYTS’s time shown in Fig. 16 does not encompass the time it took the testers to manually choose the 

meanings of query terms (which we did not consider to be part of the algorithm itself), but only considers 

actual algorithm (CPU and SQL) execution time. 
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Fig. 17. Comparing average query execution time of Semantic Search (SS), Query As You type 

Search (QAYTS), and Parallel semantic Search (PSS), while varying semantic depth D and the 

number of query terms K 

8. Conclusion 

In this paper, we describe XSemSearch, a solution for XML keyword search allowing to 

transform both XML documents and keyword queries into semantic representations, 

using semantic concepts in a reference knowledge base. We describe two approaches 

for i) offline context-based XML document disambiguation and ii) online global 

keyword query disambiguation, both designed to run in almost linear time. Our solution 

is: i) fully automated, compared with existing interactive solutions which require user 

input to manually identify the intended query senses e.g., [35, 61], and ii) tractable (of 

almost linear time) and thus reasonably applicable on the Web, compared with 

polynomial or exponential solutions, e.g., [23, 58]. Our solution also provides iii) a 

dedicated index structure to handle semantic XML trees, iv) a dedicated query 

formalism to allow structure-and-content queries with only partial knowledge of the 

data collection structure and semantics, and iv) three alternative query processing 

algorithms to evaluate query processing time and quality. 

We are currently investigating the integration of semantic-aware indexing 

capabilities [79-81] and different clustering algorithms to form XML answer trees [33, 

77]. This would provide more opportunities toward both speed-ups and semantic-based 
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filtering. We are also investigating the use of alternative knowledge sources such as 

Google [1], Wikipedia [86], and FOAF [4] to acquire a wider word sense coverage, and 

explore our approach in practical applications, namely semantic-aware document and 

schema matching [82, 83], RSS news feed merging [68, 69], affective blog analysis [26, 

27], social event detection [3, 5], and semantic relations’ identification from social 

media data [2]. On the long run, we aim to investigate word embeddings and learning 

statistical distributions in a corpus [34, 92], to infer semantics without the need for 

predefined knowledge bases. 
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