
Computer Science and Information Systems 20(1):423–457 https://doi.org/10.2298/CSIS220228063T

Combining Offline and On-the-fly Disambiguation

to Perform Semantic-aware XML Querying

Joe Tekli1, Gilbert Tekli
2
, and Richard Chbeir3

1 School of Engineering, ECE dept., Lebanese American University,

36 Byblos, Lebanon

joe.tekli@lau.edu.lb
2 Faculty of Technology, Mechatronics dept., University of Balamand,

100 Tripoli, Lebanon

gilbert.Tekli@balamand.edu.lb
3 LIUPPA Lab., IUT de Bayonne, University of Pau and Pays Adour

64000 Anglet, France

richard.chbeir@univ-pau.fr

Abstract. Many efforts have been deployed by the IR community to extend free-

text query processing toward semi-structured XML search. Most methods rely on

the concept of Lowest Comment Ancestor (LCA) between two or multiple

structural nodes to identify the most specific XML elements containing query

keywords posted by the user. Yet, few of the existing approaches consider XML

semantics, and the methods that process semantics generally rely on

computationally expensive word sense disambiguation (WSD) techniques, or

apply semantic analysis in one stage only: performing query relaxation/refinement

over the bag of words retrieval model, to reduce processing time. In this paper, we

describe a new approach for XML keyword search aiming to solve the limitations

mentioned above. Our solution first transforms the XML document collection

(offline) and the keyword query (on-the-fly) into meaningful semantic

representations using context-based and global disambiguation methods, specially

designed to allow almost linear computation efficiency. We use a semantic-aware

inverted index to allow semantic-aware search, result selection, and result ranking

functionality. The semantically augmented XML data tree is processed for

structural node clustering, based on semantic query concepts (i.e., key-concepts),

in order to identify and rank candidate answer sub-trees containing related

occurrences of query key-concepts. Dedicated weighting functions and various

search algorithms have been developed for that purpose and will be presented

here. Experimental results highlight the quality and potential of our approach.

Keywords: Semi-structured data, XML, Semantic Analysis, Semantic

Disambiguation, Keyword Search, Query Processing.

1. Introduction

Various methods have been proposed for XML ranked retrieval. While most approaches

consider content-and-structure features in specifying XML query constraints, few

approaches have targeted semantic XML search based on simple keyword queries. Most

approaches in this category exploit the concept of LCA (Lowest Common Ancestor)

424 Joe Tekli et al.

between two or multiple structural nodes to identify the most specific XML elements

containing query keywords posted by the user. Yet LCA-based methods underline

various limitations: i) each result candidate must contain all query keywords, which is

not always intuitive since a candidate result (element or sub-tree) containing most (and

not necessarily all) keywords might be deemed relevant by the user; ii) some

meaningful results might be missed: as XML trees underline different nesting

hierarchies, restricting results to the LCA encompassing all keywords might miss some

more general, and yet relevant results; iii) few of the proposed approaches consider

semantics: for instance, when submitting sample keyword query “Universities in Sao

Paulo”, the user is probably interested in information concerning universities, academies

and colleges in Sao Paulo, and cities in its vicinity such as Campinas, Sao Carlos, etc.

Hence, semantic analysis becomes essential in such a context in order to improve search

results; iv) the few existing methods that do target XML semantics generally rely on

word sense disambiguation (WSD) and are computationally expensive, or v) apply

semantic analysis in one stage only, performing query relaxation/refinement over the

bag of words retrieval model, to reduce processing time.

In this paper, we introduce XSemSearch, a semantic-aware XML keyword search

solution aiming to solve the limitations mentioned above. We propose to integrate

semantic analysis and structural clustering in formulating an efficient solution to the

problem. Our solution first transforms the XML document collection (offline) and the

keyword query (on-the-fly) into meaningful semantic representations using context-

based and global disambiguation methods, specially designed to allow almost linear

computation efficiency. The semantically augmented XML data tree is processed for

structural node clustering, based on semantic query concepts (i.e., key-concepts), in

order to identify and rank candidate answer sub-trees containing related occurrences of

query key-concepts. The overall architecture of our approach is depicted in Fig. 1

An initial description of XSemSearch’s architecture is given in [84]. This paper adds:

i) a dedicated inverted index structure to handle semantically augmented XML data, ii)

an dedicated query formalism to allow structure-and-content queries with only partial

knowledge of the data collection structure and semantics, iii) two alternative query

processing algorithms including Query As You Type Search and Parallel Semantic

Search, and iv) an extended empirical study to evaluate query processing time and

quality.

Fig. 1. Overall architecture of our XML semantic-aware search approach

The remainder of the paper is organized as follows. Section 2 reviews the

background in XML and query semantic analysis. Section 3 provides an overview of

our solution framework. Sections 4 and 5 respectively describe the XML semantic

analysis and keyword query semantic analysis components. Section 6 describes the

 Combining Offline and On-the-fly Disambiguation… 425

query processing component. Section 7 provides experimental results, before

concluding in Section 8.

2. Background

In this section, we review the background in semantic information retrieval, while

focusing on XML and keyword query semantic analysis and disambiguation.

2.1. Semantic Information Retrieval

The retrieval model for an information retrieval system specifies how documents and

queries are represented, and how these representations are compared to produce relevant

result estimates [7]. A core problem in this context is lexical ambiguity: a word may

have multiple meanings (homonymy), a word maybe implied by other related words

(metonymy), and/or several words can have the same meaning (synonymy) [42].

The lexical ambiguity problem becomes even more acute on the Web, with the

latter’s heterogeneous and unstructured nature which makes it even more difficult to

query and retrieve meaningful information. Semantic IR is part of the Semantic Web

vision [76] that promises to solve the retrieval ambiguity problem, by i) associating

terms in Web pages and queries with explicit semantics (i.e., word senses or concepts),

and then ii) performing search functions based on document/query concepts rather than

plain terms [55]. A core challenge in this context is word sense disambiguation (WSD):

how to resolve the semantic ambiguities and identify the intended meanings of

document terms and query keywords [11]. Various methods have been proposed for

WSD in the literature [42, 53, 75]. They fall in two main categories: corpus-based WSD

and knowledge-based WSD. The corpus-based approach is data-driven, as it involves

information about words previously disambiguated and requires supervised learning

from sense-tagged corpora to enable predictions for new words. Knowledge-based

methods are knowledge-driven, as they handle a sense inventory and/or a repository of

information about words that can be exploited to distinguish their meanings in the text.

Machine-readable knowledge bases (e.g., dictionaries or semantic networks: thesauri,

taxonomies, or ontologies) provide ready-made sources of information about word

senses to be exploited in knowledge-based WSD. While corpus-based methods have

been popular in recent years [6, 38], they are generally data hungry and require

extensive training, huge textual corpora, and/or a considerable amount of manual effort

to produce a relevant sense-annotated corpus, which are not always available or feasible

in practice. Therefore, knowledge-based methods have been receiving more attention

[16, 42]. In the remainder of our study, we focus on knowledge-based WSD and

semantic analysis.

2.2. XML Semantic Analysis and Disambiguation

While a considerable amount of research has been undertaken around (knowledge-

based) WSD in flat textual data [53], yet few approaches have been developed in the

426 Joe Tekli et al.

context of XML and semi-structured information [75]. The main difference resides in

the notion of XML (structural) contextualization. The context of a keyword, in

traditional textual data, consists of the set of terms in the keyword’s vicinity (i.e., terms

occurring to the left and right of the considered keyword, within a certain predefined

distance from the keyword [11]). However, there is no clear definition regarding the

context of a node in an XML tree. The authors in [72, 73] consider the context of an

XML data element to be efficiently determined by its parent element, and thus process a

parent node and its children data elements as one unified (canonical) entity, using

context-driven search techniques for determining the relationships between the different

unified entities, so as to identify related semantic labels.

In [70, 71], the authors extend the notion of XML node context to include the whole

XML root path, i.e., path consisting of the sequence of nodes connecting a given node

with the root of the XML document (or document collection). They consequently

perform per-path sense disambiguation, comparing every node label in each path with

all possible senses of node labels occurring in the same path (using a gloss-based

WordNet similarity measure [8]) in order to select the most appropriate sense for the

label at hand. Different from the notions of parent context and path context, the authors

in [85] consider the set of XML tag names contained in the sub-tree rooted at a given

element node, i.e., the set of labels corresponding to the node at hand and all its

subordinates, to describe the node’s XML context. The authors apply a similar

paradigm to identify to contexts of all possible node label senses in WordNet.

Consequently, they perform label sense disambiguation by comparing the XML label

context to all candidate sense contexts in WordNet, identifying the sense (semantic

concept) with the highest similarity.

In [49], the authors combine the notions of parent context and descendent (sub-tree)

context in disambiguating generic structured data (e.g., XML, web directories, and

ontologies). The authors consider that a node’s context definition depends on the nature

of the data and the application domain at hand. They propose various edge-weighting

heuristics (namely a Gaussian decay function) to identify crossable edges, i.e., nodes

reachable from a given node through any crossable edge belong to the target node’s

context. Consequently, structure disambiguation is undertaken by comparing the target

node label with each candidate sense (semantic concept) corresponding to the labels in

the target node’s context (using an edge-based semantic similarity measure [43],

following the hypernymy/hyponymy relations in WordNet) in order to identify the

highest matching semantic concept.

Another concern in XML-based WSD is how to effectively process the context of an

XML node taking into account the structural dispositions of XML data. In fact, most

existing WSD methods developed for flat textual data [42, 53], and those developed for

XML-based data [70-73], follow the bag-of-words paradigm where the context is

processed as a plain set of words surrounding the term/label (node) to disambiguate. In

other words, all context nodes are treated the same, despite their structural positions in

the XML tree. We encountered an approach in [49] which extends the traditional bag-

or-words paradigm with additional information considering distance weights separating

the context and target nodes (identified as relational information model [49]). The

authors employ a heuristic Gaussian distance decay function estimating edge weights

such that the closer a node (following a user-specified direction, e.g., ancestor,

descendent, or both), the more it influences the target node’s disambiguation [49]. The

 Combining Offline and On-the-fly Disambiguation… 427

semantic contribution of each context node is weighted by its position in the context

graph of the target node.

2.3. Query Semantic Analysis and Disambiguation

Semantic query analysis in information retrieval usually involves two steps: i) WSD to

identify the user’s intended meaning of query terms, and ii) semantic query

representation/expansion in order to alter the query so that it achieves better (precision

and recall) results [67]. As described in the previous section, traditional semantic

analysis and disambiguation techniques usually rely on the notion of context such that

terms (e.g., node labels in the context of XML) that appear together in the same context

have related meanings [11]. While context-based solutions are applicable with classic

IR queries which are rather lengthy (e.g., 15 terms on average for short queries [91],

reaching up to 50-85 terms for long queries [12]), nonetheless, keyword queries on the

Web are usually 2-3 words long [15] which is generally insufficient in identifying a

meaningful context [42, 49]. In fact, lexical ambiguity with Web search is often the

consequence of the low number of query words entered on average by Web users [40].

Therefore, some sort of user interaction is usually required to counter the lack of

contextualization, and more accurately identify the intended senses of Web query terms

[24, 89].

Various methods for interactive keyword querying have been proposed in the

literature, e.g., [41, 66] [30, 74]. Most existing approaches are corpus-based in that they

expand user queries by adding words that co-occur with the query terms in a given

corpora, i.e. words that, on a probabilistic ground, are believed to describe the same

semantic concept (e.g. car and driver). Here, expansion terms are usually identified

from i) user feedback: extracting frequent terms occurring in previous results deemed

relevant by the user [41, 66], and/or ii) query logs: identifying frequent terms in the

document collection based on the associations between past queries and the documents

downloaded by the user [30, 74]. Yet, the extensive training and huge corpora

requirements of corpus-based methods makes them less practical in the context of Web

search applications, which has led to a growing interest in knowledge-based solutions

[35, 61]. The latter family of methods investigates the use of ontological information to

assist the user in formulating and/or expanding keyword queries by: i) allowing user

interaction to identify the intended senses of query-terms, and then ii)

expanding/modifying query keywords via their most related semantic concepts in the

reference semantic source (e.g., WordNet) [67].

Following [14], a keyword query is first processed for lexical normalization, and then

presented to the user as a set of lexical tokens, where each token is associated with a set

of possible semantic meanings (identified using WordNet and/or domain specific

ontologies). Consequently, the user is asked to select the most relevant sense for each

lexical token. The system then exploits the selected user senses to reformulate the query

using dedicated heuristics (e.g., replacing actual keywords via their synonyms with

highest frequency of usage in WordNet, identifying negative keywords, i.e., the terms

corresponding to the highest frequency synset remaining beside the one selected by the

user, etc.), thus obtaining a semantically augmented keyword query. A similar approach

is adopted in [45] with a special emphasis on failed-query reformulation. The authors in

[45] assume that the reformulation of a failed query without help from the system can

428 Joe Tekli et al.

be frustrating to the user, and thus suggest to assist the later by proposing semantically

meaningful keywords selected from WordNet (using heuristics similar to those adopted

in [14]). The method in [45] is developed in the context of the NALIX project for

building an interactive natural language interface for querying XML [44].

A fully automated approach to knowledge-based query disambiguation is introduced

in [54], where the authors exploit structural pattern recognition [25] in mapping query

keyword senses. The proposed method creates a local semantic network for each

keyword-sense in the query, including most semantic relations utilized in WordNet [28]

(hypernymy, hyponymy, meronymy, etc.). Then, for each possible configuration of

senses, the system identifies the intersections between corresponding pair-wise local

semantic networks using an adapted structure pattern recognition algorithm. Common

nodes are those that can be reached through both semantic networks being compared.

The configuration with the highest intersection score (i.e., highest number of

intersecting nodes) is selected as the one encompassing the most relevant keyword

senses. In a subsequent step, the authors propose various heuristics to expand the query

using synset, hyponymy and/or gloss information. Experimental results in [54] show a

26.85% improvement in retrieval precision over the plain query words.

Note that most existing studies targeting knowledge-based query semantic analysis,

e.g., [35, 61] [14, 45, 56], do not evaluate the complexity (or execution time) levels of

their proposed methods. Nonetheless, time complexity is critical for on-the-fly

execution on the Web (in comparison with document semantic analysis which could be

performed offline). The time complexity of query semantic analysis might even prove to

be problematic in the case of the pattern recognition-based methods [19, 54], since

traditional structure pattern recognition problems are usually of exponential complexity

[25, 58].

3. Proposal Overview

Semantic similarity evaluation between two terms usually consists in looking up each

term’s lexical concept in a reference knowledge base (e.g., a semantic network such as

WordNet), and consequently comparing the underlying concepts. Nonetheless, semantic

similarity evaluation has been proven to be an expensive task: comparing two semantic

concepts following one of the most prominent semantic similarity measures in the

literature, i.e., [47], requires O(|SN|×Depth(SN)) time where |SN| is the size (i.e.,

cardinality in number of concepts) of the reference semantic network SN, and

Depth(SN) its maximum depth. Evaluating the semantic similarity between query

keywords and each label/term in the XML document collection becomes extremely

complex, and practically unfeasible.

A way of getting round the complexity problem would be to perform semantic

analysis of the XML document collection, offline, and prior to the retrieval phase. This

consists in transforming the XML documents into weighted semantic trees (graphs), and

transforming and expanding the keyword query into a set of weighed semantic concepts.

Consequently, an adapted XML IR engine (cf. Section 6) processes the semantically

indexed documents and queries, so as produce more meaningful results. Our semantic

analysis processes are depicted in Fig. 2.

 Combining Offline and On-the-fly Disambiguation… 429

Fig. 2. Semantic analysis of XML document and keyword query

Note that while semantic query indexing is performed online, XML document

indexing is performed offline, and does not affect the complexity of the approach. As

shown in Fig. 2, semantic indexing consists of three main phases: i) Linguistic

Normalization, ii) Sense Disambiguation, and iii) Semantic Representation. While the

first phase (Linguistic Normalization, including tokenization, expansion, stop word

removal, and stemming) is similar for both document labels and query keywords, yet,

we design the latter two (sense disambiguation, and semantic representation) differently

following the data models and requirements at hand. Sense disambiguation usually

relies on the notion of context, where terms that appear together in the same context

have related meanings [11]. While context information is available for XML document

nodes (e.g., the context of a node could be its parent node, its root path, the whole

document tree containing the node, etc.), yet, keyword queries on the Web are usually

two-to-three words long [15] which is generally insufficient in identifying a meaningful

context [42, 49]. Hence, we introduce two different methods for document and query

sense disambiguation: i) Context-based Sense Disambiguation (CSD) for XML

documents, ii) Global Sense Disambiguation (GSD) for keyword queries.

In the following, Sections 4 and 5 present the XML document semantic analysis and

the keyword query semantic analysis processes respectively

4. Semantic XML Document Analysis

Our XML document semantic analysis process consists in: i) disambiguating each label

following its context, to associate each label with the proper semantic concept in the

reference knowledge base (e.g., WordNet), and ii) producing a semantically indexed

XML tree, with the corresponding index structures and pair-wise concept semantic

weights, to be consequently utilized in the query processing task. We describe the latter

in the following sub-sections.

4.1. XML Data Model

XML documents represent hierarchically structured information and are generally

modeled as ordered labeled trees (cf. Fig. 3). In a traditional DOM (Document Object

Model) ordered labeled tree [87], nodes represent XML elements, and are labeled with

corresponding element tag names, ordered following their order of appearance in the

document. Attributes usually appear as children of their encompassing element nodes,

sorted by attribute name, and appearing before all sub-element siblings [57, 93]. Other

430 Joe Tekli et al.

types of nodes, such as entities, comments and notations, are commonly disregarded in

most XML comparison approaches, e.g., [22, 36], since they underline complementary

information and are not part of the core XML data.

Fig. 3. A sample XML document with corresponding tree

In general, element/attribute values are disregarded when evaluating the structural

properties of heterogeneous XML documents (originating from different data-sources

and not conforming to the same grammar), so as to perform XML structural

classification/clustering [22, 36, 57, 59] or structural querying (i.e., querying the

structure of documents, disregarding content [10, 63]). Nonetheless, values are usually

taken into account with methods dedicated to XML change management [18, 20], data

integration [32, 46], and XML structure-and-content querying applications [64, 65],

which is the main application in our current study. More formally:

Definition 1 - XML Tree: We represent an XML document as a rooted ordered

labeled tree T = (NT, ET, LT, T, gT) where NT is the set of nodes in T, ET  NT × NT is

the set of edges (element/attribute containment relations), LT is the set of labels

corresponding to the nodes of T (LT = ElT U EvT U AlT U AvT such as ElT (AlT) and EvT

(AvT) designate respectively the labels and values of the elements and attributes of T),

T is the set of data-types associated to the elements and attribute nodes of T (T=

{Concept} U E U A, having E = A = {Text, Number, Date}), and gT is a function

gT : NT LT, T that associates a label lLT and a data-type tT to each node nNT.

We denote by root(T) the root node of T, and by T’  T a sub-tree of T ●

Value data-types in the XML tree model are extracted from the corresponding XML

schema. In other words, during XML tree construction time, the XML document and

corresponding schema are assessed simultaneously so as to build the XML tree. Textual

values are treated for stemming and stop word removal, and are mapped to leaf nodes of

type Text in the XML tree. Numerical and date values are mapped to leaf nodes of types

Number and Date respectively. As for the disambiguated element/attribute nodes, they

are assigned the data-type Concept, their labels corresponding to the semantic concepts

defined through the reference knowledge base. To model the XML data repository, we

connect all XML trees to a single root node, with a unique label (e.g., ‘Root’).

 Combining Offline and On-the-fly Disambiguation… 431

4.2. Semantic Knowledge Representation and Indexing

Semantic knowledge bases (i.e., thesauri, taxonomies, and/or Ontologies such as

WordNet [51], Roget’s thesaurus [90], and Yago [37]) provide a framework for

organizing words/expressions into a semantic space [13]. A knowledge base is usually

modeled as a semantic network made of a set of entities representing semantic concepts

(or groups of words/expressions), and a set of links between the entities, representing

semantic relationships (synonymy, hyponymy, etc.). We adopt a graph-based structure to

model a semantic network from, where entities are represented as vertices, and the

semantic relationships between entities are represented as directed edges. Formally:

Definition 1 -– Semantic Network: A semantic network is represented as a graph

SN (V, E, L, fV, fE) where:

 V is a set of vertices (nodes), designating entities in the semantic network. V

includes both: i) sense nodes, representing semantic senses (synsets) with glosses,

and ii) term nodes, representing literal words/expressions.

 E is a set of directed edges, an edge consisting of an ordered pair of vertices in V.

 L is a set of edge labels denoting semantic/lexical relationships. For WordNet, L

includes: semantic relationships between concepts (e.g., hyponymy, hypernymy,

meronymy), semantic relationships between concepts and terms (e.g., has-sense

and has-term), and lexical relationships between terms (e.g., derivation).

 fV is a function defined on V, designating the string value of each node in V. For

WordNet, string values include: i) glosses/definitions, when dealing with sense

nodes, and ii) and literal words/expressions,

 fE is a function defined on E, assigning a label from L to each edge in E. Multiple

edges may exist between the same pair of vertices when dealing with term nodes,

which makes SN a multi-graph 

An extract from the WordNet lexical ontology is shown in Fig. 4, where S1, S2 and S3

represent senses (i.e., synsets), and their string values (i.e., the synsets’

glosses/definitions), and T1, T2, …, T11 represent terms, and their string values (i.e.,

literal words/expressions) shown along aside the nodes. Given that most

semantic/lexical relationships are symmetrical (hyponymy/hypernymy,

meronymy/holonymy, has-sense/has-term, etc.), and given that a relationship cannot

exist without its symmetrical counterpart, we simplify our graph model by representing

each couple of symmetrical relationships between senses and/or terms with one edge

having opposite directions (instead of two edges), labeled with the names of the

symmetrical relationships.

A simple inverted index InvIndex(SN) can be subsequently built for the textual

tokens of each SN entity (i.e., string values of term nodes and sense nodes, cf. Fig. 4b)

to speed up term/sense lookup when creating and then querying the XML structure.

432 Joe Tekli et al.

 a. Sample graph SN representing an extract from WordNet

Term Sense IDs[]

“acid” S1, S3

“clean” S2

“light” S2

“lsd” S3

“lysergic” S1, S3

“window pane” S1

… …

b. Extract of inverted index

InvIndex(SN) connecting terms

in SN with corresponding senses
(to speed up term/synset

lookup)

Fig. 4. Extract from the semantic graph of WordNet, with the corresponding index

4.3. XML Context-based Sense Disambiguation

Our XML sense disambiguation approach was introduced in [17, 78]. Here, we only

provide an overview of the approach describing the constructs and methods required in

our current study.

Different from previous approaches which limit XML context to the parent node [72,

73], to the root node path [70, 71], to the node sub-tree [85], or to nodes reachable

through heuristically identified crossable edges [49], we introduce the notion of XML

Sphere-Ring context, inspired from the sphere-search paradigm in XML IR [31], to

consider the whole structural surrounding of an XML node, including its ancestors,

descendants, and siblings, tuned to better describe the node’s context. An XML ring

w.r.t. to a given node consists of the set of nodes situated at a specific distance from the

center node. An XML sphere encompasses all rings contained at distances lesser or

equal to the size (diameter) of the sphere. The size of the XML sphere is tuned

following the nature of the XML data at hand (e.g., certain XML trees might underline

specialized and domain-specific data, and thus would only require small contexts so as

to achieve relevant WSD results, whereas more heterogeneous and generic XML data

might require larger contexts to better describe the intended meaning of each node

label).

In addition, we extend the traditional bag-of-words WSD paradigm, adopting a

relational information approach, i.e., considering the interconnections among XML

nodes in computing disambiguation scores (in contrast with the classic bag-of-words

approach [70-73], where all context nodes are treated as a homogeneous set of words

regardless of their proximity/relations with the target node). We consider the structural

distance separating the center node and each of its context nodes, following the intuition

that the farther the context node from the sphere center, the lesser should be its impact

in determining the semantic meaning of the center node label. Formally, consider Rd(n)

to be the ring corresponding to the center node n at distance d, i.e. the set of all nodes

whose distance from n is d. Hence, the context sphere SD(n) of node n, with size D,

consists of all the rings contained in SD(n), such that SD(n) = {all Rd(n) / d  D}.

Following our Sphere-Ring context model, node scores can be weighted following the

sizes of the sphere rings to which they correspond, such that the larger the sphere ring

 Combining Offline and On-the-fly Disambiguation… 433

radius, the lesser the node weight. Hence, we can represent the context of a node n as a

weighed vector, whose dimensions correspond to the all distinct nodes in its sphere

context, weighted following their distances from the center node. In short, our approach:
- Integrates all notions of XML context, including ancestor, decedent, and sibling

structural relations, which were considered separately in existing studies [70-73,
85],

- Allows the user/system administrator to manually and/or automatically tune the
size of the XML context window following the nature and properties of the XML
data at hand, in comparison with most existing static methods [70-73, 85],

- Extends the traditional bag-of-words WSD paradigm, adopting a relational
information approach so as to consider the interconnections among XML nodes in
computing disambiguation scores, in contrast with most existing methods using the
traditional bag-of-words approach [70-73].

Once the contexts of all XML nodes have been determined, we process each target

node label and its context node labels for WSD. Here, we evaluate the semantic

similarity/relatedness between the target node label and each of its context node labels,

by comparing the node’s context with the context of each of its potential senses,

extracted from the reference semantic source (a similar paradigm is utilized in [85] for

XML node annotation). The idea is to first identify all possible senses of the target word

node label in the reference semantic network. Consequently, we exploit the same notion

of Sphere-Ring, which we adopted for XML trees (graphs), to identify the context of

each potential sense in the reference semantic network (e.g., WordNet). Having

computed the weighted context for the XML target node in the XML document tree

(graph), and each of its possible senses in the semantic network, we compute the

similarity between the node vector and each of its sense vectors. The sense vector

yielding the highest similarity would underline the most meaningful sense describing

the XML node label. This approach requires polynomial complexity:

O(|senses(x.)|×(|SD(n)|+|SD(sp)|)), where |SD(sp)| designates the maximum context

sphere cardinality for any sense (concept) in the semantic network.

Note that to our knowledge, existing approaches have seldom provide a complexity

and time performance analysis of their WSD methods. Despite being performed offline,

nonetheless, WSD time performance remains potent w.r.t. practicability, when indexing

documents published on Web. The proposed approach has to be: i) effective in

identifying the correct senses, but also ii) reasonably efficient in order to be practically

applied to the large corpora of XML documents published online. Here, the complexity

of our combined XML sense disambiguation approach is polynomial and simplified to

O(|X|×|senses(x.)|×(|SD(n)|+|SD(sp)|)), where |X| represents the number of nodes to be

disambiguated in the target XML document.

4.4. XML Document Semantic Indexing

Having disambiguated all XML labels, the latter are replaced with their corresponding

semantic concepts extracted from the reference semantic network (e.g., WordNet).

Dedicated index structures (Concept-Doc and Concept-SN indexes [79-81], cf. Fig. 5)

are utilized to handle the mapping between XML document labels and semantic

network concepts. The output of the semantic document indexing process is a

conceptual XML tree, i.e., an XML tree which labels consist of concepts with explicit

434 Joe Tekli et al.

semantic definitions (which is at the core of the vision of the Semantic Web: Extending

the WWW by giving information well defined meaning [76]).

Given an data collection C, an inverted index (also referred to as a posting file, or

inverted list) built upon C, is (in its most basic form) a sorted list of index terms

associated each with a set of object identifiers from C, disregarding structural

information. In this study, we extend the basic inverted index to handle semi-structured

data elements, introducing an element-attribute (OA) index:

Definition 2 - Element-Attribute (EA) Inverted Index: Given a XML data

collection C, an EA inverted index built on C, denoted as InvIndexEA(C), is a structure of

the form (dom(A), EAs, f) where:

 dom(A) designates the set of values within the domains of all attributes  Aj 

C.A. Considering text-only domains, values come down to textual tokens, i.e.,

terms (words/expressions),

 EAs designates the set of element (identifier)-attribute doublets, i.e., EAs =

{(id(Ei), Aj)}  Ei  C and  Ej  C.A /  Ei .aj  , where Aj is an attribute for

which object Ei has a non-null value,

 f is a function mapping each term  dom(A) with a list of element-attribute

doublets EAs[] designating the term’s occurrence locations in C, i.e., EAs[] = 

(id(Ei), Aj)  / term  Ei .aj

A term used as textual token in the inverted index is referred to as index term,

whereas the list of element-attribute doublets, i.e., EAs[], mapping to each index term is

referred to as the term’s posting list 

Consequently, we compute the semantic relatedness between each pair of node

concepts in the XML tree. The idea is to produce a semantically weighted XML tree to

be consequently exploited in keyword query processing (cf. Section 6). Here, various

semantic similarity measures can be used (as briefly mentioned in the previous section):

i) edge-based measures (computing semantic similarity based on the distance separating

the concepts in the semantic network) [88], ii) node-based (computing semantic

similarity based on the information content of each concept in the semantic network,

w.r.t. a given text corpus) [47], and iii) gloss-based (comparing the glosses associated

with each concept definition in the semantic network) [8]. Gloss-based approaches are

particularly interesting in the context of WSD since they allow ‘semantic relatedness’

evaluation, which is a more general notion than ‘semantic similarity’, including the

latter as well as any kind of functional relation between terms [39] (e.g., penguin and

Antarctica are not necessarily similar, but they are semantic related due to their natural_

habitat connection), particularly antonymy (e.g., hot and cold are semantically

dissimilar since they have opposite meanings, but they are semantically related).

A simple example depicting the semantic indexing of a sample XML tree is shown in

Fig. 5. The sample XML document describes the movie Rear Window, one of Alfred

Hitchcock’s masterpieces. While the XML labels seem meaningful and straightforward

for a human user, nonetheless, they are highly ambiguous for a computer system. Most

labels can be associated with more than 2 or 3 semantic senses (concepts) in WordNet

reference. For instance, the label Stewart is associated with 2 semantic concepts: i)

James Stewart (the leading actor who starred in Rear Window), and ii) Dugald Stewart

(an 18
th

 century Scottish philosopher). Likewise for most remaining labels in the input

tree (e.g., Kelly underlines 3 semantic concepts, among which is Grace Kelly, the co-

 Combining Offline and On-the-fly Disambiguation… 435

star of Stewart in Rear Window; plot underlines 4 different senses, among which movie

plot, etc.).

Recall that semantic XML document indexing is performed offline, as a pre-

processing step prior to query evaluation, and does not affect the online computational

complexity of the approach.

Fig. 5. Semantic analysis of XML document

5. Semantic Query Analysis

While semantic XML document analysis relies on the notion of XML context (e.g., the

surroundings of a given node) in identifying the meanings of XML labels, nonetheless,

semantic keyword query analysis differs in the lack of sufficient contextualization

(keyword queries on the Web are usually 2-3 words long [15], which might not be

sufficient in identifying a meaningful context [42, 49], cf. background in Section 2). To

get round the lack of keyword contextualization in identifying meaningful query

keyword senses, we introduce a method to global query sense disambiguation. Our

proposal is based on the following assumption: A keyword query on the Web usually

conveys a certain global semantic meaning, reflecting a certain global information

need. Hence, rather than analyzing the individual senses of each query-term separately,

considering each term’s context information (similarly to most existing approaches,

e.g., [35, 61]), we evaluate the aggregate semantic meaning of the query as a whole such

that: the higher the semantic homogeneity of the query, the higher the consistency of the

unified global semantic meaning conveyed by the query, and thus the more likely the

query reflects the user’s need. This is in accordance with the traditional assumption in

WSD: the most plausible assignment of senses to multiple co-occurring words is the one

that maximizes the relatedness of meaning among the chosen senses [52].

436 Joe Tekli et al.

In short, we disambiguate the query as a whole, by i) pinpointing all possible

configurations of query-term senses, and ii) consequently estimating a global semantic

relatedness score (given a reference information source, e.g., WordNet) for all senses

combined in each configuration. The configuration with the highest score would

underline the most semantically meaningful query. Global query sense ranking can also

be performed to identify the top most meaningful query sense configurations.

A major problem with the above approach is its computational complexity. In fact,

computing semantic similarity/relatedness for all possible sense configurations for a set

of lexical terms was shown to be intractable [52] due to its best case exponential

complexity (i.e., O(senses(k)
N
) where N is the number of query keywords, and senses(k)

is the maximum number of senses per keyword). A few approximation methods have

been proposed, such as computing pair-wise keyword similarities [52], and evaluating

the similarity between each keyword sense and all remaining node senses [9].

Nonetheless, in contrast with existing approximation solutions, e.g., [9, 60], we

introduce a sense disambiguation method to solve the computational complexity

described above, producing optimal results similarly to the initial (exponential

complexity) approach, while confining to polynomial complexity. We do so by

transforming the problem of identifying all possible sense configurations, into that of

identifying the shortest (semantic) path in a (semantically) weighted graph, using an

adaptation of Dijkstra’s shortest path algorithm [21]. In short, we capitalize on

Dijkstra’s polynomial computation approach to eliminate all unnecessary similarity

computations, while still considering all possible query sense configurations.

Our query semantic analysis approach is described in the following sub-sections.

Sub-section 5.1 presents our global query sense disambiguation approach, while Sub-

section 5.2 describes our semantic query representation method. Recall that linguistic

normalization (including tokenization, expansion, stop word removal, and stemming) is

similar for both XML documents labels and query keywords, and will not be discussed

hereunder

5.1. Structure-and-Content Query Model

In addition to the keyword query model, we put forward a structure-and-content query

model to allow a higher level of expressiveness in querying semi-structured XML data.
We suggest a simple model consisting of an XML tree variant with special leaf nodes to

represent query predicates. A query with an Or logical operator is decomposed into a

disjunctive normal form [64], and is thus represented as a set of XML trees, corresponding to

the set of conjunctive queries.
Definition 3 – Structure-and-Content Query: It is expressed as an XML tree, Q

= (NQ, EQ, LQ, TQ, gQ, nd) encompassing a distinguished node nd underlining the

matches in the data tree that are required as answers to the query (i.e., the query’s return

clause). The query’s root node R(Q) designates its search scope/context. Its set TQ

encompasses the node type for distinguishing disambiguated XML nodes, and predicate

types P_ti corresponding to every value data-type ti considered in the data model (e.g.,

TQ = {Concept} U {P_Text, P_Number, P_Date}) ●

Definition 4 - Query Node: It is a XML tree node with additional properties to

represent predicates. With n.t = P_ti (predicate corresponding to data-type ti), the node’s

 Combining Offline and On-the-fly Disambiguation… 437

label n.l underlines a composite content made of the predicate operator n.l.op and value

n.l.val (e.g., leaf node Q1[2] of query Q1 in Fig. 6 is of Q1[2].l.op = ‘<’ and Q1[2].l.val

= ‘1965’, having Q1[2].t = P_Date, which underlines that the predicate value ‘1965’ is

of type Date) ●

Fig. 6. Sample XML query trees

Note that each data-type has its own set of operators (e.g., {=, , ≤, , ≥, ≠} for

numbers and dates, and {=, like} for text). Sample query trees are depicted in Fig. 6.

Recall that query trees can be constructed via a dedicated GUI, which would suggest,

on-the-fly, the list of possible query nodes following the context of the query at hand.

Definition 5 – Predicate Satisfaction: Given a predicate XML query node qi, and

a data node sj, sj satisfies qi (sj qi) if:

 The data node type corresponds to that of the query (si.t qi.t, i.e.,  tr 
{Text, Number, Date}, qi.t = P_tr sj.t = tr),

 The data node label sj.l verifies the logical condition defined by qi.l ●
For instance, leaf node T[13] of data tree T2 in Fig. 3, having T2[13].l = ‘1954’ and

T2[13].t = ‘date’, satisfies predicate node Q1[2] of query Q1 in Fig. 6, with Q1[2].l =

‘<1965’ and Q1[2].t = ‘date’.

Definition 6 - Query Scope: Given a structure-and-content query Q, the scope of

Q is identified by its root node R(Q), and corresponds to the XML sub-trees, in the data

collection, having identical or semantically similar root nodes as that of the query ●

We assume that the user defines, with the query, the kind of XML data she is looking

for, i.e. the scope/context of her query. If for instance the root of the query is labeled

University, then XML data in the context of XML data entity University, or

semantically similar entities such as College, Academy, etc., would naturally interest the

user.

Definition 7 - Template and Minimal constraint querying: An structure-and-

content query Q could be either evaluated as a i) template of the XML data the user is

searching for, ii) or could represent the minimal constraints the data should meet to

belong to the query answer set. In the former case, all query and data nodes would be

considered in query/data similarity evaluation. Following the latter strategy, only

elements required by the query tree are taken into account in query/data similarity

evaluation, additional elements in the data tree being disregarded in the evaluation

process ●

Note that XML queries most likely follow the minimal constraint style, the user

usually specifying her information needs in the simplest form possible (cf. queries Q1,



438 Joe Tekli et al.

Q2 and Q3 in Fig. 6). Nonetheless, template querying could be particularly useful in

search-by-document and search-by-image systems for instance, where the query could

be a whole document or an SVG image [62] the user is searching for in the XML

repository. A template style query could be any of the sub-trees in the XML tree of Fig.

3.

5.2. Global Query Sense Disambiguation

As mentioned previously, we assume that a query on the Web conveys a certain global

semantic information request. The main objective is to associate each query-term with

the appropriate semantic sense (concept) maximizing global query sense homogeneity.

To do so, we proceed as follows:

Step 1 – Identifying Keyword Senses: The first step consists in identifying the set

of possible senses corresponding to each individual query-term (keyword). Formally,

for each keyword kr, we obtain a set of senses Sr = {s
r
1, s

r
2, …, s

r
|Sr|} where s

r
i underlines

the ith possible sense of keyword kr extracted from the reference semantic network (e.g.,

WordNet), and |senses(kr)| the maximum number of possible senses corresponding to kr.

This first step is similar to most existing semantic based approaches, and the process is

applied to structure-and-content queries.

Step 2 – Building the Semantic Query Graph: Having identified all possible

senses for each query-term, we construct a semantic graph where each node represents

of a possible keyword sense. The graph is structured in different layers, such that:
i. Each layer corresponds to a query-term, and consists of nodes representing all

possible semantic senses for that query-term,
ii. The layers are ordered following the order of appearance of the query-terms in

the keyword query,
iii. Nodes within the same layer (i.e., representing possible senses for the same

term) are not connected to each other. In fact, same layer nodes underline senses
of the same query-term and thus should not appear simultaneously in the same
path (i.e., same query sense configuration),

iv. Each pair of nodes corresponding to two consecutive layers (i.e., describing the
possible meanings of two consecutive query-terms), are connected together via
a weighted edge, underlining the semantic distance (as an inverse function of
semantic similarity/relatedness) between node senses,

v. Two virtual start and end nodes are added to the graph, connected to the nodes
of the first/last graph layers respectively, via edges of null distances. These are
introduced to guide the execution process of our adapted shortest path discovery
algorithm (described hereunder),

vi. With content-and-structure queries, the query tree structure is considered when
ordering the query nodes.

Step 3 - Identifying the Shortest Semantic Path: Consequently, the problem of

identifying the most homogeneous configuration of query-term senses, simplifies to that

of identifying the shortest semantic path in the semantic query graph. Here, we

introduce an adaptation of Dijkstra’s famous shortest path algorithm [21]. Our approach

can be summarized as follows:
i. Initialize node distance scores such that: the start node score is set to zero, and

all other node scores are set to infinity,
ii. Mark all nodes as unvisited, and set the start node as current node,

 Combining Offline and On-the-fly Disambiguation… 439

iii. For current node nc, calculate the semantic distance with each of its connected
nodes nj in the consecutive layer, and preserve minimum distance scores, i.e.,
for each nj, Dist(nj) = Min{ Dist(nc) + Weight(Egde(nc, nj)), Dist(nj) },

iv. When scores for all nodes connected to the current node nc have been computed,
nc is marked as visited. A visited node would have a minimal and final distance
score,

v. Select the unvisited node with the smallest distance score (from the initial node,
considering all nodes in the graph) as the current node and continue from step 3,

vi. Terminate the algorithm when end node is deemed visited.
Consider keyword query ‘Stewart Mystery Films’ (a similar process is applied to

structure-and-content queries). The corresponding semantic query graph, built based on

query-term semantic senses extracted from WordNet [50], is depicted in Fig. 7. Each

graph layer corresponds to a query-term, and each node in a given layer underlines a

semantic sense (concept) corresponding to the term at hand. The weight of an edge

underlines the semantic distance between the connected nodes. Semantic distance can

be computed as an inverse function of semantic similarity/relatedness, e.g., DistSem = 1 -

SimSem. Recall that we adopt an aggregate semantic similarity/relatedness function

combining edge-based methods [88], node-based methods [47], and gloss-based

methods [8], w.r.t. WordNet. For ease of presentation, Fig. 7 shows sample semantic

weight values for some (and not all) of the graph edges (e.g., weight(edge(n1, n4)) = 0.3

indicating that semantic concepts James Stewart and Mystery story are more similar

than James Stewart and Enigma, having weight(edge(n1, n3)) = 0.5).

Fig. 7. Semantic analysis of keyword query

The result of applying our adapted shortest path algorithm to the semantic query

graph in Fig. 7 is highlighted in the graph, and consists of nodes: n1, n4 and n5. These

underline the (WordNet) semantic concepts maximizing global query sense

homogeneity: James Stewart, Mystery story, and Movie.

5.3. Semantic Query Representation

Having identified the best (i.e., most homogeneous) query sense configuration, we

represent the query as a set of weighted semantic concepts (i.e., key-concepts), allowing

the user to semantically expand the query, including additional concepts related to those

originally conveyed by the query, in order to improve search result precision/recall.

440 Joe Tekli et al.

Formally, a user keyword query Q consisting of a sequence of lexical keywords kr,

Q = p k1, k2, … kN f is transformed into a semantic query representation QSem

consisting of a set of weighted concepts, QSem(D)= {(c1, w1), (c2, w2), …, (cM, wM)}

where ci is a key-concept, wi is the weight of ci, and D is the query semantic depth

parameter. The number of resulting key-concepts M  N since additional key-concepts

can be added following the user-chosen D expansion parameter as explained in the

following. Semantic query expansion is performed using our Sphere-Ring model (cf.

Section 4.1) to consider the semantic context of each query key-concept in the reference

semantic network (e.g., WordNet). Note that the semantic contexts of query concepts

can be determined, since the latter have already been disambiguated (as opposed to the

pre-disambiguation keyword query where the semantic meanings of query-terms were

undefined). The idea is to expand the query with additional concepts within the

semantic vicinity of the original query key-concepts. Following our Sphere-Ring model,

a semantic ring Rd(c) w.r.t. to a given concept c consists of the set of concept nodes, in

the reference semantic network, situated at a specific distance d from the target concept

node c. The semantic context sphere SD(ci) encompasses all semantic rings contained at

distances lesser or equal to the size (diameter D) of the sphere, such that SD(c) = {all

Rd(c) / d  D}. The sphere context size is specified by the user as a query semantic

depth parameter:
- For D = 0, the query is represented with it original key-concepts, associated

maximum (unit, =1) weights,
- For D > 0, the query is expanded with concepts situated within each original key-

concept’s semantic sphere (in the reference semantic network). Expanded query
concepts are weighted such that concepts farther away from the semantic sphere
center have a larger semantic distance w.r.t. the sphere’s center, and hence should
have a lesser impact on the query’s semantic meaning. Following our Sphere-Ring
context model, concept weights can be computed following the sizes of the sphere
rings to which they correspond, such that the larger the sphere ring radius, the
lesser the concept weight (e.g., a given weight decay function could be computed
as weight(ci) = wi =

  [0, 1] having ci  Rd(c)  SD(c)). Note that parameter D

can be normalized in the [0, 1] interval, following the maximum depth of the
reference semantic network SN at hand (e.g.,

), to simplify the user’s task

in specifying the expansion threshold.
Consider for instance the sample keyword query Q = ‘Stewart Mystery Films’:

- For D = 0, QSem(0) = {(James Stewart, 1), (Mystery story, 1), (Movie, 1)},

- For D = 1, the resulting query representation includes all semantic concepts

appearing in the unit (D=1) semantic context spheres of each original key-

concept. Here, following the WordNet extracts in Fig. 8, the semantic context of

concept James Stewart includes concept Actor (cf. Fig. 8.a). Likewise, the

semantic context of concept Mystery movie includes Story, Detective story and

Murder story (Fig. 8.b). The semantic context of concept Movie includes Show,

and 17 children (hyponym) concepts including Telefilm, Feature film, Final cut,

Home movie, etc., (the remaining child concepts are omitted here for ease of

presentation, cf. Fig. 8.c). The weights of all expanded concepts are equal to

 =

 = 0.5, following our adopted decay function. Hence, the semantic query

becomes:

 Combining Offline and On-the-fly Disambiguation… 441

QSem(1)={ (James Stewart, 1), (Actor, 0.5), (Mystery story, 1),
 (Story, 0.5), (Detective story, 0.5),
 (Murder story, 0.5), (Movie, 1), (Show, 0.5),
 (Telefilm, 0.5), (Final cut, 0.5), (Home movie, 0.5) }

The time complexity of our global query disambiguation approach comes down to

that of the shortest path computation process, which comes down to almost linear

O(N×log(N)) time where N=|SD(c)|×|Q|×|senses(kr)|. The latter simplifies to

N=|SD(c)|×|senses(kr)| since |Q| is usually limited to 2-3 keywords [15] and can be

omitted as a fixed parameter.

Fig. 8. Taxonomy fragments extracted from WordNet, covering the key-concepts in our example

6. Semantic Query Processing

6.1. Candidate Answer Tree

The first step in assessing a query is to identify its search scope. Following the

traditional IR logic, whole physical files are considered as candidate answers.

Nonetheless, XML documents differ in their structural organization and granularity:

some documents may contain information about movies, while others include

information about actors acting in many movies. Hence, it is not relevant to retrieve the

entire movie when the user is searching for certain actors. Hence, the XML query search

scope should be identified dynamically, considering the query at hand.

Following our XML data and query models, the query scope can be identified as

the set of XML data sub-trees (which we identify as Candidate Answer Trees, CATs), in

the data repository, having identical, or semantically similar enough, root nodes as that

of the query (i.e., same/similar label, with the same data-type). Consider for instance

query Q1, searching for movies that have certain characteristics. When considering root

442 Joe Tekli et al.

node identity, query Q1’s CATs would be all data sub-trees having root node movie.

When taking into account semantic similarity, Q1’s CATs would also encompass subtree

T1 of root node picture from Fig. 5.

Definition 8. Candidate Answer Tree: Given an XML node similarity measure

SimSemantic, and reference semantic network SN for evaluating the semantic similarity

between XML concept and node labels, and a semantic similarity threshold α, the set of

candidate answer trees QCAT, for a given query Q, in an XML data collection C, QCAT =

{S / S  C  ((R(Q) = R(S) if α =1)  SimSemantic(R(Q), R(S), SN) ≥ α otherwise)} ●

The semantic similarity threshold also serves as a structural/semantic similarity

parameter, underlying the extent of structural/semantic similarity considered while

identifying candidate answers. It allows the user to assign more importance to the

structural or semantic characteristics of XML data in answering the query at hand:
 For α = 1, only CATs with root nodes identical to that of the query are the only

ones considered. This corresponds to purely structural querying.
 For 0 < α <1, CATs with root nodes of semantic similarity higher than α are

considered. As α decreases, the size of the answer set QCAT will increase,
following the semantic similarities between query and CAT root nodes.

 For α = 0, all data sub-trees in the XML data collection are considered as
CATs.

As for the semantic similarity measure SimSemantic, it is evaluated w.r.t. the nodes’

constituents, i.e. their concepts and tag labels, where existing semantic similarity

measures (e.g. Lin [47], Wu and Palmer [88]) can be exploited (cf. background in

Section 2), taking into account the concerned reference semantic network. In our

approach, our measure consists of a linear combination of Lin [47], and Wu and Palmer

[88]), assigning equal weights to both measures. Other measures can be used according

to the admin user’s preferences.

6.2. Relevance Weight Function

We introduce a set of weighting functions to assign weight scores to XML nodes and

edges, allowing to weight and rank the candidate answer trees. Considering an XML

node ni in the semantic XML tree, the weight of ni is computed according to the below

formula where we consider “Fan-in” to be the number of nodes connected with the

target XML node:

WXMLNode(ni) =

()
 [0,1]

(())
j index

i

j
v V

Fan in n

Max Fan in n
 






 (1)

The rational is that an XML node is more important if it shares more links from other

XML nodes. Given an XML edge

j

ie connecting XML nodes ni and nj in the XML tree,

we define the weight of

j

ie as follows:

WXMLEdge (

j

ie)= 1]0,1]
()Label iFan out n




 (2)

The weight of an XML edge is inversely proportional to the number of links from a

certain node to another, taking into account the semantic relation type of the link at hand

(e.g., parent-child, element-attribute, element-value). The rationale here is that an XML

edge designates a stronger connection between two XML nodes when it carries most of

 Combining Offline and On-the-fly Disambiguation… 443

the descriptive power from the source node to the destination node, such that the source

node has few other out-going connections.

The scores of XML nodes/edges returned as query answers are computed using

typical Diskstra-style shortest distance computations. Yet, instead of identifying the

shortest (smallest) distance, we identify as answers XML sub-tree root nodes having the

maximum similarity (similarity being the inverse function of distance) w.r.t. the starting

nodes (mapping to keyword queries). In other words, given the sample CAT T in 0, with

root node nd = root(T) and leaf nodes ni…j, we define the relevance score of nd w.r.t. ni…j

as follows:

...

XMLNode XMLEdge XMLNode XMLEdge

...
...

...
1 1W () W () W () W ()

(,) (,)

(,)
score(,) [0,1]

| |

d x
i

i j

d p x
p d i d

i d

d i j
i j

n e n e
d n n d n n

d n n
n n

n

     

 



(7)

where d(ni, nd) is the distance in number of edges between two nodes, and |ni…j| is the

number of leaf nodes in the CAT T rooted at nd. In other words, in the following

example, d(np, nd) =1, d(nj, nd) =2, and d(ni, nd) =3.

Fig. 9. Sample node linkage in an XML candidate answer tree

6.3. Semantic Query Processing

Having transformed the XML document collection and the keyword query into

meaningful semantic representations, XML semantic search comes down to identifying

and ranking the most relevant semantic XML sub-structures encompassing the semantic

key-concepts in the query. Our extended framework includes three query processing

algorithms: i) the core semantic search algorithm and two other variants designed to

improve: ii) user involvement, and iii) query efficiency:
i. Core algorithm: titled Semantic Search and originally described in [84], it

performs semantic-aware search using shortest path navigation in the SemIndex
graph,

ii. User involvement: Query-As-You-Type Search, allows users to manually choose
the meanings of query keywords before performing semantic search, aiming to
involve the user in improving search result quality,

444 Joe Tekli et al.

iii. Query Efficiency: Parallel Semantic Search is a parallel processing
(multithreading) version of SI_SS, aiming to reduce query execution time.

6.4. Semantic Search

Our main querying method is based on a structural clustering technique to group

together key-concept occurrences, in the XML data collection, which are structurally

close. Our objective is to identify and rank the most prominent candidate answer sub-

trees, in the XML data set, containing related occurrences of query key-concepts. Our

semantic search algorithm is shown in Fig. 10 and is described below:

Step 1 - Identifying concept occurrences: The first step consists in pinpointing

the XML nodes, in the data collection, containing occurrences of the query key-

concepts.

Step 2 - Performing XML node clustering: Having identified the XML nodes

encompassing key-concept occurrences, we perform structural clustering [55] to group

together the XML nodes which are closest in the XML tree. The algorithm is applied on

the weighted distances separating concept occurrences (cf. Section 6.2).

Step 3 – Constructing Answer Trees: We construct candidate answer trees based

on the XML node clusters. An answer tree consists of the sub-tree rooted at the lowest

common ancestor of all concept occurrences in the corresponding cluster.

Step 4 – Ranking Answer Trees: Having identified the candidate answer sub-

trees, we rank them following their relevance to the query. Here, we utilize an

integrated function combining various ranking criteria including i) weights of semantic

concepts; ii) answer tree size (compactness), iii) common usage of senses (e.g.,

WordNet estimates the average usage frequency of word meanings in the English

language, following the Brown corpus [29]), where the most commonly used senses are

deemed more relevant in ranking results [49]. Other weighting functions can be used.

Algorithm SemanticSearch
Input: T // Semantic XML tree

 K // Set of query selection terms

 D // Sphere diameter designating query context size

Ouput: NOut // List of ranked trees from T designating query answers

Begin

NOut = 

Step 0: S = getSemanticQuerySenses(K) // Global disambiguation

For each term si  S // For each keyword sense

{
Step 1: nIn = getNodeID(si, T) // Identify concept occurrences

Step 2: SP = PerformClustering(nIn, D, T)

Step 3: Ninit = constructAnswerTree(SP, T)
Step 4: NOut = rankAnswerTree(Ninit, T)

} 8

 Return NOut

 9

End

1

2

3

4

5

6
7

8

9
10

 Combining Offline and On-the-fly Disambiguation… 445

Fig. 10. Pseudo-code of Semantic Search algorithm

Note that the complexity of the semantic search algorithm comes down to the

complexity of the structure clustering algorithm in Step 2. We utilize Lloyd’s heuristic

algorithm [48] to bound clustering complexity to O(N  C  I) where N is the number of

XML nodes to be clustered, C the number of produced clusters, and I the number of

iterations to reach convergence.

6.5. Query As You Type Search

This algorihtm allows the user to choose the proper meaning for every query keyword,

by allowing her to choose the intended sense from the set of all possible senses provided

by WordNet. Once the senses have been chosen, the algorithm pinpoints in semantic

network graph the indexing nodes corresponding to the chosen senses, and then runs

typical shortest patth search starting from the chosen nodes. The pseudo-code of is

basically the same as that of Semantic Search, except for adding a step 0: nIn =

manual(K, SN), i.e., allowing the user to manually choose the proper meaning of every

query term, among the list of possible meanings presented to the user through the

system’s GUI (cf. Fig. 11). Then, Semantic Search resumes by identifying and only

processing the starting nodes corresponding to the term senses (synsets) chosen by the

user. The algorithm’s main steps can be described as follows:

i. Allow the user to choose the sense of each term in the query according to
WordNet,

ii. Identify in the semantic XML tree the nodes corresponding to the chosen
senses,

iii. Run the resulting query, starting from the identified index nodes, as a typical
semantic keyword query search.

Fig. 11. Query-As-You-Type sub-interface

6.6. Parallel Semantic Search

We have also introduced a parallelized version of algorithm Semantic Search (cf. Fig.

12), which preserves (more or less) the same workflow of the original algorithm except

446 Joe Tekli et al.

that it processes query terms and starting XML nodes using multiple threads running in

parallel. The algorithm’s main steps are described as follows:

i. Every query term is assigned a dedicated thread, and is thus processed
independently from other threads (lines 1-2),

ii. After identifying the starting nodes for a query term (line 4), every starting node is
then assigned its own dedicated thread (line 5), allowing to: compute the shortest
paths from the starting node to data nodes in the XML tree (line 7), and then
identify the reached data nodes designating potential query answers (i.e., CATs,
line 8),

iii. Results are gradually merged (line 9) as they are produced by each thread, to rank
and select (lines 10-12) query answers.

The implementation of the algorithm is configured to run as many threads as there

are terms in the user query, where thread scheduling and parallel execution is left to the

operating system.

Algorithm ParallelSemanticSearch

Input: T // Semantic XML tree

 K // Set of query selection terms
 D // Sphere diameter designating query context size

Ouput: NOut // List of ranked trees from T designating query answers

Begin

NOut = 

Step 0: S = getSemanticQuerySenses(K) // Global disambiguation

Create Thread for each term si  S // For each keyword sense

{
Step 1: nIn = getNodeID(si, T) // Identify concept occurrences

Create Thread for each ni  nIn

{
Step 2: SP = PerformClustering(ni, D, T)

Step 3: Ninit = constructAnswerTree(SP, T)

Step 4: NOut = rankAnswerTree(Ninit, T)
}

} 8

Return NOut

 9

End

1

2

3

4

5

6

7
8

9

10
11

12

13

Fig. 12. Pseudo-code of Parallel Semantic Search algorithm

 Combining Offline and On-the-fly Disambiguation… 447

7. Experimental Evaluation

7.1. Experimental Scenario

We conducted a battery of experiments to test and evaluate our approach. We used a

collection of 80 test documents gathered from several data sources having different

properties1. Target XML nodes were first subject to manual disambiguation (12-to-13

nodes were randomly selected per document, yielding a total of 1000 target nodes,

allowing human testers to annotate each node by choosing appropriate senses from

WordNet) followed by automatic disambiguation. We formulated different with varying

numbers of keywords, e.g., from 1 (single term query) to 5, where each query expands

its predecessor by adding an additional selection term to the latter cf. sample queries in

Table 1). We then compared user and system generated senses to compute precision

(PR), recall (R), f-value, and mean average precision (MAP) scores.

Table 1. Sample test queries used in our experiments

Query Q1 Query Q2

ID Terms ID Terms
Q1_1 “music” Q2_1 “play”

Q1_2 “music”, romance” Q2_2 “play”, “theater”
Q1_3 “music”, romance”, “dinner” Q2_3 “play”, “theater”, “scene”

Q1_4 “music”, romance”, “dinner”, “trip” Q2_4 “play”, “theater”, “scene”, “hero”

Q1_5 “music”, romance”, “dinner”, “trip”, “Paris” Q2_5 “play”, “theater”, “scene”, “hero”, “climax”

7.2. Query Result Quality

We first tested the effectiveness of our approach considering its different features and

configurations: i) the properties of XML data (w.r.t. ambiguity and structure), and ii)

context size (sphere neighborhood radius). Results in Fig. 13 show that precision levels

increase with the number of query terms k. This is due to the human testers’

expectations: given that queries are expanded versions of one another, result quality is

evaluated based on the user’s intent: which is expressed with the most expanded (i.e.,

most expressive) query (e.g., Q1_5 and Q2_5). One can realize that using fewer query

terms produces lower precision levels, which is due to the system returning more results

which are (semantically related to the query terms but which are) not necessary related

to the user’s intent. As for recall, one can realize that levels steadily increase with

concept depth D, where the number of correct (i.e., user expected) results returned by

the system increases as more semantically related terms are covered in the querying

process. F-value results increase with the increase of context depth D, and they slightly

decrease with the increase of the number of query keywords k. This confirms the

precision and recall results, where the determining factor affecting retrieval quality

1 Shakespeare collection http://metalab.unc.edu/bosak/xml/eg/shaks200.zip, Amazon product files simply-

amazon.com/content/XML.html,SIGMOD Record, http://www.acm.org/sigmod/xml, Niagara collection

http://www.cs.wisc.edu/niagara/

448 Joe Tekli et al.

remains context depth D. An increase in the number of keywords k tends to reduce

system recall with higher values of k (queries becoming very selective, thus missing

some relevant results). F-value levels are significantly higher than those obtained with

the legacy inverted index, highlighting a clear improvement over syntactic retrieval

quality. Also, mean average precision levels seem to concur with those of f-value, such that

the ranking of relevant results compared with non-relevant ones in the queries’ result lists

seems to increase with the increase of Dand fluctuate (based on the values of D) with the

increase of K. In other words, increasing D not allowed retrieving more relevant results and

improved the ranking of relevant results w.r.t. non-relevant ones in the query result list.

 a. Precision results

 b. Recall results

c. F-value results c. MAF results

Fig. 13. Comparing Semantic Search average precision (PR), recall (R), f-value, and mean

average precision results with legacy inverted index syntactic search

a. Precision results b. Recall results

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

P
re

ci
si

o
n

N# of query terms k

2 4 5 D InvIndex

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

R
ec

al
l

N# of query terms k

2 4 5 InvIndex D

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

F-
va

lu
e

N# of query terms k

2 4 5 InvIndex D

0

0.2

0.4

0.6

0.8

1

1 2 3 4

M
A

P

N# of query terms k

2 4 5 InvIndex D D D

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 5

P
re

ci
si

o
n

Semantic depth D

P(SS) QAYTS

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 5

R
ec

al
l

Semantic depth D

P(SS) QAYTS

 Combining Offline and On-the-fly Disambiguation… 449

c. F-value results d. Mean average precision results

Fig. 14 Comparing Semantic Search (SS), Query As You type Search (QAYTS), and Parallel semantic

Search (PSS) average precision (PR), recall (R), f-value, and mean average precision (MAP)

results when varying semantic depth D

a. Precision results b. Recall results

c. F-value results d. Mean average precision results

Fig. 15. Comparing Semantic Search (SS), Query As You type Search (QAYTS), and Parallel semantic

Search (PSS) average precision (PR), recall (R), f-value, and mean average precision (MAP)

results when varying semantic depth D

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 5

F-
va

lu
e

Semantic depth D

P(SS) QAYTS

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 5

M
A

P

Semantic depth D

P(SS) QAYTS

0.0

0.2

0.4

0.6

0.8

1.0

2 3 4 5

P
re

ci
si

o
n

N# of keywords K

P(SS) QAYTS

0.0

0.2

0.4

0.6

0.8

1.0

2 3 4 5

R
ec

al
l

N# of keywords K

P(SS) QAYTS

0.0

0.2

0.4

0.6

0.8

1.0

2 3 4 5

F-
va

lu
e

N# of keywords K

P(SS) QAYTS

0.0

0.2

0.4

0.6

0.8

1.0

2 3 4 5

M
A

P

N# of keywords K

P(SS) QAYTS

450 Joe Tekli et al.

7.3. Query Processing Time

We evaluated our solution’s almost linear efficiency. Results in Fig. 16 highlight the

polynomial (almost linear) complexities of both our (offline) XML document

disambiguation and (online) global query disambiguation approaches, considering

different parameter configurations for both processes. Results in Fig. 16.b show total

query execution time including online disambiguation, by varying both the number of

keywords and query semantic depth D (i.e., semantic context size).

a. XML document disambiguation

b. Query disambiguation and execution

Fig. 16. XML document disambiguation time (a) and query disambiguation and execution time

(b)

We ran the same queries through the three querying algorithms: SS, QAYTS, and PSS.

Fig. 17 provides average processing time results for all queries, plotted by varying the

number of query terms K and link distance threshold D. First, results of all three

algorithms show that query execution time increases almost linearly with the number of

query terms K (when fixing link distance D), and increases linearly with D(when fixing

K), highlighting the algorithms quadratic complexity levels. Second, results show that

all three algorithms have very close query time levels when both K and D are small (=1

and 2), such that time difference increases as both K and D increase. This is due to the

fact increasing either K or D means increasing the number of nodes to be navigated in

the semantic XML tree: increasing k means navigating the XML tree starting from a

larger number of initial nodes, and increasing D means reaching deeper into the tree

structure to identify more semantically relevant results. Third, algorithms SS and

QAYTS produced almost identical time levels (disregarding the manual effort required

in QAYTS2), whereas the parallel processing PSS algorithm is clearly the most efficient

of its counterparts, requiring almost 33.34% less time than SS and QAYTS with

maximum k=5 and D=5.

2 QAYTS’s time shown in Fig. 16 does not encompass the time it took the testers to manually choose the

meanings of query terms (which we did not consider to be part of the algorithm itself), but only considers

actual algorithm (CPU and SQL) execution time.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4

Ti
m

e
(i

n
 s

e
d

o
n

cs
)

of query terms K

1 2 3

of senses, document context size, knowledge base context size

 |Senses(x.), |SD(n)|, |SD(sp)|

D

Query semantic depth parameter

 Combining Offline and On-the-fly Disambiguation… 451

Fig. 17. Comparing average query execution time of Semantic Search (SS), Query As You type

Search (QAYTS), and Parallel semantic Search (PSS), while varying semantic depth D and the

number of query terms K

8. Conclusion

In this paper, we describe XSemSearch, a solution for XML keyword search allowing to

transform both XML documents and keyword queries into semantic representations,

using semantic concepts in a reference knowledge base. We describe two approaches

for i) offline context-based XML document disambiguation and ii) online global

keyword query disambiguation, both designed to run in almost linear time. Our solution

is: i) fully automated, compared with existing interactive solutions which require user

input to manually identify the intended query senses e.g., [35, 61], and ii) tractable (of

almost linear time) and thus reasonably applicable on the Web, compared with

polynomial or exponential solutions, e.g., [23, 58]. Our solution also provides iii) a

dedicated index structure to handle semantic XML trees, iv) a dedicated query

formalism to allow structure-and-content queries with only partial knowledge of the

data collection structure and semantics, and iv) three alternative query processing

algorithms to evaluate query processing time and quality.

We are currently investigating the integration of semantic-aware indexing

capabilities [79-81] and different clustering algorithms to form XML answer trees [33,

77]. This would provide more opportunities toward both speed-ups and semantic-based

a. N# of query terms k = 2

b. N# of query terms k = 3

c. N# of terms k = 4

d. N# of terms k = 5

0 1 2 3 4 5

Ti
m

e
(i

n
 s

ec
o

n
d

s)

Semanic depth D= 1

SI_SS

SI_QAYTS

SI_PSS

0 1 2 3 4 5

Ti
m

e
(i

n
 s

ec
n

d
s)

Semanic depth D = 2

SI_SS
SI_QAYTS
SI_PSS

0.5

0.4

0.3

0.2

0.1

0

0 1 2 3 4 5

Ti
m

e
(i

n
 s

ec
o

n
d

s)

Semanic depth D = 4

SI_SS
SI_QAYTS
SI_PSS

0.5

0.4

0.3

0.2

0.1

0

0 1 2 3 4 5

Ti
m

e
(i

n
 s

ec
o

n
d

s)

Semanic depth D = 5

SI_SS
SI_QAYTS
SI_PSS

0.5

0.4

0.3

0.2

0.1

0

0
.5

0
.4

0
.3

0
.2

0

.1

0

452 Joe Tekli et al.

filtering. We are also investigating the use of alternative knowledge sources such as

Google [1], Wikipedia [86], and FOAF [4] to acquire a wider word sense coverage, and

explore our approach in practical applications, namely semantic-aware document and

schema matching [82, 83], RSS news feed merging [68, 69], affective blog analysis [26,

27], social event detection [3, 5], and semantic relations’ identification from social

media data [2]. On the long run, we aim to investigate word embeddings and learning

statistical distributions in a corpus [34, 92], to infer semantics without the need for

predefined knowledge bases.

References

1. Abdulhayoglu M. and Thijs B., Use of ResearchGate and Google CSE for author name

disambiguation. Scientometrics 2017. 111(3): 1965-1985.

2. Abebe M., et al., Generic Metadata Representation Framework for Social-based Event

Detection, Description, and Linkage. Knowledge Based Systems 2020. 188.

3. Abebe M. A., et al., Overview of Event-Based Collective Knowledge Management in

Multimedia Digital Ecosystems. International Conference of Signal Image Technology and

Internet-based Systems (SITIS'17), 2017. pp. 40-49.

4. Amith M., Fujimoto K., Mauldin R.,, and Tao C., Friend of a Friend with Benefits ontology

(FOAF+): extending a social network ontology for public health. BMC Medical Informatics

& Decision Making - Supplement, 2020. 20-S(10): 269.

5. Ashagrie M., et al., A General Multimedia Representation Space Model toward Event-based

Collective Knowledge Management. Submitted to 19th IEEE International Conference on

Computational Science and Engineering (CSE 2016), 2016. Paris, France.

6. Azzini A., et al., A Neuro-Evolutionary Corpus-based Method for Word Sense

Disambiguation. IEEE Intelligent Systems, 2012. 27(6): 26-35.

7. Baeza-Yates R. and Ribeiro-Neto B., Modern Information Retrieval: The Concepts and

Technology behind Search. ACM Press Books, Addison-Wesley Professional, 2nd Ed.,

2011. p. 944.

8. Banerjee S. and Pedersen T., Extended Gloss Overlaps as a Measure of Semantic

Relatedness. International Joint Conference on Artificial Intelligence (IJCAI'03), 2003. p.

805-810.

9. Baziz M.; Boughanem M. and Traboulsi S., A concept-based approach for indexing

documents in IR. INFORSID 2005, 2005. pp. 489-504, Grenoble, France.

10. Bertino E.; Guerrini G.; and Mesiti, M., A Matching Algorithm for Measuring the Structural

Similarity between an XML Documents and a DTD and its Applications. Elsevier

Information Systems, 2004. (29):23-46.

11. Bobed C. and Mena E., QueryGen: Semantic Interpretation of Keyword Queries over

Heterogeneous Information Systems. Information Sciences, 2016. 329: 412-433.

12. Bonab H., et al., Incorporating Hierarchical Domain Information to Disambiguate Very

Short Queries. International Conference on the Theory of Information Retrieval (ICTIR'19),

2019. pp. 51-54.

13. Budanitsky A. and Hirst G., Evaluating WordNet-based Measures of Lexical Semantic

Relatedness. Computational Linguistics, 2006. 32(1): 13-47.

14. Burton-Jones A.; Storey V.C.; Sugumaran V. and Purao S., A Heuristic-Based Methodology

for Semantic Augmentation of User Queries on the Web. In Proceedings ot the International

Conference on Conceptual Modeling (ER'03), 2003. pp. 476–489.

15. Calì A., Martinenghi D., and Torlone R., Keyword Queries over the Deep Web. International

Conference on Conceptual Modeling (ER'16), 2016. pp. 260-268.

 Combining Offline and On-the-fly Disambiguation… 453

16. Chaplot D. and Salakhutdinov R., Knowledge-based Word Sense Disambiguation using

Topic Models. AAAI Conference on Artificial Intelligence (AAAI'18), 2018. pp. 5062-5069.

17. Charbel N., et al., Resolving XML Semantic Ambiguity. International Conference on

Extending Database Technology (EDBT'15), 2015. Brussels, Belgium, pp 277-288.

18. Chawathe S.; Rajaraman A.; Garcia-Molina H.; and Widom J., Change Detection in

Hierarchically Structured Information. Proceedings of the ACM International Conference on

Management of Data (SIGMOD), 1996. pp. 26-37. Montreal.

19. Che D., Ling T., and Hou W., Holistic Boolean-Twig Pattern Matching for Efficient XML

Query Processing. IEEE Transactions on Knowledge and Data Engineering, 2012. 24(11):

2008-2024.

20. Cobéna G.; Abiteboul S.; and Marian A., Detecting Changes in XML Documents.

Proceedings of the IEEE International Conference on Data Engineering (ICDE), 2002. pp.

41-52.

21. Cormen T. H.; Leiserson C. E.; Rivest R. L. and Stein C., Introduction to Algorithms

(Second ed.) - Section 24.3: Dijkstra's Algorithm. MIT Press and McGraw-Hill, 2001. pp.

595–601.

22. Dalamagas T.; Cheng T.; Winkel K.; and Sellis T., A Methodology for Clustering XML

Documents by Structure. Information Systems, 2006. 31(3):187-228.

23. de Campos L., et al., XML Search Personalization Strategies using Query Expansion,

Reranking and a Search Engine Modification. ACM Symposium on Applied Computing

(SAC'13) 2013. pp. 872-877.

24. Demidova E., ZhouIrina X., and Nejdl O., Evaluating Evidences for Keyword Query

Disambiguation in Entity Centric Database Search. International Conference on Database

and Expert Systems Applications (DEXA'10), 2010. pp. 240-247.

25. Di Iorio A., et al., A First Approach to the Automatic Recognition of Structural Patterns in

XML Documents ACM Symposium on Document Engineering, 2012. pp. 85-94.

26. Fares M., et al., Difficulties and Improvements to Graph-based Lexical Sentiment Analysis

using LISA IEEE International Conference on Cognitive Computing (ICCC'19), 2019.

27. Fares M., et al., Unsupervised Word-level Affect Analysis and Propagation in a Lexical

Knowledge Graph. Elsevier Knowledge-Based Systems, 2019. 165: 432-459.

28. Fragos K., Modeling WordNet Glosses to Perform Word Sense Disambiguation.

International Journal of Artificial Intelligence Tools, 2013. 22(2).

29. Francis W. N. and Kucera H., Frequency Analysis of English Usage. Houghton Mifflin,

Boston, 1982.

30. Gao J., et al., Learning Lexicon Models from Search Logs for Query Expansion. Conference

on Empirical Methods in Natural Language Processing (EMNLP'12), 2012. pp. 666-676.

31. Graupmann J.; Schenkel R. and Weikum G., The SphereSearch Engine for Unified Ranked

Retrieval of Heterogeneous XML and Web Documents. Proceedings of the International

Conference on Very Large Databases (VLDB), 2005. pp. 529-540.

32. Guha S.; Jagadish H.V.; Koudas N.; Srivastava D.; and Yu T., Approximate XML Joins.

Proceedings of ACM International Conference on Managemenet of Data (SIGMOD), 2002.

pp. 287-298.

33. Haraty R., Dimishkieh M., and Masud M., An Enhanced k-Means Clustering Algorithm for

Pattern Discovery in Healthcare Data. Intelligent Journal on Distributed Sensor Networks,

2015. 11: 615740:1-615740:11.

34. Haraty R. and Nasrallah R., Indexing Arabic Texts using Association Rule Data Mining.

Library Hi Tech, 2019. 37(1): 101-117.

35. Harman D., Towards Interactive Query Expansion. SIGIR Forum 2017. 51(2): 79-89.

36. Helmer S., Measuring the Structural Similarity of Semistructured Documents Using Entropy

Proceedings of the International Conference on Very Large Databases (VLDB), 2007. pp.

1022-1032.

37. Hoffart J., et al., YAGO2: A spatially and temporally enhanced knowledge base from

Wikipedia. Artif. Intell., 2013. 194: 28-61.

454 Joe Tekli et al.

38. Holub M., et al., Tailored Feature Extraction for Lexical Disambiguation of English Verbs

Based on Corpus Pattern Analysis. International Conference on Computational Linguistics

(COLING'12), 2012. pp. 1195-1210.

39. Iranzo P. and Sáenz-Pérez F., Implementing WordNet Measures of Lexical Semantic

Similarity in a Fuzzy Logic Programming System. Theory and Practice of Logic

Programming, 2021. 21(2): 264-282.

40. Kamvar M. and Baluja S., A Large Scale Study of Wireless Search Behavior: Google Mobile

Search. In Proceedings of the SIGCHI Conference on Computer Human Interaction, 2006.

pp. 701–709, Montreal, Canada.

41. Kumar R., Guggilla B., and Pamula R., Book search using social information, user profiles

and query expansion with Pseudo Relevance Feedback. Applied Intelligence, 2019. 49(6):

2178-2200.

42. Kwon S., Oh D., and Ko Y., Word Sense Disambiguation based on Context Selection using

Knowledge-based Word Similarity. Information Processing and Management, 2021. 58(4):

102551.

43. Leacock C. and Chodorow M., Combining Local Context and WordNet Similarity for Word

Sense Identification. FellBaum C. editor, WordNet: An Electronic Lexical Database, Chapter

11, The MIT Press, Cambridge, 1998. pp. 265-283.

44. Li Y.; Yang H. and Jagadish H.V., NaLIX: an interactive natural language interface for

querying XML. Proceedings of the International ACM Conference on Management of Data

(SIGMOD), 2005. pp. 900-902.

45. Li Y.; Yang H. and Jagadish H.V., Term Disambiguation in Natural Language Query for

XML. In Proceedings of the International Conference on Flexible Query Answering Systems

(FQAS), 2006. LNAI 4027, pp. 133–146.

46. Liang W.; and Yokota H., LAX: An Efficient Approximate XML Join Based on Clustered

Leaf Nodes for XML Data Integration. Proceedings of the British National Conference on

Databases (BNCOD), 2005. pp. 82-97.

47. Lin D., An Information-Theoretic Definition of Similarity. Proceedings of the International

Conference on Machine Learning (ICML), 1998. pp. 296-304. Morgan Kaufmann Pub. Inc.

48. Lloyd S., Least Squares quantization in PCM. IEEE Transactions on Information Theory,

1982. 28(2):129-137.

49. Mandreoli F. and Martoglia R., Knowledge-based sense disambiguation (almost) for all

structures. Information Systems, 2011. 36(2): 406-430.

50. Miller G., WordNet: An On-Line Lexical Database. International Journal of Lexicography,

1990. 3(4).

51. Miller G.A. and Fellbaum C., WordNet Then and Now. Language Resources and Evaluation,

2007. 41(2): 209-214.

52. Mohammad S., Hirst G., and Resnik P., Tor, TorMd: Distributional Profiles of Concepts for

Unsupervised Word Sense Disambiguation. SemEval@ACL 2007, 2007. pp. 326-333.

53. Navigli R., Word Sense Disambiguation: a Survey. ACM Computing Surveys, 2009.

41(2):1–69.

54. Navigli R. and Velardi P., Structural Semantic Interconnections: A knowledge-based

Approach to Word Sense Disambiguation IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2005. 27(7):1075–1086.

55. Navigli R. and Crisafulli G., Inducing Word Senses to Improve Web Search Result

Clustering. In Proceedings of the 2010 Conference on Empirical Methods in Natural

Language Processing, 2010. pp. 116–126, MIT, USA.

56. Navigli R. and Velardi P., An Analysis of Ontology-based Query Expansion Strategies. In

proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI'03),

2003. pp. 42-49.

57. Nierman A. and Jagadish H. V., Evaluating structural similarity in XML documents.

Proceedings of the ACM SIGMOD International Workshop on the Web and Databases

(WebDB), 2002. pp. 61-66.

 Combining Offline and On-the-fly Disambiguation… 455

58. Qtaish A. and Alshammari M., A Narrative Review of Storing and Querying XML

Documents using Relational Database. Journal of Information & Knowledge Management,

2019. 18(4): 1950048:1-1950048:28.

59. Rafiei D.; Moise D.; and Sun D., Finding Syntactic Similarities between XML Documents.

Proceedings of the International Conference on Database and Expert Systems Applications

(DEXA), 2006. pp. 512-516.

60. Resnik P., Disambiguating Noun Groupings with Respect to WordNet Senses. In Proceedings

of the 3rd Workshop on Large Corpora, 1995. pp. 54-68.

61. Russell-Rose T., Gooch P., and Kruschwitz U., Interactive Query Expansion for

Professional Search Applications. CoRR abs/2106.13528, 2021.

62. Salameh K., Tekli J., and Chbeir R., SVG-to-RDF Image Semantization. 7th International

SISAP Conference, 2014. pp. 214-228.

63. Sanz I.; Mesiti M.; Guerrini G.; Berlanga La R.; and Berlanga Lavori R., Approximate

Subtree Identification in Heterogeneous XML Documents Collections. XML Symposium,

2005. pp. 192-206.

64. Schlieder T., Similarity Search in XML Data Using Cost-based Query Transformations.

Proceedings of the ACM SIGMOD International Workshop on the Web and Databases

(WebDB), 2001. pp. 19-24.

65. Schlieder T. and Meuss H., Querying and Ranking XML Documents. Journal of the

American Society for Information Science, Special Topic XML/IR, 2002. 53(6):489-503.

66. Singh S., Murthy H., and Gonsalves T., Dynamic Query Expansion based on User's Real

Time Implicit Feedback. Conference on Knowledge Discovery and Information Retrieval

(KDIR'10) 2010. pp. 112-121.

67. Soudani N., Bounhas I., and Ben Babis S., Ambiguity Aware Arabic Document Indexing and

Query Expansion: A Morphological Knowledge Learning-Based Approach. The Florida AI

Research Society Conference (FLAIRS'18 Conference), 2018. pp. 230-235.

68. Taddesse F.G., et al., Semantic-based Merging of RSS Items. World Wide Web Journal:

Internet and Web Information Systems Journal Special Issue: Human-Centered Web

Science., 2010. 13(1-2): 169-207, Springer Netherlands.

69. Taddesse F.G., et al., Relating RSS News/Items. Proceedings of the 9th International

Conference on Web Engineering (ICWE'09), LNCS, 2009. pp. 44-452, San Sebastian, Spain.

70. Tagarelli A. and Greco S., Semantic Clustering of XML Documents. ACM Transactions on

Information Systems, 2010. 28(1):3.

71. Tagarelli A.; Longo M. and Greco S., Word Sense Disambiguation for XML Structure

Feature Generation. European Semantic Web Conference, 2009. LNCS 5554, pp. 143–157.

72. Taha K. and Elmasri R., CXLEngine: A Comprehensive XML Loosely Structured Search

Engine. Proceedings of the EDBT workshop on Database Technologies for Handling XML

Information on the Web (DataX'08), 2008. pp. 37-42, Nantes, France.

73. Taha K. and Elmasri R., XCDSearch: An XML Context-Driven Search Engine. IEEE

Transactions on Knowledge and Data Engineering, 2010. 22(12):1781-1796.

74. Tannebaum W. and Rauber A., Using Query Logs of USPTO Patent Examiners for

Automatic Query Expansion in Patent Searching. Information Retrieval, 2014. 17(5-6): 452-

470.

75. Tekli J., An Overview on XML Semantic Disambiguation from Unstructured Text to Semi-

Structured Data: Background, Applications, and Ongoing Challenges. IEEE Transactions on

Knowledge and Data Engineering (IEEE TKDE), 2016. 28(6): 1383-1407.

76. Tekli J., et al., Semantic to intelligent web era: building blocks, applications, and current

trends. . International Conference on Managment of Emergent Digital EcoSystems

(MEDES), 2013. pp. 159-168.

77. Tekli J., et al., (k, l)-Clustering for Transactional Data Streams Anonymization. Information

Security Practice and Experience, 2018. pp. 544-556.

78. Tekli J., Charbel N., and Chbeir R., Building Semantic Trees from XML Documents. Elsevier

Journal of Web Semantics (JWS), 2016. 37–38:1–24.

456 Joe Tekli et al.

79. Tekli J., et al., SemIndex: Semantic-Aware Inverted Index. Symposium on Advances in

Databases and Information Systems (ADBIS), 2015. pp. 290-307.

80. Tekli J., et al., SemIndex+: A Semantic Indexing Scheme for Structured, Unstructured, and

Partly Structured Data. Elsevier Knowledge-Based Systems, 2019. 164: 378-403.

81. Tekli J., et al., Full-fledged Semantic Indexing and Querying Model Designed for Seamless

Integration in Legacy RDBMS. Data and Knowledge Engineering, 2018. 117: 133-173.

82. Tekli J., Chbeir R., and Yétongnon K., A Fine-grained XML Structural Comparison

Approach. 26th International Conference on Conceptual Modeling (ER), 2007. LNCS 4801,

pp. 582-598.

83. Tekli J., Chbeir R., and Yétongnon K., Structural Similarity Evaluation between XML

Documents and DTDs. Proceedings of the 8th International Conference on Web Information

Systems Engineering (WISE), 2007. pp. 196-211.

84. Tekli J., Tekli G., and Chbeir R., Almost Linear Semantic XML Keyword Search. Inter. ACM

Conf. on Management of Emergent Digital EcoSystems (MEDES'21), 2021. pp. 129-138.

85. Theobald M.; Schenkel R. and Weikum G., Exploiting Structure, Annotation, and

Ontological Knowledge for Automatic Classification of XML Data. In Proceedings of the

ACM SIGMOD International Workshop on Databases (WebDB), 2003. pp. 1-6, San Diego,

California.

86. Tu H., et al., Word Sense Disambiguation Using Wikipedia Link Graph. IEEE BigData 2019,

2019. pp. 6235-6236.

87. World Wide Web Consortium. The Document Object Model. http://www.w3.org/DOM,

[Accessed Feb. 2022].

88. Wu Z. and Palmer M., Verb Semantics and Lexical Selection. Proceedings of the 32nd

Annual Meeting of the Associations of Computational Linguistics, 1994. pp. 133-138.

89. Yang D., et al., Query Intent Disambiguation of Keyword-Based Semantic Entity Search in

Dataspaces. Journal of Computer Science and Technology, 2013. 28:382–393.

90. Yaworsky D., Word-Sense Disambiguation Using Statistical Models of Roget's Categories

Trained on Large Corpora. Proceedings of the International Conference on Computational

Linguistics (Coling), 1992. Vol 2, pp. 454-460. Nantes.

91. Yi J., Maghoul F., and Pedersen J., Deciphering Mobile Search Patterns: a Study of Yahoo!

Mobile Search Queries. The Web Conference (WWW'08), 2008. pp. 257-266.

92. Zhang H. et al., Learning from collective intelligence: Feature learning using social images

and tags. ACM transactions on multimedia computing, communications, and applications

(TOMM), 2017. 13(1):1.

93. Zhang Z.; Li R.; Cao S.; and Zhu Y., Similarity Metric in XML Documents. Knowledge

Management and Experience Management Workshop, 2003.

Joe Tekli is an Associate Professor in Computer Engineering in the Lebanese American

University (LAU). He obtained his Ph.D. from the University of Bourgogne, LE2I-

CNRS (France_2009). He completed various post-docs/research missions: University of

Michigan (USA_2018), University of Pau (France 2017), University of Sao Paulo

(Brazil_2011), University of Shizuoka (Japan_2010), University of Milan (Italy 2009).

He was awarded various fellowships: Fulbright (USA 2018), FAPESP (Brazil 2011),

JSPS (Japan 2010), Cariplo Foundation (Italy 2009), French Ministry of Education

(France 2006-09), and AUF (France 2005). He has coordinated/participated in various

projects: FAPESP (Brazil 2016-20), LAU-NCSR-L (Lebanon 2018-20), NCSR-L

(Lebanon 2017-18), STICAmSud (France 2013-14), and CEDRE (France 2012-13). His

research covers semi-structured, semantic, and multimedia data processing, and has

more than 50 peer-reviewed publications. He is Vice Chair of ACM SIGAPP French

Chapter (2018-) and founding member of UN-ESCWA Knowledge Hub

 Combining Offline and On-the-fly Disambiguation… 457

Gibert Tekli is an Associate Professor in the Mechatronics Engineering Technology

Dept., the associate dean of the Issam Fares Faculty of Technology and an R&D

engineering specialist in full stack agile cloud-based development, soft robotics and

artificial intelligence. He holds a PhD in Computer Engineering from Telecom Saint

Etienne, University of Lyon, France. He thrives on challenges rising from merging both

worlds, Industrial R&D and Academia. He has successfully secured funds, lead,

developed and consulted on international R&D projects (such as H2020 EU projects)

while ensuring proper technology transfer from universities to the industry and vice

versa.

Richard Chbeir received his PhD in Computer Science from the University of INSA-

de-Lyon, France, in 2001. The author became a member of IEEE since 1999. He is

currently a Full Professor in the Computer Science Department of the University of Pau

and Pays de l’Adour (UPPA), Anglet, France. His is also Director of the UPPA

Computer Science research laboratory (LIUPPA). His research interests are in the areas

of distributed multimedia database management, XML similarity and rewriting, spatio-

temporal applications, indexing methods, multimedia access control models, security

and watermarking. He has published (more than 180 peer-reviewed publications) in

international journals, books, and conferences, and has served on the program

committees of several international conferences. He has been organizing many

international conferences and workshops (ICDIM, CSTST, SITIS, MEDES, etc.). He is

currently the Chair of the French Chapter ACM SIGAPP and the vice-chair of ACM

SIGAPP.

Received: February 28, 2022; Accepted: August 22, 2022.

