
UDC 005.922.52:004.932, DOI: 10.2298/CSIS1001111L

Generative 3D Images in a visual evolutionary
computing system

Hong Liu

School of Information Science and Engineering, Shandong Normal University, Jinan
lhsdcn@jn-public.sd.cninfo.net

Abstract. This paper presents a novel computer-aided design system
which uses a computational approach to producing 3D images for
stimulating creativity of designers. It introduces the genetic algorithm
first. Then a binary tree based genetic algorithm is presented. This
approach is illustrated by a 3D image generative example, which uses
complex function expressions as chromosomes to form a binary tree,
and all genetic operations are performed on the binary tree.
Corresponding complex functions are processed by MATLAB software to
form 3D images of artistic flowers. This generative design is integrated
with a visualization interface, which allows designers to interact and
select from instances for design evolution. It shows the system is able to
enhance the possibility of discovering various potential design solutions.

KeyWords: Evolutionary computation, computer-aided design,
generative design, complex function

1. Introduction

To date, more and more computers have been used in design offices. The
CAD (computer-aided drafting or computer-aided design) tools frequently used
in these design offices provide two types of support. These tools are for
two-dimensional (2D) drafting and three-dimensional (3D) modeling tasks. The
drafting tools replace traditional tools such as pencils and rulers to produce
detailed design drawings, while modeling tools take over the functions to allow
the visualization of new designs. These tools assist designers in the final
production and presentation of the design products.

However, few of those CAD tools have been used to assist designers in the
early phases, such as the conceptual design process. During the early phases,
designers explore many design alternatives. Current CAD tools do not provide
sufficient design support to innovative design.

In cognitive psychology, design activities are described as specific
problem-solving situations, since design problems are both ill defined and
open-ended. Design activities, especially in ‘non-routine activities’, designers
involve a special thinking process. This process includes not only thinking with
logic, but also thinking with mental imagery and sudden inspiration.

Hong Liu

ComSIS Vol. 7, No. 1, Special Issue, February 2010 112

Designers have called new ideas in their mind as idea sketches. In contrast
to presentation sketches, idea sketches are made in the early phases of
design. They function as a tool to interact with imagery and are predominantly
for private use. Because of their early appearance in the design process, idea
sketching will have an important role in creative processes. This is the reason
why many computer tools aim at supporting and improving idea sketching.

Creative ideas occur in a particular medium. Most of the researchers in the
field of creativity agree that designers who are engaged in creative design
tasks use external resources extensively. Such external resources include a
variety of physical and logical information. For instance, reading books,
browsing photographic images, talking to other people, listening to music,
looking at the sea or taking a walk in the mountains. Sketches and other forms
of external representations produced in the course of design are also a type of
external resources that designers depend on. When designers discover a new
or previously hidden association between a certain piece of information and
what they want to design, the moment of creative brainwave emerges.
Designers then apply the association to their design and produce an
innovative design.

Visual images are particularly for activating creativity. In product design,
visual expression, especially in the form of sketching, is a key activity in the
process of originating new ideas. This approach suffers from the fact that most
creative processes extensively make use of visual thinking, or, in other words,
there is a strong contribution of visual imagery. These processes are not
accessible to direct verbalization.

The design research community has spent much of its effort in recent years
developing design systems for supporting innovative design. Generative
design systems - systems for specifying, generating and exploring spaces of
designs and design alternatives - have been proposed and studied as a topic
of design research for many years.

Generative design is an excellent snapshot of the innovative process from
conceptual framework through to specific production techniques and methods.
It is ideal for aspiring designers and artists working in the field of computational
media, especially those who are interested in the potential of generative,
algorithmic, combinational, emergent and visual methods as well as the
exploration of active images.

This paper presents a novel computer supported design system that uses
the evolutionary approach to generate 3D images. The tree structure based
genetic algorithms and complex functions are used in this system. This
generative design is integrated with a visualization interface, which allows
designers to interact and select from instances for design evolution. Programs
are implemented by using Visual C++6.0 and mathematical software MATLAB.

The remainder of this paper is organized as follows. Section 2 is concerned
with related work on generative design. Section 3 introduces genetic
algorithms and genetic programming. In section 4, a binary tree based genetic
algorithm is presented. Section 5 illustrates an artwork design example for
showing how to use the tree structure based genetic algorithm and complex

Generative 3D Images in a visual evolutionary computing system

ComSIS Vol. 7, No. 1, Special Issue, February 2010 113

functions to generate 3D images. Finally, these results are briefly analyzed,
followed by a discussion of possible future improvements.

2. Related work

Generative systems are relevant to contemporary design practice in a variety
of ways. Their integration into the design process allows the development of
novel design solutions, difficult or impossible to achieve via other methods.
Grammar-based techniques exploit the principle of database amplification,
generating complex forms and patterns from simple specifications.
Evolutionary systems may be used in combination with aesthetic selection to
breed design solutions under the direction of a designer. Interface design and
other sign systems may be defined in terms of adaptive procedures to create
communication that adapts to its interpretation and use by an audience [1].

The key properties of generative systems can be summarized as [2]:
• The ability to generate complexity, many orders of magnitude greater than

their specification. This is commonly referred to as database amplification,
whereby interacting components of a given complexity generate aggregates of
far greater behavioral and/or structural complexity. Such aggregates may in
turn generate their own interactions forming new aggregates of even higher
sophistication and complexity. This is referred to as a dynamic hierarchy, a
poignant example being complex multi-cellular organisms, whose hierarchy
can be summarized: atom; molecule; organelle; cell; organ; organism;
ecosystem.

• The ability to generate novel structures, behaviors, outcomes or
relationships. Novelty used in this sense means the quality of being new,
original and different from anything else before it. There are of course, different
degrees of novelty. RNA and DNA was novel in that they introduced a
completely new mechanism for replication and encoding of protein synthesis.
Artists and designers are always seeking novelty (the opposite of which is
mimicry or copying, something depreciated in the art and design world).
Artistic novelty may not have such a significant impact as, for example, DNA,
but the key concept is that of the new — generative systems have the potential
to give rise to genuinely new properties. This is why they are often referred to
as emergent systems. These new properties typically fall outside the
designer’s expectations or conceptualizations for the design, resulting in
functionality or outcomes that were not anticipated. This of course raises the
issue of control, a problematic issue for generative design, particularly if the
designer is accustomed to organizing outcomes in a predictable way.

Generative design describes a broad class of design where the design
instances are created automatically from a high-level specification. Most often,
the underlying mechanisms for generating the design instances in some way
model biological processes: evolutionary genetics, cellular growth, etc. These
artificial simulations of life processes provide a good conceptual basis for
designing products.

Hong Liu

ComSIS Vol. 7, No. 1, Special Issue, February 2010 114

Evolutionary systems are based on simulating the process of natural
selection and reproduction on a computer. This technique has found wide
application in design for computer animation and graphics, but also in
architectural, industrial and engineering design [3]. The technique depends on
the specification of a parameterized model that is general enough to allow a
wide variety of possible outcomes of interest to the designer. In cases where a
very specific goal is sought, the parameter space must also be sufficiently
broad to encapsulate an answer to the problem that meets the specified
design constraints.

Initially a population of potential designs is generated with a random set of
parameters. This random population may be displayed visually to the designer.
The designer’s aesthetic sense then determines the ‘fittest’ designs of those
displayed, and these are ‘bred’ with one another to produce a new population
of designs that inherit the traits of their successful parents. This process is akin
to selective breeding of apple trees for the taste and color of their fruit – both
subjective qualities assessed by humans [4].

An alternative means of utilizing this evolutionary process exists where a
fitness function may be explicitly coded by the designer. For example, perhaps
a designer seeks the lightest, cheapest set of automobile wheels. This fitness
function is coded into the evolutionary system and the computer evolves
populations of wheels towards a successful structure independently of further
human input. Where creative designs are sought with some aesthetic value,
the former technique of interactive evolution is more practical. This requires
constant human interaction, a necessary bottleneck as long as it remains
difficult to encode subjective qualities like ‘beauty’, ‘ugliness’ etc. in such a way
that a computer can operate with them.

Some of the evolutionary design work was performed by Professor John
Frazer, who spent many years developing evolutionary architecture systems
with his students. He showed how evolution could generate many surprising
and inspirational architectural forms, and how novel and useful structures
could be evolved [5]. In Australia, the work of Professor John Gero and his
colleagues also investigated the use of evolution to generate new architectural
forms. This work concentrates on the use of evolution of new floor plans for
buildings, showing over many years of research how explorative evolution can
create novel floor plans that satisfy many fuzzy constraints and objectives [6].
They even show how evolution can learn to create buildings in the style of
well-known architects.

In Argenia, a system for architectural design by Soddu, the
three-dimensional models produced can be directly utilized by industrial
manufacturing equipment like numerically controlled machines and robots,
which already represent the present technologies of industrial production. This
generative and automatic reprogramming device of robots makes it possible to
produce unique objects with the same equipment and with costs comparable
to those of objects that are identical; like a printer that can produce pages that
are all the same or all different, at precisely the same cost [7].

Many artists and designers have turned to generative systems to form their
design basis. Dextro (www.dextro.org) has developed a diverse range of

Generative 3D Images in a visual evolutionary computing system

ComSIS Vol. 7, No. 1, Special Issue, February 2010 115

interactive drawing systems in which simple design elements such as points
and lines replicate and self-organize to create illustrations and animations.
Digital artists Meta use generative processes to create streams of abstract
video (www.meta.am), expressive of the multi-layered, fluid mutable nature of
electronic space. Jared Tarbell (www.levitated.net) has experimented with the
intersection of generative systems, typography and graphic patterns in his
experimental web design projects. Software such as Auto-Illustrator
(www.auto-illustrator.com) and Autoshop (www.signwave.co.uk) combine
generative systems with the image composition and editing functions of
popular computer drawing programs to ‘automatically’ create new designs
ready for use in projects. Groboto (www.groboto.com), a program that allows
users to develop their own systems for growing 3D forms, makes these
systems accessible to a wider audience by placing a GUI in front of the lines of
code usually required to work with generative systems.

However, the development of generative design tools is still at its early
stage. The research and development of design support tools using
evolutionary computing technology are still in process and have huge potential
for the development of new design technology.

3. Genetic algorithms and genetic programming

General GA (genetic algorithm) is a search algorithm based on the
mechanisms of natural selection. They lie on one of the most important
principles of Darwin: survival of the fittest. John Holland, in the 1970s, thought
that he could incorporate in a computer algorithm such a technique, to solve
different problems through evolution [8].

Given a specific problem to solve, the input to the GA is a set of potential
solutions to that problem, encoded in some fashion, and a metric called a
fitness function that allows each candidate to be quantitatively evaluated.
These candidates may be solutions already known to work, with the aim of the
GA being to improve them, but more often they are generated at random.

The GA then evaluates each candidate according to the fitness function. In
a pool of randomly generated candidates, of course, most will not work at all,
and these will be deleted. However, purely by chance, a few may hold promise
- they may show activity, even if only weak and imperfect activity, toward
solving the problem.

These promising candidates are kept and allowed to reproduce. Multiple
copies are made of them, but the copies are not perfect; random changes are
introduced during the copying process. These digital offspring then go on to
the next generation, forming a new pool of candidate solutions, and are
subjected to a second round of fitness evaluation. Those candidate solutions
which were worsened, or made no better, by the changes to their code are
again deleted; but again, purely by chance, the random variations introduced
into the population may have improved some individuals, making them into
better, more complete or more efficient solutions to the problem at hand. Again

Hong Liu

ComSIS Vol. 7, No. 1, Special Issue, February 2010 116

these winning individuals are selected and copied over into the next
generation with random changes, and the process repeats. The expectation is
that the average fitness of the population will increase each round, and so by
repeating this process for hundreds or thousands of rounds, very good
solutions to the problem can be discovered.

Genetic algorithms have been gained recognition as solution techniques for
many complex optimization problems [9], and have been applied to numerous
conceptual and preliminary design studies [10, 11]. A genetic algorithm is not
truly an optimization technique; rather it is a computational representation of
processes involved in natural selection as observed in biological populations.
They resemble natural evolution more closely than many other approaches
because they are based on the mechanics of natural selection and natural
genetics.

The GA consists of a number of elements. Once a problem has been
identified, the elements can be broken down as follows:

• A representation of a potential solution;
• A population of chromosomes;
• A fitness function for evaluating the relative merit of a chromosome;
• A selection method;
• One or more operations for modifying the selected chromosomes (typically

crossover and mutation);
These elements are then employed in an iterative process until a solution is

found or a termination condition is met. An abstraction of a typical GA is given
as follows:

Generate initial population, G(0);
Evaluate G(0); (apply fitness function)
t=1;
Repeat

Generate G(t) using G(t-1); (apply operators)
Evaluate (decode(G(t)));
t=t+1;

Until solution is found or termination.
A search algorithm balances the need for exploration -- to avoid local

optima, with exploitation -- to converge on the optima. Genetic algorithms
dynamically balance exploration versus exploitation through the recombination
and selection operators respectively. With the operators as defined earlier, the
schema theorem proves that relatively short, low-order, above average
schema are expected to get an exponentially increasing number of trials or
copies in subsequent generations [12]. Mathematically

() () () () ⎥⎦
⎤

⎢⎣
⎡ Ο−

−
−≥+ mc

t

Ph
l
hP

f
hfthmthm

1
1)(,1, δ

Here m(h,t) is the expected number of schemas h at generations t, f(h) is the
fitness of schema h and tf is the average fitness at generation t. The

genotype length is l, ()hδ is the defining length and O(h) is the order of

Generative 3D Images in a visual evolutionary computing system

ComSIS Vol. 7, No. 1, Special Issue, February 2010 117

schema h. cP and mP are the probabilities of crossover and mutation
respectively.

The schema theorem leads to a hypothesis about the way genetic
algorithms work.

Genetic algorithms traditionally use string-based representations in their
chromosomes, but this is not always suitable for representing higher level
knowledge. Koza introduced a hierarchical GA approach [13], where his
chromosomes are tree-like expressions that can be recombined by swapping
sub-trees. It starts with a randomly generated population of function-trees, the
trees which perform best on the problem in question are selected to be the
breeding stock. These parent trees are combined (by exchanging sub-trees)
and mutated (by generating new sub-trees) to produce new trees for the next
generation of the population which inherit some features from their parents.
The next generation of trees is then evaluated against the problem. The best
trees are selected to produce the next generation after that, and so on.

Koza labeled his hierarchical version of GA, the Genetic Programming
Paradigm (called GP). The main difference between traditional GA and GP lies
in the following graph theoretical manipulation.

1. Mutation changing a node label, or substituting sub-trees.
2. Crossover i.e. swapping sub-trees
As with genetic algorithm, the GP population is evolved to (hopefully)

produce function-trees which can perform well on the problem in question. GP
has been used successfully in generating computer programs for solving a
number of problems in a wide range of areas [14].

Nowadays, genetic programming is applied mostly related to adaptive
system and optimization, where representation of programs is used in
conjunction with hybrid crossover to evolve a multiplication function. In
addition, the design with genetic programming is not traditionally considered in
canonical genetic programming.

4. The tree structured genetic algorithm

General genetic algorithms use binary strings to express the problem. It has
solved many problems successfully. But it would be inappropriate to express
flexible problem. For example, mathematical expressions may be of arbitrary
size and take a variety of forms. Thus, it would not be logical to code them as
fixed length binary strings. Otherwise, the domain of search would be
restricted and the resulting algorithm would be restricted and only be
applicable to a specific problem rather than a general case. Thus, tree
structure, a method useful for representing mathematical expressions and
other flexible problems, is presented in this paper.

The main contribution of this paper is to use tree-like expressions as
chromosomes for representing complex mathematical functions and apply the
tree structured genetic algorithm in generative design.

Hong Liu

ComSIS Vol. 7, No. 1, Special Issue, February 2010 118

For a thorough discussion about trees and their properties, see [15,16].
Here, we only make the definitions involved in our algorithm and these
definitions are consistent with the basic definitions and operations of the
general tree.

Definition 1 A binary complex function expression tree is a finite set of
nodes that either is empty or consists of a root and two disjoint binary trees
called the left sub-tree and the right sub-tree. Each node of the tree is either a
terminal node (operand) or a primitive functional node (operator). Operand can
be either a variable or a constant. Operator set includes the standard
operators (+, -, *, /, ^) , basic mathematic functions (such as sqrt (), exp(),
log()), triangle functions (such as sin(x), cos(x), tan(x),cot(x), sec(x),csc(x),
asin(x),acos(x)), hyperbolic functions (such as sinh(), cosh(), tanh (), asinh
(), acosh(), atanh()), complex functions (such as real(z), imag(z), abs(z),
angle(z), conj(z)) and so on.

Here we use the expression of mathematical functions in MATLAB
(mathematical software used in our system).

A binary complex function expression tree satisfies the definition of a
general tree.

Genetic operations include crossover, mutation and selection. According to
the above definition, the operations are described here. All of these operations
take the tree as their operating object.

(1) Crossover
The primary reproductive operation is the crossover operation. The purpose

of this is to create two new trees that contain ‘genetic information’ about the
problem solution inherited from two ‘successful’ parents. A crossover node is
randomly selected in each parent tree. The sub-tree below this node in the first
parent tree is then swapped with the sub-tree below the crossover node in the
other parent, thus creating two new offspring.

(2) Mutation
The mutation operation is used to enhance the diversity of trees in the new

generation, thus opening up new areas of ‘solution space’. It works by
selecting a random node in a single parent and removing the sub-tree below it.
A randomly generated sub-tree then replaces the removed sub-tree.

(3) Selection
For general design, we can get the requirement from designer and transfer

it into goal function. Then, the fitness value can be obtained by calculating the
similar degree between the goal and individual by a formula. However, for
creative design, there are no standards to form a goal function. Therefore, it is
difficult to calculate the fitness values by a formula. In our system, we use the
method of interaction with the designer to obtain fitness values. The range of
fitness values is from -1 to 1. After an evolutionary procedure, the fitness
values appointed by designer are recorded in the knowledge base for reuse.
Next time, when the same situation appears, the system will access them from
the knowledge base [17].

This method gives the designer the authority to select their favored designs
and thus guide the system to evolve the promising designs. Artificial selection

Generative 3D Images in a visual evolutionary computing system

ComSIS Vol. 7, No. 1, Special Issue, February 2010 119

can be a useful means for dealing with ill-defined selection criteria, particularly
user centered concerns.

Many explorative systems use human input to help guide evolution. Artists
can completely take over the role of fitness function. Because evolution is
guided by human selectors, the evolutionary algorithm does not have to be
complex. Evolution is used more as a continuous novelty generator, not as an
optimizer. The artist is likely to score designs highly inconsistently as he/she
changes his/her mind about desirable features during evolution, so the
continuous generation of new forms based on the fittest from the previous
generation is essential. Consequently, an important element of the
evolutionary algorithms used is non-convergence. If the populations of forms
were ever to lose diversity and converge onto a single shape, the artist would
be unable to explore any future forms.

For clarity, we will present the performing procedure of the tree structured
genetic algorithms together with a flowers generative design example, in the
next section.

5. A generative artwork example

An artwork design example is presented in this section for showing how to use
tree structure based genetic algorithm and complex function expressions to
generate 3D images.

The complex function expressions are used to produce 3D artistic images.
Here, z=x+iy (x is real part and y is virtual part), complex function expression
f(z) is an in-order traversal sequence by traversing complex function
expression tree.

Both real, imaginary parts and the module of f(z) can generate 3D images in
MATLAB. Three images of f(z)= cos(z)*log(-z2)*angle(z2) are shown as figure
1.

Fig. 1. Three images of f(z)= cos(z)*log(-z2)*angle(z2)

Next, we will present the performing process of the algorithm step by step.

Hong Liu

ComSIS Vol. 7, No. 1, Special Issue, February 2010 120

Step 1: Initialize the population of chromosomes. The populations are
generated by randomly selecting nodes in the set of operands and the set of
operators to form complex function expressions. We use the stack to check
whether such a complex function expression has properly balanced
parentheses. Then, using parsing algorithm, the complex function expressions
is read as a string of characters and the binary complex function expressions
tree is constructed according to the rules of operator precedence.

Step 2: Get the fitness for each individual in the population via interaction
with designer. The populations with high fitness will be shown in 3D form first.
The designers can change the fitness value when they have seen the 3D
images.

Step 3: Form a new population according to each individual’s fitness.
Step 4: Perform crossover and mutation on the population.
Figure 2 shows two complex function expressions trees. Their expressions

are f(z)=log(-z2)*cos(z)*angle(z2) and f(z)= sqrt(z)*cos(-z2)*cot(-z*0.5)
respectively.

Parent 1

*

cos

z

log

-

^

*

2 z

angle

^

2

A *

cos

-

*

 ̂

sqrt

z

*

2 z

cot

*

0.5

A

Parent 2

z
-

z

Fig. 2. Two parent trees with one crossover nodes

(1) Crossover operation
A crossover node is randomly selected in each parent tree. The sub-tree

below this node on the first parent tree is then swapped with the sub-tree
below the crossover node on the other parent, thus creating two new offspring.
If the new tree can’t pass the syntax check or its mathematical expression
can’t form a normal sketch shape, it will die.

Taking the two trees in figure 2 as parent, after the crossover operations by
nodes ‘A’, we get a pair of children (figure 3).

Generative 3D Images in a visual evolutionary computing system

ComSIS Vol. 7, No. 1, Special Issue, February 2010 121

Children 1

*

cos

z

log

-

 ̂

*

2 z

angle

 ̂

2

A *

cos

-

*

^

sqrt

z

*

2 z

cot

*

0.5

A

Childern 2

z-

z

Fig. 3. The two children generated by a crossover operation

Figure 4 shows a group of generated 3D images by the module part of f(z)
correspond to figure 2 and figure 3.

Fig. 4. The images correspond to the module of f(z) in figure 2 and figure 3

Hong Liu

ComSIS Vol. 7, No. 1, Special Issue, February 2010 122

(2) Mutation operation
The mutation operation works by selecting a random node in a single parent

and removing the sub-tree below it. A randomly generated sub-tree then
replaces the removed sub-tree. The offspring will die if it can’t pass the syntax
check or it can’t form a normal shape.

Taking f(z)=log(-z2)*angle(z2) as a parent, one offspring generated by
mutation operation is shown as figure 5. In which, child is generated by
replacing node A and its sub-tree with new sub-tree. Figure 6 is the two
images correspond to the real part of f(z) in figure 5.

Parent

*

^

log

-

^

2 z

angle

2

A

sin

z

*

conj

-

z

Subtree

z

*

log

-

^

2z

A

sin

z

*

conj

-

z

Child

Fig. 5. One mutation operation

Fig. 6. The images correspond to the real part of f(z) in figure 5

Step 5: If the procedure is not stopped by the designers, go to step 2.
This process of selection and crossover, with infrequent mutation, continues

for several generations until it is stopped by the designers. This procedural
design is integrated with a visualization interface, which allows designers to

Generative 3D Images in a visual evolutionary computing system

ComSIS Vol. 7, No. 1, Special Issue, February 2010 123

interact and select from instances for design evolution. Then, the detail design
will be done by designers with human wisdom [18].

The generated images are handled by designers using computer
operations, such as rotating, cutting, lighting, coloring and so on. The
interactive user interface can be seen in figure 7.

Fig. 7. The interactive user interface

6. Conclusions

This paper presents a novel computer-aided design system which uses
tree-like expressions for representing complex mathematical functions and
apply this tree structured genetic algorithm in generative design. Although
looking simple, the framework employs a feasible and useful approach in a
visual evolutionary computing environment. This system facilitates designers
in two aspects: 1) diversify instances of design options; 2) enhance the
possibility of discovering various potential design solutions.

Designing can be displayed as a dynamic and formal operation of an
evolutionary procedure. This study employs the computer as an interface for
generating a canonical population for selection. As for generative design,
concepts of evolutionary selection are developed that explain different
knowledge behaviours. The evolution of populations towards a stable state
corresponding to the designers’ consensus will be explored in our future work.

Hong Liu

ComSIS Vol. 7, No. 1, Special Issue, February 2010 124

7. Acknowledgements

This project is founded by National Natural Science Foundation of China (No.
60970004, No. 60743010) and supported by Natural Science Foundation of
Shandong Province (No. Z2008G02).

8. References

1. Innocent T. The language of iconica. In A. Dorin, J. McCormack (eds). First
Iteration: A Conference on Generative Systems in the Electronic Arts, CEMA,
Melbourne. 1999: 92-104.

2. McCormack, J., Dorin, A. and Innocent, T. Generative design: a paradigm for
design research. In Redmond, J. et. al. (eds). Proceedings of Future ground,
Design Research Society, Melbourne, 2004.

3. Bentley P..J. Evolutionary design by computers. Morgan Kaufmann Publishers,
San Francisco, Calif. 1999.

4. Dorin, A. Aesthetic fitness and artificial evolution for the selection of imagery from
the mythical infinite library. In Kelemen, J., Sosík, P. (eds). Advances in Artificial
Life, Proceedings of the 6th European Conference on Artificial Life, vol. LNAI2159,
Springer-Verlag, Prague, 2001: 659-668.

5. Frazer J. H. etc. Generative and evolutionary techniques for building envelope
design .Generative Art 2002.

6. Gero, J. S., Kazakov V. An exploration-based evolutionary model of generative
design process. Microcomputers in Civil Engineering 1996; 11:209-216.

7. Soddu, C. New naturality: a generative approach to art and
design.Leonardo,2002,35(3):291-294.

8. Holland, J. H. Adaptation in natural and artificial systems. Cambridge, MS: MIT
Press, 1975.

9. Sanghamitra, B. Sankar, K. P. Classification and learning using genetic algorithms:
applications in bioinformatics and web intelligence. Berlin, New York : Springer,
2007.

10. Gero, J.S. and Peng, W. Assisting Interactions in a Dynamic Design Process: A
New Role for an Adaptive Design Tool, in K Hampson, K Brown and P Scuderi
(eds), Clients Driving Construction Innovation: Mapping the Terrain, CRC-CI,
Brisbane, 2005: 201-210.

11. Soddu, C. Generative art in visionary variations, Art+Math=X conference,
University of Colorado, Boulder, 2005.

12. Goldberg, D. E. Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley.

13. Koza, J. Genetic programming, on the programming of computers by means of
natural selection, MIT Press, 1992.

14. Koza, J. Human-competitive applications of genetic programming. Advances in
evolutionary computing: theory and applications. Springer-Verlag New York, Inc. ,
New York, NY, USA,2003.

15. William, B. L. Koza, J. R. Genetic programming and data structures: genetic
programming + data structures = automatic programming!, Kluwer Academic
Publishers, Norwell, MA, 1998.

16. Mckay, B., Willis, M. J., Barton, G. W. Using a tree structured genetic algorithm to
perform symbolic regression, In Proceedings of the First IEE/IEEE International

Generative 3D Images in a visual evolutionary computing system

ComSIS Vol. 7, No. 1, Special Issue, February 2010 125

Conference on Genetic Algorithm in Engineering Systems: Innovations and
Applications, Halifax Hall, University of Sheffield, UK. 1995, 487-498.

17. Liu, H., Tang, M. X., and Frazer, J. H. Supporting Evolution in a Multi-Agent
Cooperative Design Environment. Advances in Engineering Software,
2002,33(6):319-328.

18. Liu, H., Tang, M. X., and Frazer, J. H. Supporting creative design in a visual
evolutionary computing environment. International Journal of Advances in
Engineering Software, 2004, 35(5): 261-271.

Biographical notes: Hong Liu is a Professor of computer science in the
School of Information Science and Engineering, Shandong Normal University.
She earned her PhD from Institute of Computing Technology, The Chinese
Academy of Sciences in 1998. Her research areas of interest include
evolutionary computing, computer-aided design, multi-agent system and
generative design. She has published in journals such as Computers &
Industrial Engineering, Advances in Engineering Software, Applied Soft
Computing, Journal of Computer-Aided Design and Computer Graphics and
Journal of software.

Received: July 27, 2009; Accepted: October 29, 2009.

