
UDC 681.3.064

Composing Transformations of Compiled Java
Programs with Jabyce

Romain Lenglet, Thierry Coupaye, and Eric Bruneton

France Telecom – R&D Division
28 chemin du Vieux Chêne, 38243 Meylan, France

{romain.lenglet, thierry.coupaye, eric.bruneton}@francetelecom.com

Abstract. This article introduces Jabyce, a software framework for
the implementation and composition of transformations of compiled
Java programs. Most distinguishing features of Jabyce are 1) its
interaction orientation, i.e. it represents elements of transformed
programs as interactions (method calls), which generally consumes
less memory and CPU time than representing programs as graphs of
objects; and 2) its component orientation, i.e. it allows for the design
and composition of transformers as software components based on
the Fractal component model. This latter point is strongly connected
to infra-structural and architectural issues, and software engineering
aspects such as composing, scaling, maintaining and evolving
transformers. Jabyce is compared with other existing compiled Java
programs transformation systems, using an extension of a previous
well-known categorization of program transformation systems.

1. Introduction

The work presented in this article is motivated by the increasing need for
adaptability in distributed systems. Distributed systems and middleware
platforms are deployed in highly heterogeneous and highly evolving
environments in terms of computing resources (processing, memory,
database connectivity, network resources…). Therefore they need to be
easily specialized and configured (assembled) statically and dynamically.
Program transformation is one of the most general and efficient technique
for the adaptation of complex systems, in a non intrusive way.
Indeed, program transformation deals with the automated modification of
programming elements by (other) special executable programming
elements called transformers. Traditionally, program transformation has
been very much connected to the software engineering area. Most program
transformation systems [9] have been or are developed by software
engineering teams or groups in the context of software maintenance. Most
often described uses of program transformation hence include software

Romain Lenglet, Thierry Coupaye, and Eric Bruneton

evolution, refactoring, change logging, reverse engineering, etc. Software
development and programming languages also make use of program
transformation for compilation, optimization, partial evaluation, etc. In
contrast with those uses, in the context of complex distributed systems,
the main targeted uses of program transformation concern load-time
weaving of code as a support for runtime adaptability (transparent
insertion of so-called technical se vices or non functional aspects to
components and composition of these technical services). In that respect,
motivations for the development of transformation systems, such as the
Jabyce transformation system presented in this article, converge with that
of aspect weaving in Aspect Oriented Programming (AOP) which is
strongly related with program transformation - but with a special interest
in dynamic weaving.

r

f

t r

Jabyce1 is a software framework that allows for the implementation and
composition of software components (trans ormer components) that
transform compiled Java classes. The main goals concerning the design of
this framework are the following:

• to be able to implemen any transfo mations of compiled classes in
contrast to some transformation systems that limit themselves to a
subset of all the transformations - for example to ensure some integrity
constraints.

• to be able to separate transformers as individual software components,
that can then be composed without modifying their code. This is
important to be able to reuse transformers, which are generally complex
pieces of software.

• to be able to compose transformers in an efficient way. In particular, the
system should avoid redundant computations made in separate
transformers.

These objectives have guided the design process of Jabyce, which is
presented in this article. We also consider them as criteria to compare
Jabyce to other transformation systems. From a general point of view,
Jabyce is the only Java bytecode transformation system that reaches all
those three objectives simultaneously.
These objectives are achieved 1) by using well known object oriented
design patterns and principles - such as the Interface Segregation
Principle -and by using a component-based architecture; and 2) by
introducing the representation of transformation program elements as
sequences of interactions, instead of the generally used graphs of objects
or terms.
The rest of this article is organized as follows. Section 2 introduces and
extends the characteristics (or dimensions) that have been introduced in a
previous categorization of program transformation systems. Sections 3 to 6

1 In “Jabyce”, “ja” is pronounced as in “jacket” and “abyce” like “abyss”.

84 ComSIS Vol. 1, No. 2, November 2004

Composing Transformations of Compiled Java Programs with Jabyce

describe Jabyce and compare it with other compiled Java program
transformation systems, along the dimensions of that extended
categorization. Section 7 provides a more general and synthetic
description of Jabyce. Section 8 details an example of a Jabyce
transformer, and execution time measurements that are compared with
those of two other transformation systems. Finally section 9 shows how
the design process used in Jabyce can be generalized, and the conclusion
gives some perspectives for future work.
From a general point of view, the purpose of this article is twofold. It is
both theoretical and practical, as 1) it considers new theoretical aspects of
program transformation systems, in the form of an extension of a well-
known categorization of such systems, and 2) it thoroughly describes the
Jabyce transformation system, which is implemented and functional, and
the process of its design.

2. Categorization of Program Transformation Systems

We define the following terms that will be used in the rest of this article to
describe Jabyce and other systems homogeneously. Although no
homogeneous terminology is used in the literature, the following terms are
a good compromise. We call trans ormations the computations that
produce a transformed program from an original program.
Transformations are performed by runtime entities called transformers,
which are software components that may be composed into various
transformer configurations. A transformation system, for instance Jabyce,
is an infrastructure, or a oftware framework, used to develop transformer
implementations and transformation programs. In Jabyce, we use a
second term to refer to a special kind of transformers: transformation
operations. In Jabyce, the difference between a transformer component
and an operation component lies in their architecture, as further
explained in section 7.1.

f

s

r

[32] presents a taxonomy and categorization of program transformation
systems. The taxonomy deals mainly with the scope of transformation
systems but the whole survey in itself can be considered as a more general
categorization as it introduces additional dimensions, or characteristics:
program rep esentation and transformation paradigm. The rest of this
section provides an overview of this categorization.

2.1. Scope

The scope dimension concerns the possible uses of a transformation
system, i.e. the range of transformer implementations and transformation

ComSIS Vol. 1, No. 2, November 2004 85

Romain Lenglet, Thierry Coupaye, and Eric Bruneton

programs that can be implemented using it. [32] provides a taxonomy of
program transformation systems, according to the possible uses of such
systems, that is illustrated as a tree in Fig. 1. Two main categories are
identified:

• rephrasing: programs are transformed into programs in the same
model;

• transla ion: programs in a source model are transformed into programs
in a different target model.

t

refinment
compilation

synthesis

analysis
control flow analysis

data flow analysis

optimisation
specialisation
inlining
fusion

refactoring

obfuscation
design enhancement

normalization
desugaring
simplification
aspect weaving

reverse engineering
decompilation

architecture extraction
documentation generation

visualization

program transformation
translation rephrasing

renovation

migration

Figure. 1. Possible uses of program transformation

All those uses are relevant in the context of transformation of compiled
Java programs. For example, a compiled Java program can be no malized
by removing its debugging information. As another example, a compiled
Java program can be optimized, by removing dead code and unused
methods and fields [31]. Also, method calls can be devirtualized, i.e. some
virtual method calls can be resolved to particular implementations of such
methods, and be performed faster at runtime. As a very common use of
translation, compiled Java programs must be interpreted or compiled into
native binary programs, in order to be executed. Compilation can occur
statically, or dynamically during the program execution using a “Just-In-
Time” compiler.

r

86 ComSIS Vol. 1, No. 2, November 2004

Composing Transformations of Compiled Java Programs with Jabyce

2.2. Transformation Paradigm

This dimension deals with the computational and architectural models of
transformation systems. We consider that these models are the result of
choices that answer to the following questions:

• How to express or implement transformers? This is related to the
“transformation language” design activity.

• How to package and deploy transformers? This is related to the
programming interfaces design, transformer maintenance and testing
activities.

• How to control the computation of transformations, and how to compose
transformers? These questions relate to the design of the infra-
structural environment required to develop transformers.

The categorization proposed in [32] is part of a survey of the
transformation strategies based on declarative rewrite rules, also called
schematic rules or pattern repla ement rules [27]. There are two general
ways to specify transformations as declarative rules: rules are either
interpreted or compiled into an imperative programming language, as it is
done in Stratego [32]. It is also possible to specify transformations directly
in an imperative programming language, such as Java or C. Such
transformer implementations are called procedu al rules [27]. As this
article considers procedural rules, in contrast with [32], it also considers
more general software architecture issues, such as software component
composition.

c

r

r c

2.3. Program Representation

The program representation dimension concerns the choice of a
representation model for programs to be transformed. In [32] it is asserted
that programs are either represented as trees or as graphs of objects (or
terms). As an innovative characteristic, Jabyce represents programs as
sequences of interactions between transformers. This new way of
representing program elements is described in details in the rest of this
article. As a consequence, we propose an extension of Visser’s
categorization, by splitting the program representation dimension into two
related dimensions:

• the conceptual model dimension: the choice of the types of the elements
of programs that are represented to be transformed.

• the prog ammati model dimension: the abstractions of the transformer
implementation language that are used to make the represented

ComSIS Vol. 1, No. 2, November 2004 87

Romain Lenglet, Thierry Coupaye, and Eric Bruneton

program elements concrete. This dimension is closely related to the
transformation paradigm dimension.

The two categories of programmatic models that we have identified are: 1)
graphs of objects (e.g. structs, in C), and 2) sequences of interactions
(method calls). These two dimensions are independent: a given conceptual
model can be combined with either an object graph representation, or an
interaction sequence representation.

2.4. Proposed Extended Categorization

As a conclusion, we propose the following extension of Visser’s
transformation system categorization proposed in [32], that consists of
four dimensions:

• scope: the possible uses of a transformation system.

• transforma ion paradigm: the computational and architectural models
of a transformation system.

t

• conceptual model: the choice of the model of the types of elements of
programs to be manipulated.

• programmatic model: the abstractions of the transformer
implementation language that are used to make the represented
program elements concrete.

This categorization is used as the structure of this article: one section is
dedicated to the description of Jabyce and its comparison with other
systems, in each dimension.

3. Scope

This section lists the Java bytecode transformation systems that are
considered in this article, and compares those systems along the scope
dimension. The discussion about Jabyce and other transformation systems
is restricted to systems that are close to Jabyce, i.e. systems that
transform Java programs and that are portable, i.e. that perform
transformations without requiring modifying the Java Virtual Machine.

88 ComSIS Vol. 1, No. 2, November 2004

Composing Transformations of Compiled Java Programs with Jabyce

3.1. Considered Transformation Systems

ASM2 [3, 26] is developed in the same team as Jabyce in France Telecom.
It is a Java-based framework for the implementation of very efficient
transformations of compiled Java classes. JOIE [6] (Java Object
Instrumentation Environment), JMangler [19] and Javassist [5] are
frameworks for the transformation of compiled Java classes, that also offer
abstractions to implement transformers in Java. Those three systems are
very similar. They allow for load-time transformations, i.e. the compiled
classes of a transformed program are transformed when the program is
loaded. The first academic works on Java bytecode transformation were
BIT (Bytecode Instrumentation Toolkit) [20] and BCA (Binary Component
Adaptation) [18]. However, these two systems are no more maintained, so
we do not consider them in this article, as JOIE, JMangler and Javassist
offer similar features.
jclasslib [16], Serp [30] and BCEL (ByteCode Engineering Library) [4] are
Java libraries that offer representations of compiled Java classes as
graphs of Java objects, and that can be manipulated. Unlike the
transformation systems described above, these libraries do not offer
abstractions for the implementation of transformers, and therefore are not
transformation systems. But such libraries are widely used to implement
transformation systems. For instance, BCEL is used in the
implementation of JMangler. Serp and BCEL are therefore evaluated in
the rest of this article, for the conceptual and programmatic model they
offer for the representation of compiled Java programs. jclasslib offers a
model that is too basic to be used in practice to implement complex
transformers. jclasslib is therefore not considered in the rest of this article.

3.2. Comparison

Since JOIE, JMangler and Javassist are designed for load-time
transformations of Java classes, they mainly target only certain kinds of
rephrasing transformations, such as optimization, normalization and code
weaving. While JOIE allows for any kinds of transformations of Java
classes, including removal of methods and fields, JMangler and Javassist
restrict the transformations that can be performed, in order to preserve
binary compatibility of transformed programs, i.e. they allow only for
transformations that do not require transforming also client classes.
Jabyce is intended to support any kinds of transformations of compiled
Java programs. Since transformers implemented with Jabyce transform
compiled Java programs to produce only compiled Java programs, Jabyce
alone does not support translation transformations. However one can

2 Free software available at http://www.objectweb.org/asm/

ComSIS Vol. 1, No. 2, November 2004 89

Romain Lenglet, Thierry Coupaye, and Eric Bruneton

combine Jabyce and a similar transformation system to implement
translations, as described in section 9. That way, Jabyce can be used to
implement any translation and rephrasing transformers of compiled Java
programs. ASM has a similar scope as Jabyce. However, unlike Jabyce,
the design process of ASM is not easily reproducible, which makes it
difficult to design a similar transformation system that can be combined
with ASM to implement translations. ASM is therefore limited to
rephrasing transformation, like JOIE, JMangler and Javassist.
Since all the considered transformation systems, including Jabyce,
manipulate only compiled Java programs, which are generally not directly
manipulated by human users, transformations related with program
design are not considered because these generally deal with the source
code of programs. However, one could still implement transformers that
interact with users.
Manipulating compiled Java programs allows performing transformations
either statically, i.e. before the transform program is executed, or
dynamically, i.e. when the program is loaded just before it is executed.
Performing transformations at program load-time is possible in Java,
thanks to characteristics of the JVM [21]. The compiled classes forming a
Java program are dynamically loaded by the JVM when required, by
special objects called class loaders. Such objects return to the JVM the
sequences of bytes that form the compiled classes, given their name. The
JVM then executes the program by interpreting or compiling and
executing these classes. It is possible to implement custom class loaders,
including class loaders that perform transformations on the loaded
classes, for example using Jabyce transformers. All of the considered
transformation systems either directly offer such mechanism, or can be
used to implement it easily.

4. Transformation Paradigm

The main point in this dimension is the distinction between two categories
of paradigms offered to implement transformers: decla a iv rew i e rules,
and procedural rul s that are specified directly in an imperative
programming language [27]. The choice between declarative and
procedural rules is a trade-off between simplicity and generality.
Declarative rule languages make it simple to define transformations, but
implicitly restrict the range of the transformations that can be defined. On
the contrary, procedural rules offer the widest range of transformations, at
the cost of an increase of the complexity of implementation. Since one of
our objectives is to allow for the implementation of any transformations,
procedural rules are the preferred choice in our context. This latter choice

r t e r t
e

90 ComSIS Vol. 1, No. 2, November 2004

Composing Transformations of Compiled Java Programs with Jabyce

has been made in ASM, JOIE, JMangler, Javassist and Jabyce:
transformers are implemented in the Java programming language.
The rest of this section mainly deals with the abstractions offered by
transformation systems to implement transformers as procedural rules,
and to compose them.

4.1. Global Architecture

The global architecture of transformer configurations is the same for all
transformation systems. This section introduces some concepts and a
terminology to describe such global architecture. Let’s first consider, for
the sake of simplicity, a transformer configuration that does not perform
any transformation. We identify two main components in the
configuration, as illustrated in Fig. 2:

• a deserializer that analyses the programs to transform, in a possibly
unstructured form that we call a serialized form, such as a stream of
characters, and produces representations of the programs that it
transmits to the serializer.

• a serializer that receives the program representations to produce
corresponding serialized forms of the programs.

In the literature, deserializers and serializers are commonly called front-
ends and back-ends, or parsers and pretty-printers [7, 22]. We call an
intermediate representation the form of a program representation that is
communicated between components. The model of the intermediate
representation of programs corresponds to the conceptual model and
programmatic model dimensions, described in sections 5 and 6.

deserializer serializer

serialized forms of programs

intermediate representations of programs
Fig. 2. A deserializer and a serializer

A transformation system should offer a means to support the
implementation of any serializer and deserializer, to support any
serialized forms of compiled Java programs. This is the case with Jabyce
and ASM. In Jabyce, currently one serializer and one deserializer are
implemented to support compiled Java classes in the form of sequences of
bytes that correspond exactly to the content of .class files. The ASM

ComSIS Vol. 1, No. 2, November 2004 91

Romain Lenglet, Thierry Coupaye, and Eric Bruneton

deserializer and serializer classes are used internally to implement the
deserializer and the serializer implementations provided in Jabyce, that
support sequences of bytes as a serialized form. JMangler can also support
any serialized form for which a serializer and deserializer can be
implemented to serialize and deserialize BCEL object graphs. BCEL
provides serialization and deserialization for sequences of bytes. In
contrast, JOIE and Javassist support only compiled classes in the form of
sequences of bytes.
We propose to describe transformers as decorators of a serializer, by
referring to the Decorator design pattern [10], as illustrated in Fig. 3.
Such decorator receives all the program representations, and forwards
them to the serializer. When forwarding program representations, it can
modify them, e.g. add or remove elements in them, leading to the
representation of a transformed program. Several transformers can easily
form a chain, one transformer decorating another one. At that level of
abstraction, transformers are called operations in Jabyce.

deserializer serializertransformer
(or operation)

transformer
(or operation)

serialized forms of programs

intermediate representations of programs
Fig. 3. Transformers as decorators of serializers

All the considered Java bytecode transformation systems considered here
match with this general description. However, one limitation of Javassist
is that Java classes are deserialized before each transformer is run, and
serialized after each transformer is run. Actually, Javassist offers a means
to construct chains of “pools” of classes to be loaded by the JVM. A
transformer can be associated with each pool, and run when a class is
loaded from that pool. However, a Javassist class pool stores the classes as
arrays of bytes, that must therefore be (de)serialized to be transformed by
the associated transformer. This characteristic of Javassist violates our
objective of an efficient composition of transformers.
At this point, it is necessary to make choices about the implementation of
transformers and of their infra-structural environment, including the
flexibility points of the system (what can be changed in the system?), the
identified abstractions, and the implementation model. We consider that
all these characteristics form the transformation paradigm offered by a
transformation system. The next subsections describe the Jabyce
transformation paradigm, and compare it to those of the other systems.

92 ComSIS Vol. 1, No. 2, November 2004

Composing Transformations of Compiled Java Programs with Jabyce

4.2. Principles for the Design of Jabyce

The design of transformation systems developed using an object-oriented
programming language, such as Java in the case of Jabyce, boils down to
object-oriented system design. When designing Jabyce we have applied the
following well-known object-oriented design principles to express the
desired properties of transformation systems, in order to attain our
objectives to make transformer implementations easily reusable and
composable.

The Open-Closed Principle [24]

Modules should be both open and closed.

A module is said to be open if it is possible to extend it. A module is said to
be closed if its description is stable and well defined, so that it can be used
safely by other modules. Openness is necessary to adapt a system to
changes that were not planned initially. Closure is also necessary, because
if the description of a module is unstable or not well defined, a change in
its implementation or an extension of it may imply modifications in the
modules that depend on it. This makes the whole system potentially
unstable.
In a transformation system we consider that the most important modules
are the transformer implementations, since they are the most complex
pieces of code. Since we describe a transformer as a decorator of a
serializer, the description common to all transformers based on a given
transformation system, is the specification of the program representations
that it can receive. This specification is defined precisely, once, and for all
the transformer implementations based on the transformation system,
making these modules closed. Any transformer implementation can be
developed as long as it respects this specification, making the system open
to the use of new transformer implementations.
All the considered transformation systems apply this principle. However,
the challenge is to provide the most precise specification of the programs
that can be represented, in order to maximize the “closure” of the
transformer implementations. An ambiguous specification of the program
representation model would make transformers incompatible. An
approach for the formal specification and on-line validation of program
representations is applied in Jabyce, but it is out of the scope of this
article. The other considered systems do not use such formal specification
approach.

ComSIS Vol. 1, No. 2, November 2004 93

Romain Lenglet, Thierry Coupaye, and Eric Bruneton

The Common Closure Principle [22]

 The classes in a package are reused together. If you reuse one of the
classes in a package, you reuse them all.

If we abstract the concepts of class and package in this definition, this
principle means that the implementation parts of a program that are
modified together should be packaged and reused together.
In the context of program transformation, there can exist causal
dep ndencies between transformations, that are due to semantic relations
between the elements of a program. For example, the renaming of a
method in a Java class implies to transform all the method call
instructions that refer to that method. According to the Common Closure
Principle, the corresponding two transformer implementations must be
packaged and reused together.

e

No existing transformation system enforces such principle. However,
Jabyce makes it easy to do this by ensuring structurally (through
subtyping relations between the Java classes and interfaces of the Jabyce
framework, cf. section 9) that a transformer that transforms program
elements of type “A” also transforms program elements of type “B” that
depend semantically on type “A” elements. These semantic dependencies
are expressed between element types. For example, Jabyce ensures that a
transformer implementation that transforms methods also implements
transformations of method call instructions. Therefore a transformer
implementation in Jabyce is well encapsulated and can be reused easily.
We claim that this is a prominent feature of Jabyce.

The Interface Segregation Principle [23]

 Clients should not be forced to depend upon interfaces that they do not
use.

In the context of transformer implementation design, we interpret this
principle as follows: transformation implementations should not be forced
to implement computations that are not related to the program elements
that they transform. For instance, a transformer that only renames the
methods in a Java program should not need to manipulate the fields in
that program. In declarative rewrite rules systems, this is achieved in a
simple way because a rule is declared to rewrite elements of only certain
types. For instance, in Stratego [32], a declarative rewrite rule that
transforms methods does not deal with fields.
As described in sections 5 and 7.1, a prominent feature of Jabyce is a
representation of elements of programs as interactions which, in the case
of Jabyce, allows transformers to manipulate only the representations of

94 ComSIS Vol. 1, No. 2, November 2004

Composing Transformations of Compiled Java Programs with Jabyce

the program elements that it transforms. The other considered
transformation systems do not apply this principle.

4.3. Jabyce Transformers as Fractal Components

To exhibit these desired properties of an object-oriented transformation
system, and to apply the design principles discussed above, it is necessary
to choose an appropriate platform to implement this system. In all the
considered transformation systems except Jabyce, that platform is limited
to the Java programming language and the JVM. In Jabyce, we have
chosen a more powerful component model, to ease the application of the
design principles and the implementation and composition of
transformers.

The Fractal Component Model

To implement transformers, deserializers and serializers in Jabyce, we
choose the F actal component model [1, 2, 27]. It is an extension of object
models such as RM-ODP [14] or Java, that exhibits several properties that
are interesting here:

r

t

s

e

t e c

• dynamism: components are runtime entities: they can be manipulated
and (re)configured at runtime.

• encapsula ion: components interact, only through well defined access
points called interfaces. An explicit binding can link two interfaces.
Bindings are arbitrary communication paths.

• nested composition: components can contain components, recursively.
Recursion ends up with primitive components which have an empty
content and directly encapsulate plain objects. Components that do
have a content, i.e. that contain sub-components, are called compo ite
components.

• control: components transparently provide introspective and
int rcessive capabilities (i.e. to access and modify metadata,
respectively) to exercise arbitrary reflexive control over their execution.
Fractal provides standard controls: adding or removing of sub-
components in composite components, starting and stopping
components, bindings reconfiguration, etc.

Fractal components expose interfaces to interact with other components.
Server interfaces specify the functionalities offered to other components,
while clien int rfa es specify the functionalities required for the
components to run. In the projection of Fractal into the Java language,
component interfaces are specified by Java interfaces that define method

ComSIS Vol. 1, No. 2, November 2004 95

Romain Lenglet, Thierry Coupaye, and Eric Bruneton

signatures, i.e. that specify the possible int ractions between components.
A binding is a directed link from a client interface to a server interface, so
that the components can interact. Only interfaces with compatible types
can be bound. The minimum requirement of the Fractal type system is
that the Java interface that specifies the server interface must be or
extend the Java interface that specifies the client interface. Components
and bindings are created and manipulated at runtime. Special control
interfaces allow for the control of the components lifecycle, bindings and
content (subcomponents of a composite component).

e

Application to the Design of Transformers in Jabyce

In Jabyce, we specify that transformer configurations are built exclusively
by instantiating and composing components, dynamically. By components,
we mean deserializers, serializers, and transformers. These components
are bound using Fractal bindings, to allow for interactions between these
components that communicate intermediate representations of programs
to transform. The details of the architecture of such components, including
the interfaces they offer, are described in section 7.

4.4. Transformation Strategy

Generally, we consider that transformation systems, including Jabyce,
apply the Hollywood Principle [33] (“don’t call us; we’ll call you”), also
called the Inversion of Control Principle [15]. In these systems, additional
components, distinct from the transformers and (de)serializers in a
transformer configuration, control the components and control the
interactions between them. This separation makes the system more
flexible, because the way the transformers are controlled can be modified
without modifying the transformer implementations. Adding information
into transformer implementations about how to apply them would reduce
their reusability.
The main control is the application of a strategy, defined in [32] as an
algorithm for choosing a path in the triggering of transformations in the
transformed programs. For example, applying a bottom-up strategy means
transforming first the instructions, then the method signatures, then the
class signatures. Applying a top-down strategy means transforming first
the class signatures, then elements in them, recursively. In the Stratego
declarative rewrite rule language [32], users can define their own
strategies, that are either dependent on specific rules, or independent such
as the standard strategies provided by Stratego, but rules are never
dependent on strategies.

96 ComSIS Vol. 1, No. 2, November 2004

Composing Transformations of Compiled Java Programs with Jabyce

In Jabyce, operation components in a chain are composed together using
user-specified component bindings. The manipulation of such bindings,
outside of the components, is allowed by the standard control interfaces
provided by the implementations of the Fractal model. The transformation
strategy is therefore expressed in Jabyce as a set of component bindings.
The triggering of the transformers is determined by the order by which
they “decorate” each other in a chain. The flexibility offered by such
mechanism lets users specify arbitrary chains of transformers, without
modifying the implementation of transformers. It also allows for more
complex configurations with multiple deserializers and serializers. This is
an advantage of Jabyce over most other systems: it does not only allow
chain configurations, but offers immediately almost arbitrary strategies.

4.5. Comparison

In the other Java bytecode transformation systems, transformers are Java
objects that implement Java interfaces that are specific to the
transformation system. The transformation paradigm is therefore the
Java object model, and abstractions such as Java interfaces.
JMangler defines the Java interface CodeTransformerComponent, to be
implemented by method implementations transformers, and the Java
interface InterfaceTransformerComponent, to be implemented by
transformers of signatures of Java interfaces and classes and of members
defined in them. Those interfaces define methods that accept intermediate
representations of programs to transform. JMangler limits the range of
transformers that can be implemented, in order to maintain the binary
compatibility of the transformed Java classes. Any method
implementation transformer can be implemented, but transformations of
class and interface signatures are limited to adding fields, methods and
inheritance relations, etc. For instance, it is impossible to rename a
method in JMangler. This is opposed to our objective to offer the widest
range of implementable transformers. A similar pattern is used in JOIE
(ClassTransformer interface), Javassist (Translator interface) and ASM
(ClassVisitor and CodeVisitor interfaces). However, these systems do not
limit the range of implementable transformers like JMangler. The
advantage of the use of the Fractal component model in Jabyce, is to allow
for a better design and maintenance of complex transformer
implementations, compared to these systems.
It must be noted that the Decorator design pattern, described in the
beginning of this section, is applied literally only in Javassist, ASM and
Jabyce. More precisely, in these systems, a transformation strategy is
directly expressed as links between transformers in a configuration. The
links are Fractal component bindings in the case of Jabyce, direct Java
object references between transformers in the case of ASM, and direct

ComSIS Vol. 1, No. 2, November 2004 97

Romain Lenglet, Thierry Coupaye, and Eric Bruneton

Java object references between compiled class pools in Javassist. In
JMangler and JOIE, a strategy is implemented in a separate object that
schedules the executions of transformers. In JMangler two strategies are
combined. The program interface transformations are applied in a non-
deterministic order until the transform program reaches a fixed point,
thus the transformations are applied always with the same strategy, and
any order produces the same transformed program. The code transformers
are run in a user-specified sequential order, i.e. with a user-specified
strategy. In JOIE, the transformers are run in a user-specified sequential
order, on one whole class at a time.
Jabyce already allows for transformer configurations that are more
complex than simple chains, for instance multiple transformer chains that
are bound to a single serializer component at their end. In other systems,
arbitrary configurations could be implemented on top of the systems, by
implementing transformers that control other transformers. For example,
in JMangler, one can use an object which class implements
CodeTransformerComponent and that interacts with other transformers,
to build a complex configuration. However, there is no generally defined
mechanism to do so, and such class must be implemented “by hand”. It is
therefore more difficult than in Jabyce.

5. Transformed Programs Programmatic Model

This dimension concerns the abstractions offered to implement
manipulations of elements of programs to be transformed. In [32] it is
assumed implicitly that programs are either represented as graphs of
terms, i.e. as graphs of Java objects in our context. This is the case for all
considered transformation systems, except Jabyce and ASM. In Jabyce
and ASM, we propose to represent program elements as interactions
between parts of transformers, and not as Java objects.

5.1. Interaction Sequences vs. Object Graphs

Our proposal is based on an analogy between programs and semi-
structured documents. As described in [28], there are two ways to
represent XML and SGML documents in Java programs that manipulate
them:

• using a graph-based API such as DOM (Document Object Model) [12],
which represents a document as a graph of Java objects;

• using an interaction-based API such as SAX (Simple API for XML) [29],
which represents a document as a sequence of method calls that notify

98 ComSIS Vol. 1, No. 2, November 2004

Composing Transformations of Compiled Java Programs with Jabyce

for instance the beginning or the end of the parsing of an XML element
in the document.

In a DOM object-graph approach it is possible to transform a document by
interacting with the object graph, to add new node objects, remove sub-
graphs, modify node objects, etc. The edges in such graphs are represented
as direct references between Java objects. These edges model not only the
composition relations between XML elements, but may also model XML
element references.
In a SAX interaction-sequence approach, transformations would be
performed in a transformer by producing a new document based on the
received sequence of interactions and by performing decorations of those
interactions. The new document is produced by calling the same methods
as those implemented by the transformer. For example, it is possible to
remove an XML element simply by ignoring the interactions that notify
the start and end of the parsing of this XML element. The other elements
are kept back by reproducing them when receiving the corresponding
interactions. For example, Fig. 4 shows the source code of a SAX content
handler class that transforms parsed XML documents to add an XML
element <someNewElement/> into each parsed XML element.

public class XMLLogicalModelParser
 implements ContentHandler {

 public ContentHandler delegate;

 public void startElement(String namespaceURI,
 String localName, String qualifiedName,
 Attributes attributes)
 throws SAXException {

 delegate.startElement(namespaceURI,
 localName, qualifiedName, attributes);

 delegate.startElement(…, "someNewElement",…);
 delegate.endElement(…, "someNewElement",…);

 }
 public void endElement(String namespaceURI,
 String localName, String qualifiedName)
 throws SAXException {
 delegate.startElement(namespaceURI,
 localName, qualifiedName);
 }
 public void characters(char[] chars, int offset,
 int length) throws SAXException {

ComSIS Vol. 1, No. 2, November 2004 99

Romain Lenglet, Thierry Coupaye, and Eric Bruneton

 delegate.characters(chars, offset, length);
 }
 /*…*/
}
Fig. 4. Source code of a SAX content handler that transforms XML documents

Any of these two programmatic models can be used to transform
programs. Both models fit well with the general architecture proposed in
section 4.1, and based on the Decorator design pattern. In the example
above, which illustrates the interaction-sequence representation of XML
documents, the transformer object is a decorator of another SAX
ContentHandler object, which reference is given in the delegate field. The
links between several such transformer objects, i.e. the values of their
delegate fields, forms an XML document transformation strategy.

5.2. Performance vs. Simplicity

The choice of a programmatic model for the representation of program
elements is motivated by two contradictory characteristics of
transformation systems: transformation performance and implementation
simplicity. Globally transformers consume two resources: memory and
CPU time. High performance is achieved by minimizing this consumption.
Using an object graph representation, memory is consumed to represent
the objects that represent program elements, and time is consumed to
create these objects, proportionally to the size of the programs to
transform. Therefore the size of the programs that can be transformed is
limited by the available memory size. Another drawback is that when
using a transformation system one generally needs not to manipulate all
the objects in the graph, leading to excessive memory and time
consumption. It is possible to implement an incremental construction of
the graph of objects into memory, like in BCEL and JOIE, but at the cost
of an increase of the complexity of the system. Using an interaction
sequence representation, it is not necessary to store a complete
representation of programs into memory. Memory is used only for the
interactions stack and to store the minimal state necessary to perform the
transformations. CPU time is consumed only to perform transformations
and the interactions that represent program elements; no CPU time is
consumed to create unused objects. An interaction sequence
representation is therefore the preferred programmatic model when
considering resource consumption.
On the other hand, complex transformers are easier to implement using
an object graph representation of programs. For example, when a
transformation consists in adding a method in a Java class, it is necessary

100 ComSIS Vol. 1, No. 2, November 2004

Composing Transformations of Compiled Java Programs with Jabyce

to make sure that no method with the same name and signature is already
defined in that class. Such verification is easy to perform when it is
possible to visit at that time the whole representation of the transformed
Java class. Using an interaction sequence representation, it would be
necessary to maintain “by hand” (i.e. apart from the transformation
system in use) as a state the list of all the method names and signatures
represented by the interactions, and to wait until all the interactions for
the class have happened, to perform the verification. An object graph
representation is therefore the preferred programmatic model when
implementing transformers that have a state.
As a conclusion, the choice of a programmatic model for the representation
of program elements is the result of a trade-off between transformation
performance and implementation simplicity. This choice is made at
transformation system design time.

5.3. Comparison

The purpose of Jabyce is primarily to implement transformers that weave
code into programs, possibly at program load-time. Transformation
performance is a major concern in this case, in order to perform
transformations efficiently dynamically on large programs or in
constrained environments. Therefore we choose to represent programs as
interactions in Jabyce. The range of transformers that we consider
implementing can be implemented simply using Jabyce, as demonstrated
by the example transformer implementation presented in section 8.1.
Their low complexity does not require using an object graph
representation of programs. However, when a transformer needs to keep a
state, it must be explicitly implemented by the developer. The same choice
has been made in ASM [3].
The other systems (JOIE, JMangler and Javassist) use a Java object
graph representation of the manipulated program elements. To our
knowledge, no other program transformation system, for other languages,
uses an interaction representation of programs. This is a prominent
feature of our systems Jabyce and ASM.

6. Transformed Programs Conceptual Model

This dimension deals with the identification of the types of elements that
can be distinguished in a program representation manipulated by a
transformer. In the context of compiled Java programs transformation,
one must identify the abstractions in a Java class that correspond to the
transformed elements, i.e. one must define the granules of trans ormation, f

ComSIS Vol. 1, No. 2, November 2004 101

Romain Lenglet, Thierry Coupaye, and Eric Bruneton

for instance “class”, “method”, “formal argument”, etc. Using a Java object
graph representation, these abstractions correspond to the possible types
of node Java objects. Using an interaction sequence representation, these
element types correspond to the possible kinds of interactions. For
instance, a “formal argument” element can be represented by a Java object
of type FormalArgument using an object graph representation, or by a call
to a method formalArgument() using an interaction representation. The
choice of a conceptual model concerns the two following aspects:

• granularity of transformations: one must make a trade-off between the
size and complexity of the representations of program elements, and the
total number of transformations necessary to transform a complete
program.

• abstraction of transformed elements: which details of the format of the
serialized forms of programs does the system hide?

The granularity has an impact on the performance and simplicity of
implementation of transformers. For example, a coarse-grained model of a
Java class may define only three complex abstractions: “class”, “method”
and “field”. A method representation may contain the instructions of that
method as an array of bytes. Therefore each transformer that transforms
instructions must decode these bytes itself, which costs a lot and is
complex to implement. In very fine-grained models, such as BCEL, there
are a lot of fine-grain abstractions, e.g. an object type is defined for each
instruction type. The decoding of the instructions is performed by the
system, making the implementation of instruction transformers simple,
but memory and time is consumed to create an object for each instruction
even if not all instructions are manipulated. The Javassist framework has
been designed to implement only structural transformations. Its model of
a Java class is therefore very coarse-grained, and offers only a few element
types, similar to that of a class source file, including fields, methods,
constructors, inheritance relations, access modifiers, formal arguments,
“new” instructions and field access instructions. All other details are
hidden. Therefore we claim that the choice of a granularity is motivated by
the desired transformations, i.e. it is motivated by the scope of the system,
and the model is chosen to optimize transformations in that scope.

6.1. General Issues About Modeling Java Classes

In Jabyce, Java programs are transformed one class at a time, because we
want to be able to transform programs at load time, and classes are loaded
one at a time by the virtual machine. The same choice has been made in
JOIE, Javassist and ASM for the same reason. In JMangler, transformers
can manipulate several classes at a time, i.e. they can manipulate whole
programs. JOIE is the only transformation system which transformers

102 ComSIS Vol. 1, No. 2, November 2004

Composing Transformations of Compiled Java Programs with Jabyce

cannot produce several classes when transforming a class, i.e. the
transformation of a class must result in exactly one transformed class.
The format of a compiled Java class, as specified in the JVM specification
[21], defines several abstractions that are difficult to deal with when
performing transformations. Some of these abstractions are presented
thereafter, to compare how Serp, BCEL (and therefore JMangler), JOIE,
Javassist, ASM and Jabyce deal with them. Javassist offers two models for
manipulating compiled Java classes: a high-level model that offers
abstractions similar to Java source-level element, and a low-level model.
However, the low-level model does not hide enough details of the format of
compiled Java classes to be used in practice in complex transformers. For
instance, the decoding of the bytecode instructions must be performed by
each transformer. In the rest of this section we therefore consider only the
high-level model offered by Javassist.

Constant Pool

 The constant pool contains and indexes all the constants that are used in
the compiled class: string constants, names of accessed classes, methods
and fields, etc. For example, in an instruction that accesses a field, the
name and type of the field, and the name of the class that defines it, are
indicated in the instruction by the index of a constant that contains the
name, in the pool. Therefore changing the name of a field requires adding
a string constant containing the new name, into the constant pool of the
defining class and of all the classes that access it, and changing the field
definition and all the corresponding field instructions, to use the index of
the new constant in the constant pool. JOIE, BCEL and Serp make these
constant indexes explicit, but provide utility methods to insert new
constants into the constant pool and to modify constants. In Javassist,
ASM and Jabyce, the constant indexes are hidden, and the constants are
directly manipulated by transformers. In Jabyce, for example, a string
constant, such as a string pushed by an ldc instruction, is directly
manipulated by transformers as a string object. The constant pool of the
transformed class is constructed while the class is progressively
represented. As a secondary effect, the constant pool is therefore
automatically optimized to contain only the constants that are actually
used in the transformed class, which is difficult to achieve with BCEL for
instance.

Branch Addresses

 A method can contain control transfer instructions, that branch to other
instructions in the method. The target instructions are specified as offsets,

ComSIS Vol. 1, No. 2, November 2004 103

Romain Lenglet, Thierry Coupaye, and Eric Bruneton

in number of bytes, to the address of the transfer instructions. Each
instruction has a unique address, which is a number of bytes from the
start of the method. Therefore, inserting or removing instructions from a
method potentially requires to modify the target offsets of control transfer
instructions. In Javassist, instruction addresses are never manipulated,
since transformers can only manipulate source-level abstractions. In
JOIE, BCEL and Serp, transfer addresses are represented as direct
references between Java objects representing bytecode instructions. In
ASM and Jabyce, instruction addresses are abstracted, by the use of
abstract ins ruction label objects. Instruction labels are inserted in a
method to “tag” instructions, so that they can be referred to by branch
instructions. In all systems, the offsets are automatically calculated.

t

Local Variables

 In a method, each local variable is identified by its integer index and its
size (32- or 64-bit). This index is specified in each instruction that loads or
stores a local variable. The this pointer and the formal arguments are
represented like normal local variables initialized with the passed values,
whose indexes are 0 for this, and 1 and higher for the arguments in the
same order as in the signature. The normal local variables, that are
uninitialized at the beginning of the method, have the next higher indexes.
Therefore, adding a formal argument, such as when adding a hidden
software capability [11] to an argument, requires incrementing the index
of all the uninitialized local variables, in the instructions that access them.
In Javassist, it is not possible de transform method signatures, nor to
manipulate local variables. In JOIE, BCEL, ASM and Serp, the local
variable indexes and sizes are manipulated explicitly. In Jabyce, local
variables indexes and sizes are abstracted, by the use of
FrameSlotIdentifier objects that uniquely identify local variables when
representing local variable access instructions. Therefore transformers
never directly manipulate local variable indexes. When representing a
formal argument, an identifier is given to identify its corresponding local
variable, its index is automatically calculated, and the indexes of the
already represented normal local variables are automatically modified in
the instructions. When representing a normal local variable, an identifier
is given to identify it, and it is assigned automatically the next unused
index. This design choice makes it very easy to implement transformers
that add or remove local variables or formal arguments, using Jabyce.

104 ComSIS Vol. 1, No. 2, November 2004

Composing Transformations of Compiled Java Programs with Jabyce

Instructions

 Several instruction types have similar semantics, and therefore require
similar transformations. For example, all getstatic, putstatic, getfield and
putfield instructions access fields. When transforming fields, it is also
necessary to manipulate instructions of these four types. A transformation
system should therefore provide information to easily identify the element
types that require similar transformations. Javassist does not allow for
the direct manipulation of instructions. In BCEL, a Java class is defined
for each instruction type specified in the JVM specification, and abstract
classes are inherited from these classes to identify similar instructions.
For example, the FieldInstruction abstract class is subclassed by the
GETSTATIC, PUTSTATIC, GETFIELD and PUTFIELD classes. BCEL
defines more than 180 Java classes to represent instruction nodes in
graphs. This design choice makes BCEL the most complex of the
considered systems. Serp follows a similar approach, by defining an
Instruction class that is inherited by 31 classes to represent bytecode
instructions, including abstract classes to group semantically similar
instruction types like in BCEL. JOIE defines an Instruction class, that is
inherited by 17 classes to represent instructions. However, not all
instructions have a dedicated class to represent them. For instance, the
bytecode instruction monitorenter and monitorexit are represented as
Instruction objects. The JOIE conceptual model is therefore not
homogeneous, which makes it difficult to implement certain
transformations of instructions. In ASM, the CodeVisitor interface defines
12 “visit” methods for instructions, that correspond to groups of
instruction types that have the same structure. In some cases, this
structural grouping of instruction types also corresponds to a semantic
grouping. For example, the visitFieldInsn method is used to represent
instructions that access fields, i.e. instructions that have a similar
semantics. These instructions have also the same structure, i.e. they
contain an opcode (the identifier of the instruction type), the name of the
class that defines the field, the name of the field and the type of the field.
But in some other cases, a “visit” method concerns instructions that have a
different semantics. For example, the visitInsn method is called to
represent instructions that contain only an opcode, such as pop
instructions that pop values from the stack, and such as i2l instructions
that convert integer values into long values. Therefore implementations of
this method must deal with semantically dissimilar instructions, and must
analyze the given opcode to identify the semantics of an instruction. This
contradicts the Interface Segregation Principle, as presented it in section
4.2. In Jabyce, we choose a model similar to the ASM model, but we refine
it to group only semantically similar instruction types. For example,
instructions that access fields are FieldAccessInstructions, instructions
that manipulate the stack like pop are StackInstructions, and instructions

ComSIS Vol. 1, No. 2, November 2004 105

Romain Lenglet, Thierry Coupaye, and Eric Bruneton

that perform arithmetic conversions like i2l are
ArithmeticTypeConversionInstructions. In addition, instruction opcodes
are hidden to transformers, so that the decoding of opcod s is performed
once and for all transformers in a chain, and transformers manipulate
only high-level information about instructions, making them easier to
implement than with ASM. Jabyce defines 30 instruction kinds, which
makes it only slightly more complex than ASM.

e

Optimized Instruction Forms

 Some instruction types have optimized forms. For example, an iload
instruction loads an integer value from a local variable, which index is
specified in the instruction after its opcode. An iload instruction is
therefore encoded as two bytes, in a compiled class file. But four optimized
forms of this instruction type exist (iload_0, iload_1, iload_2 and iload_3),
with distinct opcodes and no index in the instructions, that can be used
when the local variable index is 0, 1, 2 or 3. These instructions are encoded
as only one byte containing the opcode. A transformation system should
automatically use the most optimized form of instruction according to the
instruction parameters. All systems, including Jabyce, do not offer specific
abstractions for the optimized instruction forms, and implicitly produce
the most optimized forms of instructions.

Conclusion

As a conclusion, Jabyce offers the most abstract model of a Java class,
after Javassist. As opposed to Javassist, it still allows for the
implementation of any transformer of compiled Java classes, and the
additional abstractions are introduced only to automate the optimization
of the generated code, and to simplify the implementation of transformers.

6.2. The Model of a Java Class in Jabyce

In Jabyce the model of a Java class is a graph, which nodes are element
types, and edges are composition relations. Element types which elements
can contain other elements are called composite element types. The other
types are primitive. A top-level composite element is a Class. A Class can
contain InterfaceInheritanceDeclaration and InnerClassDeclaration
elements, for the declaration of inherited interfaces and inner classes. A
Class can contain composite Field elements, which can contain a
FieldConstantValue. A Class can contain composite Method elements. A
Method can contain ThrownExceptionDeclaration and

106 ComSIS Vol. 1, No. 2, November 2004

Composing Transformations of Compiled Java Programs with Jabyce

MethodFormalArgument elements for the method signature declaration.
It can also contain LocalVariable, MethodFormalArgumentLocalVariable
and ThisLocalVariable elements for the declaration of local variables,
InstructionLabel elements to identify instructions, and instruction
elements. Jabyce defines 30 instruction element types, such as
ReturnInstruction, LocalVariableAccessInstruction, and
FieldAccessInstruction. As a conclusion, Jabyce defines 50 element types
to construct Java classes, including three composite element types.
Next section describes how the element types defined above are used to
define in Jabyce the possible interactions between transformer
components which represent program elements.

7. Putting It All Together

This section describes more thoroughly Jabyce, by combining the two main
characteristics of Jabyce introduced in the preceding sections: 1) the use of
the Fractal component model, and the expression of transformation
strategies as component bindings, and 2) the representation of program
elements as interactions between components.

7.1. Transformation Operation Internal Architecture

In Jabyce, transformer configurations are built exclusively by
instantiating and composing components dynamically, which are
deserializers, serializers, and transformers. The interactions (method
calls) between these components represent elements of transformed
programs. Between two components, we define that there is one binding
for each type of element that makes up a compiled Java class. For
instance, one binding is used for interactions that represent fields
(element type Field), one is used for interactions that represent method
formal arguments (element type MethodFormalArgument), etc. According
to the Jabyce conceptual model defined in section 6, each component must
therefore offer 50 interfaces, one for the representation of entities of one
type. Those bindings are illustrated in Fig. 5. The interfaces define
methods, which calls represent each a program element.3

3 Although all the interfaces in Jabyce are called “factory” interfaces, this architecture is not

an orthodox application of the Abstract Factory design pattern [10]. That terminology is
motivated by the need for a prefix for method names to avoid name clashes. We have
arbitrarily chosen the “create” prefix, hence “Factory” interfaces.

ComSIS Vol. 1, No. 2, November 2004 107

Romain Lenglet, Thierry Coupaye, and Eric Bruneton

deserializer operation 1 operation 2 serializer

server interface

binding

client interface

method−factory
MethodFactory
class−factory
ClassFactory

client−class−factory
ClassFactory

client−method−factory
MethodFactory

method−factory
MethodFactory
class−factory
ClassFactory

client−class−factory
ClassFactory

client−method−factory
MethodFactory

Fig. 5. Operations bound to form a chain

The most basic operation does not perform any transformation, which is
achieved simply by not intercepting the interactions that represent
program elements through bindings. We design such an operation in
Jabyce as a composite component whose server and client interfaces are
directly bound, as illustrated in Fig. 6. If the reference implementation of
Fractal in Java (named Julia4) is used, such an architecture does not add
any overhead to the interactions on the bindings, and the binding of such
an empty operation in a configuration has no cost, thanks to optimization
mechanisms.

class−factory
ClassFactory

method−factory
MethodFactory

client−class−factory
ClassFactory
client−method−factory
MethodFactory

empty operation

Fig. 6. An operation that performs no transformation

One way to construct operations that actually perform transformations is
to add transformers, i.e. sub-components, into such composite component,
whose interfaces are bound to the composite component interfaces. Fig. 7
illustrates an operation that contains one transformer that decorates the
interactions representing program elements received on one interface, and
that uses two client interfaces to represent program elements of two kinds.

4 Free software available at http://www.objectweb.org/fractal/

108 ComSIS Vol. 1, No. 2, November 2004

Composing Transformations of Compiled Java Programs with Jabyce

The other interfaces are directly bound, i.e. the program elements
represented by calling methods on them are not transformed. Such
transformer has a small granularity, therefore it would naturally be
implemented as a primitive component. From a general point of view, a
configuration of transformers therefore concerns two abstraction levels:
between deserializers, operations and serializers, and inside operations.

transformer transformation operation

Fig. 7. An operation composed of one transformer

An operation is a kind of transformer that always has the same set of
client and server interfaces, i.e. all operations have externally the same
form, while an ordinary transformer has only the minimum necessary
interfaces. As illustrated in Fig. 5, 6 and 7, operations have several
interfaces, each one is used to represent program elements of one kind.
For example, one interface is used to represent field access instructions,
another one is used to represent constant value push instructions, etc. The
list of the element types of the Jabyce conceptual model is presented in
section 6. All the operations have the same set of interfaces, on the server
and the client side, like deserializers and serializers. Inside operations,
transformers offer only the minimum set of interfaces that are needed.
Their only server interfaces are for receiving the interactions for the
representation of the elements to transform; their only client interfaces
are used to represent elements in the resulting program. In transformers,
the only computations are therefore performed to transform elements.
This is an application of the Interface Segregation Principle, and is an
improvement over ASM, which was not designed with interface
separation. ASM decorators must implement the “visit” methods for all the
element types of a Java class even if some are not transformed. There is
therefore always an overhead on the representation of each program
element.
Components interact only through interfaces specified by the Jabyce Java
interfaces, that are general, abstract and stable, since they do not depend
on specific transformers. Therefore, as stated in the Open-Closed
Principle, the Jabyce transformation system is both open, i.e. a

ComSIS Vol. 1, No. 2, November 2004 109

Romain Lenglet, Thierry Coupaye, and Eric Bruneton

transformer can be implemented to perform any transformation, and
closed, i.e. its specification consists of the Jabyce interfaces, which are
closed. Therefore a transformer implementation, i.e. a Java class that
implements a primitive component and uses the Java interfaces defined in
Jabyce, can be easily reused, so we define it as the granule of euse. r

7.2. Specification of the Interfaces

For each element type we define a server interface, on each serializer
component and each operation. Therefore the Jabyce framework defines
50 Java interfaces: ClassFactory, FieldFactory, LocalVariableFactory,
FieldAccessInstructionFactory, etc. Each Java interface defines one
method, to represent elements of the corresponding type. For example, the
source code of the FieldAccessInstructionFactory interface is partially
given in Fig. 8. The arguments specified in the signature are used to
parameterize the representation of the instruction. The ObjectType and
FieldDescriptor classes are defined in Jabyce to communicate Java types
when representing elements. In this method, all the field and type names
are specified as objects, not as indexes in the constant pool. This
illustrates our choice to hide such details. The given
MethodBuildingContext object identifies the method in which the
instruction is represented.

public interface FieldAccessInstructionFactory {
 /**
 * Creates the instruction that accesses a field
 * with the specified fields.
 *
 * @param compositeMethodBuildingContext
 * the context for the building of the composite
 * method that will contain the created
 * instruction that accesses a field.
 * @param type the type of the target object that
 * defines the accessed field.
 * @param fieldName the name of the accessed field.
 * @param fieldIsStatic the flag that indicates
 * that if true, the field is static.
 * @param fieldType the accessed field type.
 * @param loadOrStore the flag that indicates that
 * if true, the field is loaded; otherwise it is
 * stored.
 * @pre compositeMethodBuildingContext
 * ! = null
 * @pre type ! = null

110 ComSIS Vol. 1, No. 2, November 2004

Composing Transformations of Compiled Java Programs with Jabyce

 * @pre fieldName ! = null
 * @pre fieldType ! = null
 */
 void createFieldAccessInstruction(
 MethodBuildingContext
 compositeMethodBuildingContext,
 ObjectType type, String fieldName,
 boolean fieldIsStatic,
 FieldDescriptor fieldType,
 boolean loadOrStore);
}
Figure 8. Source code of the FieldAccessInstructionFactory interface

A building context object is used to identify a composite element when
representing elements inside it, i.e. Jabyce defines the
ClassBuildingContext, FieldBuildingContext and MethodBuildingContext
classes. Such objects are returned by the methods which calls represent
composite element types. For example, the source code of the
MethodFactory interface is partially given in Fig. 9.

public interface MethodFactory {

 MethodBuildingContext createMethod(
 ClassBuildingContext compositeClassBuildingContext,
 ...);

 void finishMethodBuilding(
 MethodBuildingContext buildingContext);
}
Figure 9. Source code of the MethodFactory interface

Each building context must be explicitly “closed” after it has been used, by
calling the corresponding “finish” method in the interface, when all the
elements have been represented in the corresponding composite element.
For example, when all the elements (instructions, etc.) have been
represented inside a method, the method finishMethodBuilding must be
called with the building context object.
From a general point of view, Jabyce relies on the equality of object
references between the context object returned when representing a
composite element such as a method, and the context object passed when
representing an element inside it, as a general mechanism to r present
composition relations between program elements. More generally, Jabyce
uses that mechanism to represent the edges of the conceptual graph that
models a Java class.

e

ComSIS Vol. 1, No. 2, November 2004 111

Romain Lenglet, Thierry Coupaye, and Eric Bruneton

In Fig. 10 is given the source code that initiates the interactions with a
serializer, to represent one class that contains one method. These
interactions are equivalent to the interactions initiated by a deserializer
that analyzes the corresponding existing class.

// create a class:
ClassBuildingContext classBC =
 classFactory.createClass(...);

// create a method:
MethodBuildingContext methodBC =
 methodFactory.createMethod(classBC, ...);

// create a formal argument:
formalArgumentFactory.createFormalArgument(
 methodBC, ...);

// create instructions:
// ...
fieldAccessInstructionFactory
 .createFieldAccessInstruction(methodBC, ...);

// end the building:
methodFactory.finishMethodBuilding(methodBC);
classFactory.finishClassBuilding(classBC);
Figure 10. Source code for the creation of a class

7.3. Jabyce: a Transformation Framework

The Jabyce transformation system is designed as a transformation
framework. A framework is defined as “a reusable design of all or part of a
system that is represented by a set of abstract classes and the way their
instances interact” [17], and is described to “bind certain choices about
state partitioning and control flow; the user completes or extends the
framework to produce an actual application” [8]. The abstract reusable
parts that make up Jabyce are the Java interfaces that are the
specifications of component interfaces, and abstract classes that help
implementing transformers. It comes as well with a set of classes that are
predefined general-purpose transformers. It is also a specification of how
the components should be bound together, and how they should interact.
The transformer configurations are defined by users so that they can
express transformation strategies according to their context. The Jabyce

112 ComSIS Vol. 1, No. 2, November 2004

Composing Transformations of Compiled Java Programs with Jabyce

framework can be extended, by implementing new transformers, new
deserializer and serializer components, and by specifying new strategies
as transformer configurations.

8. Experiments

8.1. An Example Transformer

This section presents the design of a Jabyce transformer that inserts code
at the beginning of the implementation of each method of each class, to
print a trace message into the standard output. This transformer is
similar to the example XML document transformer presented in section
5.1. For example, the result of the transformation of the compiled class
which source code is given in Fig. 11 is a compiled class which is
equivalent to the compiled class whose source code is given in Fig. 12. The
inserted trace printing code is the sequence of bytecode instructions given
in Fig. 13.

package some.package;
public class HelloWorld {
 public void printHello() {
 System.out.println("hello");
 }
 public void printWorld() {
 System.out.println("world");
 }
 public static void main(String argv[]) {
 HelloWorld obj = new HelloWorld();
 obj.printHello();
 obj.printWorld();
 }
}
Figure 11. Source code of the original example class to transform

ComSIS Vol. 1, No. 2, November 2004 113

Romain Lenglet, Thierry Coupaye, and Eric Bruneton

package some.package;
public class HelloWorld {
 public void printHello() {
 java.lang.System.out.println(
"called printHello in class some.package.HelloWorld");
 System.out.println("hello");
 }
 public void printWorld() {
 java.lang.System.out.println(
"called printWorld in class some.package.HelloWorld");
 System.out.println("world");
 }
 public static void main(String argv[]) {
 java.lang.System.out.println(
"called main in class some.package.HelloWorld");
 HelloWorld obj = new HelloWorld();
 obj.printHello();
 obj.printWorld();
 }
}
Figure 12. Equivalent source code of the transformed example class

1. getstatic: push the object reference stored in the static field out defined
in class java.lang.System, of type java.io.PrintStream;

2. ldc: push the message string to print, identified by an index of the string
in the constant pool;

3. invokevirtual: call the println(String) method defined in
java.io.PrintStream, with the target object and argument that have
been pushed.

Figure 13. Bytecode instructions inserted for trace printing

The corresponding transformer transforms methods. Therefore it exposes
one server interface of type MethodFactory. It must be able to represent
methods (to reproduce the representation of the transformed methods),
field access instructions (getstatic), string constant push instructions (ldc)
and method call instructions (invokevirtual). Therefore it exposes four
client interfaces of type MethodFactory, FieldAccessInstructionFactory,
StringOrNullConstantPushInstructionFactory and
MethodCallInstructionFactory. It is illustrated in Fig. 14. It can be
integrated into an operation, as illustrated in Fig. 15, by binding its
interfaces to the interfaces of the operation. Only the server
MethodFactory interface is bound to the transformer component, to
transform the method representations, while the others are directly

114 ComSIS Vol. 1, No. 2, November 2004

Composing Transformations of Compiled Java Programs with Jabyce

bound. The client interfaces of the transformer are bound to the
corresponding client interfaces of the operation. To perform
transformations, a simple configuration is a pipe-line composed of one
deserializer, the operation, and a serializer bound together.

trace insertion
transformer

MethodFactory

FieldAccessInstructionFactory

StringOrNullConstantPushInstructionFactory

MethodCallInstructionFactory

MethodFactory

Figure 14. Trace insertion transformer

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

trace insertion operation

trace insertion transformer

MethodFactory

FieldAccessInstructionFactory

StringOrNullConstantPushInstructionFactory

MethodCallInstructionFactory

Figure 15. Trace insertion operation

In this example, the transformer is a primitive component. Therefore its
implementation is a Java class, as specified in the Fractal framework. The
source code of this class is partially given in Fig. 16. The
BindingController interface is defined in the Fractal component
framework, to define callback methods used by the framework to give to a
component the references to the components bound to its client interfaces.
Implementing this interface is the only constraint imposed by the Fractal
framework.

ComSIS Vol. 1, No. 2, November 2004 115

Romain Lenglet, Thierry Coupaye, and Eric Bruneton

public class TraceInterceptor implements
 MethodFactory, BindingController {

 /* references to components bound
 to client interfaces */
 protected MethodFactory boundMethodFactory;
 protected FieldAccessInstructionFactory
 boundFieldAccessInstructionFactory;
 protected StringOrNullConstantPushInstructionFactory
 boundStringOrNullConstantPushInstructionFactory;
 protected MethodCallInstructionFactory
 boundMethodCallInstructionFactory;

 /* defined inUserBindingController, to query,
 set and unset the client component references */
 public String[] listFc() {/*…*/}
 public Object lookupFc(String clientItfName) {/*…*/}
 public void bindFc(String clientItfName,
 Object serverItf) {/*…*/}
 public void unbindFc(String clientItfName) {/*…*/}

 /* defined in MethodFactory, to represent methods */
 public MethodBuildingContext createMethod(
 ClassBuildingContext compositeClassBuildingContext,
 String name, MethodReturnDescriptor retType,
 boolean isPublic, boolean isPrivate,
 boolean isProtected, boolean isStatic,
 boolean isFinal, boolean isSynchronized,
 boolean isNative, boolean isAbstract,
 boolean isStrict, boolean isSynthetic,
 boolean isDeprecated) {

 /* re-represent the method using
 the bound factory component */
 MethodBuildingContext methodBuildingContext =
 boundMethodFactory.createMethod(
 compositeClassBuildingContext, name, retType,
 isPublic, isPrivate, isProtected, isStatic,
 isFinal, isSynchronized, isNative, isAbstract,
 isStrict, isSynthetic, isDeprecated);

 /* do not transform initializers */

116 ComSIS Vol. 1, No. 2, November 2004

Composing Transformations of Compiled Java Programs with Jabyce

 if (name.equals("<init>")) {
 return methodBuildingContext;
 }
 String className =
 boundClassFactory.getBuiltClassClassType(
 compositeClassBuildingContext).toString();

 /* compose statically the trace message */
 String messageToPrint = "called " + name
 + " in class " + className;

 /* represent the instructions for
 System.out.println("called…");
 just at the beginning of the method */
 boundFieldAccessInstructionFactory
 .createFieldAccessInstruction(
 methodBuildingContext,
 new ObjectType("java.lang.System", false),
 "out", true,
 new ObjectType("java.io.PrintStream", false),
 true);
 boundStringOrNullConstantPushInstructionFactory
 .createStringOrNullConstantPushInstruction(
 methodBuildingContext, messageToPrint);
 boundMethodCallInstructionFactory
 .createMethodCallInstruction(
 methodBuildingContext,
 new ObjectType("java.io.PrintStream", false),
 false, "println", false, false, VoidType.VOID,
 new FieldDescriptor[] {
 new ObjectType("java.lang.String", false)});
 return methodBuildingContext;
 }
 public void finishMethodBuilding(
 MethodBuildingContext buildingContext) {
 /* finish the method represented
 with createMethod(...), when all instructions
 have been created in its context */
 boundMethodFactory
 .finishMethodBuilding(buildingContext);
 }
}
Figure 16. Source code of the transformer Java class

ComSIS Vol. 1, No. 2, November 2004 117

Romain Lenglet, Thierry Coupaye, and Eric Bruneton

This example implementation of a transformer illustrates our choice to
prefer high performance, by representing program elements as sequences
of interactions, over implementation simplicity. This trade-off is discussed
in section 5.2. This example shows that simple transformations are easier
to implement when representing program elements as graphs of objects.
However, our other experiments have also demonstrated that complex
transformations are equally difficult to implement using either object
graphs or interaction sequences. Next section gives some execution time
measurements for the example transformer above.

8.2. Measurements

This section compares the time consumption of the execution of the Jabyce
transformer described above, with the same transformer implemented
using ASM, and another implemented directly using BCEL. The measured
execution times comprise the transformation time and the .class files
deserialization and serialization time, and exclude the file access time and
the configuration initialization time. Transformations are performed for
all the 8251 classes of the Blackdown Java 2 SDK 1.4. The transformation
program is executed using that JVM on an unloaded Pentium III 1GHz PC
running GNU/Linux. The measured execution real (wall clock) times are
indicated in Table 1, as the means of 10 measures.

Table 1. Execution time measurements

 ASM BCEL Jabyce
Total time 31380 ms 92444 ms 45301 ms
Time / class 3.8 ms 11.2 ms 5.49 ms

According to our measures, the Jabyce transformations are performed in
only 1.44 times the time of the ASM transformations. This additional
execution time is mainly due to our choice of a more abstract model of a
Java class, as described in section 6, which implies for example more
computations for the local variables. However, we have measured no
overhead due to the Fractal component model, thanks to optimizations
implemented in the Julia reference implementation of Fractal.
The Jabyce transformations are performed twice as fast as the BCEL
transformations. This confirms our choice to represent programs as
interaction sequences, in ASM and Jabyce, instead of representing
programs as graphs of objects as in BCEL, to reach our objective of high
performance program transformations. This choice is discussed in section
5.2.
As a conclusion, from the point of view of transformation performance,
these measures validate the two main decisions that we make in the

118 ComSIS Vol. 1, No. 2, November 2004

Composing Transformations of Compiled Java Programs with Jabyce

design of Jabyce, i.e. the use of a general component model that offers a
high level of control without reducing performance, and the representation
of program elements as interactions.
A Jabyce operation is typically a composite Fractal component that has a
sparse internal architecture, i.e. in which most server interfaces are
directly bound to client interfaces. We therefore predict that the
composition of a high number of operations in a chain is more efficient
using Jabyce than using ASM, where each transformer must intercept all
interactions that represent program elements. A perspective is to perform
measurements using such transformer configurations to confirm that
prediction.

9. Generalization of the Approach

The design process of a transformation framework like Jabyce is
reproducible. For instance, one may need to design and implement a
similar transformation framework, to transform LaTeX documents, which
has the same characteristics, i.e. 1) that uses the Fractal component model
and 2) that represents documents as interactions between components.
The only difference between that framework and the Jabyce framework is
the conceptual model of the elements to transform, which is expressed as
the set of component interfaces as described in section 7.2. In order to
automate the design and implementation of such framework, we provide
the Jaidee5 tool. Jaidee takes as input a formal description of the elements
to be transformed, in the form of an XML file, and generates the source
code of most of the Java classes and interfaces of a transformation
framework. These are: the component interfaces for the representation of
program entities, similar to the interfaces presented in section 7.2, the
building context interfaces and base classes, and abstract classes that help
implement transformer components. Jabyce is the first transformation
framework generated by Jaidee: 165 source files are completely
automatically generated with Jaidee, out of the 226 source files that make
up Jabyce. The 61 human-coded classes are the classes used as formal
arguments in the signatures of methods which calls represent program
elements, and the classes that implement deserializers and serializers.
This demonstrates that Jaidee minimizes the effort of design and
implementation of such transformation framework.
The XML file expressing a conceptual model specifies:

• the name and textual description of element types;

• the composition relations between element types;

5 In the Thai language, “jaidee” is an adjective that means “nice”. “ja” is pronounced as in

“jacket”, and “idee” like “ID” with a long final “ee”.

ComSIS Vol. 1, No. 2, November 2004 119

Romain Lenglet, Thierry Coupaye, and Eric Bruneton

• the dependencies between element types;

• the information necessary to represent elements, as “fields” that make
up an element type;

• constraints on the element type fields, in the form of assertions.
For example, the description of the FieldAccessInstruction element type,
in the Jabyce model is expressed as the XML element partially given in
Fig. 17. The complete Jabyce model is an XML file that contains one such
element for each one of the 50 element types described in section 6. The
text elements are used to generate the comments in the source files, as
illustrated in Fig. 8. The fields are used to define the formal arguments of
the “create” method. The validity test expression elements are used to
generate the pre-conditions, i.e. @pre tags in the comments of the “create”
method, that are interpreted and compiled using the iContract [13] Design
by Contract [24] tool.

<entityType name=’FieldAccessInstruction’>

<singularTextName>instruction that accesses a field</…>

<compositeEntityType name=’Method’/>
<depTargetEntityType name=’Field’/>

<physicoLogicalField index=’0’>
 <name name=’type’/>
 <javaType name=’…ObjectType’/>
 <text>type of the target object
 that defines the accessed field</text>
</physicoLogicalField>

<physicoLogicalField index=’1’>
 <name name=’fieldName’/>
 <javaType name=’java.lang.String’/>
 <text>name of the accessed field</text>
</physicoLogicalField>

<physicoLogicalField index=’2’>
 <name name=’fieldIsStatic’/>
 <javaType name=’boolean’/>
 <text>flag that indicates that if true,
 the field is static</text>
</physicoLogicalField>

<physicoLogicalField index=’3’>
 <name name=’fieldType’/>

120 ComSIS Vol. 1, No. 2, November 2004

Composing Transformations of Compiled Java Programs with Jabyce

 <javaType name=’…FieldDescriptor’/>
 <text>accessed field type</text>
</physicoLogicalField>

<physicoLogicalField index=’4’>
 <name name=’loadOrStore’/>
 <javaType name=’boolean’/>
 <text>flag that indicates that if true, the field
 is loaded; otherwise it is stored</text>
</physicoLogicalField>

<validityTestExpression>{0}!=null</…>
<validityTestExpression>{1}!=null</…>
<validityTestExpression>{3}!=null</…>

</entityType>
Fig. 17. Model of the FieldAccessInstruction element type

In the generated source code, the dependency relations are expressed as
inheritance relations between the abstract component classes and the
interfaces. For instance, the generated AbstractFieldTransformer abstract
class inherits from the FieldFactory interface, but also from the
FieldAccessInstructionFactory interface because of the declaration of a
dependency relation between FieldAccessInstruction and Field. Such
semantic dependencies are expressed using <depTargetEntityType> XML
elements.
It is possible to compose distinct transformation frameworks by
implementing translators, i.e. components that offer all the server
interfaces of the source framework, and all the client interfaces of the
target framework. It initiates interactions that represent elements in the
target framework, according to the elements represented in the source
framework. For instance, we have developed a prototype of a Java
bytecode to C compiler, that is designed as a translator component that
relies on Jabyce as the source framework.

10. Conclusion and Perspectives

This article presents Jabyce, a software framework for the implementation
and composition of transformers of compiled Java classes. Jabyce is
mainly targeted at the implementation of transformers that weave code
into programs, possibly at program load-time. Therefore, for the sake of
transformation performance, we choose to represent programs as
interaction sequences, which is an optimal representation that fits well

ComSIS Vol. 1, No. 2, November 2004 121

Romain Lenglet, Thierry Coupaye, and Eric Bruneton

with such transformations. To allow an easy reuse and a flexible
composition of transformer implementations, Jabyce is based on Fractal, a
general component model. This allows users to compose transformers
using user-specified component bindings, to express arbitrarily complex
transformation strategies. Jabyce is compared with other systems that
transform Java classes, by comparing characteristics such as their
possible uses, the model that is used to represent programs, and the
computational and architectural model they use to implement
transformers. Jabyce appears as the most general and flexible of these
systems. In addition, performance measurements show that the choice of
an interaction sequence representation of programs offers good
transformation performance, and that the use of a general component
model such as Fractal does not add any overhead. The design process of
transformation frameworks like Jabyce is reproducible, using the Jaidee
tool, which we have developed, and that generates automatically the
source code of most part of a transformation framework like Jabyce, given
a formal conceptual model of the elements to transform.
The Jabyce framework is operational and will be used to extract structural
information from programs to produce skeletons of transparent object
persistence mapping specifications. It is also used to weave transparent
persistence code into Java programs, with respect to the Java Data
Objects (JDO) standard. We will also use it to implement extensible and
adaptable component containers, that provide services such as
transparent security and transaction demarcation.
Some transformations, such as optimizations or refactorings, are difficult
to implement with an interaction sequence representation of programs,
and would require manipulating graphs of objects. Therefore we plan to
support object graph manipulating transformers in Jabyce. Such object
graphs would be automatically "deserialized” out of interaction sequences
that represent programs, and “serialized” into corresponding interaction
sequences after the graphs have been transformed.
We are investigating several architectures and formalisms for the
specification and validation of contracts, at transformation time, to ensure
the correctness of represented programs. We plan to extend the Jaidee
transformation framework generator, to generate automatically such
formal contract specifications for each generated framework.
Currently, transformers are directly implemented as Java classes that
specify components. It would be interesting to investigate the design of
higher-level languages, such as declarative rewrite rule languages, that
could be compiled into such transformer implementation Java classes. In
particular, Domain Specific Languages could ease the specification of a
transformation for a limited range of transformations.

122 ComSIS Vol. 1, No. 2, November 2004

Composing Transformations of Compiled Java Programs with Jabyce

Acknowledgements

We would like to thank the ComSIS reviewers, and the editor and
reviewers of the Science of Computer Programming 2003 Special Issue on
Program Transformation to whom we submitted an early version of this
article. Their numerous remarks were very valuable for enhancing this
article.

References

1. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.: An open
component model and its support in Java. In Proceedings of the 7th
Component-Based Software Engineering International Symposium
(ICSE2004-CBSE7), volume 3054 of Lecture Notes in Computer Science, 7-22.
Springer. (May 2004)

2. Bruneton, E., Coupaye, T., Stefani, J.-B.: The Fractal Component Model
Specification 2.0, http://fractal.objectweb.org/specification/index.html (Feb.
2004)

3. Bruneton, E., Lenglet, R., Coupaye, T.: ASM: a code manipulation tool to
implement adaptable systems. In Proceedings of the ASF (ACM SIGOPS
France) Journées Composants 2002 : Systèmes à composants adaptables et
extensibles (Adaptable and extensible component systems), Grenoble, France.
(Nov. 2002)

4. Byte Code Engineering Library (BCEL). http://jakarta.apache.org/bcel/
5. Chiba, S.: Load-time structural reflection in Java. In Proceedings of the 14th

European Conference on Object-Oriented Programming (ECOOP 2000),
Lecture Notes in Computer Science, volume 1850, 313–336, Sophia Antipolis
and Cannes, France, Springer–Verlag. (Jun. 2000)

6. Cohen, G. A., Chase, J. S., Kaminsky, D. L.: Automatic program
transformation with JOIE. In Proceedings of the 1998 USENIX Annual
Technical Symposium, 167–178. (1998)

7. Jonge, M. de, Visser, E., Visser, J.: XT: a bundle of program transformation
tools. Electronic Notes in Theoretical Computer Science, 44. (2001)

8. Deutsch, L. P.: Design reuse and frameworks in the smalltalk-80 systems. In
Biggerstaff, T. J., Perlis, A. J. (eds): Software Reusability, volume II, 57–71.
ACM Press, New York. (1989)

9. Visser, E. et al.: The online survey of program transformation –
http://www.program-transformation.org/survey.html

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object–Oriented Software. Addison Wesley. (1994)

11. Hagimont, D., Mossière, J., Rousset de Pina, X., Saunier, F.: Hidden software
capabilities. In Proceedings of the International Conference on Distributed
Computing Systems, 282–289. (1996)

12. Le Hors, A., Le Hégaret, P., Wood, L., Nicol, G., Robie, J., Champion, M.,
Byrne, S.: Document object model (dom) level 2 core specification –
http://www.w3.org/tr/dom-level-2-core/ (Nov. 2000)

13. iContract. http://www.reliable-systems.com/tools/iContract/iContract.htm.

ComSIS Vol. 1, No. 2, November 2004 123

Romain Lenglet, Thierry Coupaye, and Eric Bruneton

14. ITU/ISO Reference Model of Open Distributed Processing – Part 3:
Architecture, International Standard ISO/IEC 10746–3, ITU–T
Recommendation X.903. (1995)

15. Jakarta Avalon Framework. Inversion of control –
http://avalon.apache.org/framework/cop/guide-patterns-ioc.html

16. jclasslib. http://www.ej-technologies.com/products/jclasslib/overview.html
17. Johnson, R. E.: Frameworks = (components + patterns): How frameworks

compare to other object-oriented reuse techniques. Communications of the
ACM, 40(10):39–42. (Oct. 1997)

18. Keller, R., Hölzle, U.: Binary Component Adaptation. In Proceedings of the
12th European Conference on Object-Oriented Programming (ECOOP’98),
Lecture Notes in Computer Science, volume 1445, 307–329, Brussels, Belgium.
Springer–Verlag. (Jul. 1998)

19. Kniesel, G., Costanza, P., Austermann, M.: JMangler – a framework for load-
time transformation of Java class files. In Proceedings of the IEEE
International Workshop on Source Code Analysis and Manipulation (SCAM
2001). (Nov. 2001)

20. Bok Lee, H., Zorn, B. C.: BIT: A tool for instrumenting Java bytecodes. In
Proceedings of the USENIX Symposium on Internet Technologies and Systems
(USITS’97), Monterey, California, USA. (Dec. 1997)

21. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-
Wesley. (1999)

22. Martin, R. C.: Granularity. C++ Report, 8(10):57–62. (Nov.-Dec. 1996)
23. Martin, R. C.: The Interface Segregation Principle. C++ Report. (Aug. 1996)
24. Meyer, B.: Object-Oriented Software Construction. Prentice-Hall. (1997)
25. ObjectWeb ASM. http://asm.objectweb.org/
26. ObjectWeb Fractal. http://fractal.objectweb.org/
27. Partsch, H., Steinbrüggen, R.: Program transformation systems. ACM

Computing Surveys (CSUR), 15(3):199–236. (1983)
28. SAX. Events vs. trees – http://www.saxproject.org/?selected=event
29. SAX. http://www.saxproject.org/
30. Serp. http://serp.sourceforge.net/
31. Tip, F., Laffra, C., Sweeney, P. F., Streeter, D.: Practical experience with an

application extractor for Java. In Proceedings of the 1999 ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’99), 292–305. ACM Press. (Nov. 1999)

32. Visser, E.: A survey of rewriting strategies in program transformation
systems. In Gramlich, B., Lucas, S. (eds): Proceedings of the 1st Workshop on
Reduction Strategies in Rewriting and Programming (WRS’2001), volume 57 of
Electronic Notes in Theoretical Computer Science. Elsevier Science Publishers.
(May 2001)

33. Vlissides, J.: Protection. I. the Hollywood Principle. C++ Report, 8(2):14, 16–
19. (Feb. 1996)

Romain Lenglet received the ENSIMAG Computer Science Engineer
degree and the Research M.Sc. degree from the INPG Technological
University, Grenoble, France. Since 2001 he is working on his Ph.D., in a

124 ComSIS Vol. 1, No. 2, November 2004

Composing Transformations of Compiled Java Programs with Jabyce

ComSIS Vol. 1, No. 2, November 2004 125

context of collaboration between the France Telecom R&D Division and
the French National Institute for Research in Computer Science and
Control (INRIA). His research areas include program transformation,
distributed systems, software architecture and dependability. He is the
developer of several software packages related with program
transformation, including Jabyce and Jaidee.

Thierry Coupaye completed his Ph.D. in Computer Science from the UJF
Grenoble University, France, in 1996 in the area of active databases and
worked afterwards as a teaching assistant at INPG Technological
University. Then he worked as a researcher at the European
Bioinformatics Institute (EMBL-EBI) in Cambridge, U.K., in the area of
semi-structured data management, and then in the Dassault Systems and
University of Grenoble Joint Laboratory where he worked on large scale
software deployment. He joigned France Telecom in 2000. He leaded
several R&D projects and took lead of the Distributed Software
Architectures & Infrastructures Research Pole in 2003. His research
interests include software architecture, component-based systems, AOP,
reflexive systems and autonomic computing.

Eric Bruneton completed his Ph.D in Computer Science from the INPG
Technological University, Grenoble, France, in 2001, in the area of
distributed systems and reflexive middleware platforms. He entered the
France Telecom R&D Division afterwards, as a research engineer. His
research areas include reflexive systems, middleware platforms,
component-based systems and program transformation. He is the
developer of several software packages, including the ASM Java bytecode
transformation system, and the Fractal Julia platform.

	Introduction
	Categorization of Program Transformation Systems
	Scope
	Transformation Paradigm
	Program Representation
	Proposed Extended Categorization

	Scope
	Considered Transformation Systems
	Comparison

	Transformation Paradigm
	Global Architecture
	Principles for the Design of Jabyce
	The Open-Closed Principle [24]
	The Common Closure Principle [22]
	The Interface Segregation Principle [23]

	Jabyce Transformers as Fractal Components
	The Fractal Component Model
	Application to the Design of Transformers in Jabyce

	Transformation Strategy
	Comparison

	Transformed Programs Programmatic Model
	Interaction Sequences vs. Object Graphs
	Performance vs. Simplicity
	Comparison

	Transformed Programs Conceptual Model
	General Issues About Modeling Java Classes
	Constant Pool
	Branch Addresses
	Local Variables
	Instructions
	Optimized Instruction Forms
	Conclusion

	The Model of a Java Class in Jabyce

	Putting It All Together
	Transformation Operation Internal Architecture
	Specification of the Interfaces
	Jabyce: a Transformation Framework

	Experiments
	An Example Transformer
	Measurements

	Generalization of the Approach
	Conclusion and Perspectives
	Acknowledgements
	References

