
UDC 65.01

Towards a Methodology to Estimate Cost of Object-
Oriented Software Development Projects

Radoslav M. Rakovic

Energoprojekt-Entel Co.Ltd., Bulevar Mihaila Pupina 12,
11070 Belgrade, Serbia and Montenegro

rmrakovic@ep-entel.com

Abstract. Successful management of a software project, besides a
well-defined project development process, requires an early estimate
of project complexity. In a prevailing practice, software development
costs usually have been determined a posteriori i.e. after software
project implementation. It is essential, however, to know this
estimate a priori, i.e., before commencement of works. This paper
presents an attempt to construct a methodology that would enable an
early estimate of software development cost and its refinements
during subsequent development phases. The methodology assumes
an object-oriented approach based on the Unified Modeling Language
(UML) and Unified Software Development Process (USDP). It
outlines an Use Case Driven, Architecture-Centric, Iterative and
Incremental estimate process that could significantly improve and
simplify early cost estimates. The presented methodology is
illustrated on example of the POST software development project.

1. Introduction

Successful management of a software project, besides a well-defined
project development process, requires an early estimate of project
complexity. This would ensure adequate resource allocation to a project as
a whole, as well as to each phase of development process. In most cases,
the most important cost factor is labor. For this reason, estimation of
software development effort is central to management and control of a
software project. The main difficulty of such an estimate is the fact that
software is a specific kind of product.
 Cost and scheduling estimates provide highly valuable aid in a number
of management decisions, budget and personnel allocations and in
supporting reliable bids for contract competition. Managers feel more
comfortable using estimate models than just relying on “rules of thumb”
and entirely subjective judgments when planning budgetary and
personnel resources for a new software project. Even though estimate
models have some limitations that managers should be aware of, they may

Radoslav M. Rakovic

be viewed as valuable tools in the software engineering process. An
estimate of software development effort has implications both for planning
of a software project, and for its implementation. If this estimate is too
low, then the software development team will be under considerable
pressure to finish their job quickly, within allocated budget, and hence the
resulting software may not be fully functional or tested. If this estimate is
too high, then too much resource will be committed to this project and too
much money will be spent unnecessarily.
 In prevailing practice, software development costs usually have been
determined a posteriori i.e. after software project implementation. It is
essential, however, to know this estimate a priori, i.e. before
commencement of works. In other words, if one wants to invest money, it
is necessary to know estimate of related cost before making relevant
decision.
 The Importance of software development effort estimate has motivated
considerable research in recent years. A brief survey of cost estimate
models is given in Section 2 of the paper. The Section 3 briefly surveys
foundations of the Unified Software Development Process, emphasizing
the Use Case Driven, Architecture-Centric, Iterative and Incremental
development processes paradigm. Also, details of the proposed
methodology are described. The POST (Point-of-Sale Terminal) software
development effort estimation is given as an example in the Section 4.

2. A Brief Survey of Cost Estimate Models

Many models have been proposed so far, for software development effort
estimation. Table 2.1 shows a classification of estimate models, based on
two criteria: (1) what complexity and size metrics are applied and (2) what
effort and scheduling computation technique is used.

Table 2.1: Cost Estimate Models - classification

Effort & Scheduling
Computation

Complexity
&.Size Metrics

Parametric models

Non-parametric
models

(Machine Learning
Approaches)

Source Lines of Code
(KSLOCs)

 SLIM
 COCOMO

 Regression Trees

More complex elements
(Dimensions)

 Function Points
 Object-Oriented

Approaches

 Regression Trees
 Neural Networks
 Analogies

174 ComSIS Vol. 1, No. 2, November 2004

Towards a Methodology to Estimate Cost of Object-Oriented Software Development Projects

 The simplest size and complexity metric, number of (thousands) source
lines of code (KSLOC), is often and very successfully used. Very wide
usage and large statistics for this metric makes it the most reliable one.
Other more complex metrics, including object oriented approaches, are
specific, insufficiently applied and confirmed, except to some extent
Function Points.

 Parametric models compute software development effort using
formulas of fixed structure with parameters calibrated to fit historical
data collected by measurments applied to already completed projects. A
parametric model, besides software size and complexity metrics, may take
into consideration the experience of the development team, the required
reliability of software, the programming language and so on. In contrast,
many non-parametric (machine learning) models make no or minimal
assumptions about the structure of a model to study software development
effort, but use learning algorithms to construct “rules” that fit historical
data.
 Putnam developed an early parametric model known as SLIM [15].
This model is based on an empirically confirmed assumption that a life-
cycle effort varies with time and follows the Norden-Rayleigh distribution
with some level of accuracy. The main result of this model is the well
known “software equation” linking size of product in source statements
(Ss) to effort (K) and development time (td) with state of technology (Ck) as
a constant:

(2.1) 3/43/1
dks tKCS =

 The COnstructive COst MOdel (COCOMO), based on regression
analysis of 63 completed development projects, was developed by Boehm
[3]. COCOMO relates the effort (E) required to develop a software project
(in terms of person-months) to thousands of Delivered Source Instructions
(KDSI) and the time of development (TDEV) to effort, as follows:

(2.3))(
(2.2))(

d
DEV

b

EcT
KDSIaE

=

=

where a, b, c and d are parameters, which depend on the applied model.
Prediction of the basic COCOMO can be modified using cost drivers which
are classified into four groups relating to attributes of product, computer
platform, personnel and project. These factors serve to adjust nominal
effort up and down. There are several versions of the COCOMO ([4], [9],

ComSIS Vol. 1, No. 2, November 2004 175

Radoslav M. Rakovic

[10]). The latest one, COCOMO II ([4],[10]) includes scale factors instead
of the development modes of the basic COCOMO.
 The Function Points (FP) model was developed by Albrecht [2].
Function points are based on characteristics of project at a higher
descriptive level than SLOC. The Function point model measures
functionality from user point of view, i.e., what the user requests and
receives in return. Adjusted size (Adjusted Function Points – AFP) is
given by equation 2.4:

(2.4) TCFUFPAFP ∗=

 The Unadjusted Function Points (UFP) factor is based on five types of
user functions (external inputs and outputs, logical internal files, external
interface files and external inquires). The Technical Complexity Factor
(TCF) is a result of weighted sum of 14 general system characteristics,
depending on their degree of influence [2]. Over the years, various
refinements have been made ([1], [22]), and several successive versions
have been published under the co-ordination of IFPUG (International
Function Point Users Group).
 Machine Learning approaches to estimate software development effort
[21] are derived from a more general methodology of artificial intelligence
systems. This methodology requires historical data on which to apply
learning strategies. There are several methods of machine learning but we
will mention only two of them – Regression Trees and Neural Networks.
The first one constructs decision trees for classifying data. Each project is
described over some dimensions (a set of attributes). Predicting the
development effort of a project requires that one descends the decision
tree along an appropriate path and the leaf value at the end of that path
gives an estimate of the development effort for a new project. The second
one constructs an artificial neural network which consists of several
processing elements. Each of these elements gives an output depending on
its inputs and the whole network generates outputs by propagating initial
inputs through successive layers of processing elements to final output
layer. Some experiments have indicated that these techniques are
comparable with traditional estimate methods although they are sensitive
to the historical data which they are based on.
 An alternative non-parametric approach is based upon the use of
analogies [20]. The underlying principle is to characterize all projects with
the same set of features and then to find the completed project most
similar to the current one. Similarity is defined as Euclidean distance in a
n-dimensional space where n is the number of project features. Each
dimension is standardized so that all of them have equal weight. The
known values of the most similar project are then used as basis for effort
prediction for the current one.

176 ComSIS Vol. 1, No. 2, November 2004

Towards a Methodology to Estimate Cost of Object-Oriented Software Development Projects

 A variety of software metrics have been proposed for object-oriented
development environments ([6]-[8],[14]). An overview of several estimate
models for object-oriented development environments is given in [16].

 From this brief review of cost estimate models, the following
conclusions can be made:
• Models based on the most simple metric, KSLOC, are the most

reliable because their parameters are calibrated from wide set of
projects of different kind.

• Other models, except to some extent Function Points, are specialised
and insufficiently applied and confirmed. Estimation using Function
Points is very interesting approach but a lot of experience is desirable
for its successful application.

• For Object-Oriented software development methods, a variety of new
software metrics have been proposed. However, they are also
insufficiently applied and confirmed.

3. Foundations of Methodology to Software Development
Cost Estimate

 Based on the disadvantages of existing methodologies, an attempt was
made to construct a methodology for an early estimate of software project
development costs, which will be subsequently refined along a software
development process. The foundations of the methodology are:

• The Unified Software Development Process (USDP) with Unified
Modeling Language (UML), as the dominant approach in software
development nowadays;

• The simplest size and complexity metric-KSLOC (thousands of
SLOC) and the most widely used COCOMO model to calculate effort
and scheduling (according to the conclusions stated in the previous
chapter).

3.1. The Unified Software Development Process

 The Unified Software Development Process (USDP) is “use-case driven,
architecture-centric, iterative and incremental” [11]. It is natural to devise
a software development cost estimate process, which is “use-case driven,
architecture-centric, iterative and incremental”.
 The Unified Software Development Process suggests that large
software projects should be decomposed into a set of smaller mini-projects.
Each mini-project is an iteration in the overall project development and,

ComSIS Vol. 1, No. 2, November 2004 177

Radoslav M. Rakovic

at the same time, an increment of the final product. Within an iteration, a
collection of use cases is specified, designed, implemented and tested,
making a new increment of software system. (A use case is a textual
description of a course of events and system actions to provide visible
result for user).
 Iterations are distributed over the USDP lifecycle model. It consists of
repeating cycles, each having four phases: inception, elaboration,
construction and transition (Figure 3.1, [11]). Each phase terminates in a
major milestone, where management makes important decisions (on
schedule, on budget, and whether to move into the next phase). Each cycle
concludes with a product release to customers. However, it is worth noting
again, that each iteration also results in an internal release (artifact),
which adds an increment to the system. These artifacts may be shown to
users to get their valuable feedback.
 From Figure 3.1 it is possible to see the relationships among the
iterations and the “Core workflows” (requirements, analysis, design,
implementation and test), of a development cycle [11]. The curves
approximate the extent to which the workflows are carried out in each
phase.

P r e lim ina ry
Ite ra tion (s)

ite r.
#1

ite r.
2

ite r.
k

ite r.
#k +1

ite r.
k+ 2

ite r.
#n-1

ite r.
#n

Inception Elaboration Construction Transition

Requirements

Design

Implementation

Test

Analysis

An iteration in the
elaboration phase

Figure 3.1: A cycle of the Unified Software Development Process [11]

 The Inception phase launches the project. It is the most creative phase
of system development - different ideas are developed into a vision of the
end product, a simplified use case model, containing prioritized use cases,

178 ComSIS Vol. 1, No. 2, November 2004

Towards a Methodology to Estimate Cost of Object-Oriented Software Development Projects

is developed, an outline of the system architecture, containing the most
crucial subsystems is given, the elaboration phase is planned and the
whole project is roughly estimated. In the inception phase, just a few
iterations can go through the complete iteration workflows, to support a
“proof-of-concept prototype”.
 During the elaboration phase, most of the product’s use cases are
specified in detail and the system architecture is designed. At the end of
this phase, the rest of the project is planned and iterations are sequenced.
The plan for the first iteration will be given in detail, while plans for later
ones will be iteratively refined. In the elaboration phase some (10% in
average) iterations are completed and appropriate increments are built
into the product.
 During the construction phase, the product is built. All iterations are
completed and the product contains the complete functionality specified
and agreed between management and the customer. The product (beta
release) is ready to begin transition to the user community. The system is
turned over to use by a small number of experienced users, who report
errors and deficiencies.
 The transition phase includes minor fixes and some fine tuning of the
product, as well as product documentation, training, etc.

3.2. Iteration lifecycle and artifacts used for estimate

The “core workflows” of an iteration are requirements, analysis, design,
implementation and test. Table 3.1. specifies the activities in each step,
their resulting artifacts (UML models) and the possible metrics for the
size and complexity estimate, as illustration of the relationships among
them.

ComSIS Vol. 1, No. 2, November 2004 179

Radoslav M. Rakovic

 Table 3.1: Core workflows - Steps, activities, artifacts and metrics

3.3. Principles of the software cost estimation method

 For the purpose of devising the software development costs estimation
method, it is important to recognize several factors:

(1) At the end of the elaboration phase, most of the requirements and
analysis workflows are completed. The artifacts resulting from this phase
should be used to estimate resources required for completing the project.
The estimate of the total development effort can be calculated as sum of
the effort estimate for each planned iteration, i.e.

180 ComSIS Vol. 1, No. 2, November 2004

Towards a Methodology to Estimate Cost of Object-Oriented Software Development Projects

∑
=

=
n

i
itot EE

1
(3.1)

where n stands for total number of iterations. The estimate of the time to
develop an increment is usually calculated using the estimate of the
corresponding effort. The estimate of the total time to complete a project
may take into account scheduled paralelism of iterations.

(2) However, at the end of the elaboration phase, several iterations
(increments) are already completed. This means that the estimates for
these increments can be replaced by exact measurements. Using the
measured values, the total estimate can be refined using the formula

(3.2))1()()(
k

k
meas

k
tot fEE +=

where
E tot(k) is the total effort estimated after completing k-th iteration;
E meas(k) is the measured effort for k completed iterations;
fk is the weighting factor which represents ratio of the complexity of
incompleted iterations and the complexity of completed iterations, i.e.

 (3.3)).../()...(11 knkk ccccf ++++= +

(3.4)
 1

∑
=

=
m

i

j
ijc α

where
cj is the complexity of j-th iteration
αij is the complexity factor of the i-th use case in the j-th iteration, and the
sum is taken over the complexity factors of all the use cases included in
the iteration.

(3) One can use either the formula (3.1) or the formula (3.2) to estimate
total effort for software development. However, it is obvious that the
formula (3.2) will give better estimate, since it takes into account values
measured for already completed iterations. It also reduces the problem of
cost estimate for iterative and incremental development to the estimate of
the weighting factors given in (3.3).

ComSIS Vol. 1, No. 2, November 2004 181

Radoslav M. Rakovic

The estimate obtained at the end of the elaboration phase may be further
refined iteratively, after later iterations, using formula (3.2), with the new
values of k, fk and Emeas(k). The estimation process closely follows the
software development process, becoming itself use-case driven and
iterative, incrementally improving the estimate after each iteration.

(4) The Unified Software Development Process, being use–case driven,
architecture – centric, iterative and incremental, generally decreases the
effort and time needed to complete a project in comparison with “frontal”-
“waterfall” approaches. The formula (3.1) corresponds to the “frontal”
approach, while the formula (3.2) corresponds to the iterative and
incremental approach. Consequently, the formula (3.1) provides the
higher and the formula (3.2) the lower boundary of a project effort
estimate.

3.4. An algorithm to estimate number of source lines of code

 In order to apply the COCOMO model to estimate the effort and
development time to complete an iteration, one has to estimate the
number of source lines of code (SLOC) from the aritifacts obtained at the
end of each step. For an early estimate, it should be done at the end of the
analysis step.

 There are two possible ways to estimate number of lines of code:

• from the description of typical course of events within expanded
format of use cases,

• from contracts prepared for operations [13].

We have chosen the second one, because it gives more detailed insight into
the complexity of operations.

The elements of an operation contract are [13] name, responsibility,
type, cross reference, notes, exceptions, outputs, pre-conditions and post-
conditions.

 Conversion from operation contracts to number of SLOC can be
performed by means of Function Points (FP). There are two reasons for
this approach:

(1)There are several empirical relationships between number of Function
Points and number of lines of code (LOC) depending on programming
language ([10], [11]). Different languages are ranked into levels from 1 to
55 and a correspondence is established between levels and the number of

182 ComSIS Vol. 1, No. 2, November 2004

Towards a Methodology to Estimate Cost of Object-Oriented Software Development Projects

LOCs per FP. For most languages, the number of LOC per FP varies from
70 to 125 with an average of 100 LOC/FP.

(2) One can consider section elements of the system operation contract as

a specific set of Function Points, because they describe functionality
from the user’s point of view (see FP definition in chapter 2). In this
case, lines of description in a contract table can be treated as the
number of the corresponding Function Points.

 Of course, the number of lines of description depends on the level of
detail of the description – the higher the level of details, the higher the
number of FPs but the smaller the number of LOC/FP. To take this fact
into account, we propose to establish three levels of detail of description –
higher, medium and lower – and to establish three values for conversion of
FP to LOC – 70, 100 and 125, respectively.

4. A Methodology for Software Development Cost Estimation

The estimation process starts after the following activities (typical for
Object-Oriented approach) have been performed:

• Identification and specification of Use cases;
• Ranking of Use Cases by priority;
• Iteration identification and scheduling

The estimation process consists of the following six steps:

Step 1: Ranking of Use Cases by complexity
Complexity ranking of use cases is carried out based on its internal
structure. The aim is to determine Use case complexities, in order to
obtain relative complexities of the development iteration. The Use cases
are ranked by complexity using a five-point scale, as shown in the Table
4.1. For this ranking, we take into account logical complexity (number of
system events) and physical complexity (the number of actors and number
of system event attributes).

 Table 4.1: Ranking of Use Cases by complexity

Complexity Factor α Use Case complexity level
0.8 simple
0.9 moderate

1.0 nominal
1.1 high
1.2 extra high

ComSIS Vol. 1, No. 2, November 2004 183

Radoslav M. Rakovic

 In the literature, five- or seven-point scales are usually applied for
human ranking. We decided to use a five-point scale to avoid problems
related to making distinctions among steps within scale. The range of
complexity factors (from simple to extra high) is proposed as the simplest
ranking scheme in the literature [13]. For our purposes, it is acceptable
because relative, not absolute, complexity is of interest.

Step 2: Complexity estimate of iterations
The complexity ck of the k-th iteration (increment) is given by the equation
(3.4), as the sum of the complexity factors of all the use cases included in
the k-th iteration.

Step 3: Software size e timate s
Software size estimate is performed using the approach given in section
3.4.

Step 4: Effort and scheduling estimate by m ans of COCOMO e
After estimating number of LOC for an iteration, one can apply a
COCOMO, for example COCOMO II.98, to determine effort and
development time using number of KSLOCs, cost drivers and scale
factors. However, if an existing component is used, it is necessary to
correct the number of KSLOC that is used in formulas for effort and
development time estimate, in accordance with the following equation:

(4.1) 3 ESLOCASLOCKSLOCKSLOC step +−=

where ASLOC is the amount of software to be substituted by an existing
component and ESLOC is an equivalent number of new instructions to be
written to integrate the existing component into the application. The
parameter ESLOC which will be used as COCOMO size parameter, is
given by the following equation [4]:

(4.2) 100303040 IM)/,CM,DM,SU(AAASLOCESLOC ++++∗=

where

AA is the Assessment and Assimilation increment, and deals with the

degree of assessment and assimilation needed to determine whether
even a fully-reused software module is appropriate to the application,
and to integrate its description into the overall product description;

SU is the Software understanding penalty, the cost of understanding and
checking the interface;

DM is the percentage of Design Modification;

184 ComSIS Vol. 1, No. 2, November 2004

Towards a Methodology to Estimate Cost of Object-Oriented Software Development Projects

CM is the percentage of Code Modification;
IM is the original integration effort required for integrating the reused

software.

To calculate effort and development time for the k-th increment
(iteration), following equations are applied ([4], [9], [10]):

(4.3))(**942 B
kk KSLOCEAF,E =

(4.4))(01,091,0
5

1
∑
=

+=
i

iSFB

(4.5)
17

1
∏
=

=
i

CDiEAF

where the values of cost drivers (CDi) and scale factors (SFi) are given in
the appropriate corresponding COCOMO tables.

In accordance with estimates established using equations (4.3) – (4.5) and
discussion in subsection 3.3 of previous section (See Eq. 3.2), the total
effort and development time after k-th iteration E tot(k) and T tot(k) is
calculated using following equations:

(4.6))1()()(
k

k
meas

k
tot fEE +=

where fk is given by equations (3.3) and (3.4) and

(4.7))(*67,3)91,0(*2,028,0)()(−+= Bk
tot

k
tot ET

Step 5: Iterative and Incremental Estimate
Steps 2-4 are repeated for each iteration, incrementally improving the
functionality of the system. After the last iteration, the final estimate of
effort Etot and development time T dev-tot are established, because all
identified use cases are included.

Step 6: Allocation of total effort and scheduling across global workflows
To allocate total estimated effort and development time across global
workflows, the software project is ranked in accordance with number of
iterations in one of the following categories – small (S), intermediate (IM),
medium (M), large (L), very large (VL) – and Table 4.2 is applied. The

ComSIS Vol. 1, No. 2, November 2004 185

Radoslav M. Rakovic

table gives the percentage of workflow’s participation in the total effort
and development time [4] for each category.

Table 4.2: Workflow participation in total effort and development time
Workflow E (%)
 S IM M L VL
Requirements 7 7 7 7 7
Analysis 17 17 17 17 17
Design 27 26 25 24 23
Implementation 37 35 33 31 29
Testing 19 22 25 28 31
TOTAL 100 100 100 100 100
Workflow Tdev (%)
 S IM M L VL
Requirements 16 18 20 22 24
Analysis 24 25 26 27 28
Design 24 22 21 19 18
Implementation 32 30 27 25 22
Testing 20 23 26 29 32
TOTAL 100 100 100 100 100

5. The POST example

To illustrate the methodology proposed in Section 4, a Point-of-Sale
Terminal (POST) example is presented in this section. This example is
based on the literature [13] and CASE tool Rational Rose is applied [19].
 POST is a computerized system used to record sales and handle
payments, typically used in a retail store. It includes hardware
components such as a computer and bar code scanner, and software to run
the system. This example is representative of many information systems
and touches upon common problems that a developer may encounter.

 In general, the goal of the POST system is increased checkout
automation, to support faster, better and cheaper services and business
processes. More specifically, these include:

• Quick checkout for the customer;
• Fast and accurate sales analysis;
• Automatic inventory control.

A reduced use case diagram for the POST system is shown on Figure 5.1.

186 ComSIS Vol. 1, No. 2, November 2004

Towards a Methodology to Estimate Cost of Object-Oriented Software Development Projects

CustomerBuy Items

Log In

Cashier

Start UpManager

Pay by Cash
Credit Authorization

Service Pay by Credit

Accounts
Receivable Refund Purchased Items

Pay by Check Check Authorization
Service

Figure 5.1: Reduced Use Case diagram for the POST [13]

Use cases are identified using an "actor-based" approach. The actors are:
• Customer – initiates events when arrives at the POST checkout with

items to purchase;
• Cashier – handles payments of purchased items;
• Credit Authorization Service – authorizes payment by credit;
• Accounts Receivable – records and implements payment by credit;
• Check Authorization Service – authorizes payment by check;
• Manager – Powers on the POST at the beginning of working time in

order to prepare it for use by Cashier.

 The use case diagram shows main use cases (“Buy Items”, “Pay by
Cash”, “Pay by Credit”, “Pay by Check”), special situations (“Refund
Purchased Items”) and general topics (“Start Up” of the POST by Manager
and “Log In” of the Cashier).
 The highest priority is the “Buy Items” use case which has four
scenarios. At the next priority level are the use cases related to alternative
ways of payment. Among them, the most important is the “Payment by
Credit” use case which includes not only authorization service but also
“Accounts Receivable” as actor.
 Use cases are scheduled into four iterations: In the first, only one way
of payment is included (payment by cash), in the second all types of
payment are included as well as UPC entry by code reader, in the third,
refund purchased items as well as inventory maintenance are included

ComSIS Vol. 1, No. 2, November 2004 187

Radoslav M. Rakovic

and in the fourth, cashiers and POST identification numbers and date of
purchasing are included on receipt.

Following the methodology of chapter 4, the estimate process consists of
six steps:

Step 1: Ranking of Use Cases by complexity
The complexity of use cases is estimated based on number of actors and
taking into account their internal structure (typical and alternative
courses of events, number of interfaces etc.). Within the “Buy items” use
case there is a branching related to alternatives of payment, which are
implemented by separate use cases. Also, this use case includes cancelling
a transaction if the customer changes his/hers decision, and covers wrong
item identification number entering etc. The “Refund purchased Items”
use case has a little less complexity as canceling of transaction is not
applicable. The “Pay by Credit” use case includes the most complex
procedure of authorization and also the “Accounts Receivable” actor takes
part in this way of payment. Other use cases have less complex internal
structure.

Step 2: Complexity estimate of iterations
Iterations complexity estimates are calculated using Use Case complexity
factors and equation (3.4). These complexities are 2.8, 3.3, 2.2 and 1.9
respectively.

Step 3: Software size e timate s
System operations are identified from Use Case Sequence diagrams.
Typical diagrams for the “Buy Items” and “Pay by Credit” use cases are
shown in Figures 5.2 and 5.3 [13]. Using the contracts written for each
system operation, the numbers of lines of description i.e. FPs are
determined and converted into number of lines of code.
 Based on the assumption that the level of details of description in the
POST example is medium (100 LOC/FP), the total number of lines of code
is 15 KSLOC, with iterations having 5.5, 4.8, 3.7 and 1.0 KSLOC
respectively.

188 ComSIS Vol. 1, No. 2, November 2004

Towards a Methodology to Estimate Cost of Object-Oriented Software Development Projects

 : POST : Cashier

1: enterItem (UPC,quantity)

2: endSale ()

3: makePayment (Amount)

Repeat until
no more
Items

Figure 5.2: Sequence diagram for use case Pay by Cash

 : Customer : POST : Credit
Authorization Service

 : Accounts
Receivable

1: make CreditPayment(ccNum,expiryDate)

2: requestApproval (request)

3: handleCreditReply(reply)

4: addApproval(reply)

Figure 5.3: Sequence diagram for use case Pay by Credit

Step 4: Effort and scheduling estimate by m ans of COCOMO e
The first iteration of the POST system includes use cases “Start Up”, “Buy
Items” and “Pay by Cash”. The size estimate of the software after this
iteration is 5.5 KSLOC (relative to total estimation of 15 KSLOC) and the
estimate of the iteration complexity factor is 2.8.
 Assume that in the POST software development we use an existing
software component for the “Pay by Cash” use case. This way of payment
is common situation in a retail store and it is reasonable to assume that

ComSIS Vol. 1, No. 2, November 2004 189

Radoslav M. Rakovic

there is a software component that covers this case. It means that the
amount of software to be adopted (ASLOC) is 1.2 KSLOC. Based on
assumption that modifications required are small, that difficulties for
understanding of the existing component are not too high and that the
module is applicable in the POST application with some modifications,
from equation (4.1) we obtain that equivalent number of new instructions
to be written ESLOC = 0.305 ASLOC i.e. ESLOC=0.366 KSLOC. It means
that reduced number of lines of code to be written in the first iteration is
4.7 KSLOC instead of 5.5 KSLOC.
 To calculate effort and development time for the POST example using
equations (4.3)-(4.5), it is necessary to determine the effort adjustment
factor EAF (product of cost drivers) and the sum of the scale factors. The
values of the cost drivers and scale factors are determined based on
COCOMO II.98. In determining the cost driver’s values, we assumed that
low experienced personnel are implementing the project. The other
parameters are predominantly set to their nominal levels. The scale
factors are determined based on the assumption that level of maturity of
the organization is 2, team cohesion is large and the application is well
known and requires no special constraints. Based on these assumptions,
we obtain EAF=1.494 and ΣSF=13.8 and, as a consequence, B = 1.048 and
E1 = 22.1 m-m.

Step 5: Iterative and Incremental Estimate

The results of the calculations for all four iterations are given in Table 5.1.

Table 5.1: Results of calculations

k SW size
(KSLOC

)

Ek-estim
(m-m)

Ek-meas
(m-m)

fk

Etot(k)
(m-m)

Ttot(k)
(months)

1 4.7 22.1 22.1 2.6 80.5 14.1
2 4.8 22.7 22.7 0.7 74.8 13.8
3 3.7 17.3 17.3 0.2 75.7 13.9
4 1.0 4.4 4.4 0.0 66.5 13.3
4 14.2 66.5 66.5 66.5 13.3

From the Table 5.1 we can conclude that the estimate of total effort after
the first iteration is only for 15 m-m (approx. 22%) larger than the final
estimate. In case of total development time this difference is negligible
(0.8 months i.e. 6%). Also, the final values of effort and development time
(66.5 m-m and 13.3 months) are consequence of assumption that
experience of the personnel in application domain, platform, language and
tool is low. Variation of this group of cost drivers from very low to extra

190 ComSIS Vol. 1, No. 2, November 2004

Towards a Methodology to Estimate Cost of Object-Oriented Software Development Projects

high gives the effort in the range from 142 m-m to 8 m-m. It is a proof of
the intuitive fact that effort is very dependent of the personnel
capabilities.
 In accordance with total software size (14.2 KSLOC),
“frontal”/“waterfall” approach gives the estimate of the effort and schedule
70.7 m-m and 13.6 months, respectively, for the software project as a
whole. This is an illustration of the fact that iterative and incremental
approach decreases the effort and schedule in comparison with traditional
“waterfall” approach.
 It is interesting to consider sensitivity of the results to variation of
number of lines of code. Analysis of equations (4.3) and (4.7) shows that
for variation of number of KSLOC within interval ±20%, effort E is
changed in interval ±25% and development time in interval ± 9%. If the
number of KSLOC changes twice up and down (from – 50% to +100%),
effort E varies in interval (-47% to +134%) and development time in
interval (-35% do +34%). From this analysis one can conclude that the
results obtained are not sensitive to variations of number of KSLOC.

Step 6: Allocation of total effort and scheduling across global workflows
Table 5.2 shows allocation of total effort and development time to global
workflows. We assumed that this project, with four iterations and 15
KSLOC, belongs to category “medium” and applied values given in Table
4.2.

Table 5.2: Total effort and development time allocation per workflows
Workflow Effort (m-m) Development time

(months)
 Requirements 4.5 2.7
 Analysis 11.3 3.4
 Design 16.6 2.8
 Implementation 22.0 3.6
 Testing 16.6 3.5
 Total development 66.5 13.3
 TOTAL PROJECT 71 16

6. Directions for future research

Several issues for future work and study are suggested:

ComSIS Vol. 1, No. 2, November 2004 191

Radoslav M. Rakovic

Complexity ranking of use cases: We proposed five-point scale to rank use
cases per complexity. A difficulty in application of this part of methodology
is the fact that criteria for those rankings are neither precise nor exact.
Also, formula for iteration complexity estimate will need to be refined and
justified by extensive analysis of multiple real software projects. Some
research in this area is necessary to quantify the impact of use cases on a
system architecture;
Conversion of number of lines of description to KSLOC: We assumed, as a
first approximation, that the number of lines of description is equal to
number of Function Points. It will be necessary to reconsider and modify
(if necessary) this assumption on the basis of further experience with
software projects. Also, the conversion from FPs to KSLOC for different
languages is an important topic for future research;
Effort and scheduling estimate: Special attention in future research
should be paid to effects of reusability of existing components on effort and
scheduling estimates. This is very important because we expect that the
use of existing software components will dominate software development
in the future.
Allocation of total effort and scheduling: This allocation is done based on
size categorization as well as the planned distribution of effort and
scheduling across global workflows. These assumptions are based on
COCOMO. In future works, these assumptions need to be checked and
improved, if necessary.

Also, in future research it would be very interesting to couple the use of
CASE tools (such as Rational Rose) with project management tools (such
as Microsoft Project).

7. Conclusions

This paper presents an attempt to construct a methodology that would
enable an early estimate of the software development cost, and enable
refinements of the estimate during subsequent development phases. The
methodology assumes an Object-Oriented approach based on the Unified
Modeling Language (UML) and the Unified Software Development
Process. The methodology is illustrated on a POST (Point-of-Sale
Terminal) software development project. It is shown that it is possible to
construct Use Case driven, Architecture-centric, Iterative and Incremental
estimate process that significantly improves and simplifies early cost
estimate of software projects.

We can conclude, from the results given in the previous chapter, that the
estimates of total effort and total development time after the first

192 ComSIS Vol. 1, No. 2, November 2004

Towards a Methodology to Estimate Cost of Object-Oriented Software Development Projects

iteration are satisfactory and promising. It is worth noting that the
sensitivity analysis has shown that the results are not very sensitive to
variations of number of KSLOCs.

Also, several questions for future research are emphasized to improve
software cost estimate and to enable managers to successfully manage
software projects, to implement them within budget resources, in time and
to the satisfaction of the user

8. Acknowledgement

The author would like to thank Professor Branislav Lazarevic from the
Faculty of Organizational Sciences, University of Belgrade, for his many
useful comments and suggestions.

9. References

1. Abran A.,Robillard P.N. Function Point Analysis : An Empirical Study
of its Measurement Processes, IEEE, Vol. SE-22, No 12, DEC96, pp.
895-909

2. Albrecht A.J.,Gaffney J.E. Software Function, Source Lines of Code and
Development Effort Prediction : A Software Science Validation IEEE,
Vol. SE-9, No 6, NOV83, pp. 639-648

3. Boehm B.W. Software Engineering Economics IEEE, Vol. SE-10, No 1,
JAN84, pp. 4-21

4. Boehm B.W., Abts C., Brown A.W., Chulani S., Clark B., Horowitz E.,
Madachy R., Reifer D., Steece B. Software Cost Estimation with
COCOMO II, Prentice Hall, 2000

5. Booch G.,Rumbaugh J.,Jacobson I. The Unified Modeling Language
User Guide, Addison Wesley, 1999.

6. Cant S.N.,Henderson-Sellers B.,Jeffery D.R. Application of cognitive
Complexity Metrics to Object-Oriented Programs JOOP, Vol. 7, No 4,
JUL/AVG94, pp. 52-63

7. Chidamber S.,Darcy D.,Kemerer C.F. A Metrics Suite for Object
Oriented Design IEEE, Vol. SE-20, No 6, JUN94, pp. 476-493

8. Chidamber S.,Darcy D.,Kemerer C.F. Managerial use of Metrics for
Object Oriented Software: An Exploratory Analysis, IEEE, Vol. SE 1998

9. COCOMO, http://www.softstarsystems.com/
10.Costar, V5 and Calico V5.04, Demo, 20/10/97,

http://www.softstarsystems.com/

ComSIS Vol. 1, No. 2, November 2004 193

Radoslav M. Rakovic

194 ComSIS Vol. 1, No. 2, November 2004

r

e

11.Jacobson I.,Booch G.,Rumbaugh J. The Unified Software Development
P ocess Addison Wesley, 1999.

12.Jones C. Programming Languages Table, Release 8.2 Software
Productivity Research, MAR96

13.Larman C. Applying UML and Patterns : An Introduction to Object-
Oriented Analysis and Design Prentice Hall, Englewood Cliffs, New
Jersey, 1998.

14.Li W.,Henry S.,Kafura D.,Schulman R. Measuring Object-Oriented
Design JOOP, Vol. 8, No 4, JUL/AVG95, pp. 48-55

15.Putnam L.H. A General Empirical Solution to the macro Software
Sizing and Estimating Problem IEEE, Vol. SE-4, No 4, JUL78, pp. 345-
361

16.Rakovic R. Survey of Information System Development Cost
Estimation Approaches Info Science, Vol. 7, No. 2-3, APR/AVG99, pp.
37-48

17.Rakovic R., Lazarevic B. New Methodology to estimate the cost of
Software development projects, Info M, Vol.2, No. 5/2003, pp 4-9

18.Rakovic R. A Contribution to Methodology to estimate the Cost of
Software Development Projects in Process of Information System
Planning and Development, Ph.D. Thesis, Faculty of Organizational
Sciences, 2000.

19.Rational Rose 4.0, Rational Software Corporation, 1996.
20.Shepperd M.,Schofield C. Estimating Software Project Effort Using

Analogies IEEE, Vol. SE-23, No 12, NOV97, pp. 736-743
21.Srinivasan K.,Fisher D. Machine L arning Approaches to Estimating

Software Development Effort IEEE, Vol. SE-21, No 2, FEB95, pp. 126-
136

22.Symons C.R. Function Point Analysis: Difficulties and Improvements
IEEE, Vol. SE-14, No 1, JAN88, pp. 2-10

 Radoslav M. Rakovic was born in 1955. He graduated from the Faculty
of Electrical Engineering, University of Belgrade, Yugoslavia, in 1979,
received his M.Sc. degree at the same faculty, in 1981 and his Ph.D.
degree at the Faculty of Organizational Sciences, University of Belgrade,
Yugoslavia, in 2000. Throughout his entire professional career, he was
engaged in the problems of planning and designing the telecommunication
and information systems and networks. He has published several
scientific and specialized papers regarding digital transmission of
information and application of information technologies. He has been
working as a consulting engineer since 1979 and more than 10 years as
the Head of Telecommunication and Information Technology Department
in Energoprojekt Entel, Co.Ltd. His current position is the Head of
Quality Management System Department.

	Introduction
	A Brief Survey of Cost Estimate Models
	Foundations of Methodology to Software Development Cost Estimate
	The Unified Software Development Process
	Iteration lifecycle and artifacts used for estimate
	Principles of the software cost estimation method
	An algorithm to estimate number of source lines of code

	A Methodology for Software Development Cost Estimation
	The POST example
	Directions for future research
	
	
	
	
	
	
	Several issues for future work and study are suggested:

	Conclusions
	Acknowledgement
	References

