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Abstract. We have developed models of how problem spaces are 
navigated as male and female secondary school, university, and medical 
students engage in repetitive complex problem solving. The strategies 
that students used when solving problem-solving simulations were first 
classified with self-organizing artificial neural networks resulting in 
problem solving strategy maps. Next, learning trajectories were 
developed from sequences of performances by Hidden Markov Modeling 
that stochastically described students’ progress in understanding 
different domains. Across middle school to medical school there were few 
gender differences in the proportion of cases solved; however, six of the 
seven problem sets showed significant gender differences in both the 
strategies used (ANN classifications) as well as the in the HMM models 
of progress. These results were extended through a detailed analysis of 
one problem set. For this high school / university problem set, gender 
differences were seen in how the problems were encoded, consolidated 
and retrieved. These studies suggest that strategic problem solving 
differences are common across gender, and would be masked by simply 
looking at the outcome of the problem solving event.  

1. Introduction 

Research documenting how mammals represent the environment at the 
behavioral, cellular and molecular levels (Hasselmo et al, 1996; Eichenbaum, 
2000) is suggesting a world-centered representation of the environment 
organized mainly in the hippocampus. Here, whenever an animal is in a 
particular location in a particular environment specific place cells become 
activated. The activities of these place cells are stable across days and weeks 
in constant surroundings, but change in association with environmental 
changes (Arleo & Gerstner, 2000; Nakazawa et al, 2004). These ‘remappings’ 
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suggest that the hippocampus learns and retrieves distinct maps for distinct 
contexts, with attractors within each specific map being reactivated 
(presumably while drawing on other neural contributions such as the 
neocortex and parahippocampus). More recent modeling studies suggest that 
such attractors, and the remapping phenomena may be a manifestation of a 
more general capacity to associate arbitrary conjunctions of fragments of 
experiences and thus a more general feature of memory (McClelland & 
Goddard, 1996; Willis et al, 2005). 

Continuous navigation in familiar and unfamiliar environments is also 
one of the few behaviors for which reliable gender-specific cognitive 
performance differences are well documented in humans (Tlauka et al, 2005; 
Gron et al, 2000). For instance, when knowledge is acquired through real-
world navigation, males typically outperform females on subsequent tests of 
spatial ability. These results have been extended to navigation through 
computer-simulated spaces and are being generalized to suggest that women 
are more inclined to use landmarks for navigation, while men may rely more 
on a sense of geometrical direction.  

Such navigation cues, however, may extend past the tangible world to a 
more abstract form of navigation, the navigation of problem spaces. For 
instance, the differential spatial propensities involved in real-world 
navigation have also been observed in items in the SAT-M and the GRE-Q 
item pools where, as a group, males outperform females on items requiring 
spatial skills, shortcuts, or multiple solutions, while females tend to 
outperform males on problem requiring verbal skills or mastery of classroom-
based content (Gallagher et al, 2000). 

Gender-based strategic differences in solving problems may, however, be 
more common than previously thought as they may go un-noticed as a result 
of little or no differences in the immediate performance criteria of the 
problem, which, for most cases, is whether or not the item was answered 
correctly. An example of the possible dichotomy between performance and 
strategic measures was suggested in a longitudinal study of math learning by 
Fennema et al (1995) who studied teachers and their students as they 
progressed from Grades 1 through 3. While they found no gender differences 
in the solved rate of problems performed during the study, there were strong 
and consistent differences in the strategies used to solve problems with boys 
favoring the use of invented rather than procedural algorithms for solving 
problems. These gender trends regarding problem solving are sometimes 
generalized as males being more risky and females more conservative in their 

84                                                                               ComSIS Vol.2, No.2,  December 2005 



Machine learning models of problem space navigation: the influence of gender 

 

strategic approaches. However, the gender correlates of ‘risky’ and 
‘conservative’ have not been widely expanded on experimentally.  

We are attempting, therefore, to recast some of these findings into a 
schema for problem solving which may lead to links, at a cognitive level, 
between directional and wayfinding tasks in the real world, and the abstract 
representation of the environment during complex problem solving. For 
instance, is a ‘conservative’ problem-solving approach similar to setting 
multiple landmarks during navigation, and is a ‘risky’ approach similar to 
finding spatial shortcuts or detours? If so, can gender differences be observed 
both during encoding (the first exploration of a problem space) and 
consolidation (when the task is repeated) as experience is gained within a 
problem solving environment? Continuing the theme of neural correlates, is it 
also possible to begin to recognize pattern separation events and pattern 
generalization events within a problem solving system, similar to those that 
have been shown to exist in navigation and memory encodings and retrievals? 

Most studies of gender differences in problem solving have involved the 
domain of mathematics and it is not clear how common the findings are across 
different science domains and grade levels. It is also not clear if the 
separation of problem solving performance and strategy observed by Fennema 
et al (1998), and the associated gender effects, represents an unusual finding, 
or one more generally representative of math and science learning.  

The above questions suggest that an important next step would be to 
model student strategies across different domains, at various levels of detail 
and also with regard to gender as problem solving experience develops, to not 
only provide evidence of students’ ability to solve problems, but also of their 
changing strategic task understanding.  

We have begun to address these questions with an online problem-solving 
system, collectively called IMMEX (Interactive Multi-Media Exercises), 
(Stevens et al, 1999; Underdahl et al, 2001). IMMEX problem solving follows 
the hypothetical-deductive learning model of scientific inquiry (Lawson, 1995) 
where students need to frame a problem from a descriptive scenario, judge 
what information is relevant, plan a search strategy, gather information, and 
eventually reach a decision that demonstrates understanding 
(http://www.immex.ucla.edu).  

In this study, we describe a process to model strategic development using 
a sample problem set termed Hazmat that contains 38 different cases and 
provides evidence of a student's ability to conduct qualitative chemical 
analyses (Figure 1). The problem begins with a multimedia presentation 
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explaining that an earthquake caused a chemical spill in the stockroom, and 
the student's challenge is to identify the chemical. The problem space contains 
22 menu items for accessing a Library of terms, the Stockroom Inventory, or 
for performing Physical or Chemical Testing. When the student selects a 
menu item, she verifies the test requested and is then shown a multimedia 
presentation of the test results (e.g. a precipitate forms in the liquid, or the 
light bulb switches on suggesting an electrolytic compound). When students 
feel they have gathered adequate information to identify the unknown they 
can attempt to solve the problem. The IMMEX database collects timestamps 
of each student selection.  

 
Fig. 1. HAZMAT This composite screen shot of Hazmat illustrates the challenge to the 
student, and shows the menu items on the left side of the screen. Also shown are two 
of the test items available. The item in the upper left corner shows the result of a 
precipitation reaction and the frame at the lower left is the result of flame testing the 
unknown. 

Over 100 IMMEX problem sets have been created that span middle school 
to medical school, reflect disciplinary learning goals, and meet state and 
national curriculum objectives and learning standards. We have selected data 
from seven of these problem sets for these studies 

To model students’ performance and progress we have developed layered 
analytic processes for determining how strategies are constructed, modified 
and retained as students learn to solve problems like Hazmat. These layers 
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operate as background processes and can generate most performance 
measures in real-time (Stevens & Soller, 2005). 

Layer 1. Item Response Theory Estimates of Student Ability. To ensure 
that students gain adequate experience, the Hazmat problem set contains 38 
cases with a variety of acids, bases and compounds giving either a positive or 
negative result when flame tested. As students perform multiple cases that 
vary in difficulty, refined estimates of student ability are obtained by IRT 
analysis by relating characteristics of items and individuals to the probability 
of solving a given case (Linacre, 2004). As expected, the flame test negative 
compounds are more difficult for students because both the anion and cation 
have to be identified by running additional chemical tests. Overall, the 
problem set presents an appropriate range of difficulties to provide reliable 
estimates of student ability.  

 

 
 

 

 

 

 

Fig. 2. Sample Neural Network Nodal Analysis. a.) The selection frequency of each 
action (identified by the labels) is plotted for the performances at node 15, and helps 
characterize the performances clustered at this node and for relating them to 
performances at neighboring nodes. b.) This figure shows the item selection 
frequencies for all 36 nodes, and maps them to HMM states. 

Layer 2. Artificial Neural Network (ANN) Classification of Strategies. 
While useful for ranking the students by the effectiveness of their problem 
solving, IRT does not provide strategic measures of this problem solving. 
Here, we use ANN analysis. As students navigate the problem spaces, the 
IMMEX database collects timestamps of each student selection. The most 
common student approaches (i.e. strategies) for solving Hazmat are identified 
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with competitive, self-organizing artificial neural networks (Kohonen, 2001; 
Stevens & Najafi, 1993, Stevens et al, 1996) using these time-stamped actions 
as the input data. The result is a topological ordering of the neural network 
nodes according to the structure of the data where geometric distance 
becomes a metaphor for strategic similarity.  

Often we use a 36-node neural network and the classification results are 
visualized by histograms showing the frequency of items selected for student 
performances classified at that node (Figure 2 A). Strategies so defined consist 
of actions that are always selected for performances at that node (i.e. with a 
frequency of 1) as well as ones ordered variably. Figure 2 B is a composite 
ANN nodal map that shows the topology of performances generated during 
the self-organizing training process. Each of the 36 matrix graphs represents 
one ANN node where similar student’s problem solving performances have 
become competitively clustered. As the neural network was trained with 
vectors representing selected student actions, it is not surprising that a 
topology developed based on the quantity of items. For instance, the upper 
right of the map (nodes 6, 12) represents strategies where a large number of 
tests were ordered, whereas the lower left contains strategies where few tests 
were ordered. Once ANN’s are trained and the strategies represented by each 
node defined, new performances can be tested on the trained neural network 
and the node (strategy) that best matches the new performance can be 
identified and reported. 

Layer 3. Hidden Markov Model (HMM) Strategic Progress Models. On 
their own, artificial neural network analyses provide point-in-time snapshots 
of students’ problem solving. Any particular strategy, however, may have a 
different meaning at a different point in a learning trajectory. More complete 
models of student learning should also account for the changes of student's 
strategies with practice. Our approach here is to have students perform 
multiple cases in the 38-case Hazmat problem set, and classify each 
performance with the trained ANN. Predictive models of student learning 
trajectories are then developed from sequences of these strategies with HMM 
(Rabiner, 1989; Murphy, 2004). 

The critical components of such an analysis are shown in Figure 3 where 
students solved 7 Hazmat cases. One level (stacked bar charts) shows the 
distribution of the 5 HMM states across the 7 performances.  

On the first case, when students are framing the problem space, the two 
most frequent states are States 1 and 3. Moving up an analytical layer from 
HMM states to ANN nodal strategies (the 6 x 6 histogram matrices) shows 
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that State 3 represents strategies where students ordered all tests, and State 
1 where there was limited test selection. Consistent with the state transitions 
in the upper right of Figure 3, with experience students transited from State 3 
(and to some extent State 1), through State 2 and into States 4 and 5, the 
more effective states. By the fifth performance the State distributions 
stabilized after which time students tend not to switch their strategies, even 
when they were ineffective.  

 

 
 

 

 

 

 

 

 

 

 

Fig. 3. Modeling Individual Learning Trajectories. This figure illustrates the strategic 
changes as individual students gain experience in Hazmat problem solving. Each 
stacked bar shows the distribution of HMM states for the students (N=1790) after a 
series (1-7) of performances. These states are also mapped back to the 6 x 6 matrices 
which represent 36 different strategy groups identified by self organizing ANN. The 
highlighted boxes in each neural network map indicate which strategies are most 
frequently associated with each state. From the values showing high cyclic 
probabilities along the diagonal of the HMM transition matrix (upper right), States 1, 
4, and 5 appear stable, suggesting once adopted, they are continually used. In contrast, 
students adopting State 2 and 3 strategies are more likely to adopt other strategies 
(gray boxes). 

Hazmat Gender Influences – If indeed females are more prone to 
thoroughly explore problem spaces to establish landmarks, then within the 
context of IMMEX problem solving this could be differentially reflected in the 
quantity of tests chosen. Consistent with this hypothesis, on the first case of 
the problem set, there was a significant difference in state usage with males 
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preferring State 1 approaches and females preferring State 3 approaches 
(Pearson χ2 = 13.54, P=0.004). State 1 consists of Nodes 25, 26, and 29-36 
which represent performances often of the limited data type. State 3 is just 
the opposite where many of the available background and test items are 
selected. During subsequent cases, there was a steady reduction in States 1 
and 3, a transient appearance of State 2 performances and then the 
emergence of States 4 and 5 performances. Males tended to use State 4 
strategies while more females progressed to State 5 strategies. (Pearson χ2 = 
31.2, p<0.000). 

Hazmat Strategy Stabilization and Persistence - We next explored the 
stability of student’s strategies and the influences of gender. These studies 
were performed with a smaller set of advanced placement chemistry students 
that included 6 classrooms of the same teacher. The studies were conduced 
with 3 of these classes in Spring 2004 and replicated in 3 additional classes in 
Spring 2005; the total number of students was 182, and the total number of 
performances was1932. In a standard classroom environment students first 
performed 5-6 Hazmat problems to refine and stabilize their strategies. Then 
15 weeks (Spring 2004) or 6 weeks (Spring 2005) students were asked to solve 
additional Hazmat cases. The overall solution frequency slightly favored 
females (F= 65.5 % solved, Males 60.1% solved, Pearson χ2 = 6.3, p=.043). The 
performances were then separated by gender and the state distributions were 
re-plotted. Overall, males had higher than expected numbers of States 1 and 4 
performances, and females had more State 5 performances (Pearson χ2 = 
34.9, p<.000).  

At the end of the required first-set of performances (# 1-5), the proportions 
of the five strategy states and the solution frequencies had stabilized for both 
males and females. However, as shown in Figure 4, while both male and 
female students appeared to have stabilized their strategic approaches by the 
fifth performance, the state distributions were significantly different, with 
females preferring the approaches represented by State 5 and males 
preferring State 4 approaches. 

A Survey of Problem Solving Gender Effects Across Grade Levels and 
Domains - We next expanded these studies to survey both the solution 
frequencies as well as the strategic profiles across gender, grade levels, and 
scientific domains. This survey included examples from middle and high 
school, university as well as medical school students, and we selected problem 
sets that have been used by multiple classes and schools and where over 3,000 
performances had been collected. As shown in Table 1, for six of the seven 
problem sets there were no significant gender differences in the solution 
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frequencies. At the ANN nodal strategic level, with the exception of the 
medical school microbiology and the university molecular biology problem 
sets, there were however, significant gender differences in the strategies used 
by students to solve the cases.  

 

 
Fig. 4. Development and Persistence of Male and Female Learning Trajectories. This 
figure illustrates the strategic changes of males and females in six Advanced 
Placement Chemistry courses taught by the same teacher. For reference, the boxed 
histograms map the most likely ANN node to the different states, and the matrix in 
the upper right hand corner shows the training HMM transition matrix illustrating 
the likelihood of moving across states. 

Table 1.  

Problem Set Description Grade Level 
Microbiology Use your knowledge of microbiology to 

diagnose a patient’s symptoms. 
Medical School 

Solve Rate Strategy Differences Description, 
Male 75% 
Female 75% 

Node vs. 
Gender 

State vs. 
Gender 

χ2(df)=,p= (2).373,.803 (34)45.7,.106 (4)31.2,.000 

High case specificity. 
Males – more extensive 
testing.  

Problem Set Description Grade Level 
lac Operon 
(Molec. Biology) 

From an isolated colony identify the exact 
mutation using the resources available. 

University 
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Solve Rate Strategy Differences Description, 
Male 79% 
Female 75.4% 

Node vs. 
Gender 

State vs. 
Gender 

χ2(df)=,p= (1)3.8,.055 (4)3.26,.515 (34)38.9,.257 

None 

 
Problem Set Description Grade Level 
Hazmat 
(Qual. Analysis) 

Identify the chemical that has spilled so that 
you can help dispose of it properly. 

University/High 
School 

Solve Rate Strategy Differences Description, 
Male 53% 
Female 50.6% 

Node vs. 
Gender 

State vs. 
Gender 

χ2(df)=,p= (1)2.8,.092 (34)52.7,<.000 (4)31.2,<.000 

Males appear to partition 
the problem space while 
females develop more 
generalizable strategies.  

Problem Set Description Grade Level 
Roger Rabbit 
(Forensic Sci.) 

Determine which students are responsible 
for poisoning the class pet. 

Middle/High 
School 

Solve Rate Strategy Differences Description, 
Male 32% 
Female 36% 

Node vs. 
Gender 

State vs. 
Gender 

χ2(df)=,p= (2)5.61,.06 (34)112.36,.000 (4)57.48,.000 

Males using more non-
science and guessing 
strategies. Females more 
extensive and test oriented  

Problem Set Description Grade Level 
Duck Run 
(Chemistry) 

A mysterious element has been dumped into 
the local duck pond. Identify the element. 

Middle School 

Solve Rate Strategy Differences Description, 
Male 72% 
Female 71% 

Node vs. 
Gender 

State vs. 
Gender 

χ2(df)=,p= (1).385,.535 (34)107,<.000 (4)43,<.000 

Females more extensive 
navigation than males. 

Males more guessing.   
Problem Set Description Grade Level 
RXN  Complete a data table by solving for the 

unknown chemical equation. 
Middle School 

Solve Rate Strategy Differences Description 
Male 45% 
Female 51% 

Node vs. 
Gender 

State vs. 
Gender 

χ2(df)=,p= (1)20.4,.000 (35)105.7,<.000 (4)60.0,<.000 

Females use data-oriented 
problem solving 
approaches, and males 
relied more on guessing.  

Problem Set Description Grade Level 
Road Trip Calculate distance, travel time, and route. Middle School 

Solve Rate Strategy Differences Description 
Male 55% 
Female 53% 

Node vs. 
Gender 

State vs. 
Gender 

χ2(df)=,p= .605(1),.437 (35)267,<.000 (4)99, <.000 

Both groups are doing 
extensive exploration with 
males exhibiting more 
shortcuts and guessing.   
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2. Discussion 

The influence of gender on strategic learning and progress during complex 
problem solving has been modeled using ANN and HMM machine modeling 
technologies. The resulting data indicate that while the solution frequency for 
each of the seven problem sets analyzed was similar for males and females, 
the performance models as measured by ANN analysis and the progress 
models as measured by HMM were consistently different. These results 
suggest that differences in the ways that males and females navigate problem 
spaces may be a common occurrence. These findings are contingent, of course, 
on the validity of the tasks as well as the performance and strategic models 
developed from the student data.  

In these studies we have focused on validating one representative problem 
set, Hazmat, where over 34,000 performances have been recorded by high 
school and university students. This problem set was created along the 
frameworks we have published previously (Stevens & Palacio-Cayetano, 
2003). The Hazmat task has face validity in that it covers much of the 
spectrum of qualitative analysis with the 38 parallel cases that include acids, 
bases, and flame test positive and negative compounds. The tasks also have 
construct validity in that cases are of different difficulties by Item Response 
Theory analysis (Linacre, 2004), and these differences correlate with the 
nature of the compounds (e.g. flame test positive compounds are easier than 
flame test negative compounds). 

The next validation step addresses the quality of the collected data.  
IMMEX simulations require that students re-confirm each test ordered (for a 
cost), resulting in a series of deliberate actions.  These actions also have 
cognitive correlates as concurrent verbal protocol analysis has indicated that 
~90% of the utterances by students can be categorized into explicit cognitive 
or metacognitive categories (Chung et al, 2001).  

In the first modeling step the most common strategies used by students 
were grouped by unsupervised ANN analysis and the resulting classifications 
showed a topology ranging from those where very few tests were ordered, to 
those where every test was selected, which makes sense given the nature of 
the input data (i.e. deliberate student actions). The HMM progress models are 
somewhat more difficult to validate given the hidden nature of the model. One 
important consideration would be the dynamics of the state transitions as 
reflected in the transition matrix derived from the modeling process. Here 
theories of practice and cognition (Ericsson, 2004) would predict that students 
would change strategies with practice and eventually stabilize with preferred 
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approaches much as we have shown in Figures 3 and 4. Similarly, the general 
overall shift in states from those representing extensive exploration to more 
refined test selection mirrors the data reduction effects observed previously 
with practice (Haider & Frensch, 1996). For instance, most students 
approached the first Hazmat case by selecting either an extensive (State 3), or 
limited/guessing (State 1) amount of information. The State 3 approaches 
would be appropriate for novices on the first case as they define the 
boundaries of the problem space. Persisting with these strategies, however, 
would indicate a lack of understanding and progress.  

As students gain experience, their strategies should change (Ericsson, 
2004). Background information that was needed earlier may no longer be 
needed, and students should begin to develop their own preferred approaches 
based on knowledge, experience, motivation, and prior experiences. The main 
transition states are States 2 and 3. When students transition out of State 3, 
this suggests that they are learning, and the transition matrix shows that 
these students are likely to switch to States 2 or 4 increasing their likelihood 
of solving the case from 27% to 40%. The main difference between States 2 
and 4 is that there are both test and background information being accessed 
in the State 2 approaches whereas State 4 includes primarily data driven 
approaches.  

The states that students stabilize with presumably reflect their level of 
competence as well as the approaches they are comfortable with, and are the 
ones that would most often be recognized by teachers.  For Hazmat the 
stabilized states were represented by States 1, 4 and 5. State 4 is interesting 
in several regards. First, it differs from the other states in that the strategies 
it represents are located at distant points on the ANN topology map, whereas 
the nodes comprising the other states are contiguous. The State 4 strategies 
represented by the left hand of the topology map are appropriate for the set of 
cases in Hazmat that involve flame test positive compounds, whereas those 
strategies on the right are more appropriate for flame test negative 
compounds (where more extensive testing for both the anion and cation are 
required). This suggests that students using State 4 strategic approaches may 
have mentally partitioned the Hazmat problem space into two groups of 
strategies, depending on whether the initial flame test is positive. At the 
cognitive level, this is suggestive of pattern separation events postulated to 
occur in the hippocampus. 

State 5 also contains complex strategies which from the transition matrix 
emerge from State 2 strategies by a further reduction in the use of 
background resources. State 5 approaches appear later in problem solving 
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sequences, have the highest solution frequencies and are approaches that 
work well with both flame test positive and negative compounds. In this 
regard they may represent the outcome of a pattern consolidation process. 
They are also strategies used more frequently by females than by males.  

What can these studies tell us about gender and problem solving? First, 
they suggest that the way complex problem spaces are navigated and encoded 
have a significant gender component which can be observed from middle 
school to early university years. It may be important that the two problem 
sets not showing these differences were both created for and performed by 
more advanced university/medical students. The lack of gender differences 
may reflect the combination of a highly selected group of students as well as 
the nature of the problems created for such students. For instance, in the 
medical school environment, the cases are often framed (encoded) for the 
students by the organ system(s) involved, the patient’s age, the acute vs. 
chronic nature of the illness, etc. The more general problem solving involved 
with earlier grade level problem sets may allow more, and a greater variety of 
initial representations to be encoded, consolidated and eventually modeled. 

However, the gender trends are significant and do suggest that gender 
may be used as a tool to further explore aspects of learning and problem 
solving. For instance, from the strategic learning trajectories in Figures 3 and 
4 both males and females appear to stabilize their strategies within the period 
of an hour, and these persist for several months, both properties reflective of 
the fixation of cellular memory component of the memory consolidation 
processes (McGaugh, 1966). Nevertheless, while males and females share 
temporal consolidation characterizations, the stabilization with different state 
distributions suggests other mechanisms are helping to shape the quality of 
the strategy adopted.  

Second, these studies help suggest a new criterion for designing complex 
instructional materials. While high stakes testing efforts have attempted to 
neutralize gender differences in outcome measures by removal of items that 
strategically favor males or females (Gallagher, 1994), our tasks appear to 
have few gender differences in outcomes, yet allow significant gender-related 
approaches to occur.  

Third, this separation of performance outcome (solving the problem) and 
strategic approach itself warrants additional study. How related are these two 
constructs and are they differentially affected by the factors such as task 
assignment, classroom environment, and prior instruction?  
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These studies have not however directly addressed the question posed in 
the introduction as to the relation of navigation in the real world and the 
more abstract navigation of complex problem spaces. Here, it may be useful to 
look for the establishment of domain-related and gender-influenced 
landmarks as problem solving experience is gained across a domain such as 
qualitative chemistry. Once students have encoded preferred strategies on one 
problem set such as Hazmat, are some of the dominant landmarks (sequences 
of test selections) established selectively carried forward when more 
complicated problems in qualitative analysis (such as those involving redox 
reactions) are presented in a transfer task? Several such pairs of problem sets 
exist where adequate numbers of performances have been collected for such 
modeling, and others can be created for studying such effects.  
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