
UDC 004.41.2

Adapting the Unified Software Development
Process for User Interface Development

Željko Obrenović1, Dušan Starčević1

1 Laboratory for Multimedia Communications,
School of Business Administration,

University of Belgrade, Belgrade, Serbia and Montenegro
{obren, starcev}@fon.bg.ac.yu

Abstract. In this paper we describe how existing software developing
processes, such as Rational Unified Process, can be adapted in order to allow
disciplined and more efficient development of user interfaces. The main
objective of this paper is to demonstrate that standard modeling environments,
based on the UML, can be adapted and efficiently used for user interfaces
development. We have integrated the HCI knowledge into developing
processes by semantically enriching the models created in each of the process
activities of the process. By using UML, we can make easier use of HCI
knowledge for ordinary software engineers who, usually, are not familiar with
results of HCI researches, so these results can have broader and more
practical effects. By providing a standard means for representing human-
computer interaction, we can seamlessly transfer UML models of multimodal
interfaces between design and specialized analysis tools. Standardization
provides a significant driving force for further progress because it codifies best
practices, enables and encourages reuse, and facilitates interworking between
complementary tools. Proposed solutions can be valuable for software
developers, who can improve quality of user interfaces and their
communication with user interface designers, as well as for human computer
interaction researchers, who can use standard methods to include their results
into software developing processes.

1. Introduction

Interaction and usability aspects of software systems are becoming more
relevant and are often identified as one of the critical software quality
attributes. Therefore, software developers have started to pay more attention
to design of user interfaces, trying to exploit HCI techniques aimed to produce
a useful software product. However, integration of HCI knowledge into the
software development processes is not straightforward, and often leads to
solutions that are not widely used. At this point, main challenge is to make

Željko Obrenović, Dušan Starčević

34 ComSIS Vol. 3, No. 1, June 2006

easier use of HCI knowledge for ordinary software engineers who, usually,
are not familiar with many results of HCI researches.

In this paper we describe how existing software developing processes,
such as Rational Unified Process, can be adapted in order to allow disciplined
and more efficient development of user interfaces. The main objective of this
paper is to demonstrate that standard modeling environments, based on the
UML, can be adapted and efficiently used for user interfaces development.
We have integrated the HCI knowledge into developing processes by
semantically enriching the models created in each of the software
development process activity. This paper is primarily aimed for software
developers, especially for those who develop complex multimodal user
interfaces. Therefore, we wanted to provide a more illustrative and practical
solution, so that developers can more easily apply it in their work. Using
industry standards, such as the UML and Unified process, which are
widespread accepted throughout the software community, provides a good
opportunity to advance developing of user interfaces. Incorporating a user
interface extensions into the UML gives us a standard way of producing
formal models of human-computer interaction. Using wide accepted standards
provides a significant impetus for further progress because it codifies best
practices, enables and encourages reuse, and facilitates interworking
between complementary tools. By providing standard means for representing
human-computer interaction, we can seamlessly transfer UML models of
interfaces between design and specialized analysis tools [1].

In next section, we briefly describe some of the existing solutions. After
that, we outline the basic idea of our approach. Then, one by one, we present
proposed semantic extensions of software development process activities,
where we describe requirements specification, analysis, design,
implementation and testing. In the end, we give short discussion and
conclusions.

2. Existing solutions

Software development and user interface researches have a long and
intertwined history. User interface community has developed and used
various software tools, such as window managers and toolkits, interactive
graphical tools, component systems, event languages, scripting languages,
hypertext, object-oriented programming, but also some promising but less
successful products, such as, user interface management systems and formal
language-based tools. However, these existing user interface software tools
solve just a part of the human-computer interaction problem. In addition, they
use specialized notation and conventions, what limits their practical usage

Adapting the Unified Software Development Process for User Interface Development

ComSIS Vol. 3, No. 1, June 2006 35

and complicates integration of the user interface with the rest of the software
system. Furthermore, many of these existing tools will not be able to support
development of user interfaces in the future, with an increasing diversity of
user interfaces on an increasing diversity of computerized devices. Existing
user interfaces are mostly based on a human-computer interaction paradigm
that has not changed fundamentally for nearly two decades. As the computer
power has been improving exponentially, human-computer interface has
become a bottleneck for many applications. This will require significant
support and better and more practical integration of the HCI knowledge and
software tools [2].

On the other hand, user interfaces, as primarily software artifact, may be
developed using existing software developing processes. However, these
processes are not adapted for particularities of user interface development
and usability analysis. Consequently, there have been many attempts to
integration of HCI and software development processes [3, 4, 5]. Many of
these approaches proposed frameworks for improving the communication
between software engineers and user interface and usability developers,
enhancing object-oriented software engineering notations and models, or
adapting software engineering artifacts with extensions such as annotating
use case using task description. However, none of the proposed extensions of
software development processes has been widely used. Also, most of those
extension concentrate on extending user requirements gathering, weakly
covering other activities in a software development process.

3. Adapting a Software Developing Process for User
Interface Development

A software development process defines transformation of user's
requirements into a software system. It defines activities and phases through
which this transformation goes. According to the conceptual base they use,
we can classify these processes in two main groups: structured-oriented and
object-oriented [6]. Due to standardization, wide acceptance and availability of
tools, we have primarily analyzed how to extend and adapt Rational Unified
Process and similar object-oriented processes [7]. We will illustrate the
proposed solution with the Unified process, but each of the proposed
extensions can be used independently or as a part of some other software
developing process, such as a developing process for small projects [8].
Developing some software system goes through many activities, and requires
development of many models on different levels of abstraction. Activities often
present in software development processes include [7]: requirements
specification, analysis, design, implementation, and testing. In this paper we

Željko Obrenović, Dušan Starčević

36 ComSIS Vol. 3, No. 1, June 2006

will, in more details, requirement specification, analysis, and design,
proposing practical solutions about how these activities can be adapted in
order to better support development of user interfaces.

As a modeling language, we have used Unified Modeling Language (UML)
[9]. UML is a good choice for modeling user interfaces for several reasons. It
is a widely adopted standard that is familiar to many software practitioners,
widely taught in undergraduate courses, supported by many books, and
training courses. In addition, many tools from different vendors support UML.
Consequently, by using UML, we can make easier use of HCI knowledge for
ordinary software engineers who, usually, are not familiar with HCI
researches. In this way, results of these researches can have broader and
more practical effects. UML is a general-purpose modeling language, but it
includes built-in facilities that allow customizations—or profiles—for a
particular domain. A profile fully conforms to the semantics of general UML
but specifies additional constraints on selected general concepts to capture
domain-specific forms and abstractions. The creators of the UML realized that
there would always be situations in which the UML, out of the box, would not
be sufficient to capture the relevant semantics of a particular domain or
architecture. To address this purpose, a formal extension mechanism was
defined to allow practitioners to extend the semantics of the UML. The
mechanism allows us to define stereotypes, tagged values and constraints
that can be applied to model elements. A stereotype is an adornment that
allows us to define a new semantic meaning for a modeling element. Tagged
values are key value pairs that can be associated with a modeling element
that allow us to “tag” any value onto a modeling element. Constraints are rules
that define the well-formedness of a model. They can be expressed as free-
form text or with the more formal Object Constraint Language (OCL) [9]. We
have developed several UML profiles which we have integrated with Unified
process' models. We did not wanted to create one profile, to allow tools to use
just those profiles that do they want to support. When defining proposed
extensions, we wanted to simplify their integration into existing projects, so
that existing models do not have to be reengineered but just extended with
additional elements and relations.

Our UML extensions are based on our proposal for unified model of HCI
[10], shown in Figure 1. The unified model of human computer interaction is
unique, formal, and standardized description of basic concepts and relations
among concepts of interest to development of user interfaces. This model
includes many factors such as human sensory physiology, anatomy,
perception, cognition, and social interaction.

Adapting the Unified Software Development Process for User Interface Development

ComSIS Vol. 3, No. 1, June 2006 37

Figure 1. Proposed unified model of HCI.

4. Requirements specification

Requirements specification is the proces which defines what the system
should do, and who will be the users of the system. Requirements
specification often includes:

• Identification of the system environment, e.g. the context in which the

system should work,
• Recording of functional requirements, where we achieve precise

understanding of required functionality of the system,
• Recording of nonfunctional requirements, e.g. identification of

implementation and system environment limitations, such as performance,
platform dependance, and maintenance.

UML provides use-case models as principal means for requirement

specification. In the Unified process, for example, during requirements
specification, we create a use-case model where we identify actors and use
cases. Use-case diagrams allow simple definitions of users (and other actors),
use cases and additional descriptions in a form of textual comments. Uses

Željko Obrenović, Dušan Starčević

38 ComSIS Vol. 3, No. 1, June 2006

cases can be specified in more details using activity diagrams or object
interaction diagrams.

However, during requirements specification activity, it is not possible to
specify many important factors of interest to human computer interaction.
Before we can design a UI, we need information about the people who will
use the tool [11]:

• Who are the system users?
• What will they need to accomplish?
• What will they need from the system to accomplish this?
• How should the system supply what they need?

These factors can be very important in other development activities,
primarily in analysis and design, as many early design decisions are based on
these specifications. Focusing on the user early in the development process
goes a long way toward improving product quality and eliminating rework [12].
Specifying details about users and contexts is important as designers should
become familiar with users’ psychological characteristics (for example,
cognitive abilities, motivation), level of experience, domain and task
characteristics, cultural background, as well as their physical attributes (for
example, age, vision, hearing) [13]. Recent initiatives such as the OMG’s
Model Driven Architecture (MDA) are going to make the output from
requirements engineering even more significant than it is today [14].

Having in mind discussed limitations of the requirements specification
activity, we propose two semantically important extensions:
• Detailed description of users (actors), where we can describe expected age

range, skills, education, working and intellectual properties of typical users.
• Detailed description of interaction environment, where we can describe the

location and environment of interaction. This factor is important as new
mobile devices are nowadays used in various conditions and locations, with
different contexts and characteristics of interaction.
For detailed description of user, we have defined the UML class

stereotype <<user profile>>. Each profile is defined as a class with this
stereotype, and different tagged values. Inside each of the user profile
classes, we defined various tagged values (Table 1).

Adapting the Unified Software Development Process for User Interface Development

ComSIS Vol. 3, No. 1, June 2006 39

Table 1. Some tagged values for user profile classes

Profile types Tagged values Examples

average range 30 Age profile

age range [20-60]

education background high school Cognitive profile

primary education area mechanics

Social profile cultural background western

Linguistics profile languages Serbian, English

sight normal or corrected to
normal

sight colors normal

hearing normal

movements normal or wheelchair
support

hand usage normal

data processing all

Disability profile

reading skills average

Profiles created in this way can be connected with actor classes in various

ways. We suggest using the inheritance relation, where we could define that
some actors inherits one or more user profiles. In this way we can specify
user groups than will use the system. We have also defined an inheritance
stereotype named <<typical user>>, which denotes which of the profiles, if
any, represents a typical user of the system. Figure 2a illustrates use of the
proposed extensions.

Željko Obrenović, Dušan Starčević

40 ComSIS Vol. 3, No. 1, June 2006

 (a)

Actor

Profile1
<<user profile>>

<<typical user>>

Profile2
<<user profile>>

Profile3
<<user profile>>

Adult
(from Standard Profiles)

<<user profile>>
Teen

(from Standard Profiles)

<<user profile>>
Older

(from Standard Profiles)

<<user profile>>

(b)

Office
(from Standard Environments)

<<environment>>

WorkingOffice
<<environment>>

Actor

StudyRoom
(from Standard Environments)

<<environment>>

Use Case

<<typical environment>>

(c)

Start

Activity 1

Activity 2

Activity 3

office : WorkingOfficeheadOffice : WorkingOffice

Figure 2. Examples of detailed description of an actor (a), and environment in use
case diagrams (b) and in activity diagrams (c)

For detailed description of interaction environment, we have defined a
class stereotype <<environment>>, as well as additional tagged values for

Adapting the Unified Software Development Process for User Interface Development

ComSIS Vol. 3, No. 1, June 2006 41

description of environment conditions such as visibility, average noise level,
average temperature, air pressure, and humidity. We propose connecting the
environment classes with use cases with association relation. A use case can
be realized in many environments, and one environment can be used for
more use cases. Additionally, we have defined an association stereotype
<<typical environment>>, which denotes the environment class which
represents typical environment for realization of some use case (Figure 2b).
More detailed description of the use case realization can be achieved using
activity diagrams. In these diagrams, the environment classes can be used to
identify "swimlines", to illustrate which part of some use case will take place in
some environment (Figure 2c).

5. Analysis

Analysis is the activity in which we structure and additionally describe
gathered requirement specification. The main objective of the analysis is
establishing clear and precise understanding of requirements, in order to
make design easier. In analysis, we make platform independent, generic
model of the internal organization of the system. The result of the analysis
activity is the analysis model where we describe a system using analysis
classes. The Unified process defines three types of these analysis classes:
boundary classes, which describe users or other systems that will interact with
the system under consideration, control classes, which describe some
processing activity, and entity classes, which describe persistent elements of
the system such as databases or files.

Although boundary classes can be used for simple description of user
interfaces, with them it is not possible to describe many important elements of
human computer interaction. As the analysis activity is primarily concerned
with the creation of a platform independent description of the system, and
having in mind HCI prospective, improvements for user interfaces would be
enabling platform independent, but semantically richer, description of human-
computer interaction. In this way it would be possible to specify types of
communication modalities appropriate for some tasks, or used multimodal
integration mechanisms. These extensions can also help a developer to
analyse various general HCI decisions, for example, by connecting these
models with ontologies and knowledge bases of human factors [15]. It is
critical that a developer can make some analysis on highly abstract and
incomplete models that arise early in the development cycle, because this is
when software designers make most of the fundamental design decisions [1].

For a designer of software systems it is important to, early in the
development cycle, get as much as possible data that can influence their

Željko Obrenović, Dušan Starčević

42 ComSIS Vol. 3, No. 1, June 2006

design. Therefore, we have semantically enriched analysis model by
introducing two additional class stereotypes:

• <<interaction>>, defining interaction effect used in interaction, and
• <<user interface>>, which defines interactive components used for

realization of user interfaces.

An <<interaction>> class, with attributes, defines the effects which
designer wants to support during interaction. We have defined the following
five types of effects (and corresponding attribute stereotypes): sensory,
perceptual, affective, cognitive, and linguistics. Additional description of the
effects can be provided inside the description of each attribute. A <<user
interface>> class defines types of interface components that that designer
plans to use. As in the case of interaction classes, we describe each
component with an attribute. We also defined two attribute stereotypes:
<<input>> i <<output>>. These stereotypes describe if the component
implements presentation or user input capturing.

InteractionComponents
<<input>> data entry : Typing
<<input>> choice and confirmation : Pointing
<<input>> choice : SpeechInput
<<output>> sound : NonspeechAudio
<<output>> text : Text
<<output>> graphics : 2DGraphics
<<output>> animation : Animation

<<user interface>>

User Interface<Actor Name>

InteractionEffects
<<interaction>>

<<perception>> soundIntensity
<<linguistics>> textReading

Figure 3. Usage of the proposed extensions in the analysis diagram

Adapting the Unified Software Development Process for User Interface Development

ComSIS Vol. 3, No. 1, June 2006 43

We propose attaching of <<interaction>> class to the relation between an
actor and a boundary class that represents the user interface. On the other
hand, we propose connecting that the boundary class with the <<user
interface>> class using realization relation. In this way, existing analysis
diagrams do not have to be reengineered but simply extended with additional
elements and relations. Figure 3 illustrates how the proposed extensions can
be used.

6. Design

In the design activity we shape the system in its final form, having in mind all
functional and nonfunctional requirements. The main input of design activity is
the result of the analysis, e.g. the analysis model. In design, we make
decisions about the hardware and software implementation platform of the
solution, as well as about issues such as programming languages, component
systems, operating systems, distributed technologies, database technologies
and user interface technologies. Also, in this activity we decompose the
system into packages that are easier to control and maintain. In addition,
design provides the visualization of the internal structure and functionality of
the system, using chosen notation, for example, UML graphical notation. The
design model contains detailed description of the structure and functionality of
the system. This model is a blueprint of the solution, and it uses several UML
diagrams and modeling elements, including class diagrams, object diagrams,
object interaction diagrams, or state transition diagrams.

From the user interface viewpoint, the design activity requires some
additional elements. User interfaces can be viewed as one-shot, higher-order
messages sent from designers to users [16]. While designing a user interface
the designer defines an interactive language that determines which messages
and levels will be included in the interaction. Therefore, the developers need
tools to describe these messages. We introduced several stereotypes for
classes and relations in order to semantically enrich UML with these
concepts. We introduced stereotypes such as input and output modalities,
complex modes, aimed message, perceptual and cognitive effects. With these
extensions, we can describe a human-computer interaction at different levels
of abstraction, with various levels of details, in terms of sensory, perceptual
and cognitive characteristics of various modalities. Table 2 shows some of
introduced UML class and association stereotypes.

Željko Obrenović, Dušan Starčević

44 ComSIS Vol. 3, No. 1, June 2006

Table 2. UML design stereotypes for modeling of multimodal user interfaces.

input modality Defines a modality that captures some of the
human outputs, such as movement or
speech.

static output modality Defines a modality that statically presents
data, for example, as static text, picture or
graphics.

dynamic output
modality

Defines a modality that dynamically presents
data, for example, as blinking, movie, or 3D
animation.

human interactive
response

Defines human interactive response time
scale.

complex modality Defines a modality that integrates two or
more modalities.

visual sensory effect
audio sensory effect
haptic sensory effect
sensory params

Sensory effects and parameters. These
effects are produced by output devices, as
visual, audio or haptic stimulus.

human movement Human motor effect of movement.
visual perception
visual 3D cue
audio perception
audio 3D cue
haptic perception
perceptual params

Perceptual effects produced by the user
interface.

Class
stereotypes

cognitive effect
analogy
linguistic effect

Cognitive and linguistic effects produced by
the user interface.

integration Connect a complex modality with a simple or
other complex modality that it integrates.

effect Connect a modality class with sensory,
perceptual or cognitive effect produced by
the modality.

comparison Connects perceptual parameters with objects
that are compared. Perceptual effects are
always based on comparing of some basic
stimulus.

rendering Connect output modalities with an output
device.

Association
stereotypes

capturing Connect input modality with human output
that that modality captures.

6.1. Modeling basic HCI modalities

We have made various descriptions of sensual, perceptual, motor, and
cognitive effects produced by some of the widely used HCI modalities. For

Adapting the Unified Software Development Process for User Interface Development

ComSIS Vol. 3, No. 1, June 2006 45

example, figure 4 represents a UML class diagram, created with defined UML
extensions, describing effects of graphical textual presentation.

Alphabet
<<system of reference>>

Raster pixel
<<output device>>

Letter recognition
<<perceptual params>>

<<system of reference>>

Grouping of let ters
<<perceptual params>>

Pixel
<<primit ive modality>> <<rendering>>

1..*1..*

<<comparison>>

Shape recognition
<<visual percept ion>>

Letter
<<complex modality>>

1..*1..*
<<comparison>>

**

<<integration>>

1 *1 *<<effect>>

Text line alignment
<<perceptual params>>

Shape recognition
<<visual percept ion>>

Grouping by proximity
<<visual percept ion>>

Poput by shape
<<visual percept ion>>

Word
<<complex modality>>

1..*

1

1..*

1

<<integration>>

1..*1..*

<<comparison>>

<<effect>>

Grouping by good continuat ion
<<visual percept ion>>

Paragraph alignment
<<perceptual params>>

Paragraph spacing
<<perceptual params>>

Paragraph
<<complex modality>>

<<effect>>

<<effect>>

<<effect>>

Text line
<<complex modality>>

1..*

1

1..*

1

<<integration>>

<<effect>>

<<comparison>>

<<comparison>>

1..*

1

1..*

1

<<integration>>

Paragraph identat ion
<<perceptual params>>

<<comparison>>

Figure 4. Description textual presentation modality

The basic modality of presentation on a screen is a pixel, rendered by
some raster screen device. Pixels form letters, complex modalities that add a
perceptual effect of shape recognition based on the user knowledge of the
alphabet. Letters are grouped into words, which integrate letters adding
perceptual effect of grouping by proximity. Words are grouped in text lines
that integrate words by adding perceptual effect of grouping by good
continuation. Text lines are grouped into paragraphs, that enrich presentation
with several perceptual effects. Firstly, a paragraph groups text lines by
proximity. Paragraph alignment changes shape of the whole paragraph.
Paragraph indentation adds perceptual effect of highlighting the first line by
shape, as the first line is usually shorter that other lines of text.

Željko Obrenović, Dušan Starčević

46 ComSIS Vol. 3, No. 1, June 2006

Another example is given in Figure 5, which describes a table as a
presentation modality. Here, a basic presentation modality is a table cell,
which introduces a visual perceptual effect of grouping by surrounding. Table
cells are grouped into table lines (rows or columns), which add perceptual
effects of grouping by good continuation and, optionally, grouping by
surrounding (row or column borders). A table integrates lines bringing in
perceptual effects of grouping by parallelism, and grouping by surrounding
(table border).

Figure 5. Description of tabular presentation modality

The last example, in Figure 6, describes an aimed hand movement, e.g.
hand movement often used in WIMP (windows, icon, menu, pointer)
interfaces. Aimed hand movement is a complex modality that integrates hand
movement input, and visual feedback. Hand movement captures the
movement of a user hand on a flat surface. The visual feedback is a dynamic
presentation modality that animates static presentation of cursor, usually in
the shape of arrow. The static cursor introduces the perceptual effect of
highlighting by shape, and sometimes by depth (shadow), while a dynamic
visual feedback adds perceptual effect of highlighting by motion.

Adapting the Unified Software Development Process for User Interface Development

ComSIS Vol. 3, No. 1, June 2006 47

Figure 6. Description of an aimed hand movement modality

6.1 Modeling complex multimodal user interfaces

To illustrate how to create higher-level models of multimodal interfaces with
our framework, we will describe the environment for multi-modal presentation
of brain electrical activity. The environment, called mmViewer, utilizes various
visualization and sonification modalities, facilitating efficient perceptualization
of biomedical data [17]. Visualization in this environment is based on
animated topographic maps projected onto the scalp of a 3D model of the
head, employing several graphical modalities, including 3D presentation,
animation and color (Figure 7a). Sonification is implemented as modulation of
natural sound patterns to reflect certain features of processed data.
Sonification emphasized the temporal dimension of the selected visualized
scores. Since the visual topographic map by itself represents a large amount
of visual information, sonification covered presentation of global parameters of
brain electrical activity, such as the global index of left/right hemisphere
symmetry. This parameter is sonified by changing position of the sound
source in 3D world. Therefore, activation of a hemisphere could be perceived
as movement of sound source toward that hemisphere.

Željko Obrenović, Dušan Starčević

48 ComSIS Vol. 3, No. 1, June 2006

 �

(a)

(b)

Figure 7. Environment for 3D presentation of EEG signals (a), and UML class
diagram of effect produced by this environment

Adapting the Unified Software Development Process for User Interface Development

ComSIS Vol. 3, No. 1, June 2006 49

Figure 7b presents simplified UML class diagram of perceptual and
cognitive effects that the designer wanted to produce by this environment.
Multimodal presentation of EEG activity is a complex modality which
integrates 3D visualization and sonification. 3D visualization is by itself a
complex modality which integrates a 3D head model, with an animated color
map. By enabling a user to freely explore the model, 3D visualization adds
motion parallax visual 3D cue. The 3D head model, by using shadow and
lighting, enable users to recognize threedimensional model of the head. The
animated color map animates a static color map by dynamically changing its
colors based on the values of brain electric activity. This animation is smooth,
fast enough to activate users' visual perceptual processing. We used three
types of color maps:

• Heat color map, which maps values of brain electrical activity to colors from

black through yellow to white, as an analogy to colors of heated steel (black
means cool, red hot, white extremely hot),

• Spectrum color map, which uses colors of visible spectrum, from blue to
red, as an analogy to rainbow spectrum familiar to many users,

• Gray color map, which uses different shades of gray, from black to white.
• Sonification is based on a stereo effect produced by inter-aural time and

intensity difference of sound.

Using the high-level models can improve understanding of the system, but
with the UML the developer can use tools for definition of transformations of
these high-level and generic platform models into platform specific models
which are appropriate for code generation.

8. Conclusions

In this paper we have demonstrated how extensions of the UML in various
phases of the development process can enrich existing developing
environments for developing of user interfaces. We have illustrated the
proposed solution with the Unified process, but each of the proposed
extensions can be used independently or as a part of some other software
developing process, such as developing processes for small projects. We also
wanted to give some "food for thought" for future research in this area.

Using industry standards, such as the UML or Unified process, which are
widespread accepted throughout the software community, provides a good
opportunity to advance developing of user interfaces. Incorporating a user
interface extensions into the UML gives us a standard way of producing
formal software models of user interfaces. Using wide accepted standards

Željko Obrenović, Dušan Starčević

50 ComSIS Vol. 3, No. 1, June 2006

provides a significant impetus for further progress because it codifies best
practices, enables and encourages reuse, and facilitates interworking
between complementary tools. By providing a standard means for
representing multimodal interaction, we can seamlessly transfer UML models
of multimodal interfaces between design and specialized analysis tools.
Standardization provides a significant driving force for further progress
because it codifies best practices, enables and encourages reuse, and
facilitates interworking between complementary tools. With UML, we can jump
on the bandwagon of new software development technologies, such as model
driven development. Our modeling framework feats neatly in the model driven
development approach, and consequently, it will be able to make use of the
tools that support it. We are also working on various approaches to model
transformations that could help traversing the artifacts from one design phase
to another [18].

Proposed solutions can be valuable for software developers, who can
improve quality of user interfaces and their communication with user interface
designers, as well as for human computer interaction researchers, who can
use standard methods to include their results into software developing
processes.

REFERENCE

1. Bran Selic, "The Pragmatics of Model-Driven Development", IEEE Software, Vol.
20, No. 5, September / October 2003, pp. 19-25.

2. Brad Myers, Scott E. Hudson, Randy Pausch, "Past, Present, and Future of User
Interface Software Tools", ACM Transactions on Computer-Human Interaction,
Vol. 7, No. 1, March 2000, Pages 3-28.

3. Larry L. Constantine, "Process Agility and Software Usability: Toward Lightweight
Usage-Centered Design", Constantine & Lockwood, Ltd., Report 110, 2001.

4. Natalia Juristo Juzgado, Helmut Windl, Larry L. Constantine, "Guest Editors'
Introduction: Introducing Usability", IEEE Software 18(1): 20-21 (2001).

5. Xavier Ferré, Natalia Juristo, Helmut Windl, Larry Constantine, "Usability Basics
for Software Developers ", IEEE Software 18(1): 22-29 (2001).

6. Roel Wieringa, "A Survey of Structured and Object-Oriented Software
Specification Methods and Techniques", ACM Computer Surveys, Vol. 30, No. 4,
December 1998, pp. 459-527.

7. Ivar Jacobson, Grady Booch, James Rumbaugh, The Unified Software
Development Process, Addison Wesley Longman Inc., Second Printing, April
1999, ISBN 0-201-57169-2.

8. Melissa L. Russ, John D. McGregor, "A Software Development Process for Small
Projects", IEEE Software, September/October 2000, pp. 96-101.

Adapting the Unified Software Development Process for User Interface Development

ComSIS Vol. 3, No. 1, June 2006 51

9. OMG UML™ Resource Page, http://www.uml.org/, last visited November 24,
2005.

10. Zeljko Obrenovic, "User Interfaces Development based on the Unified Model of
Human Computer Interaction", PhD Thesis, Faculty of Electrical Engineering,
University of Belgrade, 2004.

11. Xavier Ferré, Natalia Juristo, Helmut Windl, Larry Constantine, "Usability Basics
for Software Developers ", IEEE Software 18(1): 22-29 (2001).

12. Jean Anderson, Francie Fleek, Kathi Garrity, and Fred Drake, "Integrating
Usability Techniques into Software Development", IEEE Software 18(1): 46-53
(2001).

13. Leah M. Reeves, et al, "Guidelines for multimodal user interface design ",
Communications of the ACM, Special issue: Multimodal interfaces that flex,
adapt, and persist, Vol. 47 , No. 1 (January 2004), pp. 57 - 59.

14. Ian Graham, "The Compleat Requirements Analyste", IEEE Software,
Novembar/December 2003, pp. 99-101.

15. Zeljko Obrenovic, Dusan Starcevic, Vladan Devedzic, "Using Ontologies in
Design of Multimodal User Interfaces", in Matthias Rauterberg, Marino Menozzi,
Janet Wesson (Eds.), Human-Computer Interaction - Proceedings of the IFIP
INTERACT '03 Conference, IOS Press, pp. 535-542.

16. R. Prates, C. de Souza, S. Barbosa, "A Method for Evaluating the
Communicability of User Interfaces", ACM Interactions January/February 2000,
pp. 31-38.

17. Jovanov, D. Starčević, A. Samardžić, A. Marsh, Ž. Obrenović, "EEG analysis in
a telemedical virtual world”, Future Generation Computer Systems 15 (1999), pp.
255-263.

18. Zeljko Obrenovic, Dusan Starcevic, Bran Selic, "A Model Driven Approach to
Content Repurposing", IEEE Multimedia, Vol. 11, No. 1, January-March 2004, pp.
62-71.

Željko Obrenović, Dušan Starčević

52 ComSIS Vol. 3, No. 1, June 2006

Zeljko Obrenovic received his PhD in computer science from the University
of Belgrade. He holds a position of a researcher scientist at the Center for
Mathematic and Computer Sciences in Amsterdam. His main research
interests include human-computer interaction, semantic multimedia, ambient
intelligence, biomedical engineering, and software methodologies. Contact
address: Kruislaan 413, NL-1098 SJ Amsterdam, The Netherlands, Email:
Zeljko.Obrenovic@cwi.nl.

Dusan Starcevic received his PhD in information systems from the University
of Belgrade, Yugoslavia. He is currently a professor at the School of Business
Administration, University of Belgrade, and a visiting professor at School of
Electrical Engineering. His main research interests include distributed
information systems, multimedia, and computer graphics. Contact address:
FON - School of Business Administration, Jove Ilića 154, 11000 Belgrade,
Serbia and Montenegro, Email: starcev@fon.bg.ac.yu.

