
UDC 004.421.2

Improving Categorical Data Clustering Algorithm by
Weighting Uncommon Attribute Value Matches

Zengyou He, Xiaofei Xu, Shenchun Deng

Department of Computer Science and Engineering,
Harbin Institute of Technology,

92 West Dazhi Street, P.O Box 315, China, 150001
zengyouhe@yahoo.com, {xiaofei,dsc} @hit.edu.cn

Abstract. This paper presents an improved Squeezer algorithm for
categorical data clustering by giving greater weight to uncommon
attribute value matches in similarity computations. Experimental results
on real life datasets show that, the modified algorithm is superior to the
original Squeezer algorithm and other clustering algorithm with respect
to clustering accuracy.

1. Introduction

Clustering typically groups data into sets in such a way that the intra-cluster
similarity is maximized while the inter-cluster similarity is minimized. The
clustering technique has been extensively studied in many fields such as data
mining, pattern recognition, customer segmentation, similarity search and
trend analysis.

Most previous clustering algorithms focus on numerical data whose
inherent geometric properties can be exploited naturally to define distance
functions between data points. However, much of the data existed in the
databases is categorical, where attribute values can’t be naturally ordered as
numerical values. An example of categorical attribute is shape whose values
include circle, rectangle, ellipse, etc. Due to the special properties of
categorical attributes, the clustering of categorical data seems more
complicated than that of numerical data.

A few algorithms have been proposed in recent years for clustering
categorical data (e.g., [1-8]). For detailed descriptions and discussions about
these algorithms, the readers may refer to [2]. It is sufficient to point out that
all the attribute values are treated equally in the similarity computations of
those existing algorithms. That is, uncommon attribute value matches have
the same contribution to similarity computation like those of frequent ones.

In this paper, we make an attempt to improve the clustering accuracies of
existing categorical data clustering algorithms by giving greater weight to
uncommon attribute value matches in similarity computations. More precisely,
Squeezer algorithm [1] is selected as a representative of categorical data

Zengyou He, Xiaofei Xu, Shenchun Deng

24 ComSIS Vol. 3, No. 1, June 2006

clustering algorithms for this purpose. Experimental results show that, the
modified Squeezer algorithm is superior to the original Squeezer algorithm
with respect to clustering accuracy. Therefore, we believe that other
categorical data clustering algorithms [2-8] can also be improved in a similar
way by weighting uncommon attribute value matches.

2. Weighting Uncommon Attribute Value Matches

In this paper, we employ the approach proposed by Goodall [9] for weighting
uncommon attribute value matches. The Goodall measure was first proposed
for biological and genetic taxonomy problems, where unusual characteristics
shared by biological entities is often attributed to closely related genetic
information resulting in these entities being classified into the same species
[9]. Li and Biswas [10] have extended it to clustering problems in more
general domains. Therefore, we can adopt the method given by Li and Biswas
[10].

A pair of objects (i, j) is considered more similar than a second pair of
objects (l, m), if and only if the objects i and j exhibit a greater match in
attribute values that are less common in the population. In other words,
similarity among objects is decided by the un-commonality of their attribute
value matches. Similarity computed using the heuristic of weighting
uncommon attribute value matches helps to define more cohesive, tight
clusters where objects grouped into the same cluster are likely to share
special and characteristic attribute values. One should note that common
attributes values also play an important role in the similarity computation and
in the clustering process. The similarity computation is realized by weighting
attribute value matches between a pair of objects by the frequency of
occurrence of the attribute value in the dataset [10].

Let A1, …, Am be a set of categorical attributes with domains D1,…, Dm
respectively. Let the dataset D be a set of objects where each object t:
t∈D1×…×Dm. We use VAL1, …, VALm to denote the sets of distinct attribute
values for A1, …, Am on the dataset D. For each vij∈VALi, f(vij) is used to
denote its frequency of occurrence in D. Then, the More Similar Attribute
Value Set of vij is defined as:

MSFVS (vij) = {vik | f(vik)≤ f(vij) and vik∈VALi} (1)

This is the set of attribute values with lower or equal frequencies of
occurrence than that of vij. Note that a value pair is more similar if it has lower
frequency of occurrence. The weight of attribute value vij is defined as:

W (vij) = 1 - ∑
∈ −

−

)()1(
)1)()((

ijik vMSFVSv

ikik

nn
vfvf

(2)

Improving Categorical Data Clustering Algorithm by Weighting Uncommon Attribute
Value Matches

ComSIS Vol. 3, No. 1, June 2006 25

where n is the total number of objects in the dataset. By the giving weight to
each attribute value, the uncommon value matches in similarity computation
will make more contribution to similarity values.

Taking an example used in [10] to illustrate the computation. Table 1 shows
a table with 10 objects, each described by a categorical attribute. In the given
dataset, f (a) = 3, f (b) = 3 and f (c) = 4, i.e., values a and b are less frequent
than value c. The MSFVS for attribute value c is:

MSFVS (c) = {a, b, c}.
Given the MSFVS, the weight of attribute value c is calculated by (2):
W (c) = 1 –(

)110(10
)13(3

−
− +

)110(10
)13(3

−
− +

)110(10
)14(4

−
−)= 1-0.276 = 0.733.

Similarly, the MSFVS for attribute value a is:
MSFVS (a) = {a, b}.
Hence, W (a) = 1 –(

)110(10
)13(3

−
− +

)110(10
)13(3

−
−) = 0.867.

Therefore, attribute 1 contributes a value of 0.733 to the similarity between
objects when attribute value c is matched. Similarly, attribute 1 contributes a
value of 0.867 to the similarity between objects if attribute value a is matched.
From this viewpoint, objects 1 and 4 are more similar than objects 5 and 6
with respect to attribute 1.

Table 1. Sample Data Set

Object ID Attribute 1
1 A
2 B
3 B
4 A
5 C
6 C
7 C
8 C
9 A
10 B

3. Uncommon Attribute Value Biased Squeezer
Algorithm: NabSqueezer

In this section, we describe the improved NabSqueezer algorithm, which
provides greater weight to uncommon attribute value matches in similarity
computations of Squeezer algorithm.

Let A1, …, Am be a set of categorical attributes with domains D1,…, Dm
respectively. Let the dataset D be a set of objects where each object t:
t∈D1×…×Dm. Let TID be the set of unique identifier of every object. For

Zengyou He, Xiaofei Xu, Shenchun Deng

26 ComSIS Vol. 3, No. 1, June 2006

each tid∈TID, the attribute value for Ai of corresponding object is represented
as tid.Ai.

Definition 1: (Cluster) Cluster⊆ TID is a subset of TID.
Definition 2: Given a Cluster C, the set of different attribute values on Ai

with respect to C is defined as: VALi (C)= { tid.Ai | tid ∈C}.
Definition 3: Given a Cluster C, let ai ∈Di, the frequency of ai in C with

respect to Ai is defined as: f (ai,C) = |{tid | tid.Ai = ai, tid ∈C }|.
Definition 4: (Summary) Given a Cluster C, the Summary for C is defined

as:
Summary = {VSi | 1≤ i≤m} where VSi = {(aj, f (aj,C)) | aj ∈VALi (C)}.
Intuitively, the Summary of a Cluster contains summary information about

this Cluster. In general, each Summary will consists of m elements, where m
is number of attributes. The element in Summary is the set of pairs of attribute
values and their corresponding frequency values. We will show later that
information contained in Summary is sufficient enough to compute the
similarity between an object and a Cluster.

Definition 5: (Cluster Structure, CS) Given a Cluster C, the Cluster
Structure (CS) for C is defined as: CS = {Cluster, Summary}.

Definition 6: Given a Cluster C and an object t with tid∈TID, the similarity
between C and tid is defined as:

Sim(C, tid) = ∑
=

m

i

ii

C
CafaW

1
)

||
),(*)((where ai = tid.Ai and W(ai) is the

weight of attribute value ai.
From the definition 6, it is clear that the similarity used is capable of

handling clustering problem with different weights on different attribute values.
The weight of each attribute value is pre-computed using the approach
discussed in Section 2.

The NabSqueezer algorithm is presented in Fig.1. It accepts as input the
dataset D and the value of the desired similarity threshold s. The algorithm
can be divided into two stages according to its two scans over the dataset.

In the first pass over the dataset, the frequency of occurrence of each
attribute value is counted (Step 1-2). Then, the MSFVS for each attribute
value is calculated (Step 3) and the weight of each attribute value is also
derived (Step 4).

In the second pass over the dataset, initially, the first object is read in, and
the sub-function addNewClusterStructure() is used to establish a new
Clustering Structure, which includes Summary and Cluster (Step 7-8). For the
consequent objects, the similarity between each existing Cluster C and the
object is computed using sub-function simComputation()(Step 10-11).
Consequently, we get the maximal value of similarity (denoted by sim_max)
and the corresponding index of Cluster (denoted by index) (Step 12-13).
Then, if the sim_max is larger than the input threshold s, the sub-function
addObjectToCluster() will be called to assign the object to the Cluster that
achieved best similarity value(Step 14-15). If it is not the case, the sub-
function addNewClusterStructure() will be called to construct a new CS (Step
16-17). Finally, the clustering results will be labeled on the disk (Step 19).

Improving Categorical Data Clustering Algorithm by Weighting Uncommon Attribute
Value Matches

ComSIS Vol. 3, No. 1, June 2006 27

Algorithm NabSqueezer (D, s)
Begin
// The first scan over the dataset
1. while (D has unread object){
2. for each attribute value, update its frequency value}
3. Computing the MSFVS of each attribute value
4. Computing the weight of each attribute value
// The second scan over the dataset
5. while (D has unread object){
6. object = getCurrentObject (D)
7. if (object.tid = = 1){
8. addNewClusterStructure (object.tid) }
9. else{
10. for each existed cluster C
11. simComputation (C, object)
12. get the max value of similarity: sim_max
13. get the corresponding Cluster Index: index
14. if sim_max >= s
15. addObjectToCluster (object, index)
16. else
17. addNewClusterStructure (object.tid) }
18. }
19. outputClusteringResults ()
End

Fig. 1. NabSqueezer Algorithm

4. Experimental Results

A comprehensive performance study has been conducted to evaluate the
NabSqueezer algorithm. In this section, we describe those experiments and
their results. We ran our algorithm on real-life datasets obtained from the UCI

Zengyou He, Xiaofei Xu, Shenchun Deng

28 ComSIS Vol. 3, No. 1, June 2006

Machine Learning Repository [11] to test its clustering performance against
the Squeezer algorithm and k-modes algorithm.

4.1. Real Life Datasets and Evaluation Method

We experimented with three real-life datasets: Soybean Disease dataset,
Mushroom dataset and Wisconsin Breast Cancer dataset, which were
obtained from the UCI Repository [11]. Now we will give a brief introduction
about these three datasets.

Soybean Disease Data: The first data set was the soybean disease data
set, which has frequently been used to test categorical clustering algorithms.
The soybean data set has 47 instances, each being described by 35
attributes. Each instance is labeled as one of the four diseases: Diaporthe
Stem Canker, Charcoal Rot, Rhizoctonia Root Rot, and Phytophthora Rot.
Except for Phytophthora Rot that has 17 instances, all other diseases have 10
instances each.

Mushroom Data: The mushroom dataset has 22 attributes with 8124
instances. Each instance represents physical characteristics of a single
mushroom. A classification label of poisonous or edible is provided with each
instance. The numbers of edible and poisonous mushrooms in the dataset are
4208 and 3916, respectively.

Wisconsin Breast Cancer Data1: It has 699 instances with 9 attributes.
Each instance is labeled as benign (458 or 65.5%) or malignant (241 or
34.5%). In this paper, all attributes are considered to be categorical.

Validating clustering results is a non-trivial task. In the presence of true
labels, as in the case of the data sets we used, the clustering accuracy for
measuring the clustering results was computed as follows. Given the final

number of clusters, k, clustering accuracy was defined as r =
n

ak

i i∑=1 , where

n is the number of objects in the dataset and ai is the number of objects with
the class label that dominates cluster i. Consequently, the clustering error is
defined as 1-r.

For instance, suppose that the mushroom dataset is clustered into 3
clusters, where cluster 1 has 2807 objects (poisonous: 580, edible: 2227),
cluster 2 has 2807 objects (poisonous: 435, edible: 1965) and cluster 3 has
2807 objects (poisonous: 2901, edible: 16). In this example, class label
“edible” dominates both cluster 1 and 2, while class label “poisonous”

dominates cluster 3. Hence, 873.0
8124

290119652227
=

++
=r and e=0.127.

1 We use a dataset that is slightly different from its original format in UCI Machine

Learning Repository, which has 683 instances with 444 benign records and 239
malignant records. It is public available at:
http://research.cmis.csiro.au/rohanb/outliers/breast-cancer/brcancerall.dat.

Improving Categorical Data Clustering Algorithm by Weighting Uncommon Attribute
Value Matches

ComSIS Vol. 3, No. 1, June 2006 29

The intuition behind clustering error defined above is that clusterings with
“pure” clusters, i.e., clusters in which all objects have the same class label,
are preferable. That is, if a partition has clustering error equal to 0 it means
that it contains only pure clusters. These kinds of clusters are also interesting
from a practical perspective. Hence, we can conclude that smaller clustering
error means better clustering results in real world applications.

4.2. Clustering Results

We studied the clustering results found by three algorithms, standard k-modes
algorithm [7], Squeezer algorithm [21] and NabSqueezer algorithm. We let
these algorithms to cluster the each dataset into different number of clusters,
varying from 2 to 9. For each fixed number of clusters, the clustering errors of
different algorithms were compared.

In k-modes clustering algorithm, initial k modes are constructed by selecting
the first k objects from the dataset. That is, we use one run to get the
clustering outputs for k-modes.

Since Squeezer algorithm and NabSqueezer algorithm can not specify the
final number of clusters directly, we set the similarity threshold parameter to a
proper value to get the desired number of clusters in both algorithm (In
Squeezer algorithm, we observed that if the number of output clusters is
same, the clustering accuracy is almost identical. Hence, we can use any
similarity threshold value that can make the algorithm get the desired number
of clusters. In NabSqueezer algorithm, we have the similar observation).

Fig. 2 shows the results of different clustering algorithms on soybean
dataset. From Fig. 2, we can summarize the relative performance of these
algorithms as Table 2. In Table 2, the numbers in column labelled by k (k=1, 2
or 3) are the times that an algorithm has rank k among these algorithms. For
instance, in the 8 experiments, k-modes algorithm performed third best in 6
cases, that is, it is ranked 3 for 6 times.

0

0.1

0.2

0.3

0.4

0.5

2 3 4 5 6 7 8 9
The number of clusters

C
lu

st
er

in
g

Er
ro

r

k-modes Squeezer NabSqueezer

Fig. 2. Clustering error vs. Different number of clusters (soybean dataset)

One important observation from Fig.2 and Table 2 is that, among all of
these algorithms, k-modes performed the worst in most cases. Although the

Zengyou He, Xiaofei Xu, Shenchun Deng

30 ComSIS Vol. 3, No. 1, June 2006

performance of Squeezer algorithm on this dataset is better than that of the
NabSqueezer algorithm, their clustering errors are almost identical. In other
words, Squeezer algorithm and NabSqueezer algorithm achieved the same
level performance on soybean data.

Table 2. Relative performance of different clustering algorithms (soybean dataset)

Ranking 1 2 3 Average Clustering Error
k-modes 1 1 6 0.162
Squeezer 8 0 0 0.080

NabSqueezer 5 3 0 0.088

The experimental results on mushroom dataset are described in Fig. 3 and
the relative performance is summarized in Table 3. As shown in Fig. 3 and
Table 3, NabSqueezer algorithm beats all the other algorithms in average
clustering error. Furthermore, although the NabSqueezer algorithm didn’t
always perform best on this dataset, it performed best and second best in
most cases.

0

0.1

0.2

0.3

0.4

0.5

2 3 4 5 6 7 8 9
The number of clusters

C
lu

st
er

in
g

Er
ro

r

k-modes Squeezer NabSqueezer

Fig. 3. Clustering error vs. Different number of clusters (mushroom dataset)

Table 3. Relative performance of different clustering algorithms (mushroom dataset)

Ranking 1 2 3 Average Clustering Error
k-modes 5 2 1 0.206
Squeezer 2 3 3 0.206

NabSqueezer 3 3 2 0.162

The experimental results on the breast cancer dataset are described in
Fig.4 and the summarization on the relative performance of three algorithms
is given in Table 4. It is easy to see that the NabSqueezer algorithm
performed the best in all cases and never performed the worst. At the same
time, NabSqueezer algorithm is also superior to the Squeezer algorithm and
k-modes algorithm with respect to average clustering error.

The above experimental results demonstrate the effectiveness of the
modified Squeezer algorithm by giving greater weight to uncommon attribute

Improving Categorical Data Clustering Algorithm by Weighting Uncommon Attribute
Value Matches

ComSIS Vol. 3, No. 1, June 2006 31

value matches in similarity computations. Therefore, it is promising to improve
the clustering accuracies of other existing categorical data clustering
algorithms in a similar way.

0

0.05

0.1

0.15

2 3 4 5 6 7 8 9
The number of clusters

C
lu

st
er

in
g

Er
ro

r

k-modes Squeezer NabSqueezer

Fig. 4. Clustering error vs. Different number of clusters (cancer dataset)

Table 4. Relative performance of different clustering algorithms (cancer dataset)

Ranking 1 2 3 Average Clustering Error
k-modes 0 7 1 0.070
Squeezer 0 1 7 0.091

NabSqueezer 8 0 0 0.045

5. Conclusions

Taking Squeezer algorithm as a representative, we empirically demonstrate
that clustering accuracies of existing categorical data clustering algorithms
can be further improved by giving greater weight to uncommon attribute value
matches in similarity computations.

In the future work, we will investigate the feasibility of applying the heuristic
of weighting uncommon attribute value matches to other similarity based
categorical data clustering algorithm, such as k-modes [7] and ROCK [8]

Acknowledgements
The comments and suggestions from the anonymous reviewers greatly
improve the paper. This work was supported by the High Technology
Research and Development Program of China ((No. 2004AA413010, No.
2004AA413030), the National Nature Science Foundation of China (No.
40301038) and the IBM SUR Research Fund.

Zengyou He, Xiaofei Xu, Shenchun Deng

32 ComSIS Vol. 3, No. 1, June 2006

References

1. He, Z., Xu, X., Deng, S.: Squeezer: An Efficient Algorithm for Clustering
Categorical Data. Journal of Computer Science and Technology, Vol. 17, No.5,
pp. 611-624. (2002)

2. He, Z., Xu, X., Deng, S.: A Cluster Ensemble Method for Clustering Categorical
Data. Information Fusion, Vol. 6, No. 2, 143-151. (2005)

3. Chang, C., Ding, Z.: Categorical Data Visualization and Clustering Using
Subjective Factors. Data & Knowledge Engineering, Vol. 53, No. 3, 243-263.
(2005)

4. Ng, M. K., Wong, J. C.: Clustering Categorical Data Sets Using Tabu Search
Techniques. Pattern Recognition, Vol. 35, No.12, 2783-2790. (2002)

5. He, Z., Deng, S., Xu, X.: Improving K-modes Algorithm Considering Frequencies
of Attribute Values in Mode. Lecture Notes in Artificial Intelligence, Vol. 3801, 157-
162. (2005)

6. He, Z., Xu, X., Deng, S.: TCSOM: Clustering Transactions Using Self-Organizing
Map. Neural Processing Letters, Vol. 22, No. 3, 249-262. (2005)

7. Huang, Z.: Extensions to the k-Means Algorithm for Clustering Large Data Sets
with Categorical Values. Data Mining and Knowledge Discovery, Vol. 2, 283-304.
(1998)

8. Guha, S., Rastogi, R., Shim, K.: ROCK: A Robust Clustering Algorithm for
Categorical Attributes. Information Systems, Vol. 25, No. 5, 345-366. (2000)

9. Goodall, D. W.: A New Similarity Index Based on Probability. Biometrics, Vol. 22,
882-907. (1966).

10. Li, C., Biswas, G.: Unsupervised Learning with Mixed Numeric and Nominal Data.
IEEE Transactions on Knowledge and Data Engineering, Vol. 14, No. 4, 673-690.
(2002)

11. Merz, C. J., Merphy, P.: UCI Repository of Machine Learning Databases (1996).
[Online]. Available: Http://www.ics.uci.edu/~mlearn/MLRRepository.html

Zengyou He received his PhD degree in computer science from Harbin
Institute of Technology (HIT) in China in 2006. His main research interests
include data mining and machine learning.

Xiaofei Xu received both his M.S degree and Ph.D. degree in computer
science from HIT in 1985 and 1988. He is currently a professor and dean of
School of Computer Science and Technology, dean of National Pilot School of
Software in Harbin Institute of Technology in China. His research fields
include computer integrated manufacturing systems, databases, supply chain
management, e-business, knowledge engineering, etc.

Shengchun Deng received his Ph.D. degree in computer science from HIT in
2002. He is currently an Associate Professor in the Department of Computer
Science and Engineering, HIT. His main research interests include data
mining and supply chain management.

