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Abstract. This paper presents an improved Squeezer algorithm for 
categorical data clustering by giving greater weight to uncommon 
attribute value matches in similarity computations. Experimental results 
on real life datasets show that, the modified algorithm is superior to the 
original Squeezer algorithm and other clustering algorithm with respect 
to clustering accuracy. 

1.  Introduction 

Clustering typically groups data into sets in such a way that the intra-cluster 
similarity is maximized while the inter-cluster similarity is minimized. The 
clustering technique has been extensively studied in many fields such as data 
mining, pattern recognition, customer segmentation, similarity search and 
trend analysis.  

Most previous clustering algorithms focus on numerical data whose 
inherent geometric properties can be exploited naturally to define distance 
functions between data points. However, much of the data existed in the 
databases is categorical, where attribute values can’t be naturally ordered as 
numerical values. An example of categorical attribute is shape whose values 
include circle, rectangle, ellipse, etc. Due to the special properties of 
categorical attributes, the clustering of categorical data seems more 
complicated than that of numerical data. 

A few algorithms have been proposed in recent years for clustering 
categorical data (e.g., [1-8]). For detailed descriptions and discussions about 
these algorithms, the readers may refer to [2]. It is sufficient to point out that 
all the attribute values are treated equally in the similarity computations of 
those existing algorithms. That is, uncommon attribute value matches have 
the same contribution to similarity computation like those of frequent ones.  

In this paper, we make an attempt to improve the clustering accuracies of 
existing categorical data clustering algorithms by giving greater weight to 
uncommon attribute value matches in similarity computations. More precisely, 
Squeezer algorithm [1] is selected as a representative of categorical data 
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clustering algorithms for this purpose. Experimental results show that, the 
modified Squeezer algorithm is superior to the original Squeezer algorithm 
with respect to clustering accuracy. Therefore, we believe that other 
categorical data clustering algorithms [2-8] can also be improved in a similar 
way by weighting uncommon attribute value matches. 

2.  Weighting Uncommon Attribute Value Matches 

In this paper, we employ the approach proposed by Goodall [9] for weighting 
uncommon attribute value matches. The Goodall measure was first proposed 
for biological and genetic taxonomy problems, where unusual characteristics 
shared by biological entities is often attributed to closely related genetic 
information resulting in these entities being classified into the same species 
[9]. Li and Biswas [10] have extended it to clustering problems in more 
general domains. Therefore, we can adopt the method given by Li and Biswas 
[10]. 

A pair of objects (i, j) is considered more similar than a second pair of 
objects (l, m), if and only if the objects i and j exhibit a greater match in 
attribute values that are less common in the population. In other words, 
similarity among objects is decided by the un-commonality of their attribute 
value matches. Similarity computed using the heuristic of weighting 
uncommon attribute value matches helps to define more cohesive, tight 
clusters where objects grouped into the same cluster are likely to share 
special and characteristic attribute values. One should note that common 
attributes values also play an important role in the similarity computation and 
in the clustering process. The similarity computation is realized by weighting 
attribute value matches between a pair of objects by the frequency of 
occurrence of the attribute value in the dataset [10]. 

Let A1, …, Am be a set of categorical attributes with domains D1,…, Dm 
respectively. Let the dataset D be a set of objects where each object t: 
t∈D1×…×Dm. We use VAL1, …, VALm to denote the sets of distinct attribute 
values for A1, …, Am on the dataset D. For each vij∈VALi, f(vij) is used to 
denote its frequency of occurrence in D. Then, the More Similar Attribute 
Value Set of vij is defined as:  

MSFVS (vij) = {vik | f(vik)≤ f(vij) and vik∈VALi} (1) 

This is the set of attribute values with lower or equal frequencies of 
occurrence than that of vij. Note that a value pair is more similar if it has lower 
frequency of occurrence. The weight of attribute value vij is defined as:  
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where n is the total number of objects in the dataset. By the giving weight to 
each attribute value, the uncommon value matches in similarity computation 
will make more contribution to similarity values. 

Taking an example used in [10] to illustrate the computation. Table 1 shows 
a table with 10 objects, each described by a categorical attribute. In the given 
dataset, f (a) = 3, f (b) = 3 and f (c) = 4, i.e., values a and b are less frequent 
than value c. The MSFVS for attribute value c is: 

MSFVS (c) = {a, b, c}. 
Given the MSFVS, the weight of attribute value c is calculated by (2): 
W (c) = 1 –(

)110(10
)13(3
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)13(3
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)110(10
)14(4

−
− )= 1-0.276 = 0.733. 

Similarly, the MSFVS for attribute value a is:  
MSFVS (a) = {a, b}. 
Hence, W (a) = 1 –(

)110(10
)13(3

−
− +

)110(10
)13(3

−
− ) = 0.867. 

Therefore, attribute 1 contributes a value of 0.733 to the similarity between 
objects when attribute value c is matched. Similarly, attribute 1 contributes a 
value of 0.867 to the similarity between objects if attribute value a is matched. 
From this viewpoint, objects 1 and 4 are more similar than objects 5 and 6 
with respect to attribute 1. 

Table 1. Sample Data Set 

Object ID Attribute 1 
1 A 
2 B 
3 B 
4 A 
5 C 
6 C 
7 C 
8 C 
9 A 
10 B 

3.  Uncommon Attribute Value Biased Squeezer 
Algorithm: NabSqueezer 

In this section, we describe the improved NabSqueezer algorithm, which 
provides greater weight to uncommon attribute value matches in similarity 
computations of Squeezer algorithm. 

Let A1, …, Am be a set of categorical attributes with domains D1,…, Dm 
respectively. Let the dataset D be a set of objects where each object t: 
t∈D1×…×Dm. Let TID be the set of unique identifier of every object. For 
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each tid∈TID, the attribute value for Ai of corresponding object is represented 
as tid.Ai. 

Definition 1: (Cluster) Cluster⊆ TID is a subset of TID. 
Definition 2: Given a Cluster C, the set of different attribute values on Ai 

with respect to C is defined as: VALi (C)= { tid.Ai | tid ∈C}. 
Definition 3: Given a Cluster C, let ai ∈Di, the frequency of ai in C with 

respect to Ai is defined as: f (ai,C) = |{tid | tid.Ai = ai, tid ∈C }|. 
Definition 4: (Summary) Given a Cluster C, the Summary for C is defined 

as:  
Summary = {VSi | 1≤ i≤m} where VSi = {(aj, f (aj,C)) | aj ∈VALi (C)}. 
Intuitively, the Summary of a Cluster contains summary information about 

this Cluster. In general, each Summary will consists of m elements, where m 
is number of attributes. The element in Summary is the set of pairs of attribute 
values and their corresponding frequency values. We will show later that 
information contained in Summary is sufficient enough to compute the 
similarity between an object and a Cluster.  

Definition 5: (Cluster Structure, CS) Given a Cluster C, the Cluster 
Structure (CS) for C is defined as: CS = {Cluster, Summary}.                                        

Definition 6: Given a Cluster C and an object t with tid∈TID, the similarity 
between C and tid is defined as:  

Sim(C, tid) = ∑
=

m

i
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),(*)((  where ai = tid.Ai and W(ai) is the 

weight of attribute value ai. 
From the definition 6, it is clear that the similarity used is capable of 

handling clustering problem with different weights on different attribute values. 
The weight of each attribute value is pre-computed using the approach 
discussed in Section 2. 

The NabSqueezer algorithm is presented in Fig.1. It accepts as input the 
dataset D and the value of the desired similarity threshold s. The algorithm 
can be divided into two stages according to its two scans over the dataset. 

In the first pass over the dataset, the frequency of occurrence of each 
attribute value is counted (Step 1-2). Then, the MSFVS for each attribute 
value is calculated (Step 3) and the weight of each attribute value is also 
derived (Step 4). 

In the second pass over the dataset, initially, the first object is read in, and 
the sub-function addNewClusterStructure() is used to establish a new 
Clustering Structure, which includes Summary and Cluster (Step 7-8). For the 
consequent objects, the similarity between each existing Cluster C and the 
object is computed using sub-function simComputation()(Step 10-11). 
Consequently, we get the maximal value of similarity (denoted by sim_max) 
and the corresponding index of Cluster (denoted by index) (Step 12-13). 
Then, if the sim_max is larger than the input threshold s, the sub-function 
addObjectToCluster() will be called to assign the object to the Cluster that 
achieved best similarity value(Step 14-15). If it is not the case, the sub-
function addNewClusterStructure() will be called to construct a new CS (Step 
16-17). Finally, the clustering results will be labeled on the disk (Step 19). 
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Algorithm NabSqueezer (D, s) 
Begin 
// The first scan over the dataset 
1. while (D has unread object){ 
2.    for each attribute value, update its frequency value} 
3. Computing the MSFVS of each attribute value 
4. Computing the weight of each attribute value 
// The second scan over the dataset 
5. while (D has unread object){ 
6.    object = getCurrentObject (D) 
7.    if (object.tid = = 1){ 
8.        addNewClusterStructure (object.tid) } 
9.    else{ 
10.       for each existed cluster C 
11.          simComputation (C, object)  
12.       get the max value of similarity: sim_max  
13.       get the corresponding Cluster Index: index 
14.       if sim_max >= s 
15.          addObjectToCluster (object, index) 
16.       else 
17.          addNewClusterStructure (object.tid) } 
18.  } 
19.  outputClusteringResults () 
End  

Fig. 1. NabSqueezer Algorithm 

4. Experimental Results 

A comprehensive performance study has been conducted to evaluate the 
NabSqueezer algorithm. In this section, we describe those experiments and 
their results. We ran our algorithm on real-life datasets obtained from the UCI 
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Machine Learning Repository [11] to test its clustering performance against 
the Squeezer algorithm and k-modes algorithm. 

4.1. Real Life Datasets and Evaluation Method 

We experimented with three real-life datasets: Soybean Disease dataset, 
Mushroom dataset and Wisconsin Breast Cancer dataset, which were 
obtained from the UCI Repository [11]. Now we will give a brief introduction 
about these three datasets. 

Soybean Disease Data: The first data set was the soybean disease data 
set, which has frequently been used to test categorical clustering algorithms. 
The soybean data set has 47 instances, each being described by 35 
attributes. Each instance is labeled as one of the four diseases: Diaporthe 
Stem Canker, Charcoal Rot, Rhizoctonia Root Rot, and Phytophthora Rot. 
Except for Phytophthora Rot that has 17 instances, all other diseases have 10 
instances each. 

Mushroom Data: The mushroom dataset has 22 attributes with 8124 
instances. Each instance represents physical characteristics of a single 
mushroom. A classification label of poisonous or edible is provided with each 
instance. The numbers of edible and poisonous mushrooms in the dataset are 
4208 and 3916, respectively.  

Wisconsin Breast Cancer Data1: It has 699 instances with 9 attributes. 
Each instance is labeled as benign (458 or 65.5%) or malignant (241 or 
34.5%). In this paper, all attributes are considered to be categorical. 

Validating clustering results is a non-trivial task. In the presence of true 
labels, as in the case of the data sets we used, the clustering accuracy for 
measuring the clustering results was computed as follows. Given the final 

number of clusters, k, clustering accuracy was defined as r =
n

ak

i i∑=1 , where 

n is the number of objects in the dataset and ai is the number of objects with 
the class label that dominates cluster i. Consequently, the clustering error is 
defined as 1-r.  

For instance, suppose that the mushroom dataset is clustered into 3 
clusters, where cluster 1 has 2807 objects (poisonous: 580, edible: 2227), 
cluster 2 has 2807 objects (poisonous: 435, edible: 1965) and cluster 3 has 
2807 objects (poisonous: 2901, edible: 16). In this example, class label 
“edible” dominates both cluster 1 and 2, while class label “poisonous” 

dominates cluster 3. Hence, 873.0
8124

290119652227
=

++
=r and e=0.127.  

                                                     
1 We use a dataset that is slightly different from its original format in UCI Machine 

Learning Repository, which has 683 instances with 444 benign records and 239 
malignant records. It is public available at:  
http://research.cmis.csiro.au/rohanb/outliers/breast-cancer/brcancerall.dat. 
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The intuition behind clustering error defined above is that clusterings with 
“pure” clusters, i.e., clusters in which all objects have the same class label, 
are preferable. That is, if a partition has clustering error equal to 0 it means 
that it contains only pure clusters. These kinds of clusters are also interesting 
from a practical perspective. Hence, we can conclude that smaller clustering 
error means better clustering results in real world applications. 

4.2.  Clustering Results 

We studied the clustering results found by three algorithms, standard k-modes 
algorithm [7], Squeezer algorithm [21] and NabSqueezer algorithm. We let 
these algorithms to cluster the each dataset into different number of clusters, 
varying from 2 to 9. For each fixed number of clusters, the clustering errors of 
different algorithms were compared.  

In k-modes clustering algorithm, initial k modes are constructed by selecting 
the first k objects from the dataset. That is, we use one run to get the 
clustering outputs for k-modes.  

Since Squeezer algorithm and NabSqueezer algorithm can not specify the 
final number of clusters directly, we set the similarity threshold parameter to a 
proper value to get the desired number of clusters in both algorithm (In 
Squeezer algorithm, we observed that if the number of output clusters is 
same, the clustering accuracy is almost identical. Hence, we can use any 
similarity threshold value that can make the algorithm get the desired number 
of clusters. In NabSqueezer algorithm, we have the similar observation).  

Fig. 2 shows the results of different clustering algorithms on soybean 
dataset. From Fig. 2, we can summarize the relative performance of these 
algorithms as Table 2. In Table 2, the numbers in column labelled by k (k=1, 2 
or 3) are the times that an algorithm has rank k among these algorithms. For 
instance, in the 8 experiments, k-modes algorithm performed third best in 6 
cases, that is, it is ranked 3 for 6 times. 
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Fig. 2. Clustering error vs. Different number of clusters (soybean dataset) 

One important observation from Fig.2 and Table 2 is that, among all of 
these algorithms, k-modes performed the worst in most cases. Although the 
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performance of Squeezer algorithm on this dataset is better than that of the 
NabSqueezer algorithm, their clustering errors are almost identical. In other 
words, Squeezer algorithm and NabSqueezer algorithm achieved the same 
level performance on soybean data. 

Table 2. Relative performance of different clustering algorithms (soybean dataset) 

Ranking 1 2 3 Average Clustering Error 
k-modes 1 1 6 0.162 
Squeezer 8 0 0 0.080 

NabSqueezer 5 3 0 0.088 
 

The experimental results on mushroom dataset are described in Fig. 3 and 
the relative performance is summarized in Table 3. As shown in Fig. 3 and 
Table 3, NabSqueezer algorithm beats all the other algorithms in average 
clustering error. Furthermore, although the NabSqueezer algorithm didn’t 
always perform best on this dataset, it performed best and second best in 
most cases.  
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Fig. 3. Clustering error vs. Different number of clusters (mushroom dataset) 

Table 3. Relative performance of different clustering algorithms (mushroom dataset) 

Ranking 1 2 3 Average Clustering Error 
k-modes 5 2 1 0.206 
Squeezer 2 3 3 0.206 

NabSqueezer 3 3 2 0.162 
 

The experimental results on the breast cancer dataset are described in 
Fig.4 and the summarization on the relative performance of three algorithms 
is given in Table 4. It is easy to see that the NabSqueezer algorithm 
performed the best in all cases and never performed the worst. At the same 
time, NabSqueezer algorithm is also superior to the Squeezer algorithm and 
k-modes algorithm with respect to average clustering error. 

The above experimental results demonstrate the effectiveness of the 
modified Squeezer algorithm by giving greater weight to uncommon attribute 
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value matches in similarity computations. Therefore, it is promising to improve 
the clustering accuracies of other existing categorical data clustering 
algorithms in a similar way. 
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Fig. 4. Clustering error vs. Different number of clusters (cancer dataset) 

Table 4. Relative performance of different clustering algorithms (cancer dataset) 

Ranking 1 2 3 Average Clustering Error 
k-modes 0 7 1 0.070 
Squeezer 0 1 7 0.091 

NabSqueezer 8 0 0 0.045 

5.  Conclusions 

Taking Squeezer algorithm as a representative, we empirically demonstrate 
that clustering accuracies of existing categorical data clustering algorithms 
can be further improved by giving greater weight to uncommon attribute value 
matches in similarity computations. 

In the future work, we will investigate the feasibility of applying the heuristic 
of weighting uncommon attribute value matches to other similarity based 
categorical data clustering algorithm, such as k-modes [7] and ROCK [8] 
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