
UDC 004.4’41

On the Quantitative Estimation of Abstraction
Level Increase in Metaprograms

Robertas Damaševičius

Software Engineering Department,
Kaunas University of Technology

Studentų 50-415, 51368 Kaunas, Lithuania
robertas.damasevicius@ktu.lt

Abstract. Higher-level programming such as metaprogramming
introduces a layer of abstraction above the domain language programs.
Metaprogramming allows describing generic components and managing
variability in a domain. It is especially useful for developing program
generators for domains, where a great deal of commonalties exists. It
allows increasing the level of abstraction and hiding details that are
unnecessary to the designer. Information abstraction and hiding reduces
the amount of “user-visible” information. In this paper, we estimate the
increase of abstraction by evaluating the information content at the lower
(domain) and higher (meta) layers of abstraction. The estimation method
is based on the Kolmogorov complexity and uses a common
compression algorithm. The method is evaluated experimentally on
families of DSP components.

1. Introduction

The abstraction level is the level of detail of a software system (model,
component, program, etc.). In this sense, abstraction is a primary concept in
software engineering and is, in fact, a basic property for understanding the
reality and managing the complexity of software systems [1].

The simplest interpretation of abstraction is hiding of irrelevant details,
though there are many different views what “irrelevant” is [2]. Abstraction is a
gradual increase in the level of representation of a software system, when
existing detailed information is replaced with information that emphasizes
certain aspects important to the developer while other aspects are hidden.

Abstraction is primarily responsible for the evolution of programming
languages by stimulating adoption of higher-level mechanisms and constructs
for programming. More abstract programming language mechanisms allow to
replace complex and repeating low-level operations. Better abstraction allows
to address complex problems with less code and less programming errors.

Though different layers of abstraction represent a qualitative leap in the
level of abstraction that allows achieving higher productivity and faster
development times, an interesting problem would be to evaluate the level of

Robertas Damaševičius

54 ComSIS Vol. 3, No. 1, June 2006

abstraction in a software system quantitatively. The problem is not a trivial
one, because the level of abstraction is related the concepts of software
complexity [3] and information content [4].

Indeed, a representation of a software system at a higher layer of
abstraction contains less detail and usually has less source code lines than a
corresponding representation at a lower layer of abstraction. Though, Lines of
Code (LOC) is often used as a measure of software size, it is often criticized
as ambiguous and even meaningless. An effort to measure the abstraction
level using the LOC metric fails, because shorter code does not mean less
software complexity or less information content. Furthermore, a program may
contain redundant code, which is not taken by the LOC metric into account.

In this paper, we use Kolmogorov complexity [5] based metric to estimate
the increase in the level of abstraction in metaprograms quantitatively.
Metaprograms are generic programs (or program generators) that
encapsulate families of similar software components. We evaluate the level of
abstraction in metaprograms as compared to families of domain programs by
estimating and comparing the information content at the metalevel and
domain level of abstraction using a common compression algorithm.

The rest of the paper is organized as follows. Section 2 overviews the
related works. Section 3 describes the layers of abstraction in software
systems and describes the principles of metaprogramming. Section 4
describes the problem of estimating information complexity, quantity and
content in software. Section 5 presents the experimental results of estimating
information content and level of abstraction in component families and
metaprograms. Section 6 presents conclusions and future work.

2. Related works

Other authors also use this Kolmogorov complexity in related research. For
example, Li and Vitanyi [6] propose a metric for measuring the amount of
shared information between two computer programs, thus allowing plagiarism
detection. This metric is approximated by a heuristic compression algorithm.

Evans et al. [7] apply the Kolmogorov complexity-based metric to the
problem of Information Assurance. The metric allows to detect abnormal
system behavior and perform analysis of data and process vulnerability.

Bush and Hughes [8] use Kolmogorov complexity to identify different data
types (semantic types) by estimates of their complexity. This allows to
discover, e.g., executable data embedded within passive data types in
network data flows.

Gács et al [9] use Kolmogorov complexity as a measure for the relation
between an individual data sample and an individual model summarizing the
information in the data and develop the algorithmic theory of statistic.

Taha et al. [4] propose a view motivated by Kolmogorov’s notion of string
complexity. A program generator captures the essential complexity of the

On the Quantitative Estimation of Abstraction Level Increase in Metaprograms

ComSIS Vol. 3, No. 1, June 2006 55

programs it produces, since it contains all the information needed to
reconstruct the full code base.

Keogh et al. [10] use the compression-based dissimilarity metric for
detecting and clustering datasets. The idea is that similar datasets have
similar content and complexity, which can be detected by compressing
datasets and comparing their compressed size.

Campani et al. [11] apply Kolmogorov complexity to the characterization of
systems and processes by calculating the amount of information, and the
evaluation of computational models based on the idea of data compression
(understood as a measurement of the amount of information).

Veldhuizen [12] uses Kolmogorov complexity to develop a theoretical
model of reuse libraries and estimate the amount of reuse in software
systems, the size of reuse library components, and the bounds of reuse.

The related works can be summarized as follows: Kolmogorov complexity
already has been used to derive several software metrics in order to estimate
software complexity, similarity, anomaly, vulnerability or reuse. The novelty of
this paper is the application of the Kolmogorov information complexity theory
to the problem of quantitative measuring of software abstraction.

3. Layers of abstraction in software

3.1. Classification of programming languages

Modern software systems often have many layers of abstraction such as
assembly-level, object-level, scripting-level, web-level, meta-level, etc. Here,
we can distinguish we following layers of software abstraction (see Fig. 1):
− Register layer – assembly languages that describe operations on a

processor (register) level. The level of abstraction is very low and quantity
of information available for a developer is very high and detailed.

− Algorithm layer – common procedural or (semi-)formal languages such as
C, Pascal or LISP that hide the low-level details of handling data and rather
focus on the description of software algorithms that manipulate with data.
The developer is no longer dealing with data in individual registers. Much of
the information content is abstracted away in the libraries.

− Entity layer – high-level programming languages such as C++, Java, or
VHDL that focus on the description of domain entities. Domain entities are
represented using components, aspects [13] or objects, which encapsulate
code fragments (methods, concerns) on the same abstraction level.
Modeling languages such as UML are also used on this layer, though these
represent the domain entities graphically.

− Composition layer – compositional, glue and scripting [14] languages such
as Python or TCL that assume a collection of existing components and
focus on wiring of existing software artifacts into larger systems. The

Robertas Damaševičius

56 ComSIS Vol. 3, No. 1, June 2006

primary concern is not data or algorithms, but software components. Thus,
the level of abstraction is raised even higher, complexity of programming
language is reduced, and repeating code is abstracted away leading to the
decrease of information quantity available to the developer.

− Meta layer – metalogic, metaprogramming and metamodeling languages
that are used for describing generic components, developing code
generators, and capturing domain commonalties in software product lines
[19]. Meta layer languages are based on higher-level programming
methodologies, such as metaprogramming [15] or Generative
Programming [16]. The examples are macro languages, preprocessing
languages, MetaAspectJ, Open PROMOL [17], etc.

Assembly

Formal Procedural

Component Object

Scripting

Aspect Modeling

Metamodelling Metaprogramming Metalogic

Algorithm
layer

Register
layer

Entity
layer

Composition
layer

Meta
layer

Textual
notation

Graphical
notation

Abstraction

Fig. 1. Layers of abstraction in software programming languages

The presented classification of programming languages is by no means

comprehensive. It omits many other classes of languages, such as domain-
specific languages, architecture description languages, markup languages,
etc. Rather it demonstrates the typical software abstraction layers the
programming languages pertain to.

The abstraction level is generally increasing from the lower layers of
abstraction to the higher layers, though it may differ at the same layer
depending upon syntax and semantics of a particular programming language.

On the Quantitative Estimation of Abstraction Level Increase in Metaprograms

ComSIS Vol. 3, No. 1, June 2006 57

Thus, the level of abstraction in software engineering grows from data to
algorithms, to objects, to software components and beyond.

Recently, the MDA (Model-Driven Architecture) approach was introduced,
which allows to raise the level of abstraction above programming languages
by defining implementation-independent models and metamodels that
describe fundamental relationships between design concerns [18]. However,
MDA requires metaprogramming as well for implementing code generation
between high-level models and low-level system implementation.

3.2. Overview of metaprogramming

Now we look more closely at the principles of metaprogramming. Often,
there is a great deal of similar components in a domain, e.g., there are 71
similar Java Buffer classes in JDK 1.5.01 source library. Such large number
of components is difficult to maintain and reuse, changes are difficult to
implement, etc. Higher-level programming, such as metaprogramming, raises
the level of abstraction by introducing an additional level of generic
parameters for managing variability of domain source code. This higher-level
hides a common part of the component family at a lower (domain) layer of
abstraction. The result of metaprogramming is a metaprogram. According to
Batory [19], a meta-program is “a program that generates the source of the
application ... by composing pre-written code fragments”. In other words, a
metaprogram is a set of instructions, descriptions, and means of control
(possibly generation) of sets of domain programs. Metaprograms may be
written using the same programming principles and constructs (if, case, for
loop) as domain programs, however, they manipulate on program
representations, not on data.

Metaprogram describes generic parameters and domain code
modifications required to generate a particular customized component
instance. The layers of abstraction are clearly separated. At a lower layer of
abstraction, there is domain language code that describes common parts of
component family. At a higher layer of abstraction, there is metalanguage
code that describes variable parts of component family.

To achieve the prescribed aims, metaprogramming uses separation of
concerns, parameterization, and parameter dependency knowledge. The
principle of separation of concerns separates each domain problem into a
distinct generic component or sets of components used to generate target
program. Parameterization increases reusability by providing parameterized
components, which can be instantiated for different choices of parameters.
Parameter dependency knowledge allows capturing specific information
about the parameter dependencies, default settings and illegal combinations.

A high-level language is the main abstraction for expressing the domain
content and coding software components and generators. Some languages
(e.g., Ada, VHDL, C++) do provide a meta-programming mechanism, called
generics (or templates, in case of C++), for writing parameterized
components. However, here we deal only with metaprogramming using a

Robertas Damaševičius

58 ComSIS Vol. 3, No. 1, June 2006

separate metalanguage (heterogeneous metaprogramming), which allows us
achieving higher parameterization flexibility, better separation of concerns
and layers of abstraction and generation of specific component instances.

In next section, we consider the problem of evaluating quantity (content) of
information at a higher level of abstraction, in general.

4. Evaluation of information quantity and abstraction

4.1. Kolmogorov complexity

The problem considered in this paper is how to evaluate the raise of
abstraction introduced by a higher-level language quantitatively. We argue
that it can be evaluated relatively by comparing information content at both
layers of abstraction. Since some of information is abstracted away at a
higher layer of abstraction, we expect that information quantity directly
represented at a higher level of abstraction generally should decrease,
because much of it is hidden in the underlying tools (preprocessors,
compilers, translators, etc.) and software libraries used. However, the entire
content of information required to solve a certain problem should remain the
same, as stipulated by the Law of Conservation of Information, which states
that information in a closed system of natural causes remains constant or
decreases [20]. Therefore, a relationship between the content of information
at a higher and lower levels of abstraction is a metric of abstraction.

Therefore, we can estimate the increase/decrease of abstraction in
software by measuring the content of information as different layers of
abstraction. There are several methods to evaluate information content/
complexity such as computational complexity, Shannon entropy and
topological complexity [21]. We use the Algorithmic information content metric
also known as Kolmogorov Complexity [5]. Kolmogorov complexity is a
measure of randomness of strings based on their information content. It was
proposed by A.N. Kolmogorov in 1965 to quantify the randomness of strings
and other objects in an objective and absolute manner.

The main idea of Kolmogorov complexity is to measure the ‘complexity’ of
an object by the length of the smallest program that generates it. In general
case, we have a domain object x and a description system (e.g.,
programming language) φ that maps from a description w (i.e., a program) to
this object. Kolmogorov complexity K(x) of an object x in the description
system φ, is the length of the shortest program in the description system φ
capable of producing x on a universal computer such as a Turing machine:

() }:{min xwxK ww
== ϕϕ (1)

Different programming languages will give rise to distinct values of K(x), but
one can prove that the differences are only up to a fixed additive constant.

On the Quantitative Estimation of Abstraction Level Increase in Metaprograms

ComSIS Vol. 3, No. 1, June 2006 59

Intuitively, K(x) is the minimal quantity of information required to generate x by
an algorithm.

Kolmogorov complexity is the ultimate lower bound among all measures of
information content. Unfortunately, it cannot be computed in the general case
[4, 5]. Consequently, one must approximate it.

Some authors criticize the usage of Kolmogorov complexity and
compression algorithms for evaluating information content (e.g., [22]). The
objections are mostly focused on the concept of randomness. For example, a
random string generated by a computer program would have much higher
information content than the program itself.

In our view, the critics miss three important points as follows:
(1) Kolmogorov complexity measures the content of information only at

the same level of abstraction.
(2) Random strings may not be meaningless and also can carry

information, if they are considered as labels [23]. We can not
consider a program as a closed system with bounded amount of
information, because programs do not exist on their own, but in the
context of other programs and data.

(3) Information complexity is not the same as content. Higher complexity,
in fact, may mean lower content and vice versa.

4.2. Compression-based metric of abstraction increase

In this paper, Kolmogorov complexity is used to estimate the abstraction
increase. Usually, the universal compression algorithms are used to give an
upper bound to Kolmogorov complexity. Suppose that we have a
compression algorithm Ci. Then, a shortest compression of w in the
description system φ will give the upper bound to information content in x:

())}({min wii
CxK ϕϕ ≤ (2)

As abstraction hides the complexity, abstraction of an object x in a
description system φ can be defined as an inverse of complexity of x
estimated in terms of Kolmogorov complexity:

() ()xK
xA

ϕ
ϕ

1
= (3)

The increase of abstraction level between a program φw that is a
representation of x in a description system φ, and a program ψw, that is a
representation of x in a description system ψ at a higher level of abstraction
can be defined as follows:

() ()
)(

|
xK
xK

A
ψ

ϕϕψ = (4)

Having in mind Eq. 2 and that a metaprogram MP is a concise
representation of a component family λ, which is a union of all its members Pj,

Robertas Damaševičius

60 ComSIS Vol. 3, No. 1, June 2006

we estimate the increase of abstraction level A in a metaprogram as
compared to a domain program as follows:

() ()λ
λ

λλ

MPC

PC
PMPA

ii

j
jii

min

min
|

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
U

 (5)

where Ci is a compression algorithm.

In the next Section, we demonstrate how compression algorithm based on

Kolmogorov complexity metric can be used to evaluate information content
and, consequently, the raise of abstraction introduced by the application of
metaprogramming techniques in hardware and embedded systems design
domain.

5. Empirical evaluation of abstraction increase in
metaprogramming

In hardware and embedded systems design domain, a great number of
similar domain entities exist. For example, the most-widely used hardware
library components are gates (see Fig. 2), which implement a particular
logical function. The hardware designer requires many different gate
components implementing different functions and having a different number of
inputs. All these components are very similar to each other both syntactically
and semantically, thus their constitute a component family.

 entity gate is
 port (X1, X2 : in bit; Y : out bit);
end gate;

architecture behave_gate of gate is
 begin
 Y <= X1 and X2;
end behave_gate;

entity gate is
 port (X1, X2, X3 : in bit; Y : out bit);

end gate;

architecture behave_gate of gate is
 begin
 Y <= X1 or X2 or X3;
end behave_gate;

Fig. 2. Instances of gate component family (in VHDL): a) 2-input AND gate, and b) 3-
input OR gate

The content of information in component families can be estimated using
the compression-based information content metric. We have selected the
BWT (Burrows-Wheeler Transform) compression algorithm, because
currently it allows to achieve best compression results for text-based
information [24] and thus better approximate information content. The lowest

On the Quantitative Estimation of Abstraction Level Increase in Metaprograms

ComSIS Vol. 3, No. 1, June 2006 61

size of the compressed components will put the upper limit on the estimated
information quantity in the analyzed component family.

Next, we develop a metaprogram, which describes a component family at a
higher level of abstraction. For example, the identified generic parameters
and their values for the gate component family are as follows:

Gate_function = { AND, OR, XOR, NAND, NOR, XNOR }
Gate_inputs = { integer numbers from 2 to 16 }

A metaprogram (see Fig. 3) was developed using Open PROMOL [17]

metalanguage. This metaprogram describes a generic gate and covers a
family of 90 different component instances, which can be generated from it.

$
"Enter gate function: " {and, or, xor, nor, nand, xnor} f := and;
"Enter number of inputs:" {2..16} num := 2;
$
entity gate is
 port (@gen[num,{, }] : in bit; Y : out bit);
end gate;

architecture behave_gate of gate is
 begin
 Y <= @gen[num, { @sub[f] }];
end behave_gate;

Fig. 3. Generic gate described using Open PROMOL metalanguage

Then, we evaluate the content of information at a higher level (metalevel) of
abstraction. We again compress the developed metaprogram using a
selected compression algorithm, which in our case is BWT. The lowest size of
the compressed metaprogram will put the upper limit on the estimated
information content at the metalevel.

The increase of abstraction between metalevel and domain level shall be
the ratio of estimated information content at the metalevel and domain level,
as stipulated in Eq. 5. For example, the size of the metaprogram given in Fig.
3 is 291B. The size of the metaprogram compressed using the BWT algorithm
is 245B, which is the estimated quantity of information at metalevel. Next, we
generate all instances of this metaprogram for all possible values of the
generic parameters f and num. We obtain 90 different component instances
(2 of them are given in Fig. 2, a & b). The total size of these instances is
21,426B when uncompressed and 726B after compression. Next, we apply
Eq. 4 to obtain the estimated abstraction increase for the gate component
family:

Robertas Damaševičius

62 ComSIS Vol. 3, No. 1, June 2006

()

96.2
245
726

)(
===

gateK
gateK

A
meta

domain (6)

Thus, we estimate that the introduction of metaprogramming for describing
generic gate components using VHDL as a domain language and Open
PROMOL as a metalanguage allowed to increase abstraction by ~ 3 times.

We have performed the experiments with the following VHDL component
families and metaprograms: gate, RSA coding processor, serial multiplier,
register, shift register, multiplexer, and majority function for voting in fault-
tolerant systems. We also have performed the experiments with the DSP
algorithms implemented as embedded software in C as follows: DCT, FFT,
Romberg integration, Chebyshev approximation and Taylor series expansion
of popular mathematical functions. The results are summarized in Table 1.

The statistical evaluation of the obtained results for abstraction increase
(mean = 2.9; std. deviation = 0.992; std. error = 0.286) was performed using
one-sample Student’s t-test. The mean is within 95% confidence interval.

Table 1. Summary of experiments

Compo-
nent

family

No. of
instan-

ces

No. of
generic
para-

meters

Total
source

code size,
B

Est.
information
quantity at

domain
level, B

Meta-
program
size, B

Est.
information
quantity at
metalevel,

B

Abs-
traction

inc-
rease

Gate 90 2 21,426 726 291 245 2.96
RSA 32 2 1,517,027 72,701 254,049 27,295 2.66
Serial
multiplier

10 1 96,849 3,497 7,198 1,827 1.91

Register 1024 6 2,380,336 1,803 1,384 827 2.18
Shift
register

72 5 38,800 1,178 2,896 786 1.50

Mux 54 4 48,636 3,107 1,848 1,625 1.91
Majority 192 2 240,345 1,940 1,017 529 3.67
DCT 14 2 5242 655 941 469 1.40
FFT 6 1 32,956 2,112 1989 394 5.36
Romberg
integration

5 1 34,905 1,713 457 313 5.47

Taylor
series

240 3 43,552 2,017 869 679 2.97

Chebyshev
approx.

8 1 7,905 912 464 331 2.76

The content (or quantity) of information has decreased by 2.9 times on

average in metaprograms as compared with domain program families. This
number varies depending upon the type and size of components, the number
of component instances in a component family, the number of generic
parameters in a metaprogram, similarity of components within a component
family, and syntactic characteristics of domain language and metalanguage.

In general, we estimate that the level of abstraction in metaprograms is
about 3 times higher than the level of abstraction in domain programs.

On the Quantitative Estimation of Abstraction Level Increase in Metaprograms

ComSIS Vol. 3, No. 1, June 2006 63

6. Conclusions and Future work

In this paper, we have analyzed information content in higher-level
programs (metaprograms) and compared it with information content in lower-
level (domain) program families. We have proposed to estimate the
abstraction level of a program as an inverse of its complexity as defined by
Kolmogorov Complexity metric measured using a standard text compression
algorithm. Based on the performed experiments, we estimate that
metaprogramming decreases information content and thus increases the level
of abstraction in analyzed domains by approx. 3 times.

Future work will focus on the estimation of component similarity using
information content metrics. The more similar are software components, the
more easily they can be generalized when developing generic components
and thus the level of abstraction and reuse can be raised.

7. References

1. Albin, S.T.: The Art of Software Architecture: Design Methods and Techniques.
Willey. (2003)

2. Liu, X., Yang, H., Zedan, H., Cau, A.: Speed and scale up software reengineering
with abstraction patterns and rules. In Proceedings of International Symposium on
Principles of Software Evolution, 90-99. (2000)

3. Glass, R.L.: Sorting out software complexity. In Source Communications of the
ACM archive, Vol. 45, No. 11, 19 - 21. (2002)

4. Taha, W., Crosby, S., Swadi, K., A New Approach to Data Mining for Software
Design. In Proceedings of the Int. Conf. on Computer Science, Software
Engineering, Information Technology, e-Business, and Applications (CSITeA’04),
Cairo, Egypt. (2004)

5. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applications.
Springer Verlag. (1997)

6. Evans, S., Bush, S. F., Hershey, J.: Information Assurance through Kolmogorov
Complexity. DARPA Information Survivability Conference and Exposition II
(DISCEX-II 2001), June 12-14, 2001, Anaheim, California. (2001)

7. Bush, S. F., Hughes, T.: On The Effectiveness of Kolmogorov Complexity
Estimation to Discriminate Semantic Types. SFI Workshop: Resilient and Adaptive
Defense of Computing Networks 2003, Santa Fe, NM, USA. (2003).

8. Gács, P., Tromp, J. T., Vitányi, P.: Algorithmic Statistics. IEEE Transactions On
Information Theory, Vol. 47, No. 6, September 2001, 2443-2463. (2001)

9. Chen, X., Francia, B., Li, M., Mckinnon, B., Seker, A.: Shared Information and
Program Plagiarism Detection. IEEE Trans. Information Theory, July 2004, pp.
1545-1550. (2004)

10. Keogh, E., Lonardi, S., Ratanamahatana, C.A.: Towards Parameter-Free Data
Mining. In Proceedings of the 10th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, Seattle, Washington, USA, 206-215. (2004)

11. Campani, C.A.P., Menezes, P.B.: On the Application of Kolmogorov Complexity to
the Characterization and Evaluation of Computational Models and Complex
Systems. In Proceedings of the Int. Conf. on Imaging Science, Systems and
Technology (CISST'04), Las Vegas, Nevada, USA, 63-68. (2004)

Robertas Damaševičius

64 ComSIS Vol. 3, No. 1, June 2006

12. Veldhuizen, T.: Software Libraries and Their Reuse: Entropy, Kolmogorov
Complexity, and Zipf’s Law. To be published.

13. Kiczales, G.: Aspect-oriented programming. In Proceedings of 27th International
Conference on Software Engineering (ICSE 2005), 15-21 May 2005, St. Louis,
Missouri, USA. pp. 730. (2005)

14. Ousterhout, J.K.: Scripting: Higher Level Programming for the 21st Century. IEEE
Computer 31(3), 23-30. (1998)

15. Štuikys, V., Damaševičius, R.: Metaprogramming Techniques for Designing
Embedded Components for Ambient Intelligence. In Basten, T., Geilen, M., de
Groot, H. (eds.): Ambient Intelligence: Impact on Embedded System Design.
Kluwer Academic Publishers, Boston, 229-250. (2003)

16. Czarnecki, K., Eisenecker U.: Generative Programming: Methods, Tools and
Applications. Addison-Wesley. (2000)

17. Štuikys, V., Damaševičius, R., Ziberkas, G.: Open PROMOL: An Experimental
Language for Target Program Modification. In Mignotte, A., Villar, E., Spruiell, L.S.
(eds.): System-on-Chip Design Languages. Kluwer Academic Publishers. (2002)

18. Mellor, S. J., Clark, A. N., Futagami, T.: Guest Editors' Introduction: Model-Driven
Development. IEEE Software 20(5), 14-18. (2003)

19. Batory, D.: Product-Line Architectures. Invited Presentation, Smalltalk and Java in
Industry and Practical training, Erfurt, Germany, October, 1998, 1-12. (1998)

20. Dembski, W.A.: Intelligent Design as a Theory of Information. Intervarsity Press.
(1999)

21. Edmonds, B.: Syntactic Measures of Complexity. Doctoral Thesis, University of
Manchester, Manchester, UK. (1999)

22. Griffiths, T.L., Tenenbaum, J.B.: From algorithmic to subjective randomness. In
Advances in Neural Information Processing Systems 16. (2004)

23. Feynman, R.: Feyman Lectures on Computation, Perseus Pub. (1996).
24. Manzini, G.: The Burrows-Wheeler Transform: Theory and Practice. Lecture Notes

in Computer Science, Vol. 1672, 34-47. Springer Verlag. (1999).

Robertas Damaševičius graduated at the Faculty of Informatics, Kaunas
University of Technology in Kaunas in 1999, where he received a B.Sc.
degree. He finished his M.Sc. studies in 2001, and he completed his Ph.D.
thesis at the same University in 2005. Currently, he lectures in several
computer science and programming courses in Kaunas University of
Technology. His research interests include hardware design, generative
programming, program generators and metaprogramming. He is the author or
co-author of over 25 papers in the area.

