
UDC 004.492

Common Web Application Attack Types and
Security Using ASP.NET

Bojan Jovičić1, Dejan Simić1

1FON – Faculty of Organizational Sciences, University of Belgrade
P. O. Box 52, Jove Ilića 154, 11000 Belgrade, Serbia and Montenegro

bojan.jovicic@gmail.com, dsimic@fon.bg.ac.yu

Abstract. Web applications security is one of the most daunting tasks
today, because of security shift from lower levels of ISO OSI model to
application level, and because of current situation in IT environment.
ASP.NET offers powerful mechanisms to render these attacks futile, but
it requires some knowledge of implementing Web application security.
This paper focuses on attacks against Web applications, either to gain
direct benefit by collecting private information or to disable target sites. It
describes the two most common Web application attacks: SQL Injection
and Cross Site Scripting, and is based on author’s perennial experience
in Web application security. It explains how to use ASP.NET to provide
Web applications security. There are some principles of strong Web
application security which make up the part of defense mechanisms
presented: executing with least privileged account, securing sensitive
data (connection string) and proper exception handling (where the new
approach is presented using ASP.NET mechanisms for centralized
exception logging and presentation). These principles help raise the bar
that attacker has to cross and consequently contribute to better security.

1. Introduction

The security of information systems is a wide area. Its development followed
that of information systems, whose development in turn followed advances in
hardware. As computers and software have developed real fast: "To put it
quite bluntly: as long as there were no machines, programming was no
problem at all; when we had a few weak computers, programming became a
mild problem, and now we have gigantic computers, programming had
become an equally gigantic problem." [1], so have developed the possibilities
for security breaches.

Security and protection are very important areas of computers science and
IT industry. One way to describe this area is: "Security can be defined as set
of methods and techniques which control data accessed by executing
applications. Even wide definition includes a set of methods, techniques and
legal standards which control data access by applications and humans, and
protect the physical integrity of whole computer system, no matter if it is
distributed or not, or if it is centralized or decentralized." [2].

Bojan Jovičić, Dejan Simić

84 ComSIS Vol. 3, No. 2, December 2006

According to the American Computer Security Institute (CSI)’s 2005
Computer Crime and Security Survey, which enclosed big corporations, 56%
of the subjects reported the detection of unauthorized use of their computer
systems in last year. Also, according to the same survey, more than 95% of
responding organizations experienced more than 10 Web site incidents. [3].

Today IT security has many sub areas focusing on different aspects of
security, from lower levels of ISO OSI model, all the way to the application
layer. Since security in lower levels has made significant improvements in
past time, hackers try to get their way into system using the topmost layer.
The application layer is specially exposed when used on the Internet in the
form of the Web applications.

This paper will try to shed some light on making the Web applications more
secure, since this area is mostly the responsibility of developer or is an effect
of joint effort of developers and administrators.

2. Web application security

As digital enterprises embrace benefits of e-business, Web technology usage
will continue to grow. Companies today use the Web as CRM (Customer
Relationship Management) channel, as the means of improving supply
chains, means of entrance in new markets, and for delivering products and
services to customers and employees. However, successful implementation
using Web technologies cannot be attained without consistent approach to the
Web application security. In considering the Web application security,
corporations often don’t consider the following [4]:

• Today the hackers are one step ahead of enterprise (hackers use the

newest „out of the box“ applications, while companies have problems with
setting base security measures)

• It is not a question of IF your site will be attacked, but WHEN.
• Passwords are not enough (don’t use the passwords based on publicly

available data about you, but use strong passwords)
• SSL and data encryption are not enough (SSL guarantees secrecy of

traffic, but does not protect from Web application misuse)
• Firewalls are not enough (port 80 or port 443 are enough for an attacker)
• Standard scanning programs are not enough (these programs scan for

standard mistakes, and can not evaluate security by checking contents of
the Web application)

• A chain is as strong as it’s weakest link
• It’s in the code (most commonly the security neglect is in code, because

applications are implemented by the unprofessional developers, or the
developers that don’t pay much attention to security, since primary
concerns are often speed and implementation of the required
functionalities)

Common Web Application Attack Types and Security Using ASP.NET

ComSIS Vol. 3, No. 2, December 2006 85

• Manipulating a Web application is simple (plain Web browser and some
determination are enough)

If it is in the code, then the coder needs to know how to code properly, or in

security context, how to code defensively. A definition of defensive
programming is given in [5]: Defensive programming doesn’t mean being
defensive about your programming – “It does so work!“ The idea is based on
defensive driving. In defensive driving, you adopt the mind-set that you’re
never sure what the other drivers are going to do. That way, you make sure
that if they do something dangerous you won’t be hurt. You take responsibility
for protecting yourself even when it might be the other driver’s fault. In the
defensive programming, the main idea is to handle all possible errors
including the errors in other cooperative routines or programs. More generally,
it’s the recognition that programs will have problems and modifications, and
that a smart programmer will develop code accordingly.

3. Common Web application attack types

Bellow is the list of some of the most common Web attack types:

• SQL Injection (a security vulnerability that occurs in the database layer of

an application)
• Cross-Site Scripting (causes a user's Web browser to execute a malicious

script)
• Web site defacement (occurs when a hacker breaks into a web server and

alters the hosted website or creates one of his own)
• Buffer Overflow (hackers exploit buffer overflows by appending executable

instructions to the end of data and causing that code to be run after it has
entered memory)

• DOS (Denial Of Service - an assault on a network that floods it with so
many additional requests that regular traffic is either slowed or completely
interrupted)

• Password Cracking (the process of recovering secret passwords from data
that has been stored in or transmitted by a computer system, typically, by
repeatedly verifying guesses for the password)

This list can probably be a lot longer, but this work concentrates on the two

first listed items. These two Web attacks are listed in the top ten most critical
web application security vulnerabilities [6]. According to the statistical analysis
of results obtained from the numerous application level penetration tests
performed by the Imperva experts for various customers over the years 2000 -
2003., SQL Injection makes 10% and Cross-Site Scripting makes 9% of the
attack types [7].

Bojan Jovičić, Dejan Simić

86 ComSIS Vol. 3, No. 2, December 2006

Another common thing for these two types of attack is that both can be
prevented by a developer. Some of the principles of good coding practice
presented in this paper can be used to help prevent some other attack types
listed here.

3.1. Sql Injection

The basic idea behind SQL Injection attack is abusing Web pages which
allows users to enter text in form fields which are used for database queries.
Hackers can enter a disguised SQL query, which changes the nature of the
intended query. Hence the queries can be used to access the connected
database and change or delete its data. Although protection from this kind of
attack is very simple (especially using Microsoft.NET technologies), there is a
big number of Internet systems which are vulnerable to this kind of attack.

SQL query generated by concatenation of the static part of the query and
values intended for form fields is the base of this attack. For example, if there
is a field for entering the username (tbUser) and a field for entering the
password (tbPassword) and we perform authentication in the following
manner:

string Query = "SELECT COUNT(*) FROM [User] WHERE
Username = '" + tbUser.Text + "' AND Password = '" +
tbPassword.Text + "'";

SqlCommand Command = new SqlCommand(Query, Connection);

if ((int) Command.ExecuteScalar() > 0)

 ...

It is enough for a malicious user to enter disguised SQL query in the
username field, like:

' OR 1=1 --

This would turn the database query into:

SELECT COUNT(*) FROM [User] WHERE Username = '' Or 1 = 1
--' AND Password = ''

Since -- marks beginning of comment line in SQL (The comment operator „-
-” is supported by many relational database servers, including Microsoft SQL
Server, IBM DB2, Oracle, PostgreSQL, and MySql [8]), this query is
equivalent to

Common Web Application Attack Types and Security Using ASP.NET

ComSIS Vol. 3, No. 2, December 2006 87

SELECT COUNT(*) FROM [User] WHERE Username = '' Or 1 =
1

Since 1=1 always evaluates to true, this query will always return more than
0 rows, if there are records in table, so that malicious user can easily
authenticate with invalid credentials.

For this kind of attack, it is not necessary that parameters are passed by
POST form method. If the query is formed based on the parameters passed in
GET request, and is created using concatenation, the effect is the same.

Besides this kind of misuse, SQL Injection can be used for getting sensitive
data from database, updating/deleting data, and other kind of malversations.

If the malicious user wants to gather extra data from database, he can use
union SQL operator (UNION). This kind of information extracting is especially
devastating if the user is familiar with database structure, because if he is not,
he will have to gather extra data about database structure from system tables.
Syntax for this kind of SQL Injection would be something like this:

' UNION SELECT ...,id,name,... FROM sysobjects WHERE
xtype = 'U' --

Here ... should be replaced with literals which are needed to match number
and data type of columns. If a hacker discovers that there is a table Users
(and often there is), next step could be retrieval of the usernames and
passwords:

' UNION SELECT ..., Username, Password,... FROM [User]
--

Again the matching of number and data type of columns is required.

Updating is possible using SQL Injection like:

'; UPDATE Product SET UnitPrice = 0.01 --

This would set false prices to all products, although a smart hacker would

lower the price to just one product, order it, and then return the original price.
In the same fashion, the hackers can delete whole tables (using DROP
command).

The hackers can run system stored procedures, as xp_cmdshell.
xp_cmdshell is one of the most dangerous stored procedures, since it
executes given command on the server (the machine, not DBMS). Perhaps
equally powerful in this context is stored procedure sp_makewebtask. It puts

Bojan Jovičić, Dejan Simić

88 ComSIS Vol. 3, No. 2, December 2006

query result in the given web page. This page can use UNC pathname as an
output location. This means that the output file can be placed on any system
connected to the Internet that has a publicly writable SMB share on it (The
SMB request must generate no challenge for authentication at all) [9].

The degree of possible damage depends on the access rights defined for
the account used to access database. It is a good rule to use an account with
the least privileges. However, this rule is rarely used, since the most
applications use the system administrator database account.

It is very important to understand that this kind of attack is not limited to
SQL Server. The more powerful SQL dialect DBMS supports, the more
vulnerable the database to this kind of attack is. SQL Injection attacks are not
limited to ASP.NET applications. Classical ASP, Java, JSP, and PHP
applications are at equal risk [10].

Protection from this kind of attack includes the following principles [10][11]:

"All input is evil"

Never use input for database queries that is not validated. Here ASP.NET

helps with regular expression validation control: RegularExpressionValidator.
To use this controls, it is enough to set its attributes for which control to
validate, and which regular expression to use for validating. It is important to
note that validation is performed on both client (using JavaScript) and server
side, so no postback overload is generated during invalid postback attempts.

This kind of approach (validation restriction) is possible in two forms: by
forbidding problematic characters, or by allowing a limited set of required
characters. Although the approach with forbidding problematic characters (ie.
apostrophe and dash) is easier for application, this approach is suboptimal for
two reasons: first, it is possible to miss the character that is useful to the
hackers, and second: often, there are multiple ways to represent problematic
characters [11]. The hackers can use the escape characters to create
apostrophe, and avoid validation. No matter which approach is applied, it is
very useful to limit the length of input, since some kinds of this attack require
very big number of characters.

For example, regular expression used for password and login fields with 4-
12 characters length could be:

[\d_a-zA-Z]{4,12}

If you sometimes have to allow entering of apostrophe, use Replace

method of String class:

string SanitizedUserInput = UserInput.Replace("'",
"''");

Avoid dynamic SQL

Common Web Application Attack Types and Security Using ASP.NET

ComSIS Vol. 3, No. 2, December 2006 89

Never generate SQL queries by concatenating strings, but rather use SQL

parameters. .NET provides classes for query parameters with automatic
control of parameter values, and provides safe work of application, even
without adhering to the first principle. These classes (in .NET there are more
of these classes for different data providers: SqlClient, OleDB, Oracle, Odbc)
perform control of passed values, so this kind of protection is an excellent
defense against SQL Injection attack. Our corrected code for querying could
look like this:

string Query = "SELECT COUNT(*) FROM [User] WHERE
UserName = @Username AND Password = @Password;

SqlCommand Command = new SqlCommand(Query, Connection);

Command.Parameters.Add(new SqlParameter("@Username",
tbUser.Text));

Command.Parameters.Add(new SqlParameter("@Password",
tbPassword.Text));

In this manner we are sure that .NET will perform all necessary checks and
conversions to prevent evil SQL query. More control can be added by
providing field length:

SqlParameter parUsername = new
SqlParameter("@Username", SqlDbType.VarChar, 20);

parUsername.Value = tbUser.Text;

Command.Parameters.Add(parUsername);

Next step should be replacing queries with stored procedures. Stored

procedures provide additional safety effect, since they are used with
parameters, and DB access account can be granted rights to use the stored
procedures instead of the rights to access tables directly. In this way the
extent of possible damage is greatly reduced.

Execute with the least privilege

Never use the database administrator account (which is usually a member

of System Administrator role), but use the special account with defined access
rights, or with membership in proper role with defined rights.

By declaring access rights on the stored procedures instead of tables, you
are giving hackers plenty of problems, since they can’t access tables directly,
but using the stored procedures.

Proper exception handling

Bojan Jovičić, Dejan Simić

90 ComSIS Vol. 3, No. 2, December 2006

Bad exception handling is one of the areas hackers will try to use,

especially in SQL injection, because it provides them with feedback which
greatly eases attack procedure. If Web application has proper exception
handling mechanism, this kind of attack turns into blind SQL injection attack.

This mechanism should provide minimum of information that could help
hackers, and should keep detailed info in different logs. There should be a
balance between messages helping an ignorant user and giving too much
information to hackers.

Setting Web applications for desired behavior in ASP.NET is very easy. It is
enough to set debug attribute in Web.config file to false, customErrors
attribute to On or RemoteOnly. Value On always shows defined error page,
while RemoteOnly allows local machine users to get detailed information
about errors, and remote ones get defined error page. You should never use
Off value in production.

Besides that, ASP.NET provides two more extremely useful mechanisms in
exception handling. One of them is the possibility to define a custom page to
display errors. This page will replace the default ASP.NET error page (known
as "yellow screen of death" in ASP.NET developer community). This page can
contain a friendly message and a form where users can describe actions that
brought to the error generation. This page is set using defaultRedirect
attribute of element in Web.Config file.

Other equally powerful mechanism is application centralized exception
handling of all unhandled exceptions. By implementing Application_OnError
method you get the possibility to examine each unhandled exception. This
method is implemented in Global.asax file, which contains all global
application events.

In this paper proposed approach for best exception handling is combining
these two mechanisms so you can log the exception and then show the
custom error page. In this manner you get both the system error description,
plus user description of actions that caused the exception.

Store secrets securely

It is very easy to use SQL injection to retrieve data from tables which hold

usernames and passwords. This table often has its data in clear text. Much
better approach is to keep data encrypted or hashed. In case of passwords,
hash is better, since it can’t be decrypted, and there is no need for securing
the key used for encryption. Hash can be additionally reinforced by applying
salt (cryptographically safe random value) to hash. Hashing in .NET is
performed using GetNonZeroBytes method of RNGCryptoServiceProvider
class for generating cryptographically safe random value. Then this value is
turned into Base64 string using ToBase64String method of Convert class.
After joining secret and salt, we apply some of hashing algorithms to this
string (.NET contains implementations of following hashing algorithms: MD5,
SHA1, SHA256, SHA384 and SHA512).

Common Web Application Attack Types and Security Using ASP.NET

ComSIS Vol. 3, No. 2, December 2006 91

Although not directly connected with SQL Injection attack, connection string
protection (being some of the most sensitive data) is very important,
especially if it contains password for DB access. Since there is a need for the
decrypted version of connection string, hashing is not an option. Usual place
for keeping connection string are configuration files (Web.Config in ASP.NET
applications). As with every encryption/decryption, the problem is safety of the
key used in this process. One of solutions to this problem is the Win32® Data
Protection API (DPAPI) for encrypting and decrypting data [13].

DPAPI is particularly useful in that it can eliminate the key management
problem exposed to applications that use cryptography. While the encryption
ensures the data is secure, you must take additional steps to ensure the
security of the key. DPAPI uses the password of the user account associated
with the code that calls the DPAPI functions in order to derive the encryption
key. As a result the operating system (and not the application) manages the
key. It also supports adding additional entropic value, for reinforcing the key.

3.2. Cross-Site Scripting

CSS (Cross-Site Scripting) or XSS is possible with dynamic pages showing
the input that is not properly validated. This allows the hacker to inject the
malicious JavaScript code in a generated page and execute the script on a
computer of any visitor of that Web site. Cross-site scripting could potentially
impact any site that allows users to enter data. This vulnerability is commonly
seen on:

• Search engines that echo the search keyword that was entered,
• Error messages that echo the string that contained the error,
• Forms that are filled out where values are later presented to the user, and
• Web message boards that allow users to post their own messages [14].

A hacker that successfully uses cross-site scripting can access sensitive
data, steal or manipulate cookies, create HTTP requests which can be
mistaken for those of a valid user, or execute malicious code on an end-user
system.

A typical CSS attack entails that the unsuspecting user follows a luring link
that embeds escaped script code. The fraudulent code is sent to a vulnerable
page that trustfully outputs it. Here's an example of what can happen:

<a
href="http://www.vulnerableserver.com/error.aspx?err=
<script>document.location.replace(
'http://www.hacker.com/HackerPage.aspx?Cookie=' +
document.cookie); </script>">Click here to win Master
Studies Scholarship!

Bojan Jovičić, Dejan Simić

92 ComSIS Vol. 3, No. 2, December 2006

The user clicks on an apparently safe link and ends on a vulnerable page
with a piece of script code that first gets all the cookies on the user's machine
and then sends them to a page on the hacker's Web site.

It is important to note that CSS is not a vendor-specific issue and doesn't
necessarily exploit holes in the Internet Explorer. It affects every Web server
and browser currently on the market. Even more important, note that there's
no single patch to fix it. You can surely protect your pages from CSS, you do
so by applying specific measures and sane coding practices [15].

You should be aware that and <a href> can also point to
script code, not just a “classic” URL. For example, the following is a valid
anchor:

Click here to win Master
Studies Scholarship!“

Note that there is no script block here. Other notable fact is that user
doesn’t actually need to click the link. The malicious code can be set in an
OnMouseOver event. The JavaScript alert method is often used to test for
CSS vulnerability.

Some Web pages echo text passed by URL parameters, i.e.

http://www.vulnerableserver.com/error.aspx?err=Nonexist
ing%20User

If this page echoes parameter value on the page, it is possible to inject the
malicious code instead of Nonexisting%20User.

A hacker has to study the HTML code of the target page, and try to
override page, to create more damage. The idea is to send data to an custom
address where this data will be saved:

</form><form action="login.aspx" method="post"
onsubmit="XSSimage = new
Image;XSSimage.src='http://www.hacker.com/' +
documents.forms(1).tbUsername.value + ':' +
document.forms(1).tbPassword.value;">

This code should be injected in typical login page. The first part of attack

code ("</form>") closes the original form, and the next part defines start of
a new form which encloses existing elements. The new form uses the same
attributes for the method and action of form, but has an additional attribute
OnSubmit added in form definition. This attribute sets instructions to be
executed when the user clicks submit button, and before sending the real
form request.

Common Web Application Attack Types and Security Using ASP.NET

ComSIS Vol. 3, No. 2, December 2006 93

The first command creates a new image object. The second one specifies
URL address of the image. Location will always start with an address of some
site, that the hacker has access to. The second part of URL will be values of
tbUsername and tbPassword fields, separated by colon. So, when the new
image object is created, which will happen when the user submits this typical
login form, a request will be secretly sent to address www.hacker.com. This
request will contain credentials of the user trying to login. Right after this
malicious request, real form submission will occur, so that user has no idea
that anything unusual happened. The hacker just needs to retrieve data from
his Web site.

Usually the hackers send enormous number of email messages, in which
they invite users to click the malicious link. From this huge number, certainly a
few users will click and become victims.

In order for CSS to be exploited, the user browser must allow some kind of
scripting language. Vulnerability to this kind of attack can be mitigated by the
proper filtering of user input. All alphanumerical data entered by user should
be URL encoded, and then displayed to the user. In this way "<" (less then)
would be converted to "<". Here ASP.NET helps with HtmlEncode method
of HttpServerUtility class. So the typical Cross-Site Scripting vulnerability test
code would be encoded as:

<script>alert('XSS')</script>

When this is presented in a page, it is totally harmless.
Besides this, ASP.NET performs automatic validation of the page to

prevent scripting attacks. This validation is present in ASP.NET since version
1.1. Validation is performed on objects of the QueryString, Form and Cookies
collections. The collection QueryString contains parameters passed through
URL, and the Form collection contains form objects, while the Cookies
collection contains cookies. This validation is active if the ValidateRequest
attribute of page is set to true, or if this attribute for the whole application is set
to true. By default, this is set to true for each page. This validation will reject
any potentially dangerous code which is passed as a request in above
mentioned collections, and will generate an exception.

From the end user aspect, the easiest solution to Cross-Site Scripting
problem would be to turning off the support for all scripting languages.
However this leads to loss of functionality of such a level, that some sites are
rendered useless. Even this measure can’t help if a hacker injects code in
URL, or enters it in existing form.

It is recommended for end users to take care how they are visiting new
Web sites. They should never click unknown links in email messages from
unknown senders. It is best to follow the links from main site, which has been
used before.

There are some attempts to create personal Web firewall application that
will mitigate cross-site scripting attacks. One of these is Noxes [16] which acts
as a Web proxy and uses both manual and automatically generated rules to

Bojan Jovičić, Dejan Simić

94 ComSIS Vol. 3, No. 2, December 2006

mitigate possible cross-site scripting attempts. Noxes effectively protects
against information leakage from the user’s environment while requiring
minimal user interaction and customization effort.

3.3 Tools for identifying Web application security holes

If a developer is not paying attention to security during development,
someone else (ie. IT professional or Systems Administrator) can use custom
tools in order to check if application has security breaches and inform the
developer about them. Some of the tools for Web application security analysis
are:

• SWAP (Secure Web Applications Project) [17]
• WebSSARI [18]
• WebInspect [19]

4. Conclusion

It is up to the developer to use provided mechanisms, and create safe code.
For the developers that aren’t into security there are some tools that can help
in Web application security analysis, but these tools only identify the problem,
they don’t eliminate it.

In order to eliminate application security problems the developers have to
pay attention to security and have to code securely. In this paper we have
shown that ASP.NET, and now ASP.NET 2.0, integrates a number of defense
mechanisms that can be easily applied:

• Classes for SQL parameters that prevent SQL injection,
• Automatic checking for CSS attack, and
• Custom error pages and centralized exception handling.

These mechanisms combined with other defense techniques and security

strategies create powerful toolset to secure application functionalities in the
Internet environment with minimal effort from the developer.

5. References

1. Dijkstra, E.: The Humble Programmer. ACM Turing Lecture (1972)
2. Simic, D.: Materials from lectures for post graduate studies of "Security techniques

in computer networks". Faculty of Organizational Sciences, Belgrade (2005)
3. Lawrence, G. et al.: CSI/FBI Computer Crime and Security Survey. Computer

Security Institute (2005). [Online]. Available:
http://www.usdoj.gov/criminal/cybercrime/FBI2005.pdf (current 2005)

Common Web Application Attack Types and Security Using ASP.NET

ComSIS Vol. 3, No. 2, December 2006 95

4. Sima, C.: Security at the Next Level. SPI Dynamics (2004). [Online]. Available:
http://www.spidynamics.com/whitepapers/webappwhitepaper.pdf (current 2004)

5. McConnell, S.: Code Complete, 2nd edition. Microsoft Press, 187-213. (2004)
6. The Open Web Application Security Project: The Ten Most Critical Web

Application Security Vulnerabilities. The Open Web Application Security Project
(2004). [Online]. Available: http://www.owasp.org/documentation/topten.html
(current 2004)

7. Surf, M., Amichai, S.:How safe is it out there?. IMPERVA (2004). [Online].
Available:
http://www.imperva.com/application_defense_center/papers/how_safe_is_it.html
(current 2004)

8. Howard, M., LeBlanc, D.: Writing Secure Code, 2nd edition. Microsoft Press
(2003)

9. Spett, K.: SQL Injection. SPI Dynamics (2002). [Online]. Available:
http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf (current 2002)

10. Litwin, P.: Data Security: Stop SQL Injection Attacks Before They Stop You.
MSDN Magazine (September, 2004)

11. Advosys Consulting Inc.: Writing Secure Web Applications. Advosys Consulting
Inc (March, 2004)

12. World Wide Web Consortium: Character entity references in HTML 4. World Wide
Web Consortium (2006). [Online]. Available: http://www.w3.org/TR/REC-
html40/sgml/entities.html (current 2006)

13. Meier , J.D. et al.: Building Secure ASP.NET Applications: Authentication,
Authorization, and Secure Communication. Microsoft Patterns and Practices.
Microsoft Corporation, 354-362. (2002)

14. Spett, K.: Cross-Site Scripting. SPI Dynamics (2002). [Online]. Available:
http://www.spidynamics.com/whitepapers/SPIcross-sitescripting.pdf (current 2002)

15. Esposito, D.: Take Advantage of ASP.NET Built-in Features to Fend Off Web
Attacks. Wintellect (2005). [Online]. Available:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnaspp/html/securitybarriers.asp (current 2005)

16. Kirda, E. et al.: Noxes: A Client-Side Solution for Mitigating Cross-Site Scripting
Attacks. ACM (2006)

17. Scott, D., Sharp, R.: Developing Secure Web Applications. IEEE Computer
(November/December 2002)

18. Huang, Y.W. et al.: Securing Web Application Code by Static Analysis and
Runtime Protection. ACM (2004)

19. SPI Dynamics: WebInspect™ - Your Web Security Partner (2006). [Online].
Available: http://www.spidynamics.com/products/webinspect/ (current 2006)

Bojan Jovičić, Dejan Simić

96 ComSIS Vol. 3, No. 2, December 2006

Bojan Jovicic is a MSc student at FON – Faculty of Organizational Sciences,
University of Belgrade. He is working at DELTA SPORT as a Sr. Software
Developer, mostly in .NET and MS Dynamics AX.

Bojan Jovicic holds Microsoft Certified Professional, Microsoft Certified
Application Developer and Microsoft Certified Solution Developer title in .NET.
He also holds the title of Microsoft Business Solutions Certified Professional in
Axapta 3.0 Programming. Bojan has created over 30 web applications, some
of them reaching over 6000 visits per day.

His interests are Web application development and security, MS Dynamics
AX development and business process management.

Dejan Simic, PhD, is a professor at the Faculty of Organizational Sciences,
University of Belgrade. He received the B.S. in electrical engineering and the
M.S. and the Ph.D. degrees in Computer Science from the University of
Belgrade. His main research interests include: security of computer systems,
organization and architecture of computer systems and applied information
technologies.

