
DOI: 10.2298/CSIS111220024T

Indexing Ordered Trees for (Nonlinear) Tree
Pattern Matching by Pushdown Automata

Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

Faculty of Information Technology
Czech Technical University in Prague

Thákurova 9, 160 00 Prague 6, Czech Republic
{Jan.Travnicek, Jan.Janousek, melichar}@fit.cvut.cz

Abstract. Trees are one of the fundamental data structures used in Com-
puter Science. We present a new kind of acyclic pushdown automata, the
tree pattern pushdown automaton and the nonlinear tree pattern push-
down automaton, constructed for an ordered tree. These automata accept
all tree patterns and nonlinear tree patterns, respectively, which match the
tree and represent a full index of the tree for such patterns. Given a tree
with n nodes, the numbers of these distinct tree patterns and nonlinear
tree patterns can be at most 2n−1+n and at most (2+ v)n−1+2, respec-
tively, where v is the maximal number of nonlinear variables allowed in
nonlinear tree patterns. The total sizes of nondeterministic versions of the
two pushdown automata are O(n) and O(n2), respectively. We discuss
the time complexities and show timings of our implementations using the
bit-parallelism technique. The timings show that for a given tree the run-
ning time is linear to the size of the input pattern.

Keywords: Tree pattern matching, nonlinear tree pattern matching, index-
ing trees, pushdown automata

1. Introduction

Trees are one of the fundamental data structures used in Computer Science.
Finding occurrences of tree patterns in trees is an important problem with many
applications such as compiler code selection, interpretation of nonprocedural
languages, implementation of rewriting systems, or various tree finding and
tree replacement systems. Tree patterns are trees in which leaves can be la-
belled also by a special linear variable S, which serves as a placeholder for any
subtree. Nonlinear tree patterns can further contain leaves labelled by specific
nonlinear variables, where each of nonlinear variables represents a specific
subtree. Nonlinear tree pattern matching is used especially in the implementa-
tion of term rewriting systems, in which the terms can be represented as tree
structures with nonlinear variables.

Generally, there exist two basic approaches to pattern matching problems.
The first approach is represented by the use of a pattern matcher which is con-
structed for patterns. In other words, the patterns are preprocessed. Given a



Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

tree of size n, such tree pattern matcher typically perform the search phase
in time linear in n [15, 6, 12, 24]. This approach is suitable for cases when one
wants look for occurrences of a given pattern in input subject structures. The
second basic approach is represented by the use of an indexing data struc-
ture constructed for the subject in which we search. In other words, the sub-
ject is preprocessed. Examples of such indexing structures are suffix or factor
automata [9, 10, 22, 25] in the area of string processing or subtree pushdown
automaton [18], which represents a complete index of an ordered tree for sub-
trees. This approach is suitable especially for cases when one wants look for
occurrences of different input patterns in a given subject structure.

The theory of formal tree languages have been extensively studied and de-
veloped since the 1960s and its main models of computation are various kinds
of tree automata [14, 6, 8]. However, trees can also be represented as strings,
for example in their prefix (also called preorder) or postfix (also called pos-
torder) notation. A linear notation of a tree can be obtained by the corresponding
traversing of the tree. Moreover, every sequential algorithm on a tree traverses
nodes of the tree in a sequential order and so follows a linear notation of the
tree. [20] proves that the deterministic pushdown automaton (PDA) is an appro-
priate model of computation for labelled ordered trees in linear notation and that
the trees in postfix notation acceptable by deterministic PDA form a proper su-
perclass of the class of regular tree languages [14], which are accepted by finite
tree automata. Recently, pushdown automata gain a popularity in solving prac-
tical problems of processing trees, for example in processing XML documents
[13].

In this paper we present a new kind of acyclic pushdown automata for an
ordered tree. The tree pattern pushdown automaton and the nonlinear tree pat-
tern pushdown automaton represent a complete index of the tree for tree pat-
terns and nonlinear tree patterns, respectively, and accept all tree patterns and
nonlinear tree patterns, respectively, which match the tree. Given a tree with n

nodes, the numbers of distinct tree patterns and nonlinear tree patterns which
match the tree can be at most 2n−1+n and at most (2+ v)n−1+2, respectively,
where v is the maximal number of distinct nonlinear variables allowed in nonlin-
ear tree patterns. We describe the construction of nondeterministic (nonlinear)
tree pattern pushdown automata and discuss their time and space complexi-
ties. We are not aware of any other existing pushdown automaton which would
represent such an index. The presented nondeterministic pushdown automata
are input–driven and therefore can be determinised.

The presented (nonlinear) tree pattern pushdown automata have two kinds
of transitions. First, transitions reading symbols of the alphabet of labels of tree
nodes. Second, transitions reading the variables in (nonlinear) tree patterns. If
our pushdown automata have only the former transitions, they would be anal-
ogous to string nondeterministic suffix or factor automata. Efficient methods
of implementing nondeterministic string suffix automata by the bit–parallelism
technique are well-known [23]. The bit–parallelism technique can be also used
for the latter transitions efficiently. We describe our implementations using the

1126 ComSIS Vol. 9, No. 3, Special Issue, September 2012



Indexing Trees for Nonlinear Tree Pattern Matching

bit-parallel technique and show their timings. The timings show that the running
time is for a given tree linear to the size of the input (nonlinear) tree patterns,
which is a result similar to the result described in [23].

We note that the presented PDAs have only one pushdown symbol and
therefore can be easily transformed to counter automata, which are a weaker
and simpler model of computation than the PDA. We present the automata in
this paper as PDAs because the PDA is a more fundamental and more widely-
used model of computation than the counter automaton.

Since our pushdown automata accept finite languages, which correspond to
finite sets of various connected subgraphs of the tree, a finite automaton could
also be used instead of a pushdown automaton. However, such finite automaton
would have significantly more states than the PDA, in which the underlying tree
structure is efficiently processed by the pushdown store.

Early presentations of the tree pattern pushdown automaton and the non-
linear tree pattern pushdown automaton can be found in [21, 19] and [26], re-
spectively. This paper can be considered as an extended version of these pub-
lications.

The paper is organised as follows. The second section discusses related
works of existing (nonlinear) tree pattern matching algorithms. The third section
contains basic definitions. The fourth section is devoted to indexing trees for tree
pattern matching by pushdown automata. The fifth section describes indexing
trees for nonlinear tree pattern matching by pushdown automata. Section 6
deals with nonlinear tree pattern matching for more than one nonlinear variable
in nonlinear tree patterns. The seventh section describes our implementations
and show experimental results. The last section is a conclusion.

2. Related Works

Some algorithms for (nonlinear) tree pattern matching are known. All of them
use the approach which is represented by the preprocessing of the (nonlinear)
tree pattern. For tree pattern matching algorithms see [15, 6, 12].

Nonlinear tree pattern matching algorithm described in [24] reads the Euler
linear notation of both a subject tree and a nonlinear tree pattern. Euler notation
is a tree linear notation, which contains a node each time it is visited during the
preorder traversing of the tree. This means that every node appears exactly
1 + arity(node)-times in Euler notation. Our method presented in this paper
uses a standard tree prefix notation, which contains every node just once.

In [24] factors which represent some subtrees in a subject tree in Euler no-
tation are constructed. The standard Aho-Corasick automaton [1] is then con-
structed for these factors. The subject tree in Euler notation is processed by the
constructed Aho-Corasick automaton and a binary array is constructed for each
factor of the nonlinear tree pattern. Locations of factors of the input subject tree
in Euler notation are then transformed to arrays of ones and zeros, which de-
scribes locations of this factor in the subject tree in Euler notation. In this way
the nonlinear variables are matched.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1127



Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

3. Basic notions

We define notions on trees similarly as they are defined in [2, 14, 15].

3.1. Alphabet

An alphabet is a finite nonempty set of symbols. A ranked alphabet is a fi-
nite nonempty set of symbols each of which has a unique nonnegative arity
(or rank). Given a ranked alphabet A, the arity of a symbol a ∈ A is denoted
Arity(a). The set of symbols of arity p is denoted by Ap. Elements of arity
0, 1, 2, . . . , p are respectively called nullary (constants), unary, binary, . . ., p-ary
symbols. We assume that A contains at least one constant. In the examples
we use numbers at the end of identifiers for a short declaration of symbols with
arity. For instance, a2 is a short declaration of a binary symbol a.

3.2. Tree, tree pattern, nonlinear tree pattern

Based on concepts from graph theory (see [2]), a tree over an alphabet A can
be defined as follows:

An graph G is a pair (N,R), where N is a set of nodes and R is a set of
edges such that each element of R is of the form (f, g), where f, g ∈ N . This
element will indicate that, for node f , there is an edge between node f and
node g.

A directed graph G is a graph, where each element of R of the form (f, g)
indicates that, there is an edge leaving node f and entering node g. This edge
is ordered from f to g. An undirected graph G is a graph in which no such
ordering of edges is given.

A sequence of nodes (f0, f1, . . . , fn), n ≥ 1, is a path of length n from node
f0 to node fn if there is an edge which leaves node fi−1 and enters node fi
for 1 ≤ i ≤ n. A labelling of an ordered graph G = (N,R) is a mapping of N
into a set of labels. In the examples we use af for a short declaration of node f

labelled by symbol a.
A directed graph is connected if there exists a path from fu to fv for each

pair of nodes (fu, fv), u 6= v, of the graph.
A cycle is a path (f0, f1, . . . , fn) in which f0 = fn.
Given a node f of a directed graph, its out-degree is the number of distinct

pairs (f, g) ∈ R, where g ∈ N . By analogy, the in-degree of node f is the
number of distinct pairs (g, f) ∈ R, where g ∈ N .

A tree is a connected graph without any cycle. In this paper we assume that
the tree has at least one node. Any node of a tree can be selected as a root of
the tree. A tree with a root is called rooted tree.

A tree can be directed. A rooted and directed tree t is an acyclic connected
directed graph t = (N,R) with a special node r ∈ N , called the root, such that
(1) r has in-degree 0, (2) all other nodes of t have in-degree 1, (3) there is just
one path from the root r to every f ∈ N , where f 6= r.

Nodes of a directed tree with out-degree 0 are called leaves.

1128 ComSIS Vol. 9, No. 3, Special Issue, September 2012



Indexing Trees for Nonlinear Tree Pattern Matching

A labelled, (rooted, directed) tree is a tree having the following property: (4)
every node f ∈ N is labelled by a symbol a ∈ A, where A is an alphabet.

A ranked, (labelled, rooted, directed) tree is a tree labelled by symbols from
a ranked alphabet and out-degree of a node f labelled by symbol a ∈ A equals
to Arity(a). Nodes labelled by nullary symbols (constants) are leaves.

An ordered, (ranked, labelled, rooted, directed) tree is a tree where direct
descendants af1, af2, . . . , afn of a node af having an Arity(af ) = n are or-
dered.

Example 1. Consider a ranked alphabet A = {a2, a1, a0}. Consider an ordered,
ranked, labelled, rooted, and directed tree t1 = ({a21, a22, a03, a14, a05, a16,
a07}, R1) over A, where R1 is a set of the following ordered pairs:

R1 = {(a21, a22), (a21, a16), (a22, a03), (a22, a14), (a14, a05), (a16, a07)}.

Tree t1 in prefix notation is pref(t1) = a2 a2 a0 a1 a0 a1 a0.
Trees can be represented graphically, and tree t1 is illustrated in Figure 1.

a05

a03 a14 a07

a22 a16

a21

Fig. 1. Tree t1 from Example 1

A subtree of a tree t = (N,R) is any tree t′ = (N ′, R′) such that: (1) N ′ is
nonempty and contained in N , (2) R′ = A′ ×A′ ∩R, and (3) No node of A \A′

is a descendant of a node in A′.
The height of a tree t, denoted by Height(t), is defined as the length of the

longest path leading from the root of t to a leaf of t.
To define a tree pattern, we use a special nullary symbol S, not in alpha-

bet A, Arity(S) = 0, which is a variable and serves as a placeholder for any
subtree. A tree pattern is defined as a labelled ordered tree over an alphabet
A ∪ {S}. We will assume that the tree pattern contains at least one node la-
belled by a symbol from A. A tree pattern containing at least one symbol S will
be called a tree template.

A tree pattern p with k ≥ 0 occurrences of the symbol S matches a subject
tree t at node n if there exist subtrees t1, t2, . . . , tk (not necessarily the same) of
the tree t such that the tree p′, obtained from p by substituting the subtree ti for
the i-th occurrence of S in p, i = 1, 2, . . . , k, is equal to the subtree of t rooted
at n.

The nonlinear tree pattern can contain also other special nullary symbols –
nonlinear variables, not in alphabet A. These symbols serve as placeholders for

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1129



Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

specific subtrees. Every occurrence of a symbol X in a nonlinear tree pattern is
matched with the same subtree. A nonlinear tree pattern has to contain at least
one symbol from A. A nonlinear tree pattern which contains at least two equal
nonlinear variables will be called a nonlinear tree template.

A nonlinear tree pattern np with k ≥ 2 occurrences of a nonlinear variable
X matches a subject tree t at node n if there exists a subtree tX of the tree t

and subtrees t1, t2, . . . , tm (not necessarily the same) of the tree t such that the
tree np′, obtained from np by substituting the subtree tX for the i-th, 1 ≤ i ≤ k,
occurrences of X in np, and by substituting the subtree ti for the i-th occurrence
of S in p, i = 1, 2, . . . ,m, is equal to the subtree of t rooted at n.

Example 2. Consider a tree t1 = ({a21, a22, a03, a14, a05, a16, a07}, R1) from
Example 1, which is illustrated in Figure 1.

Consider a tree pattern p1 over A, p1 = ({a21, a02, a13, a04}, Rp1). Tree pat-
tern p1 in prefix notation os pref(p1) = a2 a0 a1 a0.

Rp1 = {((a21, a02), (a21, a13)), ((a13, a04))}

Consider a tree pattern p2 over A∪{S}, p2 = ({a21, S2, a13, S4}, Rp2). Tree
pattern p2 in prefix notation is pref(p2) = a2 S a1 S. Note that symbol S can
occur in a nonlinear tree pattern and it serves as a linear variable.

Rp2 = {(a21, S2), (a21, a13), (a13, S4)}

Consider a nonlinear tree pattern p3 over A ∪ {S,X}, p3 = ({a21, X2, a13,
X4}, Rp3). Nonlinear tree pattern p3 in prefix notation is pref(p3) = a2 X a1 X .

Rp3 = {(a21, X2), (a21, a13), (a13, X4)}

Tree patterns p1, p2 and p3 are illustrated in Figure 2. Tree pattern p1 has
one occurrence in tree t1 – it matches at node 2 of t1. Tree pattern p2 has two
occurrences in tree t1 – it matches at nodes 1 and 2 of t1. Nonlinear tree pattern
p3 has one occurrence in tree t1 – it matches at node 2 of t1.

a04

a02 a13

a21

S4

S2 a13

a21

X4

X2 a13

a21

Fig. 2. Tree pattern p1 (left), tree template p2 (center) and nonlinear tree template p3
(right) from Example 2

1130 ComSIS Vol. 9, No. 3, Special Issue, September 2012



Indexing Trees for Nonlinear Tree Pattern Matching

3.3. Language, finite and pushdown automata

We define notions from the theory of string languages similarly as they are
defined in [2, 16].

A language over an alphabet A is a set of strings over A. Symbol A∗ denotes
the set of all strings over A including the empty string, denoted by ε. Set A+

is defined as A+ = A∗ \ {ε}. Similarly, for string x ∈ A∗, symbol xm, m ≥ 0,
denotes the m-fold concatenation of x with x0 = ε. Set x∗ is defined as x∗ =
{xm : m ≥ 0}, x+ = {xm : m ≥ 1} and x∗ = x+ ∪ {ε}.

A nondeterministic pushdown automaton (nondeterministic PDA) is a seven-
tuple M = (Q,A, G, δ, q0, Z0, F ), where Q is a finite set of states, A is an input
alphabet, G is a pushdown store alphabet, δ is a mapping from Q×(A∪{ε})×G

into a set of finite subsets of Q × G∗, q0 ∈ Q is an initial state, Z0 ∈ G is the
initial pushdown store symbol, and F ⊆ Q is the set of final (accepting) states.

Triple (q, w, x) ∈ Q × A∗ × G∗ denotes the configuration of a pushdown
automaton. We will write the top of the pushdown store x on its left hand side.
The initial configuration of a pushdown automaton is a triple (q0, w, Z0) for the
input string w ∈ A∗. The relation ⊢M⊂ (Q × A∗ × G∗) × (Q × A∗ × G∗) is a
transition of a pushdown automaton M . It holds that (q, aw, αβ) ⊢M (p, w, γβ) if
(p, γ) ∈ δ(q, a, α). The k-th power, transitive closure, and transitive and reflexive
closure of the relation ⊢M is denoted ⊢k

M , ⊢+
M , ⊢∗

M , respectively.
A pushdown automaton is input–driven if each of its pushdown operations

is determined only by the input symbol.
A language L accepted by a pushdown automaton M is defined in two distinct
ways:

1. Accepting by final state: L(M) = {x : (q0, x, Z0) ⊢∗

M (q, ε, γ) ∧ x ∈ A∗ ∧ γ ∈
G∗ ∧ q ∈ F}.

2. Accepting by empty pushdown store: Lε(M) = {x : (q0, x, Z0) ⊢
∗

M (q, ε, ε) ∧
x ∈ A∗ ∧ q ∈ Q}.

If the pushdown automaton accepts the language by empty pushdown store,
then the set F of final states is the empty set.

Unreachable states are states p ∈ Q from automaton M = (Q, A, G, δ,

q0, Z0, F ) which are not reachable from the initial state because there is no
sequence of transitions from the initial state to that particular state p. Formally,
there are no transitions that allow (q0, kw, Z0) ⊢

+
M (p, w, γ).

Unnecessary states are states p ∈ Q from automaton M = (Q, A, G, δ, q0,

Z0, F ) which are not connected to any final state f ∈ F if automaton accepts by
final states, or not connected to any state, where γ ∈ G∗ may be ε, if automaton
accepts by empty pushdown store.

Pushdown automaton M = (Q,A, G, δ, q0, Z0, F ) is acyclic if it does not
contain transitions (q, x1, γ1) ⊢

+
M (q, x2, γ2), where xx2 = x1, x 6= ε and q ∈ Q.

3.4. String suffix and factor automata

String suffix and factor automata are finite automata that were introduced in
[4, 7] as a mechanism for eliminating redundancy in string suffix trees [9, 10,

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1131



Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

22, 25]. Given a string s ∈ A∗, the suffix and factor automaton constructed for
the string s accepts all suffixes and substrings, respectively, of the string s in
time linear to the length of the input suffix and the input substring, respectively,
and not depending on the length of the string s. In [9, 10, 25], suffix and factor
automata are defined as such minimal deterministic finite automata. In [23, 22],
their basic nondeterministic versions are also presented. In some literature, the
deterministic suffix automaton is also called the directed acyclic word graph
(DAWG).

Example 3. Given a string pref(t1) = a2 a2 a0 a1 a0 a1 a0, which is the prefix
notation of tree t1 from Example 1, the corresponding nondeterministic suffix
automaton is FMnsuf (pref(t1)) = ({0, 1, 2, 3, 4, 5, 6, 7},A, δn, 0, {7}), where its
transition diagram is illustrated in Figure 3. For the construction of the nonde-
terministic suffix automaton, see [22].

0 1 2 3 4 5 6 7
a2 a2 a0 a1 a0 a1 a0

a2
a0 a1 a0 a1 a0

Fig. 3. Transition diagram of the nondeterministic string suffix automaton
FMnsuf (pref(t1)) for prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 of tree t1
from Example 1

4. Indexing trees for tree pattern matching

In this section, algorithms and theorems regarding tree pattern PDAs for trees
in prefix notation are given, and the tree pattern PDAs and their construction
are demonstrated on an example. A tree pattern can be either a subtree or a
tree template, which contains at least one special nullary symbol S representing
a subtree. Tree pattern PDAs are an extension of subtree PDAs, introduced in
[18]. A subtree PDA is analogous to the string suffix automaton and it accepts
a linear notation of all subtrees of a given tree. The pushdown operations are
used to process the tree structure. New states and transitions, which are used
for processing the special nullary symbols S in tree templates, are additionally
present in the tree pattern PDA. The pushdown operations are the same.

Definition 1. Let t and pref(t) be a tree and its prefix notation, respectively. A
tree pattern pushdown automaton for pref(t) accepts all tree patterns in prefix
notation which match the tree t.

1132 ComSIS Vol. 9, No. 3, Special Issue, September 2012



Indexing Trees for Nonlinear Tree Pattern Matching

Given a subject tree, first we construct a so-called deterministic treetop PDA
for this tree in prefix notation, which accepts all tree patterns that match the
subject tree and contain the root of the subject tree. The deterministic treetop
PDA is defined by the following definition. States and transitions of the treetop
pushdown automaton are computed by Algorithm 1. Finally, the correctness
Algorithm 1 is proved by Theorem 1.

Definition 2. Let t, r and pref(t) be a tree, its root and its prefix notation, re-
spectively. A treetop pushdown automaton Mpt(t) = (0, 1, 2, ..., n, A∪S, S, δ, 0, S,
∅) for pref(t) accepts all tree patterns in prefix notation which have the root r
and match the tree t.

The construction of the treetop PDA is described by the following algorithm.
The treetop PDA is deterministic.

Algorithm 1 Construction of a treetop PDA for a tree t in prefix notation pref(t).
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,
n ≥ 1.
Output: Treetop PDA Mpt(t) = ({0, 1, 2, . . . , n},A∪ {S}, {S}, δ, 0, S, ∅).
Method:

1. For each state i, where 1 ≤ i ≤ n, create a new transition
δ(i − 1, ai, S) = (i, SArity(ai)), where S0 = ε.

2. Create a set srms = { i : 1 ≤ i ≤ n, δ(i − 1, a, S) = (i, ε), a ∈ A0}. The
abbreviation srms stands for Subtree Right Most States.

3. For each state i, where i = n−1, n−2, . . . , 1, δ(i, a, S) = (i+1, Sp), a ∈ Ap,
create a new transition δ(i, S, S) = (l, ε) such that (i, xy, S) ⊢+

Mp(t)
(l, y, ε)

as follows:
If p = 0, create a new transition δ(i, S, S) = (i+ 1, ε).
Otherwise, if p ≥ 1, create a new transition δ(i, S, S) = (l, ε), where l is the
p-th smallest integer such that l ∈ srms and l > i. Remove all j, where
j ∈ srms, and i < j < l, from srms. ⊓⊔

The treetop PDA is similar to the prefix string finite automaton. Moreover,
there exists additional transitions reading symbol S, which represents a subtree,
and these transitions skip over parts which are subtrees of the tree in prefix
notation. The automaton uses the pushdown store for computing a checksum
so that the input would be a valid prefix notation of a tree.

The construction of treetop PDA by Algorithm 1 is illustrated in the following
example.

Example 4. Consider tree t1 in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0
from Example 1, which is illustrated in Figure 1. The deterministic treetop PDA,
constructed by Algorithm 1, is deterministic PDA Mpt(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},
A, {S}, δ1, 0, S, ∅)), where mapping δ1 is a set of the following transitions:

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1133



Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

δ1(0, a2, S) = (1, SS)
δ1(1, a2, S) = (2, SS) δ1(1, S, S) = (5, ε)
δ1(2, a0, S) = (3, ε) δ3(2, S, S) = (3, ε)
δ1(3, a1, S) = (4, S) δ1(3, S, S) = (5, ε)
δ1(4, a0, S) = (5, ε) δ1(4, S, S) = (5, ε)
δ1(5, a1, S) = (6, S) δ1(5, S, S) = (6, ε)
δ1(6, a0, S) = (7, ε) δ1(6, S, S) = (7, ε)

The transition diagram of deterministic treetop PDA Mpt(t1) is illustrated in
Figure 4. In this figure for each transition rule δ(p, a, α) = (q, β) from δ the edge
leading from state p to state q is labelled by the triple of the form a|α 7→ β.

Deterministic treetop PDA Mpt(t1) has been constructed by Algorithm 1 as
follows. We can see that the initial set srms = {3, 5, 7}. Then, new transitions,
which read symbol S, are created in the following order: δ4(6, S, S) = (7, ε),
δ4(5, S, S) = (7, ε), δ4(4, S, S) = (5, ε), δ4(3, S, S) = (5, ε), δ4(2, S, S) = (3, ε),
and δ4(1, S, S) = (5, ε). ⊓⊔

0 1 2 3 4 5 6 7
a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε
S|S 7→ ε

Fig. 4. Transition diagram of deterministic treetop pushdown automaton Mpt(t1) for tree
in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 4

Theorem 1. Given a tree t and its prefix notation pref(t), the PDA Mpt(t) con-
structed by Algorithm 1 is a treetop PDA for pref(t).

Proof. Let r be the root of t. The PDA Mpt(t) is a simple extension of the PDA,
which is constructed by step 1 and accepts the tree t in prefix notation. It holds
for new transitions added by step 3, which read the special nullary symbol S,
that δ(q1, S, S) = (q2, ε) if and only if (q1, w, S) ⊢

+
Mpt(t)

(q2, ε, ε) and q1 is not the
initial state 0. This means that the new added transitions reading S correspond
just to subtrees not containing the root r. Thus, the PDA Mpt(t) accepts all tree
patterns in prefix notation which contain the root r and match the tree t. ⊓⊔

The nondeterministic tree pattern PDA for trees in prefix notation is con-
structed as an extension of the deterministic treetop PDA: for each state of the
treetop PDA with an incoming transition which reads a symbol a ∈ A we add
the same transition from the starting state to that state. This construction is
described by the following algorithm.

1134 ComSIS Vol. 9, No. 3, Special Issue, September 2012



Indexing Trees for Nonlinear Tree Pattern Matching

Algorithm 2 Construction of a nondeterministic tree pattern PDA for a tree t in
prefix notation pref(t).
Input: A tree t over a ranked alphabet A; prefix notation pref(t) = a1a2 . . . an,
n ≥ 1.
Output: Nondeterministic tree pattern PDA Mnpt(t) = ({0, 1, 2, . . . , n},A∪{S},
{S}, δ, 0, S, ∅).
Method:

1. Create Mnpt(t) as Mpt(t) by Algorithm 1.
2. For each state i, where 2 ≤ i ≤ n, create a new transition

δ(0, ai, S) = (i, SArity(ai)), where S0 = ε. ⊓⊔

The tree pattern PDA is similar to the string factor finite automaton. Its con-
struction is based on the treetop PDA and the extension is that the tree pattern
accepted by the automaton can be matched on any node of the tree. For this
reason, additional transitions are created.

Example 5. Consider tree t1 in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0
from Example 1, which is illustrated in Figure 1. The nondeterministic tree pat-
tern PDA accepting all tree patterns matching tree t1, which has been con-
structed by Algorithm 2, is nondeterministic PDA
Mnpt(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ2, 0, S, ∅)), where mapping δ2 is a set
of the following transitions:

δ2(0, a2, S) = (1, SS)
δ2(1, a2, S) = (2, SS) δ2(1, S, S) = (5, ε) δ2(0, a2, S) = (2, SS)
δ2(2, a0, S) = (3, ε) δ3(2, S, S) = (3, ε) δ2(0, a0, S) = (3, ε)
δ2(3, a1, S) = (4, S) δ2(3, S, S) = (5, ε) δ2(0, a1, S) = (4, S)
δ2(4, a0, S) = (5, ε) δ2(4, S, S) = (5, ε) δ2(0, a0, S) = (5, ε)
δ2(5, a1, S) = (6, S) δ2(5, S, S) = (6, ε) δ2(0, a1, S) = (6, S)
δ2(6, a0, S) = (7, ε) δ2(6, S, S) = (7, ε) δ2(0, a0, S) = (7, ε)

The transition diagram of nondeterministic tree pattern PDA Mnpt(t1) is illus-
trated in Figure 5. Again, in this figure for each transition rule δ(p, a, α) = (q, β)
from δ the edge leading from state p to state q is labelled by the triple of the
form a|α 7→ β. ⊓⊔

In the following theorem we prove the correctness of the constructed tree
pattern PDA.

Theorem 2. Given a tree t and its prefix notation pref(t), the PDA Mnpt(t)
constructed by Algorithm 2 is a tree pattern PDA for pref(t).

Proof. The PDA Mnpt(t) is a simple extension of the PDA Mpt(t), which is con-
structed by Algorithm 1 and accepts all tree patterns in prefix notation which
contain the root r of the tree t and match the tree t by empty pushdown store.
The PDA Mnpt(t) contains new added transitions of the form δ(0, ai, S) =
(i, SArity(ai)). These transitions correspond just to the possibility that the first

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1135



Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

0 1 2 3 4 5 6 7
a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS
a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε
S|S 7→ ε

Fig. 5. Transition diagram of nondeterministic tree pattern pushdown automaton Mnpt

(t1) from Example 5 for tree in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0

symbol of a tree pattern to be accepted can be any node of the tree t. Thus, the
PDA Mnpt(t) accepts all tree patterns in prefix notation which match the tree
t. ⊓⊔

Lemma 1. Given a tree t with n nodes, the number of distinct tree patterns
which match the tree t can be at most 2n−1 + n.

Proof. First, subtrees of any subtree of the tree t can be replaced by the spe-
cial nullary symbol S and the tree template resulting from such a replacement
is a tree pattern which matches the tree. Given a tree with n nodes, the maxi-
mal number of subsets of subtrees that can be replaced by the special nullary
symbol S occurs for the case of a tree t2 whose structure is given by the prefix
notation pref(t2) = a(n− 1) a10 a20 . . . an−10, where n ≥ 2. Such a tree is illus-
trated in Figure 6. In this tree, each of the nullary symbols a10, a20, . . . , an−10
can be replaced by nullary symbol S, and therefore we can create 2n−1 distinct
tree templates which are tree patterns matching the tree t2.

a(n− 1)1

a102 a203 an−10n. . .

pref(t2) = a(n− 1) a10 a20 . . . an−10

Fig. 6. A tree t2 with 2n−1 + n distinct tree patterns matching the tree t3 and its prefix
notation

1136 ComSIS Vol. 9, No. 3, Special Issue, September 2012



Indexing Trees for Nonlinear Tree Pattern Matching

Second, the tree t itself and all its subtrees not containing the root are tree
patterns which match the tree, which gives n other distinct tree patterns (pro-
vided all the subtrees are unique).

Thus, the total number of distinct tree patterns matching the tree t can be at
most 2n−1 + n. ⊓⊔

Lemma 2. The number of states of a nondeterministic tree pattern pushdown
automaton Mntp is m+ 1, where m is the number of nodes of a subject tree.

Proof. There is one state for each symbol in pref(t) plus and the initial state.
Thus, the number of states is m+ 1. ⊓⊔

Lemma 3. The number of transitions of a nondeterministic tree pattern push-
down automaton Mntp is 3m− 2, where m is the number of nodes of a subject
tree.

Proof. There is one transition for each symbol in pref(t), which forms the “back-
bone” of the automaton. There are exactly m−1 transitions from the initial state
to every other state. Finally, there is one transition for symbol S leading from ev-
ery state except the initial state. Thus, the number of states is then 3m− 2. ⊓⊔

5. Indexing trees for nonlinear tree pattern matching

Definition 3. Let t and pref(t) be a tree and its prefix notation, respectively.
A nonlinear tree pattern pushdown automaton for pref(t) accepts all nonlinear
tree patterns in prefix notation which have at most one nonlinear variable and
match the tree t.

5.1. Basic nonlinear tree pattern pushdown automaton

In our indexing pushdown automata for nonlinear tree pattern matching we con-
struct new parts called tails, which represent parts of the pushdown automaton
after reading nonlinear variables.

Definition 4. Given a tree pattern pushdown automaton M = (Q,A, G, δ, q0,

Z0, F ) and a state qt ∈ Q, the tail(M, qt) = (Qt,A, G, δt, qt, S, F ). Qt = QrQus,
Qus is a set of unreachable states from qt, δt = δrδus, δus are transitions leading
from or to state qn ∈ Qus.

Example 6. Consider a tree pattern pushdown automaton Mnpt(t1) from Ex-
ample 5, which is an index of tree t1 from Example 1. The tail of automaton with
initial state qt = 3 is tail(Mnpt(t1), 3) = (Q,A ∪ {S}, {S}, δ, 3, S,∅) constructed
from tree pattern pushdown automaton shown in Figure 5. The corresponding
transition diagram is illustrated in Figure 7. ⊓⊔

We note that every node of a tree t is the root of just one subtree, which
is represented by symbol S. The prefix notation of such subtree is a factor
of pref(t1). These factors are in the tree pushdown automaton ”skipped” by
transitions for input symbol S.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1137



Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

3 4 5 6 7
a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε

Fig. 7. Tail of tree pattern pushdown automaton tail(Mnpt(t1), 3) from Example 6

Definition 5. Given a tree pattern pushdown automaton Mnpt(t) = (Q,A, G,

δ, q0, Z0, F ) and a state q ∈ Q, the subtree skipped by transition sst(q) =
b1b2 . . . bm, where b1, b2, . . . , bm ∈ A, is given by a labelled path b1, b2, . . . , bm in
the PDA Mnpt(t) between states q and qt, where (qt, ε) ∈ δ(q, S, S).

Informally, sst(q) is the prefix notation of the subtree which is skipped by
transition S leading from the state q. sst(q) is used in Algorithm 3 to determine
which subtree of the subject tree was ”assigned” to a particular automaton tail.

Example 7. Consider a tree pattern pushdown automaton Mnpt(t1) from Ex-
ample 5, which is an index of tree t1 from Example 1. The subtree skipped by
transition sst(1) = a2 a0 a1 a0. ⊓⊔

The construction of basic nonlinear tree pattern PDA consists of two algo-
rithms. Algorithm 3 constructs tails from the original tree pattern pushdown au-
tomaton. Algorithm 4 recursively connects these created tails to the pushdown
automaton being created.

Algorithm 3 Recursive construction of tail of nondeterministic basic nonlinear
tree pattern automaton.
Input: Tail of nondeterministic tree pattern pushdown automaton Mtnpt, string
representing subtree skipped by transition x = sst(q).
Output: Recursively created tail nta(Mtnpt, x).
Method:

1. For each transition (qt, ε) ∈ δ(q, S, S) in automaton Mtnpt where sst(q) = x

do:
1.1. Create Mtmp = nta(tail(Mtnpt, qt), x) using Algorithm 3.
1.2. Add new state qid to Mtnpt where qid is copy of state qt.
1.3. Add new transition (qid, ε) ∈ δ(q,X, S) to Mtnpt.
1.4. Add Mtmp to Mtnpt and merge initial state of Mtmp with qid.

2. nta(Mtnpt, x) is Mtnpt.

Algorithm 4 Construction of nondeterministic basic nonlinear tree pattern push-
down automaton.
Input: Nondeterministic tree pattern pushdown automaton Mnpt(t).
Output: Nondeterministic basic nonlinear tree pattern pushdown automaton
Mb(t).
Method:

1. For each transition (qt, ε) ∈ δ(q, S, S) in automaton Mnpt(t) do:

1138 ComSIS Vol. 9, No. 3, Special Issue, September 2012



Indexing Trees for Nonlinear Tree Pattern Matching

1.1. Create Mtmp = nta(tail(Mnpt(t), qt), sst(q)) using Algorithm 3.
1.2. Add new state qid to Mnpt(t) where qid is copy of state qt.
1.3. Add new transition (qid, ε) ∈ δ(q,X, S) to Mnpt(t).
1.4. Add Mtmp to Mnpt(t) and merge initial state of Mtmp with qid.

2. Mb(t) is Mnpt(t).

The nonlinear tree pattern PDA is similar to the tree pattern PDA. The dif-
ference between Algorithm 3 and Algorithm 4 is that Algorithm 3 calls itself
only when processing transition for symbol S leading from state q, where sst(q)
equals its subtree parameter. On the other hand, Algorithm 4 calls Algorithm 3
for each transition for symbol S.

Example 8. Given a string pref(t1) = a2 a2 a0 a1 a0 a1 a0, which is a prefix
notation of tree t1 from Example 1, the corresponding nondeterministic basic
nonlinear tree pattern pushdown automaton is
Mb(t1) = (Q,A ∪ {S,X}, {S}, δ, 0, S,∅), where its transition diagram is illus-
trated in Figure 8. ⊓⊔

5.2. Nonlinear tree pattern pushdown automaton

Some states of the pushdown automaton constructed by Algorithm 4 can be
merged so that states in nondeterministic nonlinear tree pattern pushdown au-
tomaton Mnntp for a subject tree t Mnntp(t) = ({0, 1, 2, . . . , n, x1, . . . , n1,

y2, . . . , n2, . . . , zm, . . . , nm}, A ∪ {S,X}, {S}, δ, 0, S, ∅) would still track both
assigned subtree and the same number of nonlinear variables read from the
pattern. Merged states are those from tails with the same assigned subtree and
the same number of nonlinear variables read.

Definition 6. Let Mb(t) = (Q,A ∪ {S,X}, {S}, δ, q0, S,∅) be a basic nondeter-
ministic nonlinear tree pattern PDA constructed by Algorithm 4. Let x be the
longest string over alphabet A, where (q, x, α) ⊢∗

Mb (qf , ε, β). The tree node
state label tnsl(q) is defined tnsl(q) = |pref(t)| − |x|.

Algorithm 5 Algorithm for counting the tnsl.
Input: Nondeterministic basic nonlinear tree pattern pushdown automaton
Mb(t) and state q for which the tnsl is counted.
Output: Number representing tnsl.
Variables: Temporary number n, State initial.
Method:

1. n = 0. initial is the starting state of Mb(t).
2. Do:

2.1. If exists transition (q, Sarity(a)) ∈ δ(qprev, a, S) where a ∈ A and
qpref 6= initial do:

2.1.1. n = n+ 1, q = qprev.
2.1.2. Goto step [2.].

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1139



Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS
a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε
S|S 7→ ε 71

X|S 7→ ε

72

X|S 7→ ε

56 66 76

a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X|S 7→ ε

75

X|S 7→ ε

54 64 74
a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X|S 7→ ε

73

X|S 7→ ε

38 48 58 68 78
a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε

X|S 7→ ε

77

X|S 7→ ε

510 610 710
a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X|S 7→ ε

79

X|S 7→ ε

511 611 711
a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X|S 7→ ε

Fig. 8. Basic nondeterministic nonlinear tree pattern pushdown automaton Mb(t1) from
Example 8 constructed for tree t1 shown in Figure 1

1140 ComSIS Vol. 9, No. 3, Special Issue, September 2012



Indexing Trees for Nonlinear Tree Pattern Matching

2.2. If exists transition (q, ε) ∈ δ(qprev, X, S) where X is nonlinear variable
do:

2.2.1. n = n+ |sst(qprev)|, q = qprev.
2.2.2. Goto step [2.].

2.4. Output n+ 1.

Example 9. Given a basic nondeterministic nonlinear tree pattern pushdown
automaton is Mb(t1) = (Q,A ∪ {S,X}, {S}, δ, 0, S,∅), its transition diagram is
shown in Figure 8.

Then, tnsl(3) = 3, tnsl(54) = 5, tnsl(711) = 7, tnsl(79) = 7. ⊓⊔

Definition 7. Given a basic nondeterministic nonlinear tree pattern pushdown
automaton Mb(t) = (Q,A ∪ {S,X}, {S}, δ, 0, S,∅) created by Algorithm 4, the
number of nonlinear variable transitions nnv(q,X) is the number of transitions
reading nonlinear variable X on the path from the initial state q0 to state q,
where q and q0 ∈ Q.

Algorithm 6 Algorithm for counting the nnv.
Input: Basic nondeterministic nonlinear tree pattern pushdown automaton
Mb(t) and state q for which the tnsl is counted.
Output: Number representing nnv.
Variables: Temporary number n, State initial.
Method:

1. n = 0. initial is the starting state of Mb(t).
2. Do:

2.1. If exists transition (q, Sarity(a)) ∈ δ(qprev, a, S) where a ∈ A and
qpref 6= initial do:

2.1.1. q = qprev.
2.1.2. Goto with step [2.].

2.2. If exists transition (q, ε) ∈ δ(qprev, X, S) where X is nonlinear variable
do:

2.2.1. n = n+ 1, q = qprev.
2.2.2. Goto with step [2.].

2.3 Output n.

Definition 8. Given a nondeterministic basic nonlinear tree pattern pushdown
automaton Mb(t) created by Algorithm 4, the mergeable states
ms(Mb(t)) is a collection of pairs (key, value), where key is a triplet (sst(q),
nnv(u,X), tnsl(u)) and value is a set of states. ms(Mb(t)) stores sets of states
with the same number of transitions reading nonlinear variable X nnv(q,X) and
subtree skipped by transition sst(q).
ms(Mb(t)) = {(sst(qx), nnv(sa1, X), tnsl(sa1)), {sa1, sa2, . . .}),
(sst(qy), nnv(sb1, X), tnsl(sb2)), {sb1, sb2, . . .}), . . .}, where the first state s1 from
each set is the main state. State v is sst(v) denoting state for state s1 given
by (v,Xω, Sγ) ⊢ (s1, ω, γ), where ω = (A ∪ {S,X})∗. All states from that set
are given by following: {∀s : nnv(s,X) = nnv(s1, X) and sst(v) = sst(u) and
tnsl(s) = tnsl(s1); s, s1, u, v ∈ Q}, where state u is sst(u) denoting state for
state s given by (u,X(A∪ {S})∗ω, Sα) ⊢∗ (s, ω, Sβ), where ω = (A ∪ {S,X})∗.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1141



Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

Each set from the collection of sets of mergeable states ms(Mb(t)) defines
states from nondeterministic basic nonlinear tree pattern pushdown automaton
Mb(t) that can be merged and the resulting automaton is called nondetermin-
istic nonlinear tree pattern pushdown automaton Mnntp(t). All states from each
set defines the start of a merging process so that states that are reachable by
the same sequence of transitions are also merged.

Example 10. Given a string pref(t1) = a2 a2 a0 a1 a0 a1 a0, which is the
prefix notation of tree t1 from Example 1. The corresponding nondetermin-
istic basic nonlinear tree pattern pushdown automaton is Mb(t1) = (Q,A ∪
{S,X}, {S}, δ, 0, S,∅), where its transition diagram and states are illustrated in
Figure 8.

All states that occur in one of the set in the collection ms(Mb(t1)) are target
states from all transitions for a symbol X and the transitions for a symbol S
which shares the source state.

ms(Mb(t1)) = {((a0, 1, 5), {54, 58}), ((a0, 1, 7), {71, 74, 78}),

((a0, 2, 7), {73, 77, 710}), ((a1a0, 1, 7), {72, 76})}.

Algorithm 7 Construction of the nondeterministic nonlinear tree pattern push-
down automaton.
Input: Nondeterministic basic nonlinear tree pattern pushdown automaton
Mb(t).
Output: Nondeterministic nonlinear tree pattern pushdown automaton
Mnntp(t).
Variables: Collection of sets of states ms(Mb(t)).
Method:

1. For all transitions (u1, ε) ∈ δ(q,X, S) do:
1.1. If the collection ms(Mb(t)) does not contain a set on a key (sst(q),

nnv(u1, X), tnsl(u1)) create that set as an empty set.
1.2. Add u1 to the collection ms(Mb(t)) to the set on the key

(sst(q), nnv(u1, X), tnsl(u1)).
2. For all transitions (u2, ε) ∈ δ(q, S, S), where exists a transition

(u1, ε) ∈ δ(q,X, S) do:
2.1. If nnv(u2, X) 6= 0 and the collection ms(Mb(t)) does not contain a set

on a key (sst(q), nnv(u2, X), tnsl(u2)) create that set as an empty set.
2.2. Add u2 to the collection ms(Mb(t)) to the set on the key

(sst(q), nnv(u2, X), tnsl(u2)).
3. For each set in the collection ms(Mb(t)) do:

3.1. Merge all states in this set, along with all states that follows-up.

Example 11. Given a string pref(t1) = a2 a2 a0 a1 a0 a1 a0, which is the prefix
notation of tree t1 from Example 1, the corresponding nondeterministic nonlin-
ear tree pattern pushdown automaton is
Mnntp(t1) = (Q,A ∪ {S,X}, {S}, δ, 0, S,∅), where merged states are in Exam-
ple 10 and its transition diagram and states are illustrated in Figure 9. ⊓⊔

1142 ComSIS Vol. 9, No. 3, Special Issue, September 2012



Indexing Trees for Nonlinear Tree Pattern Matching

0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε
S|S 7→ ε

38 48 58,4 68,4 78,4,1
a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

S|S 7→ ε S|S 7→ ε

S|S 7→ ε S|S 7→ ε

510 610 710,7,3
a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

79

56 66 76,2
a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

75

511 611 711
a1|S 7→ S a0|S 7→ ε

S|S 7→ ε

S|S 7→ ε

X|S 7→ ε X|S 7→ ε X|S 7→ ε

X|S 7→ ε

X|S 7→ ε

X|S 7→ ε

X|S 7→ ε

X|S 7→ ε X|S 7→ ε

X|S 7→ ε

Fig. 9. Nondeterministic nonlinear tree pattern pushdown automatonMnntp(t1) from Ex-
ample 11 constructed by Algorithm 7 for subject tree shown in Figure 1

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1143



Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

The nondeterministic nonlinear tree pattern pushdown automaton can be
even minimalised by omitting the nnv(q,X) part of the key value pairs of the
collection ms(Mb(t)). The resulting automaton would represent an index of the
subject tree for nonlinear tree pattern matching but would not be able to say
how many nonlinear variables has been read during processing the nonlinear
tree pattern.

5.3. Time and Space Complexity Analysis

Lemma 4. Time complexity of accepting the nonlinear tree template by au-
tomaton created by Algorithm 7 is O(

∑
K ki), where K is the set of all prefixes

except ε, and ki is the number of distinct sequences of transitions in automaton
Mnntp(t) for ki ∈ K which ends in a state of automaton Mnntp.

Proof. Automata have to try all possible sequences of transitions according to
tree template which occur in the nondeterministic nonlinear tree pattern au-
tomaton. Sequences of symbols of these transitions form a prefix of tree tem-
plate. Prefix of the size of one symbol from tree template is handled by exactly
n steps, where n is the number of all possible sequences of transitions in the
automaton for that prefix. Prefix of the size of two symbols is handled by n+m

steps, where m is the number of all possible sequences of transitions in the
automaton for that prefix. Note that handling two symbols prefix requires two
transitions to be processed, however the first transition is already accounted by
prefix of size of one symbol.

Exact time complexity is then the sum of all possible sequences of tran-
sitions in the automaton for all prefixes of nonlinear tree template, which is
O(

∑
S rsi). ⊓⊔

Lemma 5. The number of states of nondeterministic nonlinear tree pattern
pushdown automaton Mnntp(t) created by Algorithm 7 is
O(n(

∑s

i=0 ri)) = O(n2), where n is the number of nodes of a subject tree and∑s

i=0 ri, where s is the number of distinct subtrees, and ri is the number of
repetitions of each subtree.

Proof. Each occurrence of each unique subtree in tree increments the num-
ber of automaton tails, that were created for this subtree. The exact number of
tails created for particular subtree is then ri, where ri is the number of repeti-
tions of that subtree. Then the total number of tails for one nonlinear variable
in automaton is the number of tails created for each unique subtree of indexed
tree which is

∑s

i=0 ri. The total number of tails does not count original automa-
ton. The exact number of states of the automaton for one nonlinear variable is
O(n(

∑s

i=0 ri + 1)) = O(n(
∑s

i=0 ri)). ⊓⊔

Lemma 6. The number of transitions of nondeterministic nonlinear tree pattern
pushdown automaton Mnntp(t) created by Algorithm 7 is

O(n2 +n+
∑s

i=0(
r2i+ri

2 )) = O(n2), where n is the number of nodes of a subject
tree, s is the number of distinct subtrees and ri is the number of repetitions of
each unique subtree.

1144 ComSIS Vol. 9, No. 3, Special Issue, September 2012



Indexing Trees for Nonlinear Tree Pattern Matching

Proof. For all tails for one nonlinear variable, there are transitions reading sym-
bol X between these tails. There is one transition heading to the last tail. There
are two transitions heading to the previous tail, and so on. The number of tran-

sitions reading symbol X is
∑s

i=0(
r2i+ri

2 ).
Using Lemma 5 the number of transitions for symbol S is 1

2n
2 and the num-

ber of transitions for symbol a ∈ A is 1
2n

2 + n.

The number of transitions then is O(
∑s

i=0(
r2i+ri

2 ) + n2 + n). ⊓⊔

Lemma 7. Given a tree t with n nodes, the number of distinct nonlinear tree
patterns which match the tree t can be at most 3n−1 + 2.

Proof. First, subtrees of any subtree of the tree t can be replaced by the spe-
cial nullary symbol S and the tree template resulting from such a replacement
is a tree pattern which matches the tree. Second, subtrees of any subtree of
the tree t can be replaced by the special nullary symbol X and the nonlin-
ear tree template resulting from such replacement is a nonlinear tree pattern
which matches the tree. Given a tree with n nodes, the maximal number of
subsets of subtrees that can be replaced by the special nullary symbol S, X
occurs for the case of a tree t3 whose structure is given by the prefix notation
pref(t3) = a(n − 1) a10 a20 . . . an−10, where n ≥ 2. Such a tree is illustrated
in Figure 6. In this tree, each of the nullary symbols a10, a20, . . . , an−10 can be
replaced by nullary symbol S or X , and therefore we can create 3n−1 distinct
tree templates which are tree patterns matching the tree t3.

Third, the tree t itself and all its subtrees not containing the root are tree
patterns which match the tree. Subtrees of the tree t must be the same so that
the nonlinear tree pattern matched the tree in the first place. These gives 2
other distinct tree patterns.

Thus, the total number of distinct tree patterns matching the tree t can be at
most 3n−1 + 2. ⊓⊔

6. Processing more nonlinear variables in nonlinear tree
patterns

Indexing for nonlinear tree pattern matching with more than one nonlinear vari-
able can be done by a pushdown automaton created as a pushdown automaton
for the intersection of languages. Automaton for two nonlinear variables would
be constructed on the basis of two automata – each of them for one nonlinear
variable. The disadvantage of this approach would be increasing space com-
plexity.

Another approach is represented by a nondeterministic nonlinear tree pat-
tern pushdown automaton Mnntp(t) for one nonlinear variable that can be used
as an indexing data structure also for nonlinear tree patterns with more vari-
ables. The idea is to compare which transitions of more runs of this single au-
tomaton were used to match the pattern. The input pattern needs to be modified
because it contains symbols representing the nonlinear variables that the non-
deterministic nonlinear tree pattern pushdown automaton can’t handle.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1145



Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

Example 12. Consider a ranked alphabet A = {a4, a3, a2, a1, a0}. Consider a
nonlinear tree template p4 over A ∪ {S, Y, Z} p4 = ({a41, X2, X3, Y4, Y5}, Rp4)
over A, where Rp4 is a set of the following ordered pairs:

Rp4 = {(a41, X2), (a41, X3), (a41, Y4), (a41, Y5)}.

Nonlinear tree template p4 is illustrated in Figure 10.

a41

Z2 Z3 Y4 Y5

Fig. 10. Nonlinear tree template p4 from Example 12

Nonlinear tree template p4 can be decomposed to nonlinear tree templates
for one nonlinear variable. These nonlinear tree templates will be over alphabet
A ∪ {S,X} and are illustrated in Figure 11. ⊓⊔

a41

X2 X3 S4 S5

a41

S2 S3 X4 X5

Fig. 11. Decomposition of nonlinear tree template p4 from Example 12

In the beginning the algorithm decomposes a given nonlinear tree template
to nonlinear tree templates of one nonlinear variable. Then, the accepting se-
quences of transitions are computed using nondeterministic nonlinear tree pat-
tern pushdown automaton Mnntp(t) and each decomposed nonlinear tree pat-
tern. These accepting sequences of transitions can be used for filtering real
occurrences out of the original tree template for more nonlinear variables.

Algorithm 8 Algorithm of nonlinear tree pattern matching with more nonlinear
variables using nondeterministic nonlinear tree pattern pushdown automaton
Mnntp(t)
Input: Nondeterministic nonlinear tree pattern pushdown automaton
Mnntp(t). Nonlinear tree pattern with more variables p, set vars of variables
used in the template p.

Output: Occurrences of the pattern.
Method:

1146 ComSIS Vol. 9, No. 3, Special Issue, September 2012



Indexing Trees for Nonlinear Tree Pattern Matching

1. Collection of nonlinear templates for one variable po is an empty collection.
2. For each variable var in vars do:

2.1. pd is a clone of nonlinear tree template p.
2.2. Change a symbol in leaf nodes to nullary symbol S, where node label

l ∈ (vars \ var).
2.3. Change a symbol in leaf nodes to nullary symbol of nonlinear variable

X , where node label l = var.
2.4. Add pd to po.

3. Set Occ contains {0, 1, . . . , n} where n is the size of the tree t.
4. For each nonlinear tree template pd in po do:

4.1. Determine accepting sequences of transitions ts of tree template t using
Mnntp(t).

4.2. Compute a set Occpd as set of tnsl(q), where q is a target state of the
first transition from all ts.

4.2. Remove all items in Occ which are not in Occpd.
5. Output Occ.

6.1. Time and Space Complexity Analysis

Lemma 8. Time complexity of accepting the nonlinear tree template for more
nonlinear variables by nondeterministic nonlinear tree pattern pushdown au-
tomaton is O(v × m +

∑
run(pd) +

∑
Occpd), where v is the number of non-

linear variables, m is the size of the nonlinear template, run(pd) is the time of
locating all accepting transition sequences of each of decomposed templates
pd in automaton Mnntp(t) and Occpd is the size of occurrences of decomposed
template pd.

Proof. The nonlinear tree template needs to be decomposed to nonlinear tree
templates for one nonlinear variable. This takes v ×m time.

Occurrences of each nonlinear tree template from decomposed nonlinear
tree template p are computed in time

∑
run(pd).

Composition of partial occurrences Occpd to Occ can be done in
∑

Occpd
time. ⊓⊔

Lemma 9. Given a tree t with n nodes, the number of distinct nonlinear tree
patterns (with more nonlinear variables) which match the tree t can be at most
(2 + v)n−1 + 2.

Proof. First, subtrees of any subtree of the tree t can be replaced by the special
nullary symbol S and the tree template resulting from such a replacement is a
tree pattern which matches the tree. Second, subtrees of any subtree of the tree
t can be replaced by the special nullary symbols of variables and the nonlinear
tree template resulting from such replacement is a nonlinear tree pattern which
matches the tree. Given a tree with n nodes, the maximal number of subsets
of subtrees that can be replaced by the special nullary symbols of variables
occurs for the case of a tree t3 whose structure is given by the prefix notation
pref(t3) = a(n − 1) a10 a20 . . . an−10, where n ≥ 2. Such a tree is illustrated

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1147



Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

in Figure 6. In this tree, each of the nullary symbols a10, a20, . . . , an−10 can be
replaced by nullary symbol of variables and therefore we can create (2 + v)n−1

distinct tree templates which are tree patterns matching the tree t3.
Third, the tree t itself and all its subtrees not containing the root are tree

patterns which match the tree. Subtrees of the tree t must be the same so that
the nonlinear tree pattern matched the tree in the first place. These gives 2
other distinct tree patterns.

Thus, the total number of distinct tree patterns matching the tree t can be at
most (2 + v)n−1 + 2. ⊓⊔

7. Some empirical results

We have implemented the nondeterministic tree pattern pushdown automaton
and the nonlinear tree pattern pushdown automaton using the bit-parallelism
technique, which was introduced in [27]. For our implementations of transitions
reading symbols from A we use the same approach as it is used in the im-
plementation of nondeterministic string suffix automata in [23]. The transitions
reading the special variable nullary symbols must be treated in a special way.
When processing these nullary symbols the algorithm takes indexes of each
one in configuration bit vector of the bit–parallelism simulation and recompute
these indexes according to transitions reading variable symbols in the simulated
automaton. A unique id of subtree is stored for each location in the bit vector so
that the matching of nonlinear tree patterns is possible.

Our implementations were written in Java programming language; all tim-
ings were conducted on a 2 GHz Intel Core i7 with 8 GB of RAM running Open-
SUSE GNU/Linux version 12.1 and Java 1.6.0. In Figures 12, 13, and 14, it
is shown that the running time for a given tree is linear with the size of the
input (nonlinear) tree pattern. In Figures 15, 16, and 17, it is shown that the
running time for binary trees is also linear in general but for very small input
patterns there is a slowdown caused by recomputing the configuration vector of
bit–parallelism for nullary variable symbols.

8. Conclusion

We have presented the tree pattern pushdown automaton and the nonlinear
tree pattern pushdown automaton, a new kind of pushdown automata which
represent a complete index of a given ordered tree for tree patterns and non-
linear tree patterns, respectively. We have discussed the time and space com-
plexities and have shown timings of our implementations using the bit-parallel
technique. The timings are similar to those for the existing bit-parallel imple-
mentation of nondeterministic string suffix automata.

Since the presented pushdown automata are input–driven, they can be de-
terminised. However, the space complexities of their deterministic versions are
open problems.

1148 ComSIS Vol. 9, No. 3, Special Issue, September 2012



Indexing Trees for Nonlinear Tree Pattern Matching

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

M
at

ch
in

g 
tim

e 
[s

]

(Nonlinear) tree pattern size  [-]

Random tree with 49576 nodes

Without variables
 

A half of leaves are variables
 

All leaves are variables
 

Fig. 12. Random tree with 49576 nodes

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  20000  40000  60000  80000  100000  120000

M
at

ch
in

g 
tim

e 
[s

]

(Nonlinear) tree pattern size  [-]

Random tree with 107732 nodes

Without variables
 

A half of leaves are variables
 

All leaves are variables
 

Fig. 13. Random tree with 107732 nodes

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1149



Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

 0

 1

 2

 3

 4

 5

 6

 0  20000  40000  60000  80000  100000  120000  140000  160000

M
at

ch
in

g 
tim

e 
[s

]

(Nonlinear) tree pattern size  [-]

Random tree with 146074 nodes

Without variables
 

A half of leaves are variables
 

All leaves are variables
 

Fig. 14. Random tree with 146074 nodes

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  5000  10000  15000  20000  25000  30000  35000

M
at

ch
in

g 
tim

e 
[s

]

(Nonlinear) tree pattern size  [-]

Full binary tree with 32767 nodes

Without variables
 

A half of leaves are variables
 

All leaves are variables
 

Fig. 15. Full binary tree tree with 32767 nodes

1150 ComSIS Vol. 9, No. 3, Special Issue, September 2012



Indexing Trees for Nonlinear Tree Pattern Matching

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  10000  20000  30000  40000  50000  60000  70000

M
at

ch
in

g 
tim

e 
[s

]

(Nonlinear) tree pattern size  [-]

Full binary tree with 65535 nodes

Without variables
 

A half of leaves are variables
 

All leaves are variables
 

Fig. 16. Full binary tree tree with 65535 nodes

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  10000  20000  30000  40000  50000  60000  70000

M
at

ch
in

g 
tim

e 
[s

]

(Nonlinear) tree pattern size  [-]

Full binary tree with 131071 nodes

Without variables
 

A half of leaves are variables
 

All leaves are variables
 

Fig. 17. Full binary tree tree with 131071 nodes

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1151



Jan Trávnı́ček, Jan Janoušek, and Borivoj Melichar

References

1. Aho, Alfred V.; Margaret J. Corasick: Efficient string matching: An aid to bibliographic
search. In: Communications of the ACM, 18 (6), pp. 333340, 1975.

2. Alfred V. Aho and Jeffrey D. Ullman. The theory of parsing, translation, and compil-
ing. Prentice-Hall Englewood Cliffs, N.J., 1972.

3. Arbology www pages, Available at: http://www.arbology.org, June 2012.
4. Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M. T., Seiferas, J. I.,

1985. The smallest automaton recognizing the subwords of a text. Theor. Comput.
Sci. 40, 31–55.

5. Christou, M., Crochemore, M., et al., 2011. Computing All Subtree Repeats in Or-
dered Ranked Trees. In String Processing and Information Retrieval, Vol. 7024, pp.
338-343.

6. L.G.W.A. Cleophas: Tree Algorithms: Two Taxonomies and a Toolkit. PhD Thesis,
Department of Mathematics and Computer Science, Eindhoven University of Tech-
nology, Eindhoven, April 2008.

7. Crochemore, M., 1986. Transducers and repetitions. Theor. Comput. Sci. 45 (1),
63–86.

8. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 2007. release October, 12th 2007.

9. Crochemore, M., Hancart, C., 1997. Automata for matching patterns. In: Rozenberg,
G., Salomaa, A. (Eds.), Handbook of Formal Languages. Vol. 2 Linear Modeling:
Background and Application. Springer–Verlag, Berlin, Ch. 9, pp. 399–462.

10. Crochemore, M., Rytter, W., 1994. Jewels of Stringology. World Scientific, New Jer-
sey.

11. Domenico Cantone, Simone Faro and Emanuele Giaquinta: A Compact Represen-
tation of Nondeterministic (Suffix) Automata for the Bit-Parallel Approach, In: CPM
2010, LNCS 6129, Springer, Berlin, 2010.

12. Toms Flouri, Jan Janousek, Borivoj Melichar, Costas S. Iliopoulos, Solon P. Pissis:
Tree Template Matching in Ranked Ordered Trees by Pushdown Automata. In: CIAA
2011, LNCS 6807, Springer, Berlin, pp. 273-281, 2011.

13. Olivier Gauwin, Joachim Niehren: Streamable Fragments of Forward XPath. In:
CIAA 2011, LNCS 6807, Springer, Berlin, pp. 3-15, 2011.

14. F Gecseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa, edi-
tors, Handbook of Formal Languages, volume 3 Beyond Words. Handbook of For-
mal Languages, pages 1–68. Springer–Verlag, Berlin, 1997.

15. Christoph M. Hoffmann and Michael J. O’Donnell. Pattern matching in trees. J. ACM,
29(1):68–95, 1982.

16. Hopcroft, J. E., Motwani, R., Ullman, J. D., 2001. Introduction to automata theory,
languages, and computation, 2nd Edition. Addison-Wesley, Boston.

17. J. W. Klop. Term Rewriting Systems, Handbook of Logic in Computer Science, 1992.
18. Janousek, J. String Suffix Automata and Subtree Pushdown Automata. In: Proceed-

ings of the Prague Stringology Conference 2009, pp. 160–172, Czech Technical
University in Prague, Prague, 2009.

19. Janousek, J.: Arbology: Algorithms on Trees and Pushdown Automata. Habilitation
thesis, TU FIT, Brno, 2010.

20. Janousek, J., Melichar, B. On Regular Tree Languages and Deterministic Pushdown
Automata. In Acta Informatica, Vol. 46, No. 7, pp. 533-547, Springer, 2009.

1152 ComSIS Vol. 9, No. 3, Special Issue, September 2012



Indexing Trees for Nonlinear Tree Pattern Matching

21. Melichar, B. Arbology: Trees and pushdown automata. In: LATA 2010 (LNCS 6031),
invited paper, pp. 32-49, Springer, 2010.

22. Melichar, B., Holub, J., Polcar, J., 2005. Text searching algorithms. Available at:
http://stringology.org/athens/, release November 2005.

23. Gonzalo Navarro, Mathieu Raffinot: A Bit-Parallel Approach to Suffix Automata: Fast
Extended String Matching. In: CPM, LNCS 1448, Springer, Berlin, pp. 14-33, 1998.

24. R. Ramesh, I. V. Ramakrishnan. Nonlinear Pattern Matching in Trees, Journal of the
Association for Computing Machinery, Vol 39, No 2, April 1992.

25. Smyth, B., 2003. Computing Patterns in Strings. Addison-Wesley-Pearson Educa-
tion Limited, Essex, England.

26. Travnicek, J. , Janousek, J., Melichar, B. Nonlinear Tree Pattern Pushdown Au-
tomata. InProceedings of the FEDCSIS 2011, IEEE Computer Society Press, pp.
871-878, 2011.

27. R. Baeza-Yates and G. H. Gonnet. A new approach to text searching. In: Commun.
ACM, 35(10), pp. 7482, 1992.

Jan Tr ávnı́ ček has been a PhD student at the Department of Theoretical Com-
puter Science, Czech Technical University in Prague, Faculty of Information
Technology. His research interests are focused on algorithms on trees (Arbol-
ogy).

Jan Janou šek has been an associate professor at the Department of Theoret-
ical Computer Science, Czech Technical University in Prague, Faculty of Infor-
mation Technology. His research interests include algorithms on trees (Arbol-
ogy), parsing algorithms, compiler construction, attribute grammars and formal
languages and automata theory.

Borivoj Melichar has been a full professor at the Department of Theoretical
Computer Science, Czech Technical University in Prague, Faculty of Informa-
tion Technology. His research interests include algorithms on strings (Stringol-
ogy), algorithms on trees (Arbology), parsing algorithms and compiler construc-
tion.

Received: December 20, 2011; Accepted: June 4, 2012.

ComSIS Vol. 9, No. 3, Special Issue, September 2012 1153




