
Computer Science and Information Systems 17(3):717–735 https://doi.org/10.2298/CSIS200125017Y

An Improved Heuristic-Dynamic Programming

Algorithm for Rectangular Cutting Problem

Aihua Yin, Chong Chen, Dongping Hu, Jianghai Huang and

Fan Yang

School of Software and Internet of Things Engineering, Jiangxi University of Finance and

Economics, Nanchang Jiangxi, China.

Dongping_hu337@jxufe.edu.cn

Abstract. In this paper, the two-dimensional cutting problem with defects is

discussed. The objective is to cut some rectangles in a given shape and direction

without overlapping the defects from the rectangular plate and maximize some

profit associated. An Improved Heuristic-Dynamic Program (IHDP) is presented

to solve the problem. In this algorithm, the discrete set contains not only the

solution of one-dimensional knapsack problem with small rectangular block width

and height, but also the cutting positions of one unit outside four boundaries of

each defect. In addition, the denormalization recursive method is used to further

decompose the sub problem with defects. The algorithm computes thousands of

typical instances. The computational experimental results show that IHDP obtains

most of the optimal solution of these instances, and its computation time is less

than that of the latest literature algorithms.

Keywords: Guillotine, Two-dimension cutting problem, Dynamic programming,

Defect, NP-hard.

1. Introduction

The two-dimensional cutting problem with defects is a research hotspot of

combinatorial optimization. In the industrial manufactural area, many 2D cutting

problems will encounter defects. For example, in the furniture industry, the wood panels

may contain damaged areas which cannot be used for furniture panel surfaces. In the

steel industry, some coils may contain defects that cannot be used as construction

materials. Natural products such as leather usually have cut marks, so the defective parts

can hardly be used on the surface of goods. In the literatures, the existing algorithms [1-

2] for defect free problems are relatively extensive, and the research on multiple defects

and guillotine cut has attracted more and more attention in recent years.

Experts have proposed many algorithms on the two-dimensional cutting problem

without defect. In the latest literature, Wang et al. (2017) [2] propose a heuristic search

algorithm based on grouping rules, which designs the key complement of the large and

small parts division strategy and the quick recommendation of the block. Song et al.

(2010) [3] propose a heuristic algorithm based on dynamic programming, which uses a

subset of all possible cutting pattern and is an incomplete algorithm. Wuttke and

Heese(2017) [4] propose a sequential heuristic with feedback loop and formulate the

718 Aihua Yin et al.

sequencing problem as a mixed integer program in the two-dimension cutting problem.

They use real data to test their heuristic and illustrate its applicability to a problem of

realistic size. Yoon et al. (2013) [5] propose an improved version of the cutting problem

for solving standard two-dimensional cutting problem, and their algorithm removes the

dominated patterns efficiently and avoids duplicated patterns. Herz (1972) [6] uses a

discretization set of all necessary cutting positions to propose an accurate recursive

process. Beasley (1985) [7] shows how to improve the performance of the recursive

process Herz’s discretization sets and introduces a heuristic correction of the algorithm

which limits the number of cuts in the discretization sets.

Now there have been more and more literatures on the issue of the two-dimensional

cutting problem with defects. Carnieri et al. (1993) [8] propose a heuristic dynamic

programming algorithm including branch and bound search, but they only study the

two-dimensional cutting problem with one defect. Vianna and Arenales (2006) [9] re-

examine this problem by providing an AND/OR-based branch-qualification algorithm

that further introduce a heuristic search that combines depth-first search and depth-

limiting and hill-climbing strategies. Neidlein and Wäscher (2008) [10] reduce the size

of discretization sets in the algorithm proposed by Vianna and Arenales (2006) [9],

however, their algorithms do not obtain optimal solutions. Afsharian et al. (2014) [11]

modify the predecessor's heuristic dynamic programming algorithm to solve the

problem with 4 defects. Their discretization sets size are cumbersome, which means the

computational efficiency is not high. Martin M. et al. (2019) [12] propose a compact

integer linear programming (ILP) model for the problem based on the discretization of

the defective object and develop a Benders decomposition algorithm and a constraint-

programming (CP) based algorithm as solution methods. For the non-guillotine cutting

problem, Gonçalves and Wäscher (2020) [13] combine a MIP model with a new hybrid

algorithm to solve it and Birgin et al. (2020) [14] propose a mixed integer linear

programing model for the problem with usable leftovers. Velasco and Eduardo (2019)

[15] study the constrained two-dimensional guillotine cutting problem for obtaining

upper bounds. Russo et al. (2020) [16] review the best exact and heuristic solutions for

C2DC and reviewed and classified the available upper bound. Wu et al. (2019) [17]

discuss the same problem but They don't publish the source of their data.

In this paper, inspired by the previous algorithms [7,11], an improved heuristic

dynamic programming algorithm is proposed to solve the problem with multiple defects

in the way of guillotine cut. The algorithm reduces the discretization sets size of

Afsharian et al. (2014) [11]. However, the cut positions at one unit from the four

boundaries of the defect are added to the new discrete set. The computational results

show that the algorithm improves the computational efficiency on thousands of typical

instances.

Section 2 of the paper presents a description of the problem. Section 3 gives a

detailed description of the algorithm and prove two important theorems about the

complexity of the algorithm. Section 4 gives the calculation results of thousands of

typical examples, and compares the algorithm in this paper with the best algorithm at

present. Section 5 draws the conclusion.

An Improved Heuristic-Dynamic Programming Algorithm for Rectangular Cutting Problem 719

2. Problem Description

For the convenience of later description, table 1 shows a list of the symbols with their

meanings to be used.

Table 1. The list of the symbols with their meanings

sym

bol
meaning sym

bol
meaning

 the width of the large object the height of the large object

 the width of -th

 small rectangular block
 the height of -th small rectangular block

 the j
-th

 defect
the number of cuts of -th

 small rectangular

block

 the width of j-th defect
 the height of j

-th
 defect

 the x-axis of j

-th
 defect

 the y-axis of j
-th

 defect

 the vertical cutting position the horizontal cutting position

 the vertical discretization set of the C-block

 the horizontal discretization set of the C-

block

 the vertical discretization set of the D-block
 the horizontal discretization set of the D-

block
 the value of -th

 small rectangular block

Let different types of small rectangular blocks , each associated with

an integer width
 , an integer height

 and the profit value , must be cut from a

single rectangular large object with a width of and a height of to maximize the

total value of the small rectangular blocks produced by the cutting process. The solution

of the problem is a cutting pattern, a form of small rectangular blocks produced from

large object and a description of the layout in which the small rectangular blocks are

arranged on large object. In this layout, all small rectangular blocks must be arranged

parallel to the large object which is called a feasible solution of the problem. To

establish the Cartesian coordinate system, let the bottom-left vertex of the large object

be at the origin, the x-axis and y-axis be coincident with the wide and high edges of the

object respectively. So, the large object can be represented by . For the

issues to be considered, the following constraints should be met:

 The number of each type of small rectangular block cut is unlimited, that is ;
 When cutting any small rectangular blocks, the given length and width orientation

must be maintained, and 90 ° rotation is not allowed;

 Every cutting action must be guillotine mode, i.e., each cutting action exactly divides

the current sheet into two parts (see Fig. 1);

 Every small rectangular block cut from the large object can not contain any defects,

and its lower left coordinate shall be

 , that is

 , it must meet the requirements:

 .

The cutting problem solved in this paper requires that all of the above constraints to

be satisfied, that is, it is a two-dimensional, unconstrained, guillotine, single large object

cutting patterns problem with defects (2D_UG_SLOPP_D). 2D_UG_SLOPP_D is

generalization of 2D_UG_SLOPP.

Let P be a feasible solution of the problem and be the amount

of the -th small rectangular block cut from the large object in , then is

use to describe the feasible cutting pattern in this paper. The goal of the problem is to

720 Aihua Yin et al.

maximize the value of the small blocks cut from the large object, and the object function

of the problem can be expressed as follows:

A defect is actually an irregular figure. Considering the cutting method here, it is

appropriate to use rectangular area to express defects. Let n defects be in the large

object, the j
th

 defect have a width w
d
,j and a height h

d
,j, and its bottom-

left vertex on the large plate be

 , then can be represented by

(see Fig. 2).

Fig. 2. The defects on the large object and their representation

3. Algorithm Description

The algorithm in this paper is called an improved heuristic dynamic programming

algorithm (IHDP). It combines quasi human idea with dynamic programming algorithm.

Using dynamic programming algorithm to solve 2D_UG_SLOPP_D, the resulting

X W0
O

xj
d
 xj

d
+wj

d

yj
d

yj
d
+hj

d

H0

Y

i1 i2

i3

i4

i5

i1

i2

i3

i4

i5

(a) A guillotine cutting mode (b) A Non-guillotine cutting mode

Fig. 1. Two cutting modes: guillotine and non-guillotine

An Improved Heuristic-Dynamic Programming Algorithm for Rectangular Cutting Problem 721

subproblem is either 2D_UG_SLOPP_D or 2D_UG_SLOPP. Adopting different

methods to solve these two different problems is the critical improvement of this

algorithm.

3.1. Basic definition

For the convenience of the following description, here are two important definitions.

Definition 1 (sub-block). In the guillotine mode, multiple rectangles which are

neither the small rectangular blocks nor the wastes are formed after the large plate is cut

several times. These rectangles are called sub-block. In this paper, the large object is

regarded as the largest sub-block, and a sub-block corresponds to a sub-problem and

vice versa.

Let the coordinates of a sub-block be (ox, oy), the width and the height of it be x and

y respectively, then the sub-block is represented by R=(ox, oy, x, y).

According to this definition, two sub-blocks R1=(ox1, oy1, x, y) and R2=(ox2, oy2, x, y)

with different coordinates in the sub-block are different sub-problems, even if they have

the same size. For a vertical cut (parallel to the y-axis) on the sub-block R1=(ox1, oy1, x,

y) at the cut position zx, two smaller sub-blocks are (ox1, oy1, zx, y) and (ox1+zx, oy1, x-zx,

y). Similarly, for a horizontal cut (parallel to the x-axis) at the cut position zy on R2, two

sub-blocks (ox2, oy2, x, zy) and (ox2, oy2+zy, x, y-zy) are also formed (see Fig. 3).

Fig. 3. The guillotine cut on the sub-block (vertical or horizontal) results in two smaller sub-

blocks

Definition 2 (C-block and D-block). For a sub-block R=(ox, oy, x, y), if it contains a

defect or overlap with any defect, it is called a D-block; otherwise it is called a C-block.

3.2. Discretization Sets

The cutting position set on the sub-block is a discretization set. If the sub-block is a C-

block, the discretization sets [8] are defined by the equations (2), (3), and (4).

Otherwise, the discretization sets are defined by the equations (5), (6), and (7). Z+

belongs to a positive integer set.

X W0
O

ox1

oy1

H0

Y

X W0
O

Y

ox2

oy2

y

x

zx

x

y

zy

ox1+zx

oy2+zy

R1 R2

(a) a vertical cut on a sub-block (b) a horizontal cut on a sub-block

722 Aihua Yin et al.

Discretization sets of C-blocks. If a sub-block is a C-block, the discretization sets

defined by the equations (2), (3), and (4) are quite same with the discretization sets

proposed by Afsharian et al. [11]. They are established by the solution of a one-

dimensional knapsack problem with the width and height of the small rectangular

blocks. Let
 and

 denote the vertical discretization set and the horizontal

discretization set of sub-blocks respectively, they are described as follows:

Discretization sets of D-blocks. If a sub-block is a D-block, the discretization sets

defined by the equations (5), (6), and (7). These discretization sets add the cutting

position of one unit outside four boundaries of each defect into
 and

 .

They reduce the discretization sets proposed by Afsharian et al. [11].

3.3. Dynamic programming

This algorithm is an improved heuristic algorithm based on dynamic programming. For

subproblems without defects (C-block), IHDP uses the method of Herz (1972) [6] and

Beasley (1985) [7] to construct recursive function F (x, y) for solving it. In this paper,

the upper bound of discretization set is extended to x - w0/2，y - h0/2. For the sub-

problem with defects (D-block), IHDP adopts a denormalization recursive function

F(ox, oy, x, y) which is different against Afsharian et al. [11] to deal with it.

Furthermore, the cutting positions of one unit outside four boundaries of each defect are

added into the discretization sets.

It is easy to get a lower bound of the objective function of C-blocks which can be got

by the function . Every time, the sub-blocks are divided into the same type small

rectangular blocks, and the lower bound is the maximum value of m cutting pattern. The

functions F (x, y) and are as follows:

An Improved Heuristic-Dynamic Programming Algorithm for Rectangular Cutting Problem 723

Where, if , then F(x, y)=0. Due to the appearance of the repeated

cutting pattern, the discretization set of vertical (or horizontal) in (9) is limited to half

the width (height) of the sub-block. In addition, Beasley (1985) [7] has proved that a

kind of normalized cutting pattern will not result in the optimization of the solution of

the recursive equation to solve the C-block. This pattern is to arrange the waste at the

bottom left of the C-block (see Fig. 4), which is implemented with the two

functions and introduced in the above recursive function. These two

functions are described as follows:

 (10)

 (11)

 represents the cut position nearest to the sub-block width , and correspondingly,

 is the cut position nearest to the sub-block height .

Fig. 4. Normalized and Non-normalized cutting pattern (shaded parts are scrap)

Based on the above recursive function, we design the following Solver to solve the

subproblem C-block.

Here is the description of the Solver：

Solver: Algorithm for solving 2D_UG_SLOPP

 Input： Subproblem R=(x, y),
 ,

 Output：Cutting Pattern recorded as F(x, y)

1 If (R=(x, y) has been solved) Then

2 Return F(x, y);

3 Else If (x<w0 or y<h0)

4 Return 0;

5 Else

6 F*(x, y)=0;

7 For(zx
 , 1≤zx≤x/2)

8 F*(x, y) ← max(Solver(R=(zx, y)) + Solver (R=(p(x-zx), y)), F*(x, y));

9 End for

1

2

3

4

(a) Normalized cutting pattern
(b) Non-normalized cutting pattern

1

2 3

4

724 Aihua Yin et al.

Obviously, because the original problem 2D_UG_SLOPP_D has defects, and the

Solver is only called in the process of solving the original problem, which means that

neither the x nor y in the subproblem R=(x, y) is known in the original problem, the

input here is not the initial value of the problem.

The equation (12) is used to determine the recursive function of the optimal cutting

pattern with the D-block R=(ox, oy, x, y):

Where, if then F(ox, oy, x, y).

The algorithm in this paper adopts denormalization strategy to solve the problem

2D_UG_SLOPP_D. In fact, the locations of the defects on D-block are uncertain, which

means that this kind of normalization treatment may waste some plates, thus reducing

the chance of obtaining the optimal solution. For example, if the defect is located in the

lower left corner of a D-block, the more the upper right area of the block is used, the

better the solution is possible. Based on all these favorable practices, we develop the

advanced algorithm of predecessors [9, 10, 18] and get the improved heuristic dynamic

programming algorithm IHDP.

Here is the description of the IHDP：

IHDP：Algorithm for solving 2D_UG_SLOPP_D

 Input：Subpoblem R=(ox, oy, x, y),
 ,

 , Defects set {d1, d2, …, dn}

 Output：Cutting pattern，Recorded as F(ox, oy, x, y)

1 If (R=(ox, oy, x, y) has been solved) Then
2 Return F(ox, oy, x, y);

3 Else If (x<w0 or y<h0)

4 Return F(ox, oy, x, y)=0;

5 Else If (R=(ox, oy, x, y) is C-block)

6 Return F(x, y)=Solver(R=(x, y));

7 Else // R=(ox, oy, x, y) is D-block

8 F*(ox, oy, x, y)=0;

9 For(zx
 , 1≤zx≤x-1)

10 F(1)(ox, oy, x, y)=IHDP(R=(ox, oy, zx, y)+IHDP(R=(ox+zx, oy, x-zx, y);

11 F(2)(ox, oy, x, y)=IHDP(R=(ox, oy, x-zx, y)+IHDP(R=(ox+x-zx, oy, zx, y);
12 F*(ox, oy, x, y)← max(F(1)(ox, oy, x, y), F(2)(ox, oy, x, y), F*(ox, oy, x, y));

10 F**(x, y)=0;

11 For(zy
 , 1≤zy≤y/2)

12 F**(x, y) ← max(Solver(R=(x, zy)) + Solver (R=(x, q(y-zy))), F
**(x, y));

13 End for

14 Return F(x, y)=max((x, y), F*(x, y), F**(x, y))

15 End if

16 End if

An Improved Heuristic-Dynamic Programming Algorithm for Rectangular Cutting Problem 725

13 End for

14 F**(ox, oy, x, y)=0;

15 For(zy
 , 1≤zy≤y-1)

16 F(3)(ox, oy, x, y)=IHDP(R=(ox, oy, x, zy)+IHDP(R= (ox, oy+zy, x, y-zy);

17 F(4)(ox, oy, x, y)=IHDP(R=(ox, oy, x, y-zy) +IHDP(R= (ox, oy+y-zy, x, zy);
18 F**(ox, oy, x, y) ← max(F(3)(ox, oy, x, y), F(4)(ox, oy, x, y), F**(ox, oy, x, y));

19 End for

20 Return F(ox, oy, x, y)= max(F*(ox, oy, x, y), F**(ox, oy, x, y));

21 End if

22 End if

23 End if

IHDP is implemented to solve the original problem 2D_UG_SLOPP_D and the

subproblems with defects. Only when the subproblem is of type 2D_UG_ SLOPP, the

Solver is called in line 6 to solve it. So, the initial values of the algorithm are R0 = (0,

0, W0, H0),
 (W0),

 H0) and all the defects d1, d2, …, dn.

3.4. Algorithm complexity

In this section, we study the computational aspects of the algorithm. We analyze the

time complexity in the worst case and get an estimation of pseudo polynomials.

Theorem 1 The time complexity in the worst case of the improved heuristic dynamic

programming for solving the 2D_UG_SLOPP_D is:

 Proof For a given single large object , the recursive function requires

 operations for each iteration. Therefore, the calculation

involves a total of time complexity as equation (13).

Theorem 2 Let
 and

 . And let
 , then:

Proof By definition, each element in
 is a viable combination of the length

of a small rectangular block

 calculates the same structure of the

number of terms in the polynomial. In order to obtain

 , in the above

polynomial, must take 1 to . That's because if , then there is

 .

726 Aihua Yin et al.

And

 . Add the above function (14) to the left and right

edges of defects; similarly, the same is true for the function (15).

4. Calculation results and analysis

The algorithm used in this paper is implemented in the C/C++ programming language.

The configuration of the computer used is: processor--Intel(R), Core (TM) i7cpu

@360HZ, RAM 8GB, 64bit operator.

Three typical classes examples are included in this experiment. The first class is 14

instances in which 8 instances proposed by Carnieri et al. (1993) [8] include a single

defect and 6 instances proposed by Vianna and Arenales (2006) [9] include multiple

defects. The original object’s width W0 = 200, height H0 = 100, and 5 types of small

rectangular blocks. The other two classes are generated by Neidlein’s [18] instance

generator. One class of them has already been generated and adopted both by both

Afsharian et al. [11] and by Martin et al. [12]. Another class is generated by ourselves,

and the seed values of random numbers are 3, 7 and 11, respectively.

In this paper, five other typical algorithms are selected to compare their effectiveness

and efficiency with IHDP. The objective function values (OFV) obtained by all these

algorithms is the important index. Furthermore, according to the literature [18], the

algorithm DPC (dynamic programming with complete discretization set) is

implemented. Another index, GAP = (OFVDPC-OFVIHDP)/ (OFVDPC + 10
-10

)*100, is

used to present these algorithms’ performance.

4.1. International Samples

In Table 2, The algorithm is compared with other three algorithms. Neidlein et al.

(2008) [10] only computes the instances with a single defect and obtains the optimal

solutions of 5 out of 8 instances. Vianna and Arenales [9] gets an optimal solution of the

instance with multiple defects, however, it does not public their computation time. Both

Afsharian et al. [11] and IHDP obtain the 14 optimal solutions in a short time.

Table 2. Operation results and comparison of four algorithms

Ins.

IHDP
Afsharian
etc.(2014)

Vianna etc.(2006) Neidlein etc.(2008)

OFV
Comp.

Time(s)
OFV

Comp.

Time(s)
OFV

Comp.

Time(s)
OFV

Comp.

Time(s)

A1 166 0.86 166 18.86 166 4.61 166 0.52
A2 166 0.67 166 16.43 160 3.57 160 0.77

A3 166 0.74 166 16.47 162 4.40 162 1.77

A4 164 0.25 164 18.25 160 3.15 160 0.27
A5 164 0.31 164 76.96 164 13.51 164 4.11

A6 164 0.47 164 0.90 164 1.32 164 1.44

A7 158 0.21 158 0.81 158 12.47 158 1.07
A8 154 0.13 154 1.21 154 8.07 154 0.50

A9 160 0.87 160 14.32 153 - - -

A10 158 0.49 158 2.22 148 - - -
A11 151 6.29 151 26.78 143 - - -

An Improved Heuristic-Dynamic Programming Algorithm for Rectangular Cutting Problem 727

A12 156 119.30 156 1126.44 150 - - -

A13 150 2.19 150 9.06 142 - - -
A14 160 0.09 160 1.00 160 - - -

Note: Bold type in the table represents the optimal solution

In addition, the optimal layout the two instances A11 and A12 which have 4 and 5

defects respectively are given below (see Fig. 5-6).

Fig. 5. A11 cutting pattern result Fig. 6. A12 cutting pattern result

4.2. Randomly generated instances

These examples are set by the instance generator procedure of Neidlein and Wäscher

(2016) [18]. With respect to the size of the large plate, it is distinguished between two

categories of problem instances, i.e., quadratic and non-quadratic. In small category, the

size of the large object is fixed to 5,625 square units, and the size of the large object is

fixed to 22,500 square units in medium category. Furthermore, the two different shapes

of the large plate considered for each category are quadratic (75, 75) and non-quadratic

(112, 50) for the small category and quadratic (150, 150) and non-quadratic (225, 100)

for medium category, respectively. The number of types of small rectangles is set to 5.

10, 15, 20 and 25. The type width and height of the small rectangular block are

uniformly obtained from and ,respectively, where in

all categories is 6, 8, and 10. The defect is set to 1~4, and 15 examples of each defect

are averaged for a group. The width and height of the defect are uniformly obtained

from the ranges and , respectively. The position of each

defect is represented by the position of the defect in the lower left corner of the large

rectangular block, generated using a uniform distribution in the range of

and , and then these values are rounded. So, the instances number of each

size category are 2×5×3×15×4=1800.

Instances in the literatures. The instances in Table 3 and Table 4 are generated by Afs

-harian et al. (2014) [11] without providing the value of their random seed, however, the

 data can be obtained from the following website: www. dep.ufscar.br/docentes/munari/

cuttingpacking/.

In Table 3, the other three algorithms are the best ones we have got. As a complete

DP (Dynamic programming takes every integer both in [1, W0] and in [1, H0] as cutting

point) [18], DPC does obtain the optimal solutions of all instances in guillotine manner.

IHDP obtains the optimal solution of all cases, however, DPD and B&BC get the

optimal solutions of one group and ten groups of instances, respectively. However, The

http://www.dep.ufscar.br/docentes/munari/cuttingpacking/
http://www.dep.ufscar.br/docentes/munari/cuttingpacking/

728 Aihua Yin et al.

Gap of B&BC on the average of 30 groups is more than twice that of DPD, so the

stability of the latter is better than the former. B&BC takes far more time than the other

three algorithms.

In Table 4, Martin et al. [12] doesn’t show the calculation details of the 30 group

instances, so the computation results of DPC, DPD and IHDP are compared. None of

the optimal solutions of these instances are obtained by DPD. However, IHDP gets 26

out of 30 groups optimal solutions of the instances, and the four GAPs are very close to

0.00. Here, although the computation time difference among them is not very big, IHDP

takes more time than DPD, but less than DPC.

New randomly generated instances. In order to further test the performance of IHDP, t

he generator of Neidlein et al. (2016) [18] is used to generate new data. Table 5 and Tab

le 6 are instances of small and medium scale, and the value of their random number seed

=3. Table 7 and Table 8 are small scale instances, and the value of their random number

seed=7, 11, respectively (randomly selected from the uniform distribution of [1, 12]). B

ecause these are new data, only DPC and IHDP are used for comparison.

Table 5 shows the computation results of small-scale instances. Both IHDP and DPC

get the optimal solution of all cases, but IHDP takes almost a tenth of DPC. Table 6

shows the computation results of the medium scale case. IHDP does not get the optimal

solution on five groups of instances. However, the result of IHDP is very close to the

optimal solution, and its final average Gap is still 0.000. Moreover, it takes less than

half the computing time of DPC.

Both in Table 7 and Table 8, 1800 small scale instances are generated by seed values

of 7 and 11, respectively. In Table 7, IHDP obtains the optimal solutions of 28 out of 30

groups of the instances, but the GAP is only 0.2%. In Table 8, IHDP obtains all the

optimal solution of the instances. In both cases, IHDP takes about half as long as DPC.

According to the results shown in Tables 3 to 8 above, IHDP performs stablely on the

instances generated by both ourselves and Afsharian et al. [11], and it is an effective and

efficient algorithm to solve the original problem 2D_UG_SLOPP_D in guillotine mode.

5. Conclusion

In this paper, the smaller discretization sets are constructed to solve the two-dimensional

cutting problem with defects in guillotine manner. Especially, an improved heuristic-

dynamic programming algorithm is proposed, which adapts two different methods to for

the subproblems 2D_UG_SLOPP_D and 2D_UG_SLOPP, respectively. Almost all the

optimal solutions of over ten thousand typical instances are obtained. An important

theorem on its complexity of the algorithm is proved. Future research could focus on

solving the larger scale instance or on modifying the discretization set definition or on

solving different type of cutting problem such as involving the constraints of the largest

number of each type of the small rectangular block.

An Improved Heuristic-Dynamic Programming Algorithm for Rectangular Cutting Problem 729

Table 3. Four algorithms comparison on the small size 1800 instances of Afsharian et al.[11]

instances m
DPC DPD B&BC IHDP

OFV time(s) OFV time(s) GAP(%) OFV time(s) GAP(%) OFV time(s) GAP(%)

1 5 6 3694.31 11.45 3694.31 3.52 0.00 3694.31 0.05 0.00 3694.31 0.41 0.00

2 10 6 4256.01 12.12 4229.85 4.52 0.61 4256.01 15.20 0.00 4256.01 2.50 0.00

3 15 6 4566.10 13.33 4540.38 5.36 0.56 4566.10 1.57 0.00 4566.10 3.92 0.00

4 20 6 4615.43 13.09 4593.41 5.76 0.48 4605.70 42.80 0.21 4615.43 5.32 0.00

5 25 6 4694.01 13.89 4674.66 6.19 0.41 4691.43 56.70 0.05 4694.01 6.31 0.00

6 5 8 3683.23 11.14 3638.03 2.86 1.23 3683.23 0.87 0.00 3683.23 0.60 0.00

7 10 8 4386.16 12.94 4375.50 4.74 0.24 4372.03 62.00 0.32 4386.16 3.20 0.00

8 15 8 4613.23 14.07 4585.26 6.09 0.61 4604.15 78.03 0.19 4613.23 5.26 0.00
9 20 8 4883.78 14.69 4876.38 6.27 0.15 4850.66 150.20 0.67 4883.78 6.83 0.00

10 25 8 4835.60 14.48 4826.93 7.76 0.18 4792.66 91.92 0.88 4835.60 7.49 0.00

11 5 10 4083.56 12.71 4055.10 3.18 0.70 4001.58 16.56 2.00 4083.56 1.11 0.00
12 10 10 4710.91 14.60 4686.56 5.69 0.52 4637.40 107.65 1.56 4710.91 5.39 0.00

13 15 10 4845.16 14.78 4826.68 6.74 0.38 4678.93 122.56 3.43 4845.16 6.25 0.00

14 20 10 4928.65 15.25 4920.95 9.35 0.16 4629.06 155.83 6.07 4928.65 8.20 0.00
15 25 10 4968.50 16.13 4960.23 10.71 0.17 4783.45 217.93 3.72 4968.50 9.44 0.00

16 5 6 3530.41 10.74 3480.63 2.61 1.41 3530.41 0.03 0.00 3530.41 0.26 0.00

17 10 6 4339.18 11.53 4305.43 4.31 0.78 4339.18 20.38 0.00 4339.18 2.45 0.00
18 15 6 4495.20 14.54 4470.76 4.31 0.54 4495.20 13.40 0.00 4495.20 4.05 0.00

19 20 6 4618.16 14.66 4607.75 5.80 0.23 4611.68 59.53 0.14 4618.16 5.77 0.00

20 25 6 4686.21 15.42 4679.73 6.78 0.14 4671.68 82.28 0.30 4686.21 6.75 0.00
21 5 8 3829.66 13.69 3752.31 2.03 2.02 3829.66 7.83 0.00 3829.66 0.68 0.00

22 10 8 4536.90 15.30 4523.00 4.56 0.31 4536.90 26.33 0.00 4536.90 4.02 0.00

23 15 8 4792.70 14.54 4766.90 5.65 0.54 4770.53 130.25 0.46 4792.70 6.10 0.00
24 20 8 4706.16 15.16 4685.91 5.92 0.43 4681.53 74.36 0.52 4706.16 6.78 0.00

25 25 8 4791.00 15.66 4772.01 8.09 0.40 4715.31 121.96 1.57 4791.00 7.92 0.00

26 5 10 4138.25 13.43 4076.48 3.63 1.49 4138.25 11.50 0.00 4138.25 0.99 0.00
27 10 10 4396.10 15.29 4357.55 4.53 0.88 4374.31 70.63 0.49 4396.10 3.94 0.00

28 15 10 4688.12 15.95 4661.92 5.70 0.56 4590.73 149.97 2.07 4688.12 6.31 0.00

29 20 10 4895.85 16.14 4891.43 8.71 0.09 4705.36 154.61 3.89 4895.85 8.40 0.00
30 25 10 4988.35 16.20 4975.15 9.31 0.26 4856.01 206.26 2.65 4988.35 8.92 0.00

Average 4506.56 14.10 4483.04 5.69 0.52 4456.45 74.97 1.11 4506.56 4.85 0.00
Note: Bold type in the table represents the optimal solution

730 Aihua Yin et al.

Table 4. Comparewith DPC on the medium size 1800 instances of Afsharian et al.[11]

instances m
DPC DPD IHDP

OFV time(s) OFV time(s) GAP(%) OFV time(s) GAP(%)

1 5 6 14794.82 209.58 14546.66 24.723 1.677 14794.82 7.89 0.000

2 10 6 15772.18 202.97 15544.76 35.661 1.442 15772.18 42.14 0.000

3 15 6 17356.57 146.04 17263.78 35.827 0.535 17356.57 77.21 0.000

4 20 6 18256.58 160.21 18128.60 58.636 0.701 18256.58 138.48 0.000

5 25 6 18824.05 172.32 18716.65 69.199 0.571 18701.42 163.10 0.007

6 5 8 14384.88 183.29 14276.08 27.278 0.756 14384.88 4.94 0.000

7 10 8 17780.28 280.81 17632.83 40.890 0.829 17780.28 74.94 0.000

8 15 8 18747.35 182.60 18615.33 72.122 0.704 18747.35 136.41 0.000
9 20 8 19315.80 193.07 19193.25 73.607 0.634 19315.80 185.78 0.000

10 25 8 19530.53 189.00 19435.88 131.198 0.485 19530.53 184.81 0.000

11 5 10 15174.78 237.29 15067.86 24.038 0.705 15174.78 9.19 0.000
12 10 10 18839.87 184.59 18775.98 63.492 0.339 18839.87 116.96 0.000

13 15 10 18747.58 192.31 18685.03 71.939 0.334 18611.28 153.12 0.007

14 20 10 19438.30 193.51 19372.35 99.747 0.339 19438.30 187.32 0.000
15 25 10 19822.68 217.56 19724.56 137.128 0.495 19822.68 216.96 0.000

16 5 6 13611.92 100.51 13420.90 21.29 1.403 13611.92 6.08 0.000

17 10 6 16938.10 152.79 16709.06 43.03 1.352 16938.10 84.64 0.000
18 15 6 17203.60 151.04 17058.16 45.42 0.845 17203.60 96.32 0.000

19 20 6 18606.00 181.05 18475.80 62.96 0.700 18606.00 141.73 0.000

20 25 6 18708.25 194.25 18591.30 74.73 0.625 18708.25 190.35 0.000

21 5 8 15217.80 128.29 15024.26 23.33 1.272 15217.80 15.61 0.000

22 10 8 17720.82 177.21 17541.91 53.70 1.010 17720.82 163.48 0.000
23 15 8 18620.30 196.23 18491.06 63.04 0.694 18518.05 143.48 0.005

24 20 8 18999.55 212.83 18814.46 84.30 0.974 18999.55 210.44 0.000

25 25 8 19382.40 225.39 19215.23 109.88 0.862 19382.40 217.22 0.000

26 5 10 15542.52 138.11 15248.20 35.21 1.894 15542.52 31.84 0.000

27 10 10 17366.72 179.47 17191.66 47.83 1.008 17366.72 106.46 0.000
28 15 10 18913.72 203.36 18733.61 92.64 0.952 18913.72 192.05 0.000

29 20 10 19632.15 220.12 19537.85 131.77 0.480 19513.54 220.01 0.006

30 25 10 19707.63 233.18 19561.21 122.08 0.743 19707.63 230.33 0.000

Average 17765.26 187.97 17619.81 65.89 0.845 17749.26 124.98 0.001

Note: Bold type in the table represents the non-optimal solution

An Improved Heuristic-Dynamic Programming Algorithm for Rectangular Cutting Problem 731

Table 5. Compare with DPC on the small size 1800 new instances (seed=3)

instances m
DPC IHDP

OFV time(s) OFV time(s) GAP(%)

1 5 6 3825.80 9.82 3825.80 0.15 0.00

2 10 6 4381.25 12.16 4381.25 0.62 0.00
3 15 6 4567.50 12.53 4567.50 0.78 0.00

4 20 6 4726.13 12.66 4726.13 1.47 0.00

5 25 6 4842.80 12.19 4842.80 1.55 0.00

6 5 8 3997.50 10.76 3997.50 0.19 0.00

7 10 8 4630.67 12.94 4630.67 1.03 0.00
8 15 8 4793.17 13.18 4793.17 1.30 0.00

9 20 8 4863.02 14.21 4863.02 1.71 0.00

10 25 8 5047.80 14.21 5047.80 2.05 0.00
11 5 10 4166.97 11.44 4166.97 0.24 0.00

12 10 10 4707.54 13.31 4707.54 1.17 0.00

13 15 10 4864.12 13.45 4864.12 1.45 0.00
14 20 10 4981.47 14.16 4981.47 2.08 0.00

15 25 10 5099.68 14.56 5099.68 2.61 0.00

16 5 6 3700.47 11.51 3700.47 0.13 0.00
17 10 6 4366.59 13.13 4366.59 0.57 0.00

18 15 6 4504.84 12.93 4504.84 0.88 0.00

19 20 6 4600.78 13.74 4600.78 0.89 0.00

20 25 6 4697.32 13.88 4697.32 1.43 0.00

21 5 8 3838.69 10.56 3838.69 0.15 0.00
22 10 8 4560.90 13.47 4560.90 0.75 0.00

23 15 8 4769.70 13.89 4769.70 1.21 0.00

24 20 8 4826.15 14.88 4826.15 1.67 0.00
25 25 8 4944.00 14.69 4944.00 2.05 0.00

26 5 10 4033.33 11.52 4033.33 0.15 0.00

27 10 10 4562.67 14.69 4562.67 0.89 0.00
28 15 10 4781.54 15.20 4781.54 1.60 0.00

29 20 10 4959.79 14.43 4959.79 2..06 0.00

30 25 10 5014.05 15.24 5014.05 2.31 0.00

Average 4588.54 13.18 4588.54 1.10 0.00

Table 6. Compare with DPC on the medium size 1800 new instances (seed=3)

instances m
DPC IHDP

OFV time(s) OFV time(s) GAP(%)

1 5 6 14974.25 277.85 14972.15 4.51 0.000

2 10 6 17113.60 290.08 17113.60 56.95 0.000

3 15 6 18259.88 278.21 18259.88 112.63 0.000

4 20 6 18250.43 310.59 18250.43 138.08 0.000

5 25 6 18769.08 282.40 18769.08 155.32 0.000

6 5 8 15993.28 293.52 15993.28 8.45 0.000
7 10 8 18022.70 283.77 18022.70 87.99 0.000

8 15 8 18772.30 274.74 18772.30 143.05 0.000
9 20 8 19341.68 281.89 19341.68 192.06 0.000

10 25 8 19653.10 287.14 19653.10 227.91 0.000

11 5 10 15902.78 288.95 15902.78 7.68 0.000

12 10 10 18600.38 275.67 18600.38 99.46 0.000

13 15 10 19213.53 275.63 19213.10 167.44 0.000

14 20 10 19730.58 272.70 19730.58 207.27 0.000
15 25 10 20012.65 282.42 20012.65 260.77 0.000

16 5 6 14730.78 324.04 14623.88 5.34 0.007

17 10 6 17040.13 301.38 17040.13 47.19 0.000
18 15 6 18025.05 305.29 18025.05 103.17 0.000

19 20 6 18465.53 316.33 18465.53 153.18 0.000

732 Aihua Yin et al.

20 25 6 18842.85 313.16 18842.85 189.40 0.000

21 5 8 15830.78 304.80 15827.15 6.76 0.000

22 10 8 17801.28 317.94 17801.28 81.35 0.000

23 15 8 18732.18 299.69 18732.18 147.56 0.000
24 20 8 19156.50 313.54 19156.50 186.86 0.000

25 25 8 19384.78 306.00 19384.78 216.96 0.000

26 5 10 15078.53 297.44 15078.53 6.96 0.000
27 10 10 17974.48 313.68 17958.15 90.66 0.001

28 15 10 18850.90 310.60 18850.90 166.48 0.000

29 20 10 19401.13 311.13 19401.13 232.41 0.000
30 25 10 20059.15 308.62 20059.15 274.27 0.000

Average 18066.14 296.64 18061.83 125.94 0.000
Note: Bold type in the table represents the non-optimal solution

Table 7. Compare with DPC on the small size 1800 new instances (seed=7)

Ins. m
DPC IHDP

OFV time(s) OFV time(s) GAP(%)

1 5 6 3947.23 2.17 3947.23 0.12 0.00

2 10 6 4388.65 3.11 4388.65 0.85 0.00

3 15 6 4526.98 3.57 4526.98 1.75 0.00

4 20 6 4654.13 3.89 4654.13 2.23 0.00

5 25 6 4758.02 4.21 4758.02 2.31 0.00

6 5 8 4020.60 2.42 4020.60 0.24 0.00

7 10 8 4507.75 3.99 4507.75 1.44 0.00

8 15 8 4732.47 4.66 4732.47 3.27 0.00

9 20 8 4854.50 5.15 4854.50 3.62 0.00

10 25 8 4924.37 5.41 4924.37 4.56 0.00

11 5 10 4105.08 3.45 4105.08 0.93 0.00

12 10 10 4732.95 5.45 4732.95 3.31 0.00

13 15 10 4899.15 6.25 4899.15 5.70 0.00

14 20 10 5006.60 6.72 5006.60 5.69 0.00

15 25 10 5063.02 6.83 5063.02 7.38 0.00

16 5 6 3810.30 4.33 3808.07 0.20 0.06

17 10 6 4303.37 5.14 4303.37 0.63 0.00

18 15 6 4529.53 5.56 4529.53 0.97 0.00

19 20 6 4598.10 5.92 4598.10 1.42 0.00

20 25 6 4702.70 6.22 4702.70 2.02 0.00

21 5 8 4041.78 4.88 4041.78 0.74 0.00

22 10 8 4501.80 5.97 4501.80 2.29 0.00

23 15 8 4732.78 6.74 4732.78 2.96 0.00

24 20 8 4803.43 6.82 4803.43 3.55 0.00

25 25 8 4851.45 7.02 4851.45 3.88 0.00

26 5 10 4055.08 5.12 4055.08 0.73 0.00

27 10 10 4730.05 6.77 4729.92 2.95 0.003

28 15 10 4820.05 7.01 4820.05 3.91 0.00

29 20 10 4933.32 7.40 4933.32 5.06 0.00

30 25 10 4992.20 8.48 4992.20 6.52 0.00

Average 4584.25 5.36 4584.17 2.71 0.002
Note: Bold type in the table represents the non-optimal solution

An Improved Heuristic-Dynamic Programming Algorithm for Rectangular Cutting Problem 733

Table 8. Compare with DPC on the small size 1800 new instances (seed=11)

Ins. m
DPC IHDP

OFV time(s) OFV time(s) GAP(%)

1 5 6 3854.90 2.34 3854.90 0.18 0.00

2 10 6 4352.48 3.46 4352.48 0.90 0.00

3 15 6 4548.65 4.18 4555.65 1.36 0.00

4 20 6 4658.13 4.49 4658.13 1.87 0.00

5 25 6 4761.37 4.77 4761.37 2.43 0.00

6 5 8 3918.62 2.87 3918.62 0.34 0.00

7 10 8 4538.45 4.77 4538.45 1.53 0.00

8 15 8 4758.63 5.67 4765.73 2.55 0.00

9 20 8 4798.27 5.45 4798.27 3.02 0.00

10 25 8 4926.80 6.39 4926.80 3.99 0.00

11 5 10 3963.83 3.34 3963.83 0.69 0.00

12 10 10 4635.02 5.56 4635.02 2.33 0.00

13 15 10 4851.70 6.54 4851.70 4.07 0.00

14 20 10 4926.92 6.91 4926.92 4.80 0.00

15 25 10 5016.78 7.57 5016.78 6.01 0.00

16 5 6 3818.85 2.97 3818.85 0.15 0.00

17 10 6 4257.70 3.89 4257.70 0.61 0.00

18 15 6 4586.68 5.02 4586.68 1.46 0.00

19 20 6 4649.18 5.39 4649.18 2.09 0.00

20 25 6 4776.97 5.86 4776.97 2.43 0.00

21 5 8 3955.52 3.69 3955.52 0.33 0.00

22 10 8 4524.15 5.00 4524.15 1.44 0.00

23 15 8 4716.22 6.12 4716.22 2.62 0.00

24 20 8 4795.03 6.08 4795.03 3.41 0.00

25 25 8 4884.32 6.81 4884.32 4.28 0.00

26 5 10 4100.58 4.31 4100.58 0.58 0.00

27 10 10 4610.17 5.85 4610.17 2.21 0.00

28 15 10 4806.98 6.36 4806.98 3.37 0.00

29 20 10 4908.53 7.38 4908.53 4.58 0.00

30 25 10 4982.80 8.07 4982.80 5.12 0.00

Average 4562.81 5.24 4562.81 2.36 0.00

Acknowledgements. This work was supported by the National Natural Science Foundation of

China (Grant Nos.61862027, 61702238 and 61866014), the Natural Science Foundation Project

of Jiangxi (Grant No.20192BAB207008), the Science Foundation of Educational Commission of

Jiangxi Province (Grant Nos.Gjj170316 and Gjj180264).

References

1. Wäscher G, Haußner H, Schumann H. An improved typology of cutting and packing

problems [J]. European Journal of Operational Research, 2007, 183(3): 1109-1130.

2. Wang L, Liu Q, Chen X. Heuristic search algorithm for the rectangular fixed-size guillotine

bin packing problem [J]. Journal of Software, 2017, 28: 1640-1654.

734 Aihua Yin et al.

3. Song X, Chu C B, Lewis R, et al. A worest case analysis of a dynamic programming-based

heuristic algorithm for 2D unconstrained guillotine cutting [J]. European Journal of

Operational Research, 2010, 202(2): 368-378.

4. Wuttke D A, Heese H S. Two-dimensional cutting stock problem with sequence dependent

setup times[J]. European Journal of Operational Research, 2017, 265: 303-315.

5. Yoon K, Ahn S, Kang M. An improved best-first branch-and-bound algorithm for

constrained two-dimensional guillotine cutting problems [J]. International Journal of

Production Research, 2013, 51(6): 1680-1693.

6. Herz, J. C. Recursive computational procedure for two-dimensional stock cutting [J]. IBM

Journal of Research and Development, 1972, 16(5): 462-469.

7. Beasley, J. E. Algorithms for unconstrained two-dimensional guillotine cutting [J]. Journal of

the Operational Research Society, 1985(a), 36(4): 297-306.

8. Carnieri C, Mendoza G A, Luppold W G. Optimal cutting of dimension parts from lumber

with a defect: A heuristic solution procedure [J]. Forest Products Journal, 1993, 43: 66-72.

9. Vianna ACG, Arenales MN. Problema de corte de placas defeituosas. Pesqui Operacional,

2006, 26: 185-202.

10. Neidlein V, Vianna, A C G, Arenales, M.N, Wäscher, G. The two-dimensional guillotine-

layout cutting problem with a single defect - An and/or-graph approach [J]. Operations

Research Proceedings 2008 (Eds.: Fleischmann, B. et al.). Berlin, Heidelberg, Springer-

Verlag, 85-90.

11. Afsharian M, Niknejad A, Wäscher G. A heuristic, dynamic programming-based approach

for a two-dimensional cutting problem with defects [J]. OR Spectrum, 2014, 36(4):971-999.

12. Martin M, Hokama Pedro H D B, Morabito R, Munari, P. The constrained two-dimensional

guillotine cutting problem with defects: an ILP formulation, a Benders decomposition and a

CP-based algorithm[J]. International Journal of Production Research, 2019, 1-18.

13. Gonçalves J F, Wäscher G. A MIP model and a biased random-key genetic algorithm based

approach for a two-dimensional cutting problem with defects. European Journal of

Operational Research, 2020, preprint. doi: https://doi.org/10.1016/j.ejor.2020.04.028

14. Birgin E G, Romão, O. C, Ronconi D P. The multiperiod two-dimensional non-guillotine

cutting stock problem with usable leftovers[J]. International Transactions in Operational

Research, 2019, 1392-1418.

15. Velasco A S, Eduardo U. Improved state space relaxation for constrained two-dimensional

guillotine cutting problems[J]. European Journal of Operational Research, 2019, 272: 106-

120.

16. Russo M, Boccia M, Sforza A, Sterle C. Constrained two-dimensional guillotine cutting

problem: upper-bound review and categorization. International Transactions in Operation

Research, 2020, 27: 794-834.

17. Wu K, Min X, Zhang D. Research on two-dimensional cutting problem with defects. 2019

IEEE 10th International Conference on Software Engineering and Service Science (ICSESS),

Beijing, China: 506-511.

18. Neidlein V, Wäscher G. SLOPPGEN: a problem generator for the two-dimensional

rectangular single large object placement problem. International Transactions in Operational

Research, 2016, 23:173-186.

An Improved Heuristic-Dynamic Programming Algorithm for Rectangular Cutting Problem 735

Aihua YIN is a Senior Researcher at Jiangxi University of Finance and Economics. He

received the Ph.D. degree in Computer Science from the Huazhong University of

Science and Technology, Wuhan, China. His research interests include job shop

scheduling problem, cutting and packing problem.

Chong CHEN is a Master degree candidate at Jiangxi University of Finance and

Economics. He received the Bachelor degree in Computer Science and Technology

from the Wuhan University of Science and Technology, China. His research interests

include cutting problem.

Dongping HU is an associate professor at Jiangxi University of Finance and

Economics. She received the Ph.D. degree in Information Security from the Huazhong

University of Science and Technology, Wuhan, China. Her research focuses on the

searchable encryption, the application intelligent algorithm in information security.

Jianghai HUANG is a Master degree candidate at Jiangxi University of Finance and

Economics. He received the Bachelor degree in Software Engineering from the Tianjin

University Renai College, Tianjin, China. His research interests include cutting

problem.

Fan Yang is a Master degree candidate at Jiangxi University of Finance and

Economics. She received the Bachelor degree in Electronic Commence from the Wuhan

University of Science and Technology, Wuhan, China. Her research interests include

Text Big Data Analysis.

Received: January 25, 2020; Accepted: July 02, 2020

