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Abstract. Conventional electronic Artificial Neural Networks (ANNs) accelerators
focus on architecture design and numerical computation optimization to improve
the training efficiency. However, these approaches have recently encountered bot-
tlenecks in terms of energy efficiency and computing performance, which leads to
an increase interest in photonic accelerator. Photonic architectures with low energy
consumption, high transmission speed and high bandwidth have been considered as
an important role for generation of computing architectures. In this paper, to provide
a better understanding of optical technology used in ANN acceleration, we present
a comprehensive review for the efficient photonic computing and communication in
ANN accelerators. The related photonic devices are investigated in terms of the ap-
plication in ANNs acceleration, and a classification of existing solutions is proposed
that are categorized into optical computing acceleration and optical communication
acceleration according to photonic effects and photonic architectures. Moreover, we
discuss the challenges for these photonic neural network acceleration approaches to
highlight the most promising future research opportunities in this field.

Keywords: Optical neural networks, Optical interconnection networks, Neural net-
work accelerator.

1. Introduction

The wide applications of Artificial Intelligence (AI), such as computer vision, speech
recognition and language processing, call for efficient implementation of the model train-
ing and inference phases in machine learning [61]. Especially for Artificial Neural Net-
works (ANNs), due to the seminal work by Hinton et al. on deep learning in 2006, ANNs
have reappeared in people’s vision [30]. Multiple neural networks have been studied and
applied in different fields. However, with large data sets and massively interconnected
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ANNs, the traditional computer architectures suffer from the efficient training and infer-
ence due to the limited device computing efficiency and energy consumption.

To increase computing performance and energy efficiency, both hardware and soft-
ware acceleration have been studied extensively in academia and industry. The specifi-
cally tailored electronic solutions have been regarded as ideally suitable for ANNs train-
ing, such as Graphics Processing Units (GPU), Tensor Processing Unit (TPU) and Field
Programmable Gate Arrays [77,48]. These novel electrical architectures focus on high
inter-chip bandwidth for big data traffic, memory architectures for matrix multiplications
and advanced numerical calculation method to support model parallelism and data reuse.
Nevertheless, the demand for computing power in ANNs is continually growing, and elec-
tronic solutions are still limited by the energy consumption of physical limits [45].

Along with the development of photonic devices and integrated optics, it has been
considered a possible alternative for electronic architectures in the future to use optical
architectures. There are many optical solutions emerging for communications and com-
puting acceleration of ANNs as the times require. To this aim, some studies focus on
optical linear transformations in passive optical network that enable to be operated with-
out power consumption and with minimal latency [53], and the optical logic gates has
also been proposed in different structures [34]. Further, optical devices were integrated to
implement ANNs, with the aim of increasing the training speed and the energy efficiency
[1,58]. For accelerating the communication of ANNs, optical on/off chip network archi-
tectures with different parallelization strategies and topologies have also been designed
for decreasing ANN training workload and increasing and data transmission speed.
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Fig. 1. Classification of Photonic Implementation in ANN Accelerators.

In this paper we present a survey of approaches for implementing optical Neural Net-
work (ONN) accelerator. A classification of the existing solutions is proposed which in-
cludes two categories: optical computing implementations and optical communication im-
plementations for ANN accelerators, as can be seen in Fig. 1. Existing reviews on optical
ANN accelerators have either focused on reviewing performance and energy of a specific
type of optical ANN computing architecture such as reservoir computing architectures
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[54], [31] and Broadcast-and-Weight architectures [18], [68]), or proposed a simplified
taxonomy of the realized neural network models such as CNNs, SNNs [20]. By compar-
ison, we present a different and more comprehensive review of photonic ANN from two
aspects including computing acceleration and communication acceleration approaches
with a bottom-up classification across design-layer abstractions: from lower-level opti-
cal devices, to the neuron microarchitectures, and covering a variety of integrated neural
network.

Recently, some works have focused on the computing acceleration in neural network
and on bottlenecks of photonics technologies [42], [74]. However, these works have ig-
nored the contribution of on-chip optical communication to neural networks acceleration.
Compared to our previous work [72], this paper provides the review of optical devices
from lower-level, and a more comprehensive summary of optical computing and commu-
nication acceleration neural networks. In addition, the advantages and disadvantages of
existing works are summarized by comparing literature.

The remainder of this paper is organized as follows: In Section 2, we present the moti-
vations behind ANN accelerator, and introduce a taxonomy of the approaches presented in
the literature. The relevant optical devices is reviewed in terms of the application in ANN
accelerators. In Section 3, we describe the optical architectures devised for the computing
implementations in ANNs. In Section 4 the most relevant solutions are reviewed accord-
ing to the categories of optical communication for ANNs acceleration. While in Section
5, we discuss the challenges and future research opportunities in this field, and Section 6
concludes the paper.

2. Background

2.1. Optical Neural Network Accelerators

The exiting researches of ANN accelerators are mainly focused on the development of
electronic architecture specially tailored to neural network, such as GPU, TPU, FPGA and
ASIC optimized neural network by adjusting the computing architecture. However, after
decades of prosperous development of electronic computers, the current silicon-based
computer circuits are reaching their physical limits [16]. Conventional high-performance
computer architectures still cannot break through the bottleneck of the memory wall, and
computing performance is limited by bandwidth and huge date processing workload and
power consumption [14].

In recent years, some researches began to explore analog electronic circuits to address
the memory wall challenges that can meet the ANN computation requirements. Quantum
Neural Networks [23], Processing-in-Memory [13] and Memristor [2] have been specially
designed to implement ANN acceleration. Processing-in-Memory employs the memory
arrays themselves for computing to reduce the movement of data between CPU and mem-
ory, which obviates memory cell redesign and has low area overhead and friendly man-
ufacture. However, The accuracy of Processing-in-Memory is limited by analog calcula-
tions [32]. Memristor-based Accelerators mainly consist of resistor array with memory
and analog crossbars. The main drawback of Memristor is the concern on the high power
consumption [71]. While all these three technologies lack mature development platforms
and industry standards.
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Photonics have demonstrated great potentialities for various application in ANN ac-
celerators. In order to implement the functionality of neural networks in photonic net-
works, the present research efforts have been undertaken numerously. In comparison with
state-of-the-art electrical architectures, the optical solutions are expected to enhance com-
putational speed and energy efficiency when performing data transfer and training tasks
[58]. The rationale behind optical architectures can considerably decrease the energy cost
both in logical calculation and data transmission by using passive optical network to exe-
cute the linear operations in a typical ANN [28]. The application of passive components in
an integrated optical circuit enables high-speed operation while consuming less than the
transmitter and receiver energy limits. Hence, analog optical computing circuits are an
exciting research field possibility for high-performance computing, especially for ANNs.
On the other hand, optical interconnection networks have been well studied by a large
amount of works, due to its unique advantage in data transmission such as high bandwidth
density, low power consumption and immune to electromagnetic effect [49]. Optical net-
work with the implementation of Wavelength-Division-Multiplexing technology (WDM),
is also suitable for neural networks to accelerate on-chip or off-chip communications [17].

2.2. Photonic Devices

Over the past few years, optical communication has been generally applied in remote com-
munications and data centers for cost-effective and high bandwidth interconnects. With
the development of silicon photonics, photonic devices are becoming miniaturized and
low power consumption that makes it increasingly possible to integrate photonic network
architectures. The integrate optical devices are considered to develop optical computing
chips with better performance. The computing platform using Wavelength-Division Mul-
tiplexing technology can carry more than 64 wavelengths of light in a single waveguide.
Each optical signal enables wavelengths to carry different data at high transmission speed
without any crosstalk [4]. In optical network, the multiplexed signals are switched and
separated by the Microring Resonators, Mach-Zehnder Interferometers and other optical
devices to achieve optical communication and computing. The optical signals are eventu-
ally converted into electrical signals for storage or further processing by photo detectors,
optical to electronic converters and other devices. However, there are still several chal-
lenges for optical devices to support robust computation and communication at chip scale.
Therefore, this paper reviews some basic optical devices that are used for computing and
communication in optical acceleration.

Lasers The first challenging requirement for optical architecture is to develop an effective
and stable chip-scale optical source. There are two types light source in the integrated
optical circuit: on-chip laser and off-chip laser, and the different structures lead to different
advantages and disadvantages for optical interconnections [81]. The off chip lasers can
offer excellent luminous performance and stable temperature control but limited by high
optical power loss because of the coupling. The on chip lasers could possibly offer a
higher integrated ability and lower power loss, whereas the development of on chip lasers
is limited by the low emission efficiency of silicon that is one main obstacle preventing
the integration of optical interconnection [29,82].

Light sources are emitted by several ways. Firstly, Vertical-cavity surface emitting
lasers (VCSELs) are now key optical sources in optical communications which the lasers
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Fig. 2. A hybrid microring laser with a Si bus waveguide.

are perpendicular to the surface of substrates. VCSELs are widely utilized to the optical
neural network as they meet the requires of cost-effective, integratable for array and high
coupling efficiency to waveguides [73]. Meanwhile, hybrid silicon lasers with small size
and a short cavity structure are verified have greater footprint efficiency. Secondly, as
shown in Fig. 2 the hybrid microring lasers have been experimentally demonstrated on Si
integrated platform that be contained about 400 laser devices in 1cm2 chip [64]. In the
optical computing, lasers are employed to implement some functions of neural network.
Light sources with integrated modulator can directly output light to carry data by adjusting
the amplitude, power and phase of light [63]. However, the thermal impedance caused by
high density lasers lying is still a major hurdle for large scale integration.

Mach-Zehnder Interferometers Mach-Zehnder Interfeometer (MZI) is broadly applied
to develop optical modulators, switches and filters in photonic architectures [80,65]. A
MZI is composed of two beam splitters and two phase shifters. Fig. 3(a) shows the lay-
out of a MZI device. While the fixed 50:50 beam splitters are not configurable, the two
phase shifters are configurable by adjusting the angle. The input optical signal is split
proportionally as it passes through the beam splitter. By applying power to the two phase
shifters, the MZI can be controlled to provide phase shifting or attenuation for the optical
signals which pass through the two arms. This enables MZIs to work as the directional
couplers or more simply as the optical switches. Based on the above functions, MZI has
been utilized to realize fundamental logic operation by optical power level, phase adjust-
ing and output port scheduling. In [6], authors designed a cascaded MZIs structure with
interference of multiple beams that obtained various gates by detecting optical intensity at
different points such as AND, OR, NAND, XNOR and so on. According to the research
above, MZI-based logic gates are studied to support optical neural network computation
[55]. The cascade MZIs array is used as the basic unit of matrix multiplication, which
has been attracting a great deal of attention recently. The singular value segmentation is
used to make it suitable for matrix multiplication operation in ANNs [58]. Such neural
functions and their implementations are discussed in the next section.

Microring Resonators A Microring Resonator (MRR) can be seen as a closed waveg-
uide circular and a common structure of MRR is that two bus waveguides border upon a
ring waveguide. The ring waveguide resonates when the path-length of resonator cavity is
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equal to the integer multiple of the input wavelength [7]. As shown in Fig. 3(b), the MRR
contains a ring waveguide, an input bus waveguide and a drop bus waveguide. When the
resonance occurs, the input lights will be passed the ring waveguide and turned to the drop
waveguide, conversely, the lights will be routed to the pass waveguide. Hence, the MRRs
are used as switches or filters in photonic communication, especially for Wavelength Di-
vision Multiplexing technology [76]. The WDM technology arrows optical signal with
different wavelength to carry more data without interference, which increases parallel
process in the optical network. Moreover, MRRs and WDM optical signal are employed
to realize weight accumulation in optical neural network, in which the cascaded add-drop
MRRs is grid in shape, and is called weight bank [67,78]. To sum up, MRRs and MZIs
are designed as switches, filters and modulators in optical communication and computing.
Compared to the MZI, since the dropped output of the MRR can be directly monitored
at each wavelength of the WDM signal, it is more straightforward to set the elements of
weight than using meshed-MZI [50].

(a) Mach-Zehnder Interferometer (b) Microring Resonator

Fig. 3. The structures of a Mach-Zehnder Interferometer and a Microring Resonator.

Photodetectors Photodetectors are commonly used to detect optical signals and con-
vert optical signals into electrical signals. Therefore, the optical detector can be used as
an optical signal output device to be connected at the end of the optical network [38]. In
addition to being the photo-to-electric conversion devices in optical neural networks, pho-
todetectors are also used to realize the operations of ANNs. In [59] the positive signals
and negative signals are propagated and superimposed on different optical waveguides,
and two balanced photodetectors are set at the end of the waveguides to detect the total
optical power in positive and negative waveguides, respectively. The detected lights are
converted into the currents by the photodetectors. The balanced photodetectors can cal-
culate the difference between positive and negative currents, which enable optical neural
network to realize the accumulation operation for different kernels.

The performance of a photodetector is related to the responsivity which is defined as
the optical power that can be detected per unit area. An efficient photodetector with a
lower responsivity have better detection accuracy for low-power input light sources, and a
photodetector with high responsitivity needs higher power consumption to meet its detec-
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tion accuracy demand. For driving the photodetector effectively, the optical power reach-
ing the photodetector should be greater than the responsivity. The input optical power,
energy loss and responsivity are considered to be the critical factors when choosing an
input light source. Therefore, the performance of photodetector affects the bandwidth and
power consumption of optical networks.

3. Optical Implementations for Computing

This section summarizes optical implementation for ANN computing acceleration. The
innovation of these works mainly focus on constructing different types of neural networks,
such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Spik-
ing Neural Network (SNN) and Multi-layer Perceptron (MLP). The use of optical funda-
mental principles and photonics components makes matrix multiplication available. The
performance of silicon photonics ANN accelerator is also affected by the optical princi-
ple and architecture. Hence, these implementations will be categorized according to the
primary photonics principles.

3.1. Optical Resonance based Neural Network Accelerators

Inspiration comes from the field of neurobiology in which each neuron communicates
in the way of short pulses, the resonance-based photonic neural networks have been in-
vestigated widely. Wavelength division multiplexing is applied in optical neural networks
depending on the resonance modulation property and wavelength specificity of MRRs.
The WDM channel transmits multiple wavelengths in the same waveguide without inter-
ference, which reduces the number of optical devices in ANNs implementation to some
extent. In [66], the authors integrated several MRRs to design an optical neural network
with on-chip architecture that is called Broadcast-and-Weight (BW). The input signals are
transmitted parallelly in a bus waveguide, and the weights of neurons are loaded into the
MRRs. Fig. 4 shows that the multiple wavelengths are aggregated in a waveguide by mul-
tiplexer, and the MRRs act as the neurons. While the passive splitters are employed at the
end of the bus to broadcast data, so the output signals of the bus is connected to all neu-
rons. The weight bank is actually a set of reconfigurable filters composed of MRRs, which
can map the weight to different network layers by attenuating the resonance wavelength.

Based on the BW protocol, authors presented an optical convolution neural network
accelerator (PCNNA) in [46]. The PCNNA can propagate different CNN layers in a same
optical circuit because of the using of single layer multiplexing architecture. The authors
considered that convolution calculations of different kernels can be executed in parallel
because each layer of PCNNA shares the same convolution kernel value. In the overall
framework, the PCNNA is configured to run on two clock domains with different speeds
because the optical circuits runs faster than the electronic circuits. Thus, convolution re-
sults and kernel weights of each layer can be stored in an off-chip Dynamic Random
Access Memory (DRAM). Kernel weights are loaded into the ANN by tuning micror-
ings in the MRR banks. The authors showed how their accelerator implements AlexNet,
and they claimed a third-order cubic polynomial time of magnitude execution time im-
provement over electronic engines. An extension of WDM for CNN implementation was
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Fig. 4. The Broadcast-and-Weight architecture proposed by [66].

explored in [60] where authors combined MRR and MZI to design an all-optical multi-
plication and accumulation. Based on the optical resonance, an array of tuned MRRs is
utilized to realize WDM and optical AND operations. The cascade MZIs can operate pure
optical shift accumulation on each sequential AND operation.

The optical resonance is also widely used in the implementations of SNN. In [66], the
spiking neuron unit is named processing network node (PNN), and each PNN is composed
of weight banks, photodetectors (PDs) and laser diodes (LDs). The weights are divided
into excitatory and inhibitory weights that are stored in the weight banks. Different types
of weights are received by two PDs to complete the accumulation of PNN. Finally, a
broadcast loop is used to propagate the WDM signals between these PNNs. In addition
to the BW architecture, authors in [10] mentioned that the integration of MRRs and PCM
material (Ge2Sb5Te5) were used to fire neurons. The bidirectional multi-ports integrating
action of MRR was used to figure up the film potential in the effect of the weighted
sum. Spikes output when the film potential of a neuron exceeds the thresholds. There is
a few works on optical resonance implementation for reservoir computing (RC). A 4× 4
swirl topology-based reservoir was proposed in [21]. The work utilized MRRs and basic
Boolean operations, in which non-linear elements (MRRs) are the nodes of the recurrence
network. The input signals/weight matrix is mixed in the swirl to realize computing.

3.2. Optical Diffraction based Neural Network Accelerators

In optical network, diffraction effects tend to limit the performance of optical units, while
efficient optical neural networks can be realized by designing diffraction-based archi-
tectures using appropriate optical elements. For example, a holographic optical element
(HOE), which is usually used for information storage, can be utilized to store weights and
propagation directions in neural network [51]. Using HOEs, authors in [84] explored an
all optical neural network. Firstly, according to the number of input optical signals, the
spatial light modulators are divided into several regions, and the holograms of input sig-
nals can be obtained by superimposing phase gratings in front of each region. The optical
matrix multiplication is implemented by diffraction of the optical signal in HOEs, where
the weights of the ANN are loaded in the direction of the input optical signals. The convex
lens are set behind the HOE to perform Fourier transform on the diffracted signal. Finally,
all signals are output to the receiving plane to complete the accumulation operation.
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Fig. 5. Diffractive deep neural networks (D2NN) depicted by [40].

Apart from holograms, an optical ANN with cascade phase mask structure was pro-
posed in [40], which is called D2NN. As illustration of Fig. 5, the fully connected layers
consist of several sequential and hierarchical phase masks. These phase masks are 3D
printed, and each mask represents a layer in the fully connected network. The grids inside
the mask represent different neurons. The refractive index of the grids can be changed
by setting different thickness. Hence, the D2NN maps the weights of neurons to the state
of grids and phase of masks. When the input optical signals pass through the mask, the
matrix multiplication will perform because of diffraction effect. The output signals will
directly enter the next mask that represents a direct fully connection with the next layer
in ANN. Therefore, the cascade mask array forms a multi-layer fully connected optical
neural network with variable weight. Finally, an array of detectors in the last mask is
deposited to measure the intensity of the output light, which can be defined as the classi-
fication results of D2NN. Specifically, Lin et al. [40] assumed that the light wavelength is
λ, the size of neurons is usually about 0.5λ, and the axial distance between phase masks
is usually set as about 40λ, such that 200 × 200 neurons can be packed in an area of
8 × 8cm2 each layer with an axial distance of 3cm between layers. Considering there
are five layers, approximately 8 billion connections were implemented. The feasibility of
D2NN network has also been confirmed by microwave [52] and broadband incoherent
light source [44] experiments. Whereas, this architecture would be more sensitive to the
assembling errors, which causes it difficult to manufacture.

To the best of our knowledge, there have been no studies of the SNNs implementation
based on diffractive optics. Apart from SNNs, some works focused on the realization of
the diffractive-based Reservoir Computing. A reservoir used a 4 × 4 swirl topology was
discussed in [31], where the readout layer is composed of a nonlinear optical modulator.
The authors in [21] also proposed an RC architecture using pillar silicon scatterers and
cavities as passive elements. The work of [8] described an all optical large system that
used digital micromirrors for diffraction in its output layer. However, due to the nonlin-
earity of electrical domain, the update rate is severely limited to 5Hz. This study demon-



522 Chengpeng Xia et al.

strated a system with 2025 nonlinear nodes, and implemented in the form of pixels in
a spatial light modulator. The SLM will show the status of the reservoir in the form of
a specklegram that will be received by a camera, and then calculate the following step
required for the reservoir and encode it into the system. Finally, the optical RC system is
demonstrated through experiments. The system realizes that the random interconnection
between neurons in the reservoir is a random diffraction behavior through the diffractive
optical element (DOE). The authors believed that random diffraction has been proved
to be suitable for optical nanocrystals. Nevertheless, diffraction-based ANNs are mostly
realized by free-space optic devices, which take up a lot of space and do not support
large-scale neural network acceleration.

3.3. Optical Interference based Neural Network Accelerators

Different from diffraction with a large amount of beams input, interference-based optical
computation requires only a small number of lights to carry information, and the lights
need to transmit through the waveguide. Optical matrix multiplication of neural network
based on interference is mainly realized by cascading MZIs, in which the interference of
light is carried out in the directional coupler and phase shifter in MZIs. The phase, ampli-
tude and power of the input optical signals can be changed to achieve weight loading in
the initial data by adjusting the couplers and phase shifters. The authors presented a pi-
oneering work in [58], which a coherent nano-photonic circuit is designed for all-optical
neural networks, and this work lays the foundation for future interference-based neural
network accelerators. As shown in Fig. 6, the optical matrix multiplication between input
data and weight is realized by singular value decomposition (SVD) [37]. Specifically, the
matrix M is decomposed into M = U

∑
V , where U and V are two unitary matrices, and∑

is a diagonal matrix. Accordingly, MZIs are assembled as a cascaded array with three
segments that implement the matrices U ,

∑
and V , respectively. The cascade MZIs array

represents the fully connected layers of ANN. If an input optical signal passes through
MZI, two parallel lights will be applied to the two phase arms of MZI, and then the occur-
rence of parallel light interference will realize the matrix accumulative operation of ANN.
The weight information is loaded into optical neural network by interference effect, and
the weight can be changed by adjusting the shifters and amplitude of the coherent wave.
Hence, the energy consumption is low in the entire training process. However, the depth
of the ONN in [58] is limited to 2N − 1 affected by light attenuation, which also means
that the reduction in the size of the ANN may reduce the classification accuracy. There-
fore, the authors in [22] improved unitary matrix multiplier, controlled the depth of MZI
layer by cluster grid and statistical Fast Fourier Transform (FFT). The authors claimed
that FFT-based network is inherently more robust than grid-based network, because it has
a much smaller number of MZI layers for realizing a same unitary matrix multiplier. For
example, a multiplier can be realized by using a FFT network with only log2(N) layers
instead of the grid network with N layers, that means the depth of grid network is 32
times that of FFT network when N = 28.

Due to the area of MZI device and the large demand for nodes in the RC network, the
interference effect has not received much attention in the research of RC. Authors in [36]
provided an electrical-optical nonlinear modulation transfer function by using the delay
coupling technology integrated MZIs. A long distance optical fiber is used to realize a
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Fig. 6. Interference based photonic integrated circuit depicted by [58].

delay feedback loop, and a photodiode is used for optical detection. The electronic feed-
back circuit output is connected to MZI input electrode. Therefore, long distance optical
fibers are divided into a number of subintervals to define virtual nodes. By extracting the
virtual node state at the end of each subinterval, [36] simulated the nodes of conventional
RC network.

3.4. Summary

The literature concerning photonic neural network architectures is vast, and so are the
techniques and devices used to realize these architectures. In this section, we reviewed
different architectures and divided the literature into resonance-based implementations,
interference-based implementations, diffraction-optics based implementations. We have
provided a summary of the literature on architectures covered as part of Section 3 in
Table 1. The table has the devices prominently used in the architecture (first column); a
brief summary of the advantages (second column); a brief summary of the disadvantages
(third column); the references to the works (fourth column).

4. Optical Implementations for Communication

Existing ANNs have been challenged by the fact of high computational complexity, large
amount of computational data, frequent memory access and high parallelism requirements
that are widespread in current neural network workloads. In the latest ANNs, tens to
hundreds of megabytes of parameters are required to execute a single inference pass. Over
one billions of operations will generate large amounts of memory access requirements
from the processing elements (PE) which makes existing architectures face the challenge
of memory wall. In the processing of model training, a large amount of reusable data
are usually generated. For example, a huge amount of filter data, input feature map data
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Table 1. A summary of selected proposed optical ANN using computing and communi-
cation acceleration

Implementation Advantages Disadvantages References

computing
acceleration

Use MRR weight banks
for synapse; photode-
tector for optoelectrical
conversions

Use WDM to offer high
bandwidth; Use pas-
sive devices compatible
with low power con-
sumption

consumes power
in electro-optical
and optoelectrical
conversions; low cas-
cadability; sensitive to
temperature

[66], [10],
[60]

Use HOEs Use passive devices
compatible with low
power consumption,
low energy loss

sensitive to the assem-
bling errors, difficult to
manufacture; area inef-
ficient

[40], [84],
[52]

Splitters and MZIs Higher reliability and
low power overhead in
comparison with using
several wavelengths

Low bandwidth be-
cause of using one
wavelength; area inef-
ficient; exact splitting
ratios are hard to
achieve after fabrica-
tion due to variations;
susceptible to noise
in phase and splitting
ratios

[36], [58],
[22]

communication
acceleration

use optical circuit
switch-based topology
for data reusing

high workloads paral-
lelism; demand of ANN
workloads and the sin-
gleness and repeatabil-
ity of transmis-sion in
workloads,

and partial sum data are created in the processing of convolution in CNN, in which these
data can be regarded as reusable resources. Hence, the CNN accelerators using dataflow
optimization with Network-on-Chip (NoC) architecture have been proposed in [9] which
has good acceleration performance and system efficiency.

However, electrical signal based ANN accelerators with NoC architecture still face
the challenges of energy consumption and time delay. To break the communication bot-
tleneck, recent advances in CMOS-compatible optical devices have suggested that op-
tical networks on chip (ONoC) could be a promising solution [41]. In contrast to elec-
trical NoC, the data is is transmitted in the optical domain via waveguides, which has
lower power consumption and higher performance than electrical signal transmission.
This makes ONoC uniquely capable of performing data-intensive and high-throughput
off/on-chip communications, in which needs a huge data movement among processing
units or chips to accelerate parallel processing of ANN workloads.

4.1. Off-Chip Communication for Neural Network Accelerators

The research on photonic interconnection in datacenter has a long history. To improve
communication performance, exist works have showed the improvement of communica-
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Fig. 7. Two topologies for SiP-ML proposed by [33].

tion performance in datacenter networks by designing photoelectric hybrid connection in
reconfigurable topologies [24,47] or designing all-optical interconnects [3,11]. Whereas,
compared with the optical technology in computing implementation [79], only a handful
of researches focus on using photonic interconnection to accelerate ANNs communica-
tion. Authors in [33] presented all photonic interconnects for ANNs acceleration named
Silicon Photonic Machine Learning (SiP-ML) which has powerful scalability of ANN
training jobs by using SiP chips. The authors argued that ANN training jobs are pre-
dictable and periodical that include mostly large data transfers instead of unpredictable
behavior and short data flow workloads in conventional datacenter. Authors considered
the parallel demand of ANN workloads and the singleness and repeatability of transmis-
sion in workloads, and then explored two data-reusing topologies. As illustration of Fig.
7, an Optical Circuit Switch (OCS) based topology called SiP-OCS is designed with com-
mercially available optical switches. Each OCS is linked to each GPUs by port in a flat
topology. By setting a 10ms reconfiguration delay, Sip-OCS can transfer data infrequently
across the ANN workloads. Furthermore, a switch-free topology without any switching
elements was proposed by embedding MRRs in SiP ports named Sip-Ring. As a filter,
the activated MRR enables to replace the switch by selecting and forwarding optical sig-
nals. Compared to SiP-OCS, SiP-Ring can reuse the signals in non-overlapping portion of
MRR, and can reconfigure the resonant wavelength in each port to enrich logically topolo-
gies. However, with the increase of process units, the communication costs of large ANN
model training increase greatly in SiP-ML, and the communication mapping performance
of ANN training is affected by the parallelization strategy and AllReduce.

Motivated by the optical switch based topologies in [33], authors in [70] proposed
a co-optimizes network topology and a parallelization strategy for ANN training system
named TOPOOPT. The proposed scheme searches over the parallelization strategy space
with a fixed topology, and returns the communication demands to the system. A topology
is then reconfigured with the searched parallelization strategy, which enables system to al-
ternate between optimizing the parallelization strategy and optimizing the network topol-
ogy. This looped process helps system to find an optimized parallelization strategy and an
optimized topology. The TOPOOPT system is an optical shareable interconnect, in which
interfaces of server are connected to the processing unit layer by optical switches. The op-
tical switches enable to achieve the target topology by partitioning the cluster dedicated
partitions for each training workload. When the system finds an optimized parallelization
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Fig. 8. The optical control channel in [17].

strategy or network topology, interconnection between the server and the processing unit
can be changed to the corresponding topology by optical switches reconfiguration.

In addition to all optical network architecture for ANNs workloads, authors proposed
a hybrid optical/electrical network architecture that optical switches are employed to of-
fer long-term ANN training communication in [69]. Zhu et al. [83] proposed a silicon
photonic reconfigurable architecture with a fat tree topology, which optical switches are
applied to link top-of-rack interfaces and aggregate electronic packet interfaces. The opti-
mized optical switches control scheme was designed to reduce the complexity of control
implementation, which enables optical switches to apply for large-scale systems integrat-
ing. The experiments in hardware test platform show that the silicon photonic reconfig-
urable architecture can execute ANNs training jobs efficiently. A similar distributed ANN
training application with fat topology was proposed in [27], where the experiments were
built in commercial rack servers to test the performance of optical switch based distributed
ANN acceleration.

Furthermore, authors in [75] proposed an Inter/Intra-Chip silicon photonic network
for rack-scale computing systems. To void the challenge of photonic buffering, the archi-
tecture employs circuit switching for the ONoC that can also avoid the large overhead
in optical devices assembly and unloading. [75] utilized the inter-node interface as the
medium to coordinate the request from both local ONoC and optical switch. A chan-
nel partition and dynamic path priority control scheme is designed to reduce the control
complexity and arbitration overhead. Feng et al. in [25] proposed a variant architecture
that is optimized by floorplan optimized delta optical network switch architecture and the
preemptive chain feedback scheme. In [43], an arrayed waveguide grating routers based
hybrid optical-electrical architecture was proposed, in which a complete bipartite graph
is employed to enhance the transmission bandwidth and interconnection scale of machine
learning.
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4.2. On-Chip Communication for Neural Network Accelerators

In [35], the authors considered that electrical interconnection in the existing manycore
platform would not be sustainable for handling the massively increasing bandwidth de-
mand of big data driven AI applications. Hence, a rapid topology generation and core
mapping of ONoC (REGO) for heterogeneous multicore architecture was proposed. Based
on the genetic algorithm, REGO receives an application task graph including the number
of cores and ONoC parameters as inputs, which further includes the available router struc-
ture, loss and noise factors of the optical elements. Thus, the REGO can accommodate
various router structures and optical elements because it calculates the worst-case OSNR
through loss and noise parameters obtained in advance through the parameters of optical.

A fine-grained parallel computing model for ANNs training was depicted in [17] on
ONoC, in which the trade-off between computation and communication can be analyzed
to support the ANN acceleration. As shown in 8, The optical control channel was de-
signed to configure the state of cores and optical routers. To minimize the total training
time, three mapping strategies were designed in each ANN training stage which has the
optimal number of cores. The advantages and disadvantages for each mapping strategy
are discussed and analyzed in terms of hotspot level, memory requirement and state tran-
sitions. Furthermore, an optoelectronic hybrid on chip architecture was demonstrated for
CPU and GPU heterogeneous systems in [12], which the first layer is connected by waveg-
uide, the second layer is a electrical mesh with 8 × 8 nodes, and all layers are linked by
the through-silicon-via. The proposed architecture utilized the reservation-based single
write multiple reader bus to reduce the number of optical switches that can reduce energy
consumption.

Table 2. Challenges and Future research directions

Scalability
Low complexity architectures

Noise resilient optical devices

Low loss optical devices

Robustness
Effective photonic crosstalk mitigation

Phase noise correction

Noise resilient photodetection

Design Space Exploration
Parallelism of models

Devices reuse Architectures

Data reuse topologies

Optical Nonlinear Activation
All-electronic nonlinear activation function

Photoelectric hybrid nonlinear activation function

All-optical nonlinear activation function
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5. Challenges and Opportunities

In this paper, we reviewed the optical approaches to accelerate neural networks from two
aspects, i.e., computing and communication. In recent years, with the maturity of ANN
theory and the development of silicon optical technology, one of the areas with growing
concerns is the implementations of optical ANNs. Meanwhile, the addition of some so-
phisticated optical devices, such as optical frequency comb [57], makes it possible for
accelerators to train ANN models at extremely high speeds. Nevertheless, there are still
some outstanding challenges that limit the inference accuracy, reliability and scalability
of optical ANNs. Hence, we summarize the challenges and opportunities to offer sugges-
tions for future research, as shown in Table 2.

Scalability: The exiting works that have been discussed in this review mainly focus
on three approaches to accelerate ANNs model training, which are small optical neural
network implementation, matrix vector multiplication acceleration and optical network
architectures for communication accelerating. The two major issues of the above ap-
proaches are high area consumption and energy attenuation of the optical devices. The
schemes in [53] and [15] described that the optical depth (the number of MZI units tra-
versed through the longest path) for the unitary matrix is limited to 2N − 3 and N , in
an ANN with N number of neurons, respectively. Therefore, the optical depth of singular
value decomposition encoding based ANNs is also limited to 2N − 1 and 2N + 1, in
which the diagonal matrix is realized by MZIs. The optical depth is positively associated
with the number of layers in ANNs that will cause the additional loss as the optical depth
increases. The additional loss could exceed the budget and dramatically increase the ratio
of signal to noise, which will reduce the computing accuracy in an optical network with
limited power consumption. Therefore, more studies are expected to design photonic de-
vices that are noise resilient and low loss to improve scalability for the large scale ANNs,
and design novel architectures to reduce the optical integration complexity.

Robustness: With the optical integration scale up, robustness is becoming an impor-
tant factor for system stability. For example, the performance of MZI-based computing
architecture is directly affected by crosstalk, environment temperature and manufacturing
process, in which the slight phase change will cause a cascaded calculation error. The ex-
periments in [58] showed that the accuracy in small optical ANN outperform that of large
scale optical ANN about 20%. Moreover, the smaller ANN also shows better robustness if
added signal noise on optical devices. Whereas the on-chip thermal crosstalk can be sup-
pressed, the finite encoding precision on phase settings will remain as the fundamental
limitation for the optical ANNs with high computational complexity. The phase errors, in
particular, accumulate when the lightwave signal traverses the MZI mesh with an optical
depth of 2N + 1. In addition, such errors propagate through each layer of the network,
which ultimately restricts the depth of the neural network. In order to realize robust pho-
tonic accelerator, research is needed to achieve effective photonic crosstalk mitigation,
phase noise correction, and noise resilient photodetection.

Design Space Exploration: Early demonstrations of photonic solutions for ANN and
RC acceleration were implemented with bulky free-space optics [39], which have strict
requirements for accurate phase matching and great difficulty for optical devices footprint
reducing. Even in recent optical neural networks based on singular value decomposition
encoding, a m × n weight matrix needs the number of m(m − 1)/2 + n(n − 1)/2 +
max(m,n) MZIs to realize. This hardware complexity can limit the actually implemen-
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tation scale of optical ANNs, especially when the size of an MZI reaches up to 100 µm.
Moreover, The extensive use of optical control switches will also cause energy loss in
off-chip optical network. Research is thus needed to consider the predictability and peri-
odicity of ANN workloads, parallelism of models, and design architectures or topologies
with data and optical devices reusability.

Optical Nonlinear Activation: There are mainly three types for nonlinear activa-
tion function implementation in optical ANNs: 1) all electronic nonlinearity, 2) photo-
electric hybrid nonlinearity and 3) all-optical nonlinearity. The traditional full electronic
nonlinearity receives the weight and output data from the buffer pool. While the photo-
electric hybrid way requires the support of optical to electronic converter, and the optical
outcomes from modulator will be converted to the electrical results. Examples include
semiconductor excitable lasers [19] and electro-absorption modulators [26]. However, the
optical-electrical conversion noise and energy loss limit the computing power and expan-
sion of photoelectric hybrid based ANNs. All-optical nonlinear activation functions are
still the most promising solutions, which can improve the throughput of ANNs and reduce
the latency and power consumption in computation. Currently, the generally used all op-
tical nonlinear activation is saturated absorption of optical materials including monolayer
graphene, two photon excitation as well as photonic superlattices [5,56,62]. In addition,
the nonlinearities of MRRs can also be designed for nonlinear activation implementation
[21]. Whereas, the all optical solutions could reduce the computing accuracy and effi-
ciency of the nonlinear modulation due to the space of nonlinear unit and the speed of
devices operational. The implementations of all optical ANNs represent the long term
goals, and the hybrid optoelectronic or full electric architectures remain a promising al-
ternative to all-optical networks in the short term.

6. Conclusion

In this paper, we provide a comprehensive survey for optical implementation of ANN
accelerators, including photonic computing acceleration and photonic communication ac-
celeration. We first review the fundamental photonic devices that are employed to realize
optical accelerator. For the optical neural networks, we present the current ANN accel-
erators that are realized by the optical effects, including resonance based optical ANN
accelerators, diffraction based optical ANN accelerators and interference based optical
ANN accelerators. For the optical interconnection, we introduce the existing studies from
the perspectives of off-chip communication and on-chip communication for ANN accel-
erator. Furthermore, we point out the open challenges and the future research opportuni-
ties for photonic neural network accelerator, which is expected to provide guidance and
insight for future researchers and developers on this research field.
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