
DOI: 10.2298/CSIS130115070M

Extending Programming Language to Support
Object Orientation in Legacy Systems

Hemang Mehta, S J Balaji, and Dharanipragada Janakiram

Department of Computer Science and Engineering,
Indian Institute of Technology Madras,

Chennai 600036, India
{hemang,sjbalaji,djram}@cse.iitm.ac.in

Abstract. The contemporary software systems written in C face main-
tainability issues because of tight coupling. Introducing object orientation
can address these problems by raising the abstraction to objects, thereby
providing better programmability and understandability. However, compil-
ing a C software with a C++ compiler is difficult because of the incompat-
ibilities between C and C++. Some of the incompatibilities such as des-
ignated initializers are nontrivial in nature and hence are very difficult to
handle by automation such as scripting or by manual efforts. Moreover,
runtime support for features such as global constructors, exception han-
dling, runtime type inference, etc. is also required in the target system.
Clearly, the traditional procedural language compiler cannot provide these
features. In this paper, we propose extending programming language such
as C++ to support object orientation in legacy systems instead of com-
pletely redesigning them. With a case study of Linux kernel, we report ma-
jor issues in providing the compile and runtime support for C++ in legacy
systems, and provide a solution to these issues. Our approach paves the
way for converting a large C based software into C++. The experiments
demonstrate that the proposed extension saves significant manual efforts
with very little change in the g++ compiler. In addition, the performance
study considers other legacy systems written in C and shows that the
overhead resulting from the modifications in the compiler is negligible in
comparison to the functionality achieved.

Keywords: g++, programming language, Linux kernel, legacy systems,
object orientation.

1. Introduction

Many well-known large scale software systems such as Linux kernel[5], Apache
webserver[7], PostgreSQL[6], etc. have been programmed in procedural lan-
guage C. As these systems evolve with time, they become prone to issues
related to cohesion and coupling. These issues make the systems difficult to
maintain and reduce the understandability of the code. For example, Linux ker-
nel has undergone studies[12,11] which reveal that it is a tightly coupled system
and the instances of common coupling are increasing exponentially with new

Hemang Mehta et al.

versions. Our previous work on object oriented(OO) wrappers[8] shows that
the introduction of minimal OO features can help increase the maintainability.
There are two main challenges when introducing OO concepts in a procedural
language based system. The first is to compile all C files with a C++ compiler.
The other challenge is to provide runtime support for features such as invoking
of constructors for global and static objects.

Though C++ is perceived as a superset of C language, there are many in-
compatibilities between them which restrict compilation of the legacy system
with a C++ compiler. The incompatibilities between C and C++ can be classi-
fied in trivial and nontrivial categories. The trivial issues can be addressed using
scripting (e.g. renaming C++ keywords used as identifiers) or can be resolved
manually if there are limited instances (e.g. pascal style function definitions). On
the other hand, nontrivial issues can not be easily solved by the same means.
An example of such incompatibility is support for nontrivial designated initializ-
ers.

Designated Initializers(DI) are used for initializing complex datatypes such
as structures and arrays as shown in the following code snippet.

struct book { char name[]; int pages; }book var = {
‘‘Programming’’, 200 };

int arr[5] = { 10, 12, 21, 25, 32 };

Support for trivial DI was included in C89 standard[1] and C++ standard[3]
also conforms to the same. On the other hand, nontrivial DI were introduced in
C99[2]. The nontrivial DI provides the following features on top of trivial DI:
Labeled Initializing: Structure members can be selectively initialized out of the
order in which they are defined.
Indexed Initializing: Assign values to specific array members using their in-
dexes.
Ranged Initializing: specific range of an array can be initialized.
These features grant increased flexibility of initialization to the programmers.
In addition, the absence of explicit constructors for structure variables leads to
extensive and complex usage of DI (We shall use term ‘DI’ for nontrivial desig-
nated initializers henceforth.) in a C based software. Since C++ standard does
not include DI, compiling a software written in C with g++ is not possible.

In this paper, we present an approach to extend g++ so that it recognizes
the ranged, labeled, indexed initialization and nesting of them. With the help of
a case study of Linux kernel, we show that it recognizes numerous instances of
DI in the kernel and saves significant efforts. The main challenges we envisage
are:
1. Different types of DI for structures and arrays,
2. Different combinations of types used in a single initialization and
3. Nested usage of DI in macro preprocessors.

Additionally, we explain how runtime support for C++ can be added in a
legacy system with an example of Linux kernel.

The rest of the paper is organized as follows: Section 2 explains the moti-
vation behind extending g++, as compared to other possible approaches. The

1662 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Extending PL to Support OO in Legacy Systems

design and implementation of the g++ extension are presented in Section 3.
Section 4 describes the usefulness of the proposed approach using Linux ker-
nel as a case study and also presents a performance study of the same. In Sec-
tion 5, we explain how the runtime support for global constructors and volatile
typecasting was included in the Linux kernel. The concluding remarks with fu-
ture working directions are presented in Section 6.

2. Motivation

The first motivation of extending g++ was the absence of support for DI in g++
compiler. It is not included in the latest C++ standard [4] that was developed in
2011. To the best of our knowledge, there have been no attempts in the litera-
ture to explore this area. In case of C++, the complex datatype widely used is
class and constructors are used to initialize objects. There was no need pre-
viously to statically initialize structure variables because of this, and hence the
need for supporting DI was not felt in C++. However, with Linux kernel, we
need some structure variables to be initialized at compile time since their ini-
tial state is required for system booting. The constructors are ill-suited in this
case as they are called only after basic system initialization is complete. Sec-
ondly, many systems are implemented with both C and C++ like MySQL[10]
and Windows kernel[9]. The primary reason behind this is that C++ provides
higher abstractions in form of objects and many other useful features such as
inheritance, polymorphism, templates, etc. If g++ could compile DI, the efforts
in the development of these system can be significantly reduced. Thus, the
primary objective is to make g++ recognize DI. We explain different possible
approaches to tackle this issue. We motivate the need of extending g++ as a
solution by comparing them with those solutions.

2.1. List Initialization

C++ standard supports list initialization of structure variables. The list method
allows assigning values to all members of a structure in the exact order in which
they are defined in the structure. Hence one approach is to replace labeled DI
with list method using an automatic process such as scripting. However, con-
verting labeled DI to list construct has two major issues. Firstly, the uninitialized
members of the structure should be assigned their default values. Thus the
script performing the replacement has to infer the datatypes of the member
variables and their default values. Secondly, the values of members to be ini-
tialized have to be ordered. This becomes difficult especially when there is a
nesting of DI (i.e. a member of a structure is also a structure and is initialized
using the DI) and the nested element is initialized with a macro.

Apart from the labeled DI for structures, indexed and ranged initialzers are
also required to be replaced by the list method. The list method is ill-suited if
the array is very large and uses indexed or ranged methods.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1663

Hemang Mehta et al.

2.2. Constructor for Structures

Another way to make g++ compatible with DI is to replace usages of DI with
constructors for structures. However, this method adds another function call at
runtime for initialization of structure members adding to overhead. If these vari-
ables are in global scope, then there are two issues. The first is that static (com-
pile time) initialization is not possible, which is a requirement in case of Linux
kernel. This is because when the system boots, some global system variables
should be initialized before global and static constructors are called. Moreover,
the order among global constructors can not be guaranteed. This means that
if an uninitialized global structure variable is being used in another initializa-
tion, it may lead to system crash. Finally, this method is not suitable for array
initialization and hence the issues of ranged and indexed initializations remain
unresolved.

2.3. Extending g++

We examined two different approaches other than extending the C++ compiler.
We found that both the approaches are difficult in implementation as well as in
verification of their correctness. This is because large systems like Linux kernel
have various ways in which DI are used and it is a cumbersome process to
examine all of them. An example of one such usage of DI in Linux kernel is
shown in Figure 1.

Fig. 1. A precompiled code snippet from kernel/sched.c, the scheduler of
Linux kernel. It shows nesting of labeled(load balancer) and ranged initial-
izer(cpu mask) with labeled initializer(nohz).

The automation used for one software may not work for other softwares as
the use cases may be different for them. In this way, changing the C++ com-
piler is a practical and easy solution to the problem. The proposed extension of
g++ allows out-of-order and selective initialization of members. It also facilitates
static and global initialization as it is done by gcc for any C based system. In
addition, it is independent of the target software and does not involve any ef-
fort on the developer’s part to apply any script or perform any kind of manual

1664 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Extending PL to Support OO in Legacy Systems

modification. Finally, as will be explained in Section 3, it is relatively simple and
involves changing only 3 files of g++ source code.

3. Design and Implementation

This section explains the design and implementation of the extension to sup-
port designated initializers in C++ compiler. We have designed the extension
with g++ version 4.4.5 as the base compiler. The proposed design primarily in-
volves recognizing DI and performing corresponding semantic actions. Though
this process spans across only 3 files, identifying the places to modify required
careful analysis of the compiler code. The files to be modified for the implemen-
tation of the design include parser.c, decl.c and typeck2.c. They are
part of the g++ branch of gcc compiler source tree(gcc/cp/). Each file repre-
sents a phase which the code being compiled passes through. In this section
we explain the extended functionality of each phase to recognize all 3 DI types.

Fig. 2. The g++ extension design to recognize labeled, indexed and ranged
lnitializer involving parser, declarator and type-checker.

Parser: Since C++ standard does not include DI, the original parser throws
syntax error when it encounters out of order labeled initializer. In order to sup-
port the same, we have added grammar rules in g++ parser. These rules rec-
ognize the signature patterns of DI and store initializer (values) and identifiers
(member variables) in a list. This list is known as unprocessed vector, which is
a fixed size array. The outcome of this process is shown in column 1 of Figure

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1665

Hemang Mehta et al.

2 (corresponding to the first phase). The parser passes the vector to declarator
of g++.

Declarator: We have modified the declarator to process the unprocessed
vector provided by the parser based on the type of initializer. The declarator
validates the vector by checking if any identifiers are left uninitialized. It creates
entries for uninitialized identifiers in the vector and marks them as ‘erroneous’
(See Figure 2, column 2). The partially processed vector is then passed on to
the type checker.

Type-checker: The type checker has been refactored to consume the vector
passed by the declarator and to perform final processing on the same. It infers
the type of the identifiers of the erroneous entries for structures. It assigns de-
fault values to such identifiers with the assistance of back-end of the g++ com-
piler. The basic datatypes like numbers are assigned 0, pointers are assigned
NULL, characters are assigned ‘\0’ and boolean identifiers are assigned 0-bit.
On the other hand, derived datatypes are broken into basic datatypes based on
their members and the same procedure is followed.

For array (indexed and ranged) initializers, type-checker scans the initializa-
tion list till the end when explicit size is not provided. Then it allocates memory
of the size according to the maximum index specified in the initialization. All
erroneous entries are filled with 0. This accomplishes the processing of vector
and the values are copied to the actual structure / array members as shown in
the last phase of Figure 2.

4. Evaluation

The evaluation of the proposed g++ extension is divided into two parts. The first
part explains how the extension reduces manual efforts by using Linux kernel
as a case study. The second part presents the comparison of both original and
extended compiler by measuring their performances.

4.1. Case Study: Linux Kernel

We explain the evaluation of the proposed extension to g++ in this section using
Linux kernel as a case study. Linux kernel is a large software written in C, which
makes extensive use of DI to initialize its global variables. We measure the
increased productivity and ease of porting Linux kernel to C++ by counting the
number of occurrences of DI in different subsystems.

We have extended gcc version 4.4.5 to count the number of DI instances
everytime it encounters one. Table 1 shows the counter values calculated after
the compilation of Linux kernel 2.6.23 with the modified compiler.

The experiment shows that more than 5600 variables are initialized using
DI in core kernel and other subsystems of the Linux kernel. This result shows
that making manual modifications is not a feasible solution. We have already
seen how complex the usage of DI in the kernel can be, which renders scripting
ineffective as an option. On the other hand, our extension only modifies 238

1666 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Extending PL to Support OO in Legacy Systems

Table 1. Number of instances of designated initializers of different types in Linux
kernel 2.6.23 as counted by the g++ extension (Core includes management of
processes, timers, scheduling, etc.)

Kernel Subsystems Labeled Indexed Ranged Total
Core 750 30 109 889
Memory 165 1 2 168
Network 1415 0 225 1640
File System 509 0 41 550
Architecture 300 16 90 406
Device Drivers 1818 7 124 1949

lines (including addition, removal and modification) of the compiler source code.
Thus, our exploration in modifying g++ is justified by the results.

4.2. Performance Study

Performance is one of the key concerns when a system such as compiler is
refactored. In order to discover the overhead that results from the proposed
extension of g++, we compared building times for 3 different systems; Linux
kernel, Apache HTTPD (Web) server and PostgreSQL database. Our objective
here was to ensure that performance is not sacrificed in order to gain more func-
tionality. Additionally, this experiment verifies how the new compiler compares
with the original one while compiling other systems than the Linux kernel.

The base system for the experiments consisted of Intel Core i7 quad core
CPU at 2.4 GHz, 6GB RAM and Fedora 13 operating system. gcc compiler
version 4.4.5 was used as original compiler and the same version was modified
as explained earlier in the paper. The Linux kernel version was 2.6.23 while
the versions of PostgreSQL and HTTPD were 9.2.4 and 2.4.6 respectively. The
compilation times for building these systems were obtained using time utility
of Linux to the precision of millisecond.

Table 2. Comparison of building (compilation) times (in seconds) for Linux ker-
nel, Apache HTTPD server and PostgreSQL database

System Name Extended Compiler Orignial Compiler
Linux Kernel 774.060 774.039
Apache HTTPD 75.938 75.940
PostgreSQL 211.381 211.384

Table 2 summerizes the results of the experiment carried out for compar-
ing the performance of both versions of compiler. It is evident that Linux kernel
is the largest among all systems that were tested, as it takes longest to build.
The extended compiler takes slightly longer time for Linux kernel than the orig-
inal one since it has numerous instances of nontrivial designated initializers.

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1667

Hemang Mehta et al.

However, the overhead in this case is in order of milliseconds, which is a very
small fraction of the total time taken for compiling the kernel and hence can be
considered to be reasonable.

On the other hand, HTTPD and PostgreSQL are compiled in almost the
same time by both the compiler versions. Again, the reason being the absence
of nontrivial designated initializers. Thus, it can be observed that the modifica-
tions in the compiler do not have any adverse effect on the compilation of the
software that does not utilize nontrivial designated initializers heavily.

5. Runtime Support for g++ in Linux Kernel

The Linux kernel needs built-in library support for basic operations since it is
the only code in execution during the bootstrap of the system and it can not use
any runtime linking for library functions. Hence certain C library functions and
runtime have been included in Linux source tree at lib/ directory. In order to
include runtime support for g++, we added the necessary files from g++ source
to this location. This section explains the issues that arose during this process
and how they were addressed.

5.1. Volatile Typecasting of Complex Types for C++

Background: In some cases, certain compiler optimizations are a hindrance to
the functional objective of the program. Usage of memory mapped I/O in Linux
kernel is one such instance. In memory mapped I/O, an I/O device is mapped
to a memory location. Accessing that location results in read/write operation
on that device. However, compiler optimizes that location to be accessed from
cache memory only and the operation does not happen on the device.

Problem: In order to stop compiler from optimizing operations on certain
variables (memory locations), they are typecast as volatile in C. Linux kernel
uses this mechanism very often. It uses ACCESS ONCEmacro to accomplish this
task. Following is the definition of ACCESS ONCE macro.

#define ACCESS_ONCE(x) (*(volatile typeof(x)*)&(x))

This definition works well in C compiler for complex datatypes such as struc-
tures. However, this definition only works for basic datatypes in g++.

Solution: We have extended this definition to make it compatible with g++
using runtime type inference (RTTI) and reinterpret casting. Basically the cen-
tral idea of the solution is as follows:
1. Infer the type of data at runtime using typeid construct of g++.
2. If the datatype is basic, the C style definition should be used.
3. In case the datatype is complex, reinterpret casting should be used.

The reinterpret cast, as defined by the C++ standard [4], allows casting of a
pointer to any other (including unrelated) type. Additionally it ensures that if the
pointer is cast back to the original type, its value is preserved. This is achieved

1668 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Extending PL to Support OO in Legacy Systems

by reinterpreting the bit pattern of the value to the target type. Thus, when used
with volatile, reinterpret cast treats the variable as volatile, and directs
the compiler not to apply any cache optimization on the variable.

The definition of ACCESS ONCE macro, according to the proposed solution,
is shown below:

#ifdef __cplusplus /*g++ compiler*/
#include <iostream>
#include <typeinfo>
using namespace std;
#define ACCESS_ONCE(x) \

(typeid(x).name()[0] == ’P’ || \
typeid(x).name()[0] == ’1’ || \
typeid(x).name()[0] == ’2’) \

? reinterpret_cast<volatile typeof(x) &>(x) \
: (*(volatile typeof(x)*)&(x))

#else /*C compiler*/
#define ACCESS_ONCE(x) (*(volatile typeof(x)*)&(x))
#endif

In this definition, typeid() and typeof() are RTTI constructs, which ex-
plains the necessity of runtime support for C++ in Linux kernel. It returns ‘P’,
‘1’ or ‘2’ in case of pointers, structures and classes respectively, implying that
the identifier is of complex type and reinterpret cast should be used to make it
volatile.

5.2. Global Constructors

Background: The constructors for global and static objects are usually called
by a special function named do global ctors aux (void), which is in-
serted by g++ compiler in the linked object file. It is called before the main()
function and thus before any possible usage of the global/static objects. Sim-
ilarly, destructors are called after main() using a special function which is
inserted by g++ compiler. In order to achieve this, a compiled object file is
linked with crtbegin.o and crtend.o files. These pre-generated files are
used by g++ to traverse through the given file to find global and static objects.
For each such object its constructor and destructor are placed in the lists of
global constructors and destructors respectively. The starting and ending of
each list is denoted by g++ compiler variables CTOR LIST and CTOR END
in case of constructors; and DTOR LIST, DTOR END in case of destructors.
do global ctors aux function traverses the constructor list in downward

fashion, i.e. from CTOR END to CTOR LIST.

Problem: For normal application programs, this is handled by g++ and the
linker automatically. However, for Linux kernel, we have to provide this run-
time support. Hence we had to add that support in Linux kernel by adding

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1669

Hemang Mehta et al.

Fig. 3. The memory layout of vmlinux kernel image depicting boundary crossing
of .ctors section and its solution

crtstuff.c file and libstdc++ directory from source of g++. We also made
suitable changes in the kernels makefiles at different levels, so that a C++ file
can be compiled with g++ compiler. However, in the existing g++ files for that
support, while traversing through constructor list, the initial boundary (CTOR LIST)
was getting missed. This led to function do global ctors aux getting into
the previous section of constructors. This resulted in execution of non-executable
data and subsequently crashing of kernel.

Solution: Figure 3 shows the layout of vmlinux, the kernel image in the
memory. It is an elf image that is made of different sections. We have added a
new boundary for CTOR LIST, the beginning of the constructor section which
do global ctors aux function checks when it iterates through the list. We

have added this symbol as a kernel image (vmlinux) symbol, which g++ com-
piler can access in do global ctors aux function. The actual definition of
the symbol is as follows:

#ifdef CONFIG_CONSTRUCTORS
#define KERNEL_CTORS() . = ALIGN(8); \

VMLINUX_SYMBOL(__ctors_start) = .; \

*(.ctors) \

1670 ComSIS Vol. 10, No. 4, Special Issue, October 2013

Extending PL to Support OO in Legacy Systems

VMLINUX_SYMBOL(__ctors_end) = .;
#else
#define KERNEL_CTORS() VMLINUX_SYMBOL(__ctors_start) = .; \

*(.ctors) \
VMLINUX_SYMBOL(__ctors_end) = .;

#endif

6. Conclusions and Future Work

This paper presented how object orientation can be supported in a large scale
system such as Linux kernel by extending g++ compiler. As a part of compile-
time support, a g++ extension for nontrivial designated initializers(DI) for struc-
tures and arrays was added. It handles usage of ranged, indexed, labeled and
nesting of all types of DI in an application transparently. Furthermore, the pa-
per showed how global constructors and volatile typecasting in C++ can be
supported in Linux kernel. Finally the experiments proved that the proposed
approach saves a lot of manual efforts with a very reasonable overhead.

We envisage that an automated tool for converting legacy systems written in
C into C++ can be well appreciated by the software engineering community. At
present, the proposed approach has limited features and there are still many
incompatibilities between C and C++ that require addressing. In future, this
tool can be made more enhanced and sophisticated by integrating the modified
compiler with scripting support to tackle these issues. This tool can be used to
cater to specific issues of other legacy systems, as opposed to just Linux kernel.
At a later stage, this work can be extended to raise abstractions from objects to
services in legacy systems. The services are more abstract than procedures or
objects and hence are independent of the language they are implemented in,
which can make maintenance of the legacy systems easier.

Acknowledgments. The authors acknowledge Prateek Dhawaalia, IIT Madras for his
inputs in implementation of the g++ extension. The authors also thank DIT, Government
of India for financially supporting this work.

References

1. ISO/IEC 9899:1990 - Programming languages - C (1989), http://www.iso.
org/iso/catalogue_detail.htm?csnumber=17782

2. ISO/IEC 9899 - Programming languages - C (1999), http://www.open-std.
org/jtc1/sc22/wg14/www/standards.html#9899

3. ISO/IEC 14882:1998 - Programming languages – C++ (2005), http://www.iso.
org/iso/catalogue_detail.htm?csnumber=25845

4. ISO/IEC 14882:1998 - Programming languages – C++ (2011), http://www.iso.
org/iso/catalogue_detail.htm?csnumber=50372

5. Beck, M., Bohme, H., Kunitz, U., Magnus, R., Dziadzka, M., Verworner, D.: Linux
kernel internals. Addison-Wesley Longman Publishing Co., Inc. (1996)

ComSIS Vol. 10, No. 4, Special Issue, October 2013 1671

http://www.iso.org/iso/catalogue_detail.htm?csnumber=17782
http://www.iso.org/iso/catalogue_detail.htm?csnumber=17782
http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899
http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899
http://www.iso.org/iso/catalogue_detail.htm?csnumber=25845
http://www.iso.org/iso/catalogue_detail.htm?csnumber=25845
http://www.iso.org/iso/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/catalogue_detail.htm?csnumber=50372

Hemang Mehta et al.

6. Douglas, K.: PostgreSQL. Sams (2005)
7. Fielding, R., Kaiser, G.: The apache http server project. Internet Computing, IEEE

1(4), 88–90 (1997)
8. Janakiram, D., Gunnam, A., Suneetha, N., Rajani, V., Reddy, K.V.K.: Object-oriented

wrappers for the Linux kernel. Software Practice & Experience 38(13), 1411–1427
(2008)

9. Solomon, D.A., Custer, H.: Inside Windows NT. Microsoft Press, Redmond, WA,
USA, 2nd edn. (1998)

10. Widenius, M., Axmark, D.: MySQL reference manual: documentation from the
source. O’Reilly Media, Inc. (2002)

11. Yu, L., Schach, S.R., Chen, K., Heller, G.Z., Offutt, J.: Maintainability of the kernels
of open-source operating systems: A comparison of Linux with FreeBSD, NetBSD,
and OpenBSD. Journal of Systems and Software 79(6), 807–815 (2006)

12. Yu, L., Schach, S.R., Chen, K., Offutt, J.: Categorization of common coupling and
its application to the maintainability of the Linux kernel. IEEE Transactions Software
Engineering 30, 694–706 (October 2004)

Hemang Mehta is an MS research scholar at Department of Computer Science
and Engineering, Indian Institute of Technology Madras, India. His research in-
terests include design of operating systems, distributed systems and compilers.
Specifically, his work focuses on applying principles of service oriented comput-
ing to improve the design of operating systems.

S J Balaji is an MS student of Computer Science and Engineering at Indian
Institute of Technology Madras. He received a BE degree in Electronics and
Telecommunication Engineering from Mumbai University in 2010. His research
interests are operating systems design, distributed systems, cloud-based sys-
tems, energy aware system designs and manycore operating systems.

Dharanipragada Janakiram is currently a professor in the Department of Com-
puter Science and Engineering, Indian Institute of Technology (IIT) Madras, In-
dia, where he heads and coordinates the research activities of the Distributed
and Object Systems Lab. He obtained his Ph.D from IIT, Delhi. His current re-
search involves building large scale distributed systems focusing on design pat-
tern based techniques, measurements, peer-peer middleware based grid sys-
tems, cloud bursting, etc. He is currently an associate editor of IEEE Transac-
tions on Cloud Computing, the SIG Chair of Distributed Computing of Computer
Society of India, Chair of ACM Chennai Chapter and is also the founder of the
Forum for Promotion of Object Technology in India.

Received: January 15, 2013; Accepted: August 20, 2013.

1672 ComSIS Vol. 10, No. 4, Special Issue, October 2013

	Extending Programming Language to Support Object Orientation in Legacy Systems
	Hemang Mehta cl@@auth, S J Balaji cl@@auth, Dharanipragada Janakiram

