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Abstract. Recently, several wireless/optical datacenter architectures are designed
to overcome the drawbacks of wired datacenter topologies, such as expensive high-
end switches, high cabling complexity, congestion caused by a few hot nodes.
Compared with wired switches, current commodity wireless switches usually suffer
lower throughput as well as higher packet loss ratio and latency. However, todays
datacenter applications, such as web search, require quite low latency to improve
user experience. In this paper, a mechanism, named pECN, is proposed to achieve
low latency for delay-sensitive flows. pECN makes use of Explicit Congestion No-
tification (ECN) to maintain a small queue length and a priority-based scheduling
mechanism to provide delay differentiated services. The priority-based scheduling
mechanism works at the packet level. When transmitting, the packet with the highest
priority will be sent. Since the queue length is controlled within a small value by the
ECN mechanism, the scheduling mechanism does not incur large overhead. Also,
since it works at the packet level, it can support unlimited number of services. Be-
sides, pECN does not need to maintain any flow state at switches. We implemented
the proposed mechanism and evaluated the performance on the ns-2 platform. The
simulation results show that pECN works better compared with TCP, DCTCP and
D2TCP in terms of the flow completion time and the number of flows that can be
supported without compromising deadlines.
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1. Introduction

Datacenters has been growing with the increase of cloud services. However, typical wired
datacenter topologies [9, 22] face a lot of challenges. For example, Google has got over
900000 servers in its 30 data centers [5]. The cabling in such large datacenters incur
significant initial effort and may cause high energy cost [23]. Besides, unbalanced traffic
distributions easily cause congestion hotspots [18].

To overcome the drawbacks of wired datacenters, much attempt has been done to
design hybrid datacenters [23, 24, 40], that is, some wireless switches are combined with
existing wired datacenters. Wireless switches could avoid complex cabling and can be set
up on-demand. However, most commodity wireless switches support lower data rate and
suffer higher packet loss ratio and link propagation delay.
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Latency is a quite critical metric for cloud computing services. High latency will im-
pact the user experience and decrease the profit of cloud service providers. The typical
latency requirement of web applications is 200-300 milliseconds [45]. Today’s web ap-
plications are very complex. For example, a Facebook page makes an average of 130
internal sequential requests, and Amazon reported similar results [36]. All of these se-
quential requests have to be done before the applications’ deadlines. Therefore, the flow-
level deadline could be as low as only several milliseconds [42]. To satisfy the latency
requirements of applications in wireless datacenters, we need to design deadline-aware
mechanisms to guarantee that latency-sensitive flows finish within expected time.

The researchers in different fields, including the storage [36], the operating system
[39], and the networking, are making attempts to reduce latency in datacenters. In the
networking field, reducing flow completion time has attracted a lot of attention recently
[12, 13, 25, 42, 45].

There are two main reasons for higher flow latency. First, large queue buildup results
in long queuing delay [13, 41]. The Round Trip Time (RTT) of a datacenter network is
very short, only about 200 microseconds. However, the queuing delay could be up to more
than 10 milliseconds [13]. For example, if the switch buffer size is 512KB and the output
link capacity is 1Gbps, then the queuing delay achieves as high as about 4 milliseconds
when the queue is full. A packet typically needs to pass five switches in a three-layered
datacenter. If all of them are congested, then the total queuing delay can be up to 20
milliseconds. Second, many lost packets cause long recovery time. If a packet is lost,
retransmission will be triggered by three duplicate ACKs or a retransmission timer. The
time required by a sender to receive three duplicate ACKs after transmitting the lost packet
is at least one RTT. Thus, retransmission triggered by fast recovery needs at least one RTT.
Besides, in some situations, the sender fails to receive enough ACKs. For example, if a
query flow or its responses only consist(s) of no more than three packets [13], then when
any one of them is lost, the retransmission has to be triggered after a timeout period.
Also, some special communication pattern, such as incast [17, 43, 46], causes the sender
unable to get more packets from the application layer to send before the lost packet is
recovered. Therefore, the retransmission will be done after the retransmission timer fires.
The timeout period in TCP, which is 200 milliseconds in default, is quite large compared
with the delay requirements of the flows. Thus, if a delay-sensitive flow, especially short
flow, loses some packets, the flow completion time will be possible to increase greatly.

To reduce the flow latency, zero queue length is the ideal network state. Zero queue
length does not incur any queuing delay. Furthermore, zero queue length means that pack-
ets loss ratio will be reduced due to buffer being overwhelmed. Unfortunately, the traffic
in data centers is dynamic and has many short bursts [14]. It is very difficult to maintain
a zero queue length all the time with quite complex mechanisms. The credit-based flow
control [29] designed for ATM could achieve this goal. However, a separate queue is re-
quired for each connection. There are possibly several thousand concurrent connections
at a switch in datacenters. Maintaining so many queues is not practical. HULL [11] tries
to maintain zero queue for delay-sensitive flows by employing shadow queue. However,
it has to sacrifice some bandwidth.

Queue-length-based AQM mechanisms, such as RED [21] and its variants [32,35,44],
make a tradeoff between the large queue buildup and zero queue. These mechanisms
maintain a limited queue length by sending congestion information to the sender in ad-
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vance, such as after the queue length exceeds a fixed threshold. Through maintaining a
short queue length, the queuing delay could be largely reduced. Besides, since the rate
control at the sender is not driven by packet losses, the number of dropped packets is
dramatically reduced. Thus, the time wasted in recovering lost packets can be greatly de-
creased. DCTCP [13] employs ECN to limit the queue length and thus reduce the flow
latency [13].

However, even if the queue length can be controlled within a relatively small value by
an AQM mechanism, it is still a little large compared with the small RTT in datacenters.
For example, if the stable queue length is 30KB, then the queuing delay at one buffer
switch can be up to 30KB/1Gbps = 240 microseconds. If there are five bottlenecks along
the path, the queuing delay could be up to 240× 5 = 1.2 milliseconds. Furthermore, the
AQM mechanisms fail to provide differentiated services for latency-sensitive flows and
background flows without delay requirements.

In datacenters, the traffic is mixed of delay-sensitive short flows and background
flows. Although the number of back- ground flows is quite small, about one percent [7],
most of packets in the network belong to the background traffic [13]. That is to say, most
of the packets accommodated by the switch buffer belong to the background flows with-
out delay requirements. A packet of a delay-sensitive flow is likely to wait for a rela-
tively long time behind some packets of background flows before being scheduled. To
provide differentiated services for flows with different latency requirements, D2TCP [42]
extends the congestion window evolution of DCTCP. It suggests that the near-deadline
flows should reduce congestion window slowly than the far-deadline flows. Therefore,
the near-deadline flows can get larger congestion window than the far-deadline flows.
Intuitively, it works well. Higher congestion window means the flows can be finished us-
ing fewer RTTs. However, it ignores an important traffic feature in datacenters that many
delay-sensitive flows are quite short. The queries and responses of web search applica-
tions take only 1.6 to 2KB [13]. The maximum segment size (MSS) of TCP protocol can
be up to 1,460Bytes. Thus, a query or response only consists of two packets. If the slow
start window size of TCP is two, the flow can be finished using only one RTT. Even if
TCP flow starts from one packet, the latency-aware congestion window evolution after
receiving the marked information will not take effect. Therefore, the latency reduction
for the near-deadline flows through increasing the flow rate at the end host responses too
slowly.

Scheduling at the switches is an alternative to provide more timely differentiated ser-
vices. Priority-based scheduling mechanism is well known and used in traditional Internet,
such as DiffServ [8].

If the packets of the lowest latency flow are given the highest priority to be scheduled,
the flow will suffer zero queuing latency. However, if only scheduling mechanisms at the
switches are employed, packet dropping could not be avoided. The latency caused by fast
recovery or timeout still exists. Besides, if the queue length is quite large, the prioritized
scheduling mechanism will possibly cause a large overhead.

Considering the features of AQM and scheduling mechanisms, a hybrid mechanism
is required to reduce flow latency and provide differentiated services without sacrificing
bandwidth. The challenge is that as various cloud services are developed, the latency
requirements of flows are possibly quite different. We could not use a limited number of
priority queues to provide differentiated services for all the flows.
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In this paper, a mechanism, named pECN, is proposed, which consists of ECN and
a priority-based scheduling mechanism. pECN takes advantage of the ECN mechanism
to limit the queue length within a fixed small number, and makes use of a priority-based
scheduling mechanism to provide unlimited differentiated services. The sender at the end
host puts the priority value in the header of each packet. The priority could be a func-
tion of deadline or remaining flow size. The priority-based scheduling mechanism at the
switches works at the packet level. The packets are sent according to the priority value
in their headers. When transmitting, the packet with the highest priority will be sent. In
this way, we could provide unlimited differentiated services. Since the queue length is
limited within a small value, the searching overhead is acceptable. Besides, limited queue
length means that the commodity switches could have smaller buffer size and thus reduce
the switch cost. When a packet arrives, if the queue length exceeds the marking thresh-
old, there are two marking policies. One is marking the new packet as suggested in ECN.
However, the new arrival packet may have higher priority, and intuitively the packet with
the lowest priority should be marked. The other one is priority-based marking (pMark).
We will evaluate the performance of both of them in the simulation section.

We implemented pECN and pECN with pMark on the ns2 platform and compared
their performance with TCP, DCTCP, and D2TCP. Two kinds of traffic patterns are gen-
erated to evaluate the performance of the mechanisms. One is burst traffic pattern, that is,
many senders transmit packets to the same receiver at the same time. The other is realistic
traffic generated based on the traffic measurement [13]. Series of simulations with these
two kinds of traffic patterns have been conducted. The simulation results show that pECN
reduces the flow completion time for the latency- sensitive flows and can decrease the
number of missed deadline flows.

The remainder of the paper is organized as follows: Section 2 summarizes the related
work; Section 3 describes the motivation of this work. In Section 4, the details of pECN
are presented. The performance evaluation of pECN is shown in Section 5. Finally, the
paper is concluded in Section 6.

2. Related Work

Active Queue Management (AQM). There are a series of work on active queue man-
agement mechanisms, which can be classified into two main classes in terms of the
monitored metric. One is queue-length-based AQM, such as RED [21] and its variants
[32, 35, 44].This kind of mechanism aims to control the queue length and avoid unfair
packet losses caused by the drop tail queue management mechanism. However, it is quite
difficult to tune the parameters of RED. Therefore, it is not widely employed in industry.
The other one is rate-based AQM, such as BLUE [20], AVQ [30, 31], and SFED [27].
This kind of mechanism control congestion is based on the difference of the input and
the output aggregated flow rates. However, the parameters in most of the mechanisms are
required to be tuned with different number of sources, link capacities and feedback delay.
Besides, both of RED and AVQ mechanisms are prone to instability as the link capacities
increase [28, 33].

In this work, we only need the AQM mechanism to limit the queue length so that
timeouts caused by lost packets can be largely reduced and the packet-level prioritized
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scheduling will not incur large searching overhead. Therefore, the ECN marking policy,
which is already available in many modern switches, is employed.

Latency-Aware Transport Control Protocol. In datacenters, some work has been done
to reduce flow latency. DCTCP [13] examines that short flows and long flows coexist in
datacenters. Short flows suffer large latency due to the large queuing delay in datacenters.
Thus, ECN mechanism is employed to decrease the queue length. However, this method
does not provide differentiated delay services and also does not guarantee a specific delay
requirement. Afterwards, some work has been done to reduce the latency from different
perspectives.

First, setting different flow rates at the end hosts. The typical mechanisms include
D3 [45] and D2TCP [42]. D3 [45] aims to satisfy the delay requirements of flows. All the
delay- sensitive flows compute their desired rates based on the flow size and deadline, and
send them to the switches. The switches allocate bandwidth according to the collected
rates. The remaining bandwidth is fairly allocated to all the flows. If the bandwidth is
not large enough to satisfy all the delay- sensitive flows, D3 greedily tries to satisfy the
rate requests of as many deadline flows as possible. All the remaining flows are assigned
a base rate to allow them to send a header-only rate request per RTT. D3 proposes the
problem of guaranteeing the delay requirements of flows. However, its greedy approach
based on first-come-first-served may allocate bandwidth to far-deadline requests arriving
slightly ahead of near-deadline requests [42].

D2TCP [42] modifies the congestion control algorithm of DCTCP to provide dif-
ferentiated delay services for different flows. The rates of all the flows in DCTCP are
decreased in proportional to the marking proportion, while the congestion window of the
near- deadline flows in D2TCP decreases less than the far-deadline flows. Thus, D2TCP
reduces the number of missed deadlines. Intuitively, D2TCP is a good method to provide
delay differentiated services. However, it fails to perform as well as expected in datacen-
ters with special traffic characteristic. In datacenters, the latency-sensitive flows, such as
search queries, only have one or two packets [11, 13]. Generally, TCP starts from slow
start window of one or two packets, while the congestion window adjusted by D2TCP
will not take effect until after at least one RTT. Thus, the latency suffered by the quite
short flows is mainly determined by the queuing delay during the paths instead of the
transmitting rate at the end host.

Second, reducing latency at the switches. Most of this kind of work employs prior-
itized scheduling mechanisms. The packets with higher priority are scheduled first and
thus the latency on the path can be decreased. The challenge is that the number of prior-
ity classes may become quite large as various applications are developed in datacenters.
PDQ [25] designs a distributed scheduling mechanism to approximate shortest job first
and earlier deadline first policies in datacenters. PDQ borrows ideas from centralized
scheduling disciplines and implements them in a fully distributed manner, making it scal-
able to today’s datacenters. In PDQ, each switch needs to maintain the state about the
most critical 2k flows on each link, where k is the number of sending flows (i.e., flows
with sending rate larger than zero). DeTail [48] is a cross-layer mechanism. In routing
layers, it employs the congestion-aware packet-level routing mechanism to fully utilize
the multiple redundant bandwidths in datacenters. In the link layer, it utilizes the Priority-
based Flow Control (PFC) mechanism that defined in IEEE 802.1Qbb to schedule the
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packets with higher priority first. However, the PFC mechanism is designed to enable the
Ethernet to be a unified fabric of Storage Area Network, Local Area Network and High
Performance Computation. There are only eight queues totally. Even if some of them
can be used to provide differentiated services for the communication traffic, it could not
provide finer-grained delay differentiated services. In pFabric [12], the end hosts put a pri-
ority in each packet header. The switch always sends the packet with the highest priority
and drops the packet with the lowest priority. To avoid large searching overhead, pFabric
suggests that the switch buffer size should approximately equal the product of bandwidth
and round trip time. However, it is quite hard to modify the hardware for a specific pro-
tocol. Besides, currently TCP traffic takes about 99.91% [13]. TCP needs larger switch
buffer to accommodate traffic bursts. If the buffer size is too small, TCP will lost a great
number of packets and thus reduce the link utilization. Therefore, decreasing the switch
buffer size to a quite small value is a little aggressive.

HULL [11] does not employ a scheduling mechanism, but trades a little bandwidth to
reduce the latency of short flows. It leverages Phantom Queues to get congestion informa-
tion in advance. The end hosts make use of DCTCP mechanism to evolve the congestion
window. Besides, packet pacing is employed at the end hosts to smooth bursts induced
by hardware offload mechanisms like LSO. Through maintaining near-zero queue length,
HULL achieves low latency. However, it sacrifices some bandwidth.SDN employed in
datacenters is attracting an increasing attention of academics, and multiple approaches
are put forward, like Hedera [10], MicroTE [15], and Planck [37]. However, these meth-
ods use centralized traffic engineering to reroute traffic based on network conditions. The
communication between switches and controllers causes an overhead that is quite con-
siderable comparing with the completion time of short flows. Hence, the distributed ap-
proaches we discuss in this paper are more practical and are ready to deploy.

3. Motivation

3.1. Quite Low Latency Requirement

To achieve horizontal scalability, scale-out approaches are widely used in today’s datacen-
ters. Scale-out means that multiple servers share the computing load of an application. A
typical example is the web search applications. The task of responding each user’s query
is portioned into small tasks, which are assigned to different workers. All the responses
from the workers are aggregated to generate the final result. This pattern is named as
Partition/Aggregation [13, 42, 48].

The parallel work reduces the computing time at the servers since the search task as-
signed to each server is smaller. However, the communication between servers becomes
more frequent. To guarantee that the response can be generated within a specific time, the
communication time between two servers has to be very small. Currently, the response
time of a user query is required to be not larger than 200-300 milliseconds. If the query is
partitioned twice, then possibly some flows have to be finished in less than ten millisec-
onds. For example, Figure 1 shows a partition/aggregation workflow pattern. The deadline
of one user query is 300 milliseconds. Each worker needs 40ms to finish the sub-task and
each aggregator needs 100ms to aggregate the responses from its children. The time of
transmitting a response message is twice as much as that of transmitting a query message.
Then a query flow deadline is only 10 milliseconds.
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Fig. 1. A Partition/Aggregation workflow pattern. A user query task with 300 ms deadline is com-
pleted by multiple workers.

3.2. Cost of Latency is High

Cloud service providers aim to provide online services to users. The response time largely
impacts the users’ experiences. Large latency brings great negative impact on the profits
of the service providers. For example, Google researchers run an experiment where the
number of search results is increased from 10 to 30 one page. The latency correspondingly
increased from 0.4 seconds to 0.9 seconds. As a result, the half a second delay caused a
20% drop in traffic [1]. Amazon found every 100ms of latency cost them 1% in sales [4]. If
a broker’s electronic trading platform is 5 milliseconds behind the completion, the broker
could lose at least 1% of its trade, which is $4 million in revenue per millisecond. Up to
10 milliseconds of latency could result in a 10% drop in revenue [3]. Therefore, in order
to provide better cloud services and thus win more users, reducing latency is quite critical.

3.3. Varied Latency Requirements

Cloud users have different expectations for the service delay. For example, users expect
web search engine could return the search results instantly, while they can accept larger
latency of an email service or a cloud storage service. As the cloud computing technology
develops, more and more cloud services will come up. Cloud service providers need to
guarantee different deadlines for them according to the service function and the system
capability. Therefore, the latency requirements at the service level are different.

Besides, even if all the services have the same latency requirement, the flows still
possibly have varied deadlines. Taking the web search as an example, each worker takes
charge of different parts of keys, possibly runs different search algorithms, and returns
different number of search items. All of these may lead to different flow deadlines [42,45].

Therefore, flows in datacenters could have varied deadlines. Using a limited number
of priorities to provide differentiated services is not a scalable method.

3.4. Quite Short Latency-Sensitive Flows

Query traffic in datacenters follows the partition/aggregation pattern. The query flows are
generally quite short and have strict latency requirements. The size of the query flows
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is generally 1.6 to 2KB [13]. The latency of an online application is generally 200-300
milliseconds. Since the applications usually need to be done across thousands of servers
based on the partition/aggregation pattern, the latency of one flow will be decreased to
several or dozens of milliseconds as shown in subsection III-A.

D2TCP works in one RTT interval. After receiving unmarked ACKs, it works as TCP.
After receiving marked ACKs, the flows with different deadlines adjust their congestion
windows based on their remaining time and their current congestion window. This method
works well in long-term since the near-deadline flows will get more bandwidth than the
far-deadline flows. However, it is possible to be ineffective for the latency-critical short
flows in datacenters.

For example, the maximum TCP packet length is 1,460KB. Then a query flow only
consists of 2 packets. The slow start window of today’s TCP generally equals 2 if delayed
ACK is employed. Therefore, a query flow can finish using only one RTT. Even if D2TCP
is used, it does not take effect for the quite short flows.

To further validate the above thought, we implemented D2TCP on the ns2 platform
based on the DCTCP ns2 code [2].We compared the performance of DCTCP and D2TCP
in a simple scenario to validate whether D2TCP works well for the short latency-sensitive
flows. Six servers connect with a switch. The buffer size of each port is 128KB and the
link capacity is 1Gbps. Four servers established four long flows at time 1.0 second to
make the network full of packets. The flow size was 100MB. At 1.5 second, a short flow
with 0.2 millisecond deadline was established between the other sender and the receiver.
The flow size equals the size of queries [13], that is, 2KB. The completion time of flows
DCTCP and D2TCP is shown in Figure 2. We can see that the performance of D2TCP is
quite close to DCTCP. To validate D2TCP takes effects for long latency-sensitive flows,
we did the previous simulation again. The difference is that at 1.5 second, a flow with
10MB length and 200 millisecond deadline was established. Figure 3 shows the flow
completion time of the five flows. We can see that D2TCP indeed makes the latency-
sensitive flows finish quicker than DCTCP and meets the deadline. This is because the
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Fig. 2. Flow completion time of the five flows. D2TCP does not take effect for the short latency-
critical flows.
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Fig. 3. Flow completion time of the five flows. In D2TCP, the latency-sensitive flow meets its dead-
line while DCTCP can not guarantee the deadline.
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Fig. 4. Cwnd variation of the delay-sensitve flow. In D2TCP, it can get larger cwnd.

large delay-sensitive flow needs a relatively long time to finish. The congestion window
of it in D2TCP is larger than that in DCTCP. Therefore, it can meet the deadline.

Figure 4 confirms the above conjecture. The variation of congestion window in DCTCP
and D2TCP of the deadline flow is depicted. We can see that the window continually
increases in D2TCP at first. This is because the expected deadline is shorter than the
computed deadline during the first half time. Thus, it will be scheduled first. The sender
can quickly receive ACKs the sender of the delay-sensitive flow decreases the conges-
tion window by a quite small number even if it receives marked ACKs. After about 1.53
seconds, the congestion window is already much large. The expected deadline becomes
larger than the computed deadline. Therefore, the congestion window begins to decrease
faster. At about 1.61 seconds, the flow finishes in D2TCP, while the flow finishes at about
1.92 seconds in DCTCP.
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We can see that rate-based mechanisms at the end hosts response too slowly for the
quite short latency-critical flows. Mechanisms at the switch can response more quickly.
Therefore, we designed a mechanism, which works at the switches to achieve low latency
and provide unlimited differentiated services.

4. Details of pECN

In this section, we will describe the details of the proposed mechanism, pECN (prioritized
ECN). pECN aims to reduce flow latency and provide unlimited number of differentiated
services. The basic idea of pECN is to employ ECN technology to maintain a short queue
length and utilize a prioritized scheduling mechanism to provide differentiated services
for different flows. pECN can quickly respond to the nearest-deadline flow and adapt to
varied deadline requirements.

4.1. Marking Policy

The ECN mechanism [6] will mark the arrived packets by setting the Congestion Experi-
enced (CE) code point when the queue length exceeds a limited value, and the receivers
will send the marked information back to the senders by ACKs. After receiving marked
ACKs, the senders will reduce congestion window according to a congestion control algo-
rithm. The marking policy includes two parts. One is determining the marking threshold.
The other one is determining which packet should be marked. The marking threshold K
is given in [13] as

K >
C ×RTT

7
(1)

Note that it is a quite small number in datacenters. For example, if the link capacity is
10Gbps and RTT is 200 microseconds, then C×RTT

7 is only about 35 KBytes.
In terms of the selection of the marked packets, generally the just arrived packet will

be marked. However, if some packets of a near-deadline flow are unfortunately marked,
then the sending rate of the flow will be reduced, which may increase the flow completion
time. It is better to mark a packet of far-deadline flows. Therefore, there is another kind of
marking policy. When a packet arrives after the queue length exceeds the threshold, the
packet with the lowest priority will be found and marked. We named this marking policy
as priority-based marking (pMark). This method will incur some search overhead.

In the evaluation part, both of the two marking policies will be evaluated. We found
that the priority-based marking policy does not play an important role in reducing the
latency. The main reason is that even if the packet with the highest priority is marked, it
will be scheduled first. The sender can quickly receive ACKs and send new packets.

4.2. Priority-Based Scheduling

Priority queue is widely used to provide differentiated services, such as DiffServ [8] in
Internet and PFC in datacenters. However, this kind of method can only provide limited
number of services. It fails to provide differentiated services for more various flows.

If more priority queues can be maintained, then more different kinds of services can be
provided. At the worst case, if each packet belongs to a kind of service, then the number
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of priority queues required is same to the number of the packets. In traditional Internet,
the number of packets at a switch buffer is quite large. It is impractical to provide the
priority-based scheduling at the packet level.

However, since datacenters have quite short RTT, the queue length could be quite short
as well if an AQM mechanism is used to limit the queue length. Therefore, it is possible
to implement priority-based scheduling at the packet level. When a packet needs to be
transmitted, the packet with the highest priority will be found and then sent out.

The priority values are set at the end hosts. They can be determined according to the
flow deadline. Then prioritized scheduling becomes Early Deadline First. The priority
can also be positively proportional to the flow size. Then the prioritized scheduling acts
as Shortest Job First scheduling mechanism.

4.3. Congestion Control Mechanism

Since the CE information is a single bit in the ECN mechanism, the congestion control
mechanism of standard TCP is that the sender cuts the congestion window by half after
receiving a CE mark. In DCTCP, a multi-bits feedback is derived from the single bit
mark. And the congestion control mechanism at the sender side is modified to cutting the
congestion window in proportion to the fraction of the marked packets.

In D2TCP, the congestion window is reduced based on not only the fraction of the
marked packets, but also the remaining time, the remaining bytes and the current conges-
tion window of the flows. Near-deadline flows cut fewer congestion windows than far-
deadline flows.

In pECN, we use the congestion control mechanism in DCTCP. On one hand, the rate
control at the end hosts plays little role in reducing the latency of quote short flows. On
the other hand, once the prioritized scheduling mechanism is used, the rate of the flows
with higher priority will increase faster than the other flows since the packets of the flows
with higher priority encounter shorter round trip time. Faster ACK feedback will lead to
faster sending rate.

4.4. Benefits of pECN

Providing unlimited differentiated services. The traditional priority-based scheduling
mechanisms based on the priority queues with limited number, generally 8, could only
support at most 8 kinds of different services. While in pECN, when a switch’s output
port could send out a packet, it will select the packet with the highest priority value to
transmit, that is, no matter how many kinds of packets with different priority values exist,
pECN will always transmit packets in the order of their priority values. Thus, pECN could
support unlimited differentiated services.

No need to maintain any flow state. When making forwarding decisions, pECN could
only need to check the priority values of the accommodated packets in the buffer, that is, it
does not need to rely on any historical flow information. Therefore, pECN does not need
to maintain any flow state at the switches. This is a quite important benefit in datacenter
networks. Since most of flows in datacenter networks have quite small flow size, they
only last for a quite short time. A mechanism that requires to record flow information will
incur substantial overhead.
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Simple Implementation. Since pECN does not need to maintain historial flow informa-
tion, the implementation of it is simple. As for the pMark function, we will evaluate its
effectiveness in the simulation part. The results show that it impacts a little on the per-
formance of pECN. Thus, the pMark function could be ignored in real implementation of
pECN. If the pMark policy is not employed, only the dequeue function at the switches is
required to be modified.

5. Evaluation

We will implement pECN on the ns2 platform and evaluate its performance in this section.
The topology is shown in Figure 5. There are totally 18 ToR switches. Each rack has 20
servers. The capacity of the link between each server and its ToR is 1Gbps, and the link
capacity between each ToR and the core switch is 10Gbps. Therefore, the oversubscription
is 2. The propagation delay of each link is 30 microseconds. The buffer size of each port
is 256KB.

1Gbps

10Gbps

. . .

Fig. 5. Simulation topology. Each top of rack contains 20 servers.

The performance of pECN is compared with TCP, DCTCP [13], D2TCP [42], and
pECN with pMark. TCP uses Drop-Tail queue management policy, while DCTCP, D2TCP
and pECN use RED. The threshold of marking is 30Kbytes. Some important parameters
on the ns2 platform need to be modified. Window , which controls the advertised win-
dow at the receiver side, should be increased from 20 to a large enough value so that the
receiver will not become the bottleneck. In our simulations, we set it to 1,000. Delayed
ACK is disabled. In TCP, the timer of the delayed ACK is 40 milliseconds. In our simula-
tions, we found that if delayed ACK is enabled, the latency of the flows with odd packets
will be quite large. We can either disable delayed ACK or reduce the timer duration of
the delayed ACK. Considering that a query flow will possibly be finished in a quite short
time, it is difficult to set a proper delayed ACK value for all the flows. Therefore, in our
implementation, the delayed ACK is disabled. The timeout is 200ms as suggested in TCP.

Two kinds of traffic patterns are generated to test the performance of the protocols.
A typical kind of traffic pattern in data- centers is multiple to one burst, that is, mul-

tiple senders transmit packets to the same receiver at the same time. This kind of traffic
widely exists in datacenters, such as in the Data- Intensive Scalable Computing (DISC)
systems [16], including MapReduce [19], Dryad [26], Spark [47], CIEL [34], Triton-
Sort [38], in the partition/aggregation workflow. Since this kind of traffic is quite popular
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in today’s datacenters, the designed protocol should perform well with it. In terms of the
performance metrics, we mainly use flow completion time, which is a widely used metric
to compare the transport protocols in datacenters [13,25,42,45], 99th tail flow completion
time, and the number of senders that can be supported without compromising deadlines.

In this section, we will investigate the performance of the mechanisms with burst traf-
fic. This kind of traffic possibly exists in two scenarios. One is intra-rack burst traffic. The
other is inter-rack burst traffic. Application designers would like most of the communica-
tion between servers to happen inside a rack, which is called locality. Locality reduces the
traffic across different subdomains. The bandwidth pressure at the top layer of the data-
center topology can be alleviated. Therefore, intra-rack burst traffic is more desirable than
inter-rack burst traffic. However, if a task is so big that it requires hundreds of servers
to cooperate, then inter-rack burst traffic is also needed. Hence, we will investigate the
performance of pECN with both of these two kinds of scenarios.

We will firstly investigate the performance of the mechanisms in the scenario of burst
traffic without background flows. Then some background traffic is added to study whether
pECN works well in the scenario of burst traffic with background flows.

5.1. Without Background Traffic

One server in a rack acts as the receiver, and the others are the senders. Since there are
totally 20 servers in a rack, to emulate multiple servers, we let one sender generate mul-
tiple flows when the number of connections is larger than 19. The flow size is uniformly
distributed across [2KB, 50KB]. The flow priority is positively proportional to the flow
size. At 0.1 second, all the senders establish connections with the receiver.

Flow Completion Time. Figure 6 depicts the average flow completion time of all the
flows with different number of connections. We can see that TCP performs the worst.
Through investigating the log in detail, we found that TCP flows suffer many timeouts and
thus the flow completion time is quite large. D2TCP performs almost the same as DCTCP
except that the number of connections is quite large. This is because all the flows are
very short. D2TCP can work well only for the relatively long flows. pECN performs the
best. It reduces the average flow completion time by 24.5% compared with DCTCP when
the number of connections equals 80. This is because pECN schedules the flow with the
highest priority first. In this scenario, the priority is positively proportional to the flow size.
Therefore, it actually achieves the Shortest Job First (SJF) scheduling mechanism, which
minimizes the average flow completion time. The performance of pECN with pMark is
almost the same as pECN, which indicates that pMark does not play a role.

To verify our conjecture about why pECN performs better than the other protocols, we
plot the relationship between the flow size and the flow completion time with pECN and
DCTCP mechanisms as the number of connections is 80 in Figure 7. In pECN, except
from one occasional point, the smaller the flow size is, the shorter the flow completion
time will be, that is, it indeed acts as a Shortest Job First scheduling mechanism. While
in DCTCP, about 11 of the 80 flows finished earlier than some flows with shorter length.
Thus, the average flow completion time of pECN is shorter than DCTCP. D2TCP has
almost the same result with DCTCP. To make the figure clearer, we did not plot the result
of D2TCP.
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Fig. 6. Intra-rack: Average flow completion time with different number of senders. The flow size
uniformly distributes across [2KB, 50KB].
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Fig. 7. Intra-rack: Average flow completion time with different flow sizes. The number of connec-
tions is 80.

It’s likely that the burst traffic pattern causes congestion at the bottleneck switch
buffer. To alleviate the performance degradation in the online data-intensive applications,
application designers tend to use quite small responses [13]. To simulate this kind of traf-
fic, we let the flow size be uniformly distributed across [1.6KB, 2KB] [13] and repeat the
above simulations.

Figure 8 depicts the average flow completion time with different number of connec-
tions in a rack. The curves are quite different from that in Figure 6. The performances of
TCP, DCTCP, and D2TCP are almost the same. This is because the flow size is too small.
The congestion control mechanisms at the end hosts did not take effect. However, pECN
and pECN with pMark perform better. This is because pECN acts as an SJF scheduling
mechanism and it achieves the minimum average flow completion time.
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Fig. 8. Intra-rack: Average flow completion time with different number of senders. The flow size
uniformly distributes across [1.6KB, 2KB]
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Fig. 9. Inter-rack: Average flow completion time with different number of senders. The flow size
uniformly distributes across [2KB, 50KB].

As stated at the beginning of this section, except the intra-rack burst traffic, there
is also inter-rack burst traffic. To investigate the performance of pECN in this kind of
scenario, we selected a server that did not connect to the same ToR switch as the senders
and the receiver and conducted the above simulations again.

Figure 9 shows the average flow completion time of the flows with different num-
ber of senders with inter-rack burst traffic. The results with all the mechanisms increase
a little since the round trip propagation delay increases from 120 microseconds to 240
microseconds. However, relatively, the result is quite close to that with intra-rack burst
traffic. pECN still has the best performance, and TCP works the worst. The results with
smaller flow size are similar to Figure 8.
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Missed Deadline. Figure 10 shows the number of connections that can be supported
by different mechanisms without compromising the deadline. We used intra-rack burst
traffic. The flow size is uniformly distributed across [2KB, 50KB]. The flow deadline
is uniformly distributed across [10ms, 20ms] or [20ms, 30ms]. TCP supports the least
number of connections. When the flow deadline takes a value between [10ms, 20ms],
D2TCP, pECN and pECN with pMark can support the same number of connections. When
the flow deadline is uniformly distributed across [20ms, 30ms], pECN with pMark can
support the largest number of connections, 57, and pECN supports 54 connections, while
DCTCP and D2TCP support fewer connections.
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Fig. 10. The number of senders that can be supported without compromising deadlines.

5.2. With Background Traffic

To evaluate the effect of background traffic, we added two long flows as background in
the intra-rack scenario. The flow size is uniformly distributed across [2KB, 50KB]. The
background flows started at 0.1 second. The deadline was quite large. At 1.5 second,
the queries started. Figure 11 shows the average flow completion time of the short flows.
Compared with Figure 6, the average flow completion time of TCP increases a lot because
of the large queue length at the bottleneck switch buffer. The other three mechanisms do
not increase too much. This is because the number of short flows is much larger than the
number of background flows. Therefore, the bandwidth taken by the background flows is
not large. Besides, at the switches, the queue length is controlled by the ECN mechanism.
Therefore, the queuing latency also does not increase too much.

The results with background traffic flows in the scenario of inter-rack burst traffic is
also similar. To avoid redundancy, the figures are omitted.
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Fig. 11. Average completion time of short flows with different number of senders in the scenario
of intra-rack burst traffic with background flows. The flow size uniformly distributes across [2KB,
50KB].

6. Conclusion

As datacenter applications increase, reducing flow latency is attracting more and more
attention. Datacenter has special traffic characteristics. The latency-sensitive flows are
usually quite short. Reducing latency through controlling rate at the end hosts responses
too slowly for the short flows. In this paper, pECN is proposed to reduce latency for the
delay-sensitive flows. pECN uses ECN mechanism to limit the queue length and employs
the priority-based scheduling mechanism to provide differentiated services. The priority-
based scheduling works at the packet level. When transmitting, the packet with the highest
priority will be sent. The overhead of the scheduling mechanism is not large since the
number of packets in the queue is limited within a small value by the ECN mechanism.
Also, the scheduling mechanism can provide unlimited number of differentiated services
without limitation by the number of priority queues. Besides, pECN does not need to
maintain any flow state at the switches.

We implemented the proposed mechanism pECN on the ns-2 platform. To investigate
whether priority-based marking benefits the flows with higher priority, we also imple-
mented pECN with pMark. Burst traffic was generated to evaluate the performance of the
proposed mechanism. The performances of pECN and pECN+pMark are compared with
TCP, DCTCP and D2TCP in terms of the flow completion time and the number of flows
that can be supported without compromising deadline. The results show that pECN has
similar performance to pECN+pMark. It only works a little worse in some scenarios. And
pECN has better performance for the delay-sensitive flows compared with TCP, DCTCP
and D2TCP.
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