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Abstract. Constraint-based processes require a set of rules that limit their behavior
to certain boundaries. In these processes, the control flow is defined implicitly as a
set of constraints or rules, and all possibilities that do not violate any of the given
constraints are allowed to be executed. The present paper proposes a new approach
to deal with constraint-based processes. The proposed approach is based on Su-
pervisory Control Theory, a formal foundation for building controllers for discrete-
event systems. The controller proposed in this paper monitors and restricts execu-
tion sequences of activities such that constraints are always obeyed. We demonstrate
that our approach may be used as a declarative language for constraint-based pro-
cesses. In order to provide support for users of such processes and to facilitate the
using of our control approach, we offer a set of constraints modeled by automata.
This set encompasses the constraints frequently needed in workflow system.
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1. Introduction

Nowadays constraint-based processes approaches have received increased interest [16].
In these processes, the control flow is defined implicitly as a set of constraints or rules,
and all possibilities that do not violate any of the given constraints are allowed to be
executed [13] [9] [8]. A constraint-based process model specifies the activities that must
be performed to produce the expected results but it does not define exactly how these
activities should be performed [6] [7]. Thus, any execution order of activities is possible
provided that the constraints are not violated. Thus, most of time the process execution is
driven by users choice.

DECLARE [13] [4] is developed as a constraint-based system and it uses a declara-
tive language grounded in Linear Temporal Logic (LTL). DECLARE provides a graphical
representation of constraints (DecSerFlow) [12] that hides the associated LTL formulas
from users. According to [9] [8], this approach suffers from the fact that the subsequent
tools for execution and analysis will refer to the LTL expression and not to the graphical
notation. The full generality of LTL may lead to a poor execution time. For verification
and enactment purposes, it is necessary to translate LTL to finite automata. While comput-
ers are very good at handling nite automata, the translation itself is often a roadblock as it
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may take time exponential in the size of the LTL formulas [24]. This motivates research-
ing the problem of finding an expressive constraint-based processes approach where both
the constraints as well as the run time state can be easily visualized and understood by
the end user and also allows an effective verification (blocking,conflict, dead tasks) and
execution of activities.

In the present paper we propose a new approach to deal with constraint-based pro-
cesses founded on the Supervisory Control Theory [15]. The new approach proposes a
control system which restrains the process in order to not violate the constraints. This
action is accomplished through dynamic disabling of some events, restraining the state
space of process. We consider that a process may contain sequences of events that are
not allowed to occur. These sequences may violate a desired ordering of events and they
need to be avoided. Thus, a supervisor is built in order to ensure that the whole set of con-
straints is not violated. We had some challenges bringing the formal foundation of SCT
into a constraint-based process model, which characterizes the originality of our paper.
We highlight the following contributions:

1. A new approach to deal with constraint-based processes. The proposed approach is
based on SCT. The supervisor obtained applying SCT monitors and restricts execu-
tion of sequences of activities such that constraints are always obeyed. We demon-
strate that our proposal can be used as a declarative language for constraint-based
processes. Our approach does not limit the user by imposing rigid control-flow struc-
tures. In fact, the basis of our approach is to inform users of which activities are not
allowed to occur after an observed trace of events at run-time, and users operate with
some freedom because they choose execution sequences allowed under supervision;

2. A new approach to audit processes. Applying SCT results in a language (sequence
of events) that considers all possible sequences which do not violate any of the con-
straints imposed to the process. It is possible to audit an execution of a process com-
paring if the performed sequence of activities belongs to that language.

3. Modeling activities and constraints using automata. We represent activities and con-
straints frequently needed in workflow systems using automata. This is necessary to
apply the SCT. We propose a general model of activities as well as a set of constraints
(Fig. 8 to 11, section 4). We aim to support users without a deep knowledge in SCT
on its application in order to model constraint-based processes;

The present paper is an extended version of the previous paper presented in WorldCist
2013 [19], and is organized as follows: Section 2 describes the Supervisory Control The-
ory, as the fundamental concept of the proposed approach. Section 3 explains the mod-
eling of activities using automata. Section 4 explains the modeling of constraints using
automata. Also, it is presented four categories of constraints usually needed in business
processes. Section 5 presents an application example to illustrate our approach. Section 6
discusses the process execution and the architecture of the run-time environment. Section
7 concludes the paper.

2. Supervisory Control Theory

Supervisory Control Theory (SCT)[15] has been developed in recent decades as an ex-
pressive framework for the synthesis of control for Discrete-Event systems (DES). Ac-
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cording to SCT, the behaviour of a DES may be represented by sequences of events cor-
responding to ordered execution of activities. Among all possible sequences of events and
due to the process rules and constraints, some sequences of events are desirable while
other sequences are not since they violate these rules or constraints. Instead of defining
a priori a specific sequence of events to be enforced in order to satisfy the constraints,
the core concept of SCT is to design a supervisor that, following the sequence of events
while the process evolves, specifies which events cannot occur in order to not violate the
constraints. Thus, after the occurrence of an event the system (or the DES) decides which
event will occur among those that are not disabled by a supervisor. SCT provides algo-
rithms that, based on a process model considering all feasible event sequences and the
associated constraints, allow one to design a supervisor whose control action imposes a
minimally restrictive behaviour over a DES under consideration.

SCT is based on automata and formal language theories. Usually, a composed sys-
tem is represented by a set of automata as {Gi|i ∈ I}, where i ∈ I identifies each
subsystem. Automaton Gi represents the independent behaviour of a corresponding sub-
system in a high degree of abstraction. The uncoordinated or unconstrained behaviour
of the entire DES is obtained by the synchronous product [2] of all subsystems as G =
||∀i∈IGi. An automaton (also known as a language generator) is a structure as Gi =
(ΣGi, QGi, δGi, qGi0 , QGim ) where ΣGi is the alphabet (set) of events, QGi is the set of
states, δGi : (QGixΣGi)→ QGi is the state transition function (in general, partially de-
fined), qGi0 is the initial state, and QGim ⊆ QGi is the set of marker states. An automaton
state represents that a certain activity is being performed or that the subsystem is idle.
Events represent the beginning and (un)successful execution of such activity. One may
differentiate some states to give them a special meaning by grouping them in a set of
marked states. In SCT marked states are those representing accomplishment of activities.

A Product System Representation (PSR) is a set of asynchronous subsystems such
that all pairs of subsystems in {Gi|i ∈ I} have disjoint alphabets. The system’s whole
set of events is Σ = ∪∀i∈IΣGi. There are two languages associated with automaton
G: the closed language L(G) and the marked language Lm(G). The closed language
is the set of all sequences of events leading from the initial state to some state of G.
The marked language is the set of all sequences of events leading from the initial state
to any marked states such that Lm(G) ⊆ L(G). These are the languages representing
the unconstrained behaviour of the entire system. Under these languages there are several
undesirable sequences of events that must be avoided in order to restrain the system inside
a desirable (allowed) behaviour.

SCT allows the designer to take into account the nature of events. While there are
some events whose occurrence might be disabled by a control agent there are events
whose occurrence cannot be disabled. An event is controllable if a control agent (super-
visor) can disable its occurrence. One may consider that a certain event is uncontrollable
by convenience in order to not allow it to be disabled. In general, an uncontrollable event
is inherently unpreventable. Considering a subsystem in {Gi|i ∈ I}, ΣcGi denotes its
set of controllable events and ΣucGi its set of uncontrollable events. The whole set of
controllable events is Σc =

⋃
∀i∈I Σc

Gi.
Usually there is a set of constraints to be imposed to the system to restrain its uncoor-

dinated behaviour. Each constraint may be represented by an automaton resulting in a set
as {Cj |j ∈ J}, where j ∈ J identifies each constraint. Performing the synchronous prod-
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uct of all automata in {Cj |j ∈ J} with automaton G results automaton C representing a
global constraint.

A supervisor is a map from the closed language of G to a subset of events to be en-
abled S : L(G) → 2Σ . A supervisor may be represented by an automaton and an output
map {Υ} = (S, Φ), where S = (ΣS , QS , δS , qS0 , Q

S
m). Automaton S is driven by occur-

rence of events in DES, and output map Φ : QS → 2Σc specifies the subset of controllable
events that must be disabled as a correspondence of the active state of automaton S. The
action of a supervisor includes disabling controllable events and unmarking sequences of
events. Algorithms provided by SCT allow the formal synthesis of automaton Υ/G, which
represents the optimal behaviour of G under supervision of Υ , where L(Υ/G) ⊆ L(G)
and Lm(Υ/G) ⊆ (L(Υ/G) ∩ Lm(G)). This behaviour is named supremal controllable
sublanguage of Lm(C) with regard to G and it is usually represented as supC(E,G).
Whenever Lm(Υ/G) is a proper subset of (L(Υ/G)∩Lm(G)), Υ is a marker supervisor,
i.e., there are sequences of events corresponding to accomplished tasks in the uncoordi-
nated behaviour of G that are no longer considered accomplished tasks under the action
of the supervisor. Typically, the automaton representing a supervisor is automaton Υ/G
itself. [10] and [21] provide algorithms to obtain a reduced representation of supervisor Υ
as a new pair (Sr, Φr) where automaton Sr has a smaller number of states than Υ/G and
it provides the same control action.

In a monolithic approach, a single global supervisor is synthesised to cope with all
constraints. Necessary and sufficient conditions for the existence of supervisors are es-
tablished in [14]. According to Local Modular Control (LMC) [3], an extension of the
SCT, instead of synthesizing a single global supervisor that satisfies the entire set of con-
straints, a local supervisor must be synthesized for each constraint in {Cj |j ∈ J}. This
leads to a set of local supervisors {Υj |j ∈ J}. Synthesis of local supervisor Υj is per-
formed considering corresponding local constraint Clj and its corresponding local plant
Glj . A local plant is obtained performing the synchronous product of only those subsys-
tems in {Gi|i ∈ I} sharing some event with corresponding constraint and local constraint
is obtained performing the synchronous product of automata representing corresponding
constraint and local plant (Clj = Glj ||Cj). Automaton Υ/Glj represents the optimal
behaviour of local plant Glj under supervision of corresponding local supervisor Υj . If at
least one local supervisor in set {Υj |j ∈ J} disables an event, the event is disabled in G.
A sequence of events is recognized as an accomplished task if all local supervisors agree
with.

A limitation of LMC is that the behaviour obtained under the action of all local su-
pervisors may fail to be non-blocking, even if each modular supervisor is non-blocking.
Blocking in SCT occurs when all possible ways of continuing a sequence of events never
lead to a marked state. After synthesis of all local supervisors, it is necessary to ver-
ify whether their control actions are free of conflicts. One way is confirming Υ/G =
||∀j ∈ JΥ/Glj . In the worst case, such verification involves the same complexity as that
found during synthesis of the global supervisor [3]. If this property is verified, the be-
haviour obtained under the action of the entire set of local supervisors is identical to the
behaviour obtained under the action of a global supervisor.[25] proposes how to proceed
if such property is not verified.

We believe that the Supervisory Control Theory (SCT) is a promising candidate for
modeling and execution of a constraint-based process. We highlight the following reasons:
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– SCT uses automata as formalism to represent activities, constraints and the resulting
supervisor. This is a formal and explicit way of representing them;

– Using SCT, from modelling to synthesis and visualization, the formal notation is
always the same (automata), without the need to convert from one notation to another
(in DECLARE is necessary to convert LTL formulas to automata);

– In SCT the state of each activity as well as each constraint may be easily visualized
and understood by the end user at run-time;

– SCT provides algorithms to perform a formal synthesis of supervisor (or the admissi-
ble language of a constraint based process) instead of the usual manual and heuristic
procedures;

– The obtained solution is minimally restrained and also dead-lock free;
– New control actions may be rapidly and formally designed when modifications, such

as redefinition of constraints or activities arrangements, are necessary;
– The constraint-based processes can be made to behave optimally with respect to a

variety of criteria, where optimal means in minimally restrictive way (concern to
the admissible language of the process). This is a very strong characteristic of the
proposed approach. As far as we know, there is no approach that offer a better solution
related to the admissible language.

3. Modeling activities of constraint-based processes

The theory presented at previous section, together with a method of control implementa-
tion [23], have successfully been employed on the actual control of DES with characteris-
tics of the manufacturing industry [20] [5]. In order to provide full support to control im-
plementation in the context of constrain-based processes, we propose first to analyze the
modeling of activities and constraints. This section presents how we propose to represent
activities of constraint based processes so that they may be coordinated by supervisors
obtained applying SCT.

Suppose a process with a set of associated activities A = {ai|i ∈ I} where I is a set
of index uniquely identifying each activity. We propose that each activity is modelled as a
corresponding automaton Ai = (ΣAi, QAi, δAi, qAi0 , QAim ), as shown in Fig. 1(a), result-
ing in set {Ai|i ∈ I}. States on this automaton mean that activity is being performed (state
1) or is not being performed (state 0). Transition from state 0 to state 1 is due to event start
activity ai (si); transition from state 1 to state 0 is due to occurrence of event successfully
complete activity ai (ci) or cancel activity ai (xi). In SCT marked states are those repre-
senting accomplishment of tasks, a state represented with a double line is a marked state.
In this model si is a controllable event while ci and xi are uncontrollable events. It means
that starting an activity by a resource may be disabled by a supervisor. However, once it is
under execution a supervisor is not allowed to avoid it to be cancelled or completed suc-
cessfully. The set of events of automaton Ai is ΣAi = {si, ci, xi}. Considering the entire
set of activities, the whole set of events is Σ =

⋃
∀i∈I Σ

Ai. It can be seen that all pairs of
automata in {Ai|i ∈ I} have disjoint alphabets of events (∀p, q ∈ I,ΣAp ∩ ΣAq = ∅),
so this is a product system representation. If desired, a more detailed automaton may be
employed, including more states and events, it is also possible to apply a different inter-
pretation of events’ controllability. For example, it is possible to consider the activity life
cycle as stated in [22] and [16]. The corresponding automaton may include states as al-
located, suspended, failed, and events as suspend, resume, allocate, as shown in [17] and
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[18]. The modeler has to choose which states and events will be considered based on the
relevant constraints to be imposed to the process under consideration.

Considering the whole set of activities, it is possible to have several activities being
executed at the same time. Performing synchronous product of all automata in {Ai|i ∈ I},
it results on automaton A where the set of states represents all possible combinations of
activities being performed over a certain process instance. It is a subset of the cartesian
product of the set of states of all automata in {Ai|i ∈ I}. Since this set of automata is a
product system representation the number of states of A is 2n, where n is the number of
automata. Automaton A represents the uncoordinated behaviour of activities. In automa-
ton A an state is marked if and only if it corresponds to a combination of marked states
of automata in {Ai|i ∈ I}. For instance, considering a process with only two activities
(A = {a1, a2}), the synchronous product of corresponding automata (A = A1||A2) is
the one shown in Fig. 1. At this automaton each state is named as an ordered pair (state
of A1, state of A2).

Fig. 1. Automata representing: (a)activity model and (b) uncoordinate behaviour model
of two activities

4. Modeling constraints

According to [1], three main categories of constraints may be identified. One category
focuses on ensuring that each process instance is performed under specific ordering of
activities. The second category focuses on managing the allocation or usage of resources
that perform such activities. The third one focuses on the attributes of a process instance.
SCT may be employed to synthesize supervisors to enforce these constraints. This paper
is restricted on modelling activities compatible with constraints on the first category. In
this section we describe the procedure to represent a constraint using automata.

Consider automaton A representing the uncoordinated behaviour of a set of activities
{ai|i ∈ I} of a process. Language L(A) represents all sequences of events that may be
performed by these activities without any constraint, and Lm(A) is a subset of L(A) rep-
resenting accomplished activities. The basic premise is that a process contains sequences
of events in L(A) that are not acceptable because they violate some constraint. It is also
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possible that certain states must be forbidden since they represent an unauthorized con-
current execution of activities. These sequences and states must be avoided. Also, it is
possible that a sequence of events in Lm(A) does not correspond to an accomplished task
when the process instance is performed under supervision. Thus, that sequence needs to be
unmarked by supervisor. Consider automaton S/A, such that Lm(S/A) = supC(C,A),
the one that recognizes the supremal controllable language of constraint activities. [16]
define a supported traces as a sequence of events complying with all mandatory con-
strains. This definition complies with the definition of a sequence of events belonging to
Lm(S/A). Fig. 2 shows the languages relation: the region 1 includes sequences of events
belonging to Lm(S/A) (or supported traces); the region 2 includes sequences w such that
w ∈ L(A), w ∈ Lm(A), w 63 L(S/A), w 63 Lm(S/A); the region 3 includes sequences
w ∈ L(A), w 63 Lm(A), w ∈ L(S/A), w 63 Lm(S/A), the region 4 includes sequences
w ∈ L(A), w ∈ Lm(A), w ∈ L(S/A), w 63 Lm(S/A).

Fig. 2. Venn diagram of languages relation

To formally obtain the supervisor that restrains the uncoordinated behaviour of activ-
ities it is necessary to express constraints in terms of automata. Usually, each constraint
is represented as an automaton resulting in set {Cj |j ∈ J}, where J is a set of index
uniquely identifying each constraint. When a process instance is performed under super-
vision of a set of supervisors obtained employing SCT, the related constraints will never
be violated and there will always be at least one sequence of events leading to a marked
state, i.e., there will always be the possibility of accomplishing a task.

Modelling constraints is based on sequence of events and unmarking states. Consider
an automaton Cz ∈ {Cj|j ∈ J}. Usually the alphabet of events of Cz is only a proper
subset of the whole set of events. Such alphabet contains the events strictly necessary to
represent the constraint and it is represented asΣCz . If the occurrence of an event inΣCz

is not represented at a certain state of Cz, either in self-loop leading to the same state or
to a different one, then the occurrence of this event will not be allowed after any sequence
of events leading to such state. If a state in Cz is not a marked one then the sequences
of events leading to it will not be considered as accomplished tasks, even if any of these
sequences lead to marked states in another automaton in {Cj|j ∈ J} or in automaton A.
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The existence(a1, 1) model requires that activity a1 must occur at least once at ev-
ery trace [16][11]. In order to facilitate the understanding of our approach, we rewrite
this constraint to activity a1 is successfully completed at least once. Fig. 3 presents two
possibilities of modelling this constraint. The first possibility is through automaton C1.
Initial state of C1 has a self-loop labelled as Σ − c1, meaning that the occurrence of any
event belonging to Σ but c1 keeps this state as the active one. The active state is state 1
only after occurrence of event c1. This remains the active state despite the occurrence of
any event, as there is a self-loop labelled as Σ. Since the only marked stated is state 1
then accomplishing a task is recognized only after first occurrence of event c1. Alphabet
of events of this automaton is the whole set of events ΣC1 = Σ. Modelling a constraint
through an automaton whose alphabet of events is Σ has the advantage of clearly pre-
senting the occurrence of all possible events. In the case one employs this automaton as
a constraint under the LMC approach, then the corresponding local plant is automaton
A and does not take advantage of this approach in reducing computational complexity to
synthesize a corresponding local supervisor. Considering definition of synchronous prod-
uct and algorithms for the synthesis of supremal controllable language supC((A‖C1), A)
[26], a more efficient representation of a constraint is through an automaton employing
only strictly necessary events.

Fig. 3. Automata representing constraint existence(a1, 1)

The second possibility of representing existence(a1, 1) model is through automaton
C1’, where the alphabet of events is ΣC1′ = c1. In this case it is implicit that any
event that does not belong to ΣC1′ is always allowed to occur in accordance with au-
tomaton representing the uncoordinated behaviour as automaton A. Adopting C1’ as a
constraint, results that corresponding local plant is automaton A1 alone. Thus computa-
tional complexity on the synthesis of local supervisor and number of states of automa-
ton representing it will be smaller than in the first possibility. Fig. 4 presents automata
Sc1/A and Sc1′/A1, where Lm(Sc1/A) = supC((A‖C1), A) and Lm((Sc1′/A1) =
supC((A1‖C1′), A1) may be employed as supervisors enforcing constraint existence(a1,
1) over the set of activities A = {a1, a2}. Control action of supervisors obtained in both
possibilities will be equivalent. Such control action is only unmarking sequences of events
(recognizing accomplished tasks), it will not disable events. Applying supervisor’s reduc-
tion algorithms [26] on these supervisors results automaton Sc1r, also shown in Fig. 4.
It can be seen from automaton A (Fig. 1) that sequences w1 = ε (the empty sequence of
events), w2 = s1x1, w3 = s2c2, w4 = s1c1, among others, lead from initial state back
to it and this is a marked state so w1, w2, w3, w4 ∈ Lm(A). It can also be seen from
automaton Sc1/A and Sc1′/A1 that while sequence w4 (region 1 according to Fig. 2)
leads from initial state to a marked state the same is not true for sequencesw1,w2 andw3;
this means that w4 ∈ Lm(Sc1/A) but w1, w2, w3 63 Lm(Sc1/A) (region 4 according
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to Fig. 2). While w4 is a supported trace, as defined by [16], w1, w2 and w3 are unsup-
ported ones. Language Lm(Sc1/A) contains all possible sequences of events recognized
as accomplished tasks under supervision. Thus, it contains all supported traces.

Fig. 4. Automata Sc1/A, Sc1’/A1 and Sc1r

According to [16] and [11], the constraint response(a1, a2) states that if a1 is ex-
ecuted, a2 needs to be executed afterwards (but not directly after). We may rewrite it
replacing executed by completed. Fig. 5 shows the automaton C2 as a possible model
for representing this constraint employing only strictly necessary events, where ΣC2 =
{c1, c2}. In this automaton the state transition function is defined with the occurrence of
all events in ΣC2 at every state meaning that they are always allowed to occur. While
state 0 is a marked one, state 1 is not, meaning that sequences of events leading to state
1 are not considered as accomplished tasks because there has been at least one occur-
rence of c1 that was not followed by c2. In this case automaton A represents the local
plant since that constraint employs events of every activities. Automaton Sc2/A, where
Lm(Sc2/A) = supC((A‖C2, A), is a possible supervisor’s representation of a super-
visor enforcing this constraint, and automaton Sc2r is a reduced representation of it.
Again, supervisor’s control action is only unmarking sequences of events: the output map
is always empty, i.e. ∀q ∈ QSc2/A → (Φ(q) = ∅). As shown in [16], < a1, a2 >,
< a1, a1, a1, a2 > and < a2 > are supported traces while < a1 > is an unsupported
trace. In these cases it is only considered an abstraction of activities, i.e., only consid-
ered a single event representing the execution and completion of an activity. Also, it is
not considered the overlapping of activities, i.e., activities are only sequentially executed.
Sequences of events that may represent traces with start and complete events, may be
w5 = s1c1s2c2, w6 = s1c1s1c1s1c1s2c2, w7 = s2c2, w8 = s1c1. Considering trace
< a1, a2 > there are many other sequences of events, including overlapping activities.
For instance w9 = s1x1s1x1s1c1s2c2, w10 = s1s2c1c2, w11 = s1c1s2x2s2x2s2c2,
all traces belonging to Lm(Sc2/A). Whilew8 is an unsupported trace (region 4 in Fig. 2),
w5, w6, w7, w9, w10 and w11 are supported traces (region 1 in Fig. 2).

[16] and [11] also present the constraint precedence(a1, a2) as activity a2 needs to
be preceded by activity a1. We may rewrite it as a2 can be completed only after a1
has been completed at least once. Fig. 6 shows the automaton C3 as a possible model
for representing this constraint. Notice that both states are marked, meaning that corre-
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Fig. 5. Automata C2, Sc2/A, and Sc2r

sponding supervisor will not unmark sequence of events. Since ΣC3 = {c1, c2} and
state transition function is not defined with the occurrence of c2 at state 0 than this event
cannot occur at this state, i.e. prior to first occurrence of c1. Automaton Sc3/A, where
Lm(Sc3/A) = supC((A ‖ C3), A), is a possible supervisor’s representation. In this case
supervisor’s control action is only disabling controllable events, and corresponding out-
put map specifies that event s2 is disabled at states 0 and 1 (Φ(0) = Φ(1) = {s2}, (∀q ∈
QSc3/A, q 6= 0, q 6= 1)→ (Φ(q) = ∅)). The aim of this supervisor is to avoid occurrence
of event c2 prior to the first occurrence of c1. Since c2 is considered to be an uncon-
trollable event then the supervisor needs to take an anticipatory action disabling s2 (a
controllable event).

Fig. 7 presents automata Sc3/A′ and Sc3r′ considering c2 as a controllable event.
Notice that automaton Sc3/A′ has two extra states due to occurrence of event s2 from
state 0 and from state 1. Also, supervisor’s control action is disabling occurrence of event
c2 at these extra states (6 and 7) instead of event s2 at states 0 and 1. As shown in [16],
< a1, a2 >, < a1, a2, a2, a2 > and < a1 > are supported traces while < a2 > is an
unsupported trace. Sequences of events that may represent such traces are, respectively,
w12 = s1c1s2c2, w13 = s1c1s2c2s2c2s2c2, w14 = s1c1, w15 = s2c2. While w15 is
an unsupported trace (region 2 in Fig. 2), w12, w13, w14 are supported traces (region 1
in Fig. 2). Considering constraint precedence (a1, a2) and c2 as an uncontrollable event,
sequences in region 3 in Fig. 2 are w16 = s1 and w17 = s1c1s2; a sequence in region 5
is w18 = s2 and a sequence in region 6 is w19 = c1s1.

According to [16], constraint-based process models focus on what should be done by
describing the activities that may be performed and the constraints prohibiting undesired
execution behaviour. In the present paper we restrict our focus on constraints aiming to
ensure that each process instance is performed under an ordering of activities and we
use the same principle as proposed in [11] and [19], where is considered four groups
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Fig. 6. Automata C3, Sc3/A, and Sc3r with c2 as an uncontrollable event

Fig. 7. Automata Sc3/A’, and Sc3r’ with c2 as a controllable event
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of constraints: (1) existence, (2) relation, (3) negation and (4) choice. Existence models
specify how many times or when one activity may be executed. Relation models define
some relation between two (or more) activities. Negation models define a negative relation
between activities. Choice models can be used to specify that one must choose between
activities. Because the space limitation of this paper, we only present some models of
each group. Fig. 8 to Fig. 11 shows some constraint models using automata.

Fig. 8. Automata representing the group existence

5. Application example

Project management usually consists of various management processes, monitoring and
control activities. These processes are performed in different conditions for each new
project, which requires a flexible modeling. One of the most popular benchmarks for
project management is the PMBOK (Project Management Body of Knowledge). PMBOK
in its fourth version establishes a set of 42 macro-processes in nine knowledge areas. The
Collect Requirements process was selected for the implementation of declarative model-
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Fig. 9. Automata representing the group relation
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Fig. 10. Automata representing the group negation

Fig. 11. Automata representing the group choice
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ing techniques and illustration of the approaches presented here. The goal of this process
is to identify the set of requirements of the final product of a project.

The PMBOK provides three stages for each process: Inputs, Tools and Techniques,
and Outputs. The inputs to this process are the documents Project Charter (PC) and
Stakeholder Register (SR). The tools and techniques adopted for implementing this model
are: interviews, focus groups, facilitated workshops, questionnaires and surveys, proto-
types and brainstorm. The outputs suggested by PMBOK are Requirements Documenta-
tion (RD), Requirements Management Plan (RMP) and Requirements Traceability Matrix
(RTM). For this work we selected the output Documentation Requirements. Thus, activi-
ties under control are Review Project Charter and Stakeholders Register (a1), Brainstorm
(a2), Focus Groups (a3), Facilitated Workshops (a4), Questionnaires and Surveys (a5),
Interviews (a6), Prototypes (a7), and Requirements Documentation (a8). We assume each
activity ai (i=1,,8) is modeled as an automaton shown in Fig. 1 (a).

There are five constraints specified for this process: constraint C1 defines that Review
Project Charter and Stakeholders Register (a1) must be the first executed activity in an
instance; constraint C2 defines that at least one of the five activities Brainstorm (a2),
Focus Groups (a3), Facilitated Workshops (a4), Questionnaires and Surveys (a5) and
Interviews (a6) has to be executed, but all can be executed and each of them can be
executed an arbitrary number of times; constraint C3 defines that activities Focus Groups
(a3) and Facilitated Workshops (a4) have a not coexistence relation - only one can occur
in every trace; constraint C4 defines that activity Prototype (a7) needs to be preceded by
activity Interviews (a6); constraint C5 defines that activity Requirements Documentation
(a8) is executed at least once.

6. Executing the supervisory control

Once an executable process model has been deployed to a run-time environment, new
process instances can be created and executed according to this model. Generally, several
instances of the same process model may exist representing different business cases (e.g.,
projects of different products). Our proposal is that the supervisory control coordinates
the concurrent execution of these process instances.

When the preconditions for executing a particular activity are met during run-time,
a new instance of this activity is created. Hence, an activity instance represents a single
invocation of an activity during the execution of a particular process instance. Particularly,
when a human activity becomes enabled during the execution of a process instance, the
Process-Aware Information System (PAIS) first determines all resources qualifying for
this activity instance. For each potential resource, a work item referring to the activity
instance is created and added to his worklist. Work items related to a particular activity
instance may be added to different user worklists. Generally, a worklist comprises all
work items currently offered to, or processed by, a user [16].

Generally, resources (process participants or users) interact with a PAIS via worklists.
When a resource allocates a work item from his worklist, all work items related to the
same activity instance are removed from the worklists of other resources. Further, the re-
source to whom the work item is allocated may then trigger the start of the application
service associated with the corresponding activity instance. The supervisory control must
ensure that activities are executed considering the specified constraints during run-time
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[16]. Fig. 12 shows three process instances PI1, PI2 and PI3 running on the process
presented in Section 5. The depicted worklists of resources John, Paul and George com-
prises work items related to these three process instances.

– Process instance PI1: Activities a1, a2, a3 and a6 have already been completed but
they are still enabled. This is because they may be executed any number of times.
Notice that these activities have been added to the worklists of John and Paul. Activity
a4 is disabled by the supervisory control and the activities a5,a7 and a8 are enabled
and they have not been executed yet. These activities have been added to the worklists
of John and George.

– Process instance PI2: Activities a1, a2 and a4 have already been completed but they
are still enabled. This is because they may be executed any number of times. Notice
that these activities have been added to the worklists of John and Paul. Activities a3
and a7 are disabled by the supervisory control and the activities a5,a6 and a8 are
enabled and they have not been executed yet. These activities have been added to the
worklists of Paul and George.

– Process instance I3: Only activity a1 is enabled (and it has not been executed yet).
Activities a2 to a8 are disabled by the supervisory control. Notice that in this state
the process has not been initiated. Activity a1 has been added to the worklist of John.

Fig. 12. Project management process, process instances and users worlists

According to our approach, during the execution of activities the supervisory control
has to disable activities in order to not violate the constraints. In terms of run-time envi-
ronment, the supervisory control cannot add an activity in any worklist if such activity is
disabled by the supervisor. As long as an event (si, ci or xi) occurs, the state of the su-
pervisor is updated and a new control action (a list of disabling activities) is established.
Notice that in our approach the activities may be executed without overlapping (sequen-
tially executed only) and with overlapping (executed in parallel). Fig. 13 illustrates the
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execution of the process shown in Section 5 considering overlapping activities for a spe-
cific process instance.

After creating a new process instance, only activity a1 is enabled, as the supervisor
disables the others to not violate the constraintC1. With the completion of activity a1, the
supervisor disables only the activity a7 (to not violate the constraint C4). This is followed
by event s2 resulting in activity instance state a2 running. Next activity a3 is started
resulting in activity instance state a2 and a3 running. Then activity a2 is completed. The
set of disabled activities remains unaffected until the activity a3 has been completed. At
this point the supervisor disables the activity a4, in order to not violate the constraint C3
(notice that the supervisor continues disabling the activity a7). After a while the activity
a6 is started, followed by the beginning of activity a8, resulting in activity instance state
a6 and a8 running. When the activity a6 is completed, the activity a7 becomes enabled.
However, the process instance is finished when the activity a8 is completed.

Fig. 13. Executing the project management process under supervision

7. Conclusion

We propose a new approach to deal with constraint-based processes. The proposed ap-
proach is based on Supervisory Control Theory, a formal foundation for building super-
visors for DES. The supervisors proposed in this paper monitor and restrict execution
sequences of activities such that constraints are always obeyed. We demonstrate that our
proposal can be used as a declarative language for constraint-based processes. The pro-
posed approach works informing users which activities are not allowed after an observed
trace of events at run-time. Users can adopt this service as a guide to execute tasks with a
guarantee that constraints are followed and goals are met. SCT allows a formal synthesis
of supervisors that the constraints are not violated in a minimally restrictive way and en-
sures that this behavior is non-blocking (i.e., there is always an event sequence available
to complete a task).
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