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Abstract. For good performance of every computer program, good cache utiliza-
tion is crucial. In numerical linear algebra libraries, good cache utilization is achieved
by explicit loop restructuring (mainly loop blocking), but it requires a complicated
memory pattern behavior analysis. In this paper, we describe a new source code
transformation called dynamic loop reversal that can increase temporal and spatial
locality. We also describe a formal method for predicting cache behavior and eval-
uate results of the model accuracy by the measurements on a cache monitor. The
comparisons of the numbers of measured cache misses and the numbers of cache
misses estimated by the model indicate that the model is relatively accurate and can
be used in practice.

Keywords: Source code optimization, loop transformations, model of cache behav-
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1. Introduction

1.1. General

Due to the increasing difference between memory and processor speed, it becomes critical
to minimize communications between main memory and processor. It is done by addition
of cache memories on the data path. The memory subsystem of nowadays processors is
organized as a hierarchy in which the latency of memory accesses increases rapidly from
one level of hierarchy to the next. Numerical codes (e.g. libraries such as BLAS [9] or
LAPACK [2]) are now some of the most demanding programs in terms of execution time
and memory usage. These numerical codes consist mainly of loops. Programmers and op-
timizing compilers often restructure a code to improve its cache utilization. Many source
code transformation techniques have been developed and used in the state-of-the-art op-
timizing compilers. In this paper, we consider the following standard techniques: loop

This is a revised and extended version of the paper that appeared in proceedings of WAPL’13
[13]. We included a more in-depth analysis of the effects of the dynamic loop reversal, presented
two possible implementation variants and reduced some limitations of the cache model. The
original paper was strictly focused on the codes from numerical linear algebra, in this paper we
discuss also the codes from graph theory etc.
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unrolling, loop blocking, loop fusion, and loop reversal [15, 30, 32, 8]. Models for pre-
dicting the number of cache misses have also been developed to have detailed knowledge
about the impacts of these transformation techniques on the cache utilization. The existing
literature aimed at the maximal cache utilization within numerical codes focused mainly
on regular memory accesses, but there is also an important subset of numerical codes
where memory accesses are irregular (e.g. for computations with sparse matrices). As far
as we know, there is no transformation technique that can improve the cache behavior for
regular and irregular codes.

The main result of this paper is a description of a new transformation technique, called
dynamic loop reversal, shortly DLR. This transformation technique can lead to better
cache utilization (even for codes with irregular memory accesses) due to the improved
temporal and spatial locality with no need to analyze the memory pattern behavior.

In Section 2, we introduce the basic terminology (the used model of the cache archi-
tecture and the basic sparse matrix storage format). In Section 3, we briefly discuss the
motivation that lead us to the design of DLR transformation. In order to incorporate the
DLR into compilers, we propose models for predicting the number of cache misses for
DLR in Section 4. In Section 5, we describe experiment’s settings and configurations used
for measurement the effects of DLR. In Section 6, we measure and evaluate the effects of
DLR (e.g. performance, cache miss rate) on example codes. In Section 7, we discuss an
idea of an automatic compiler support of DLR to optimize nested loops.

1.2. Related works

There are many existing source code transformation techniques (for details see [15, 30,
32]). Models for enumeration of the number of cache misses have also been developed
see ([27, 1, 33]) for predicting the impacts of these transformation techniques on the cache
utilization. But only few of existing papers also aim at codes with irregular memory ac-
cesses (e.g. computations with sparse matrices). In [8], optimizations for multicore stencil
(nearest-neighbor) computations are explored. This class of algorithms is used in many
PDE solvers. Authors develop a number of effective optimization strategies and propose
an auto-tuning environment.

The other approach for optimization of multicore stencil computations is proposed in
[21]: programmer should specify a stencil in a domain-specific stencil language [17] —
Pochoir language. The resulting optimizations are derived from this specification.

There are also many algorithms and storage formats designed for the acceleration of
the sparse matrix-vector multiplication (e.g. [29, 11, 25, 12]).

But all mentioned papers are focused only on the specific operation, the proposed
DLR transformation is more general and can be applied to non-specific codes.

2. Terminology

In the paper, we assume that all elements of vectors and matrices are of the type double
and that all matrices are stored in a row-major format.
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Fig. 1. Description of the cache parameters.

2.1. The cache architecture model

We consider a most used model of the set-associative cache data cache (for details see
[14]). The number of sets is denoted as h (see Figure 1). One set consists of s independent
blocks. The size of the data cache in bytes is denoted as DCS. The cache block size
in bytes is denoted as BS. Then DCS = s · BS · h. The size of the type double is
denoted as SD. We consider only write-back caches with an least recently used (LRU)
block replacement strategy.

We consider two types of cache misses:

– Compulsory misses (sometimes called intrinsic or cold) that occur when new data is
loaded into empty cache blocks.

– Thrashing misses (also called cross-interference, conflict, or capacity misses) that
occur because the useful data was replaced prematurely from the cache block.

In modern architectures, there are three level of caches, but we can consider each level
independently. Some caches are unified (for data and instructions), but we assume them
as data caches because the size of (most frequent) code is negligible.

2.2. Compressed sparse row (CSR) format

A matrixA of order n is considered to be sparse if it contains much less nonzero elements
than n2 otherwise it is considered as dense. Some alternative definitions of sparse matrix
can be found in [22]. The most common format (see [10, 11, 23, 25]) for storing sparse
matrices is the compressed sparse row (CSR) format. The number of nonzero elements is
denoted as NZA. A matrixA stored in the CSR format is represented by three linear arrays
ElemA,AddrA, and CiA (see Figure 2 b). Array ElemA[1, . . . ,NZA] stores the nonzero
elements ofA. Array AddrA[1, . . . , n+1] contains indexes of initial nonzero elements of
rows of A. Hence, the first nonzero element of row j is stored at index AddrA[j] in array
ElemA, obviously AddrA[1] = 1 and AddrA[n + 1] = NZA. Array CiA[1, . . . ,NZA]
contains column indexes of nonzero elements of A. The density of a matrix A (denoted
as density(A)) is the ratio between NZA and n2.

3. Code restructuring

In this section, we propose a new optimization technique called dynamic loop reversal (or
alternatively outer-loop-controlled loop reversal).
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Fig. 2. a) Example of a sparse matrix, b) Representation of this matrix in the CSR format.

3.1. Standard static loop reversal

In standard loop reversal, the direction of the passage through the interval of a loop iter-
ation variable is reversed. This rearrangement changes the sequence of memory require-
ments and reverses data dependencies. Therefore, it allows further loop optimizations (e.g.
loop unrolling or loop blocking) in general.

Example code 1
1: for i← n, 2 do
2: B[i]← B[i] +B[i− 1];

3: for i← 2, n do
4: A[i]← A[i] +B[i];

Example code 1 represents a typical combination of data-dependent loops whose data
dependency can be recognized automatically by common compiler optimization tech-
niques. However, both loops are reversible (it means that it is possible to alternate the
sense of the passage). The reversal of the second loop and loop fusion can be applied
and the reuse distances (for the definition of the reuse distance see Section 4.1) for the
memory transactions on array B are decreased.

Example code 2 Loop reversal and loop fusion applied to Example code 1
1: for i← n, 2 do
2: B[i]← B[i] +B[i− 1];
3: A[i]← A[i] +B[i];

In Example code 3, data-dependency analysis reveals that the two loops are also re-
versible.
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Example code 3
1: for i← 1, n do . Loop 1
2: s← s+A[i] ∗A[i];
3: norm←

√
s;

4: for i← 1, n do . Loop 2
5: A[i]← A[i]/norm;

However, the application of the loop reversal to the second loop decreases the reuse
distances.

Example code 4 Loop reversal applied to Example code 3
1: for i← 1, n do . Loop 1
2: s← s+A[i] ∗A[i];
3: norm←

√
s;

4: for i← n, 1 do . Loop 2
5: A[i]← A[i]/norm;

The problem is that in this case (and in other similar cases), the compiler heuristics
for the decision which loop to reverse to minimize reuse distances is complicated. This
idea was used in [23] for the acceleration of Conjugate Gradient method.
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Fig. 3. Reuse distances in Example code 3.
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3.2. Effect of the static loop reversal on cache behavior

If the size of array A is less than the cache size (nSD ≤ DCS), then Example code 3 and
4 are equivalent as to the cache utilization. However, if the size of array A exceeds the
cache size, then no elements of A are reused in Example code 3, whereas the last k = BS

SD

elements of A are reused within the second reversed loop. Thus, loop reversal improves
the temporal locality (see Figures 3 and 4 for the comparison of reuse distances).
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Fig. 4. Reuse distances in Example code 4 (Example code 3 after loop reversal).

3.3. Dynamic loop reversal

The static loop reversal is used to reverse data-dependency in one dimension. This moti-
vated us to generalize this idea, and therefore we designed another optimization for nested
reversible loops based on loop reversal. Consider the following code (Example code 5):

Example code 5
1: for i← 1, n do
2: s← 0;
3: for j ← 1, n do
4: s← s+A[i][j] ∗ x[j];

The direction of the inner loop can be alternated forward and backward in even and
odd iterations of the closest outer loop. In this way, we can use the positive effect of the
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loop reversal in every iteration of the outer loop. This is why we call it a dynamic loop
reversal, or DLR for short. Example code 5 is a candidate for such a transformation.

Example code 6 DLR applied to Example code 5
1: for i← 1, n do
2: s← 0;
3: if i is odd then
4: for j ← 1, n do
5: s← s+A[i][j] ∗ x[j];
6: else
7: for j ← n, 1 do
8: s← s+A[i][j] ∗ x[j];

This transformation will be denoted as DLR(i→ j). For large arrays, this transforma-
tion (the result is Example code 6) leads to even better temporal locality than the original
Example code 5, because it reduces the reuse distances, and some data resides in the
cache from the previous iteration. On the other hand, the saving of the number of cache
misses in one iteration of the outer loop is bounded by DCS/BS. Therefore, DLR has a
significant effect if the cache size is comparable to the sum of the affected array sizes in
one iteration of the outer loop. The necessary condition for applying DLR is that the inner
loop must be reversible.

Possible implementations of DLR The straightforward implementation, described above
by the code “DLR applied to Example code 5”(Example code 6), leads to an overhead due
to one additional conditional jump that is hard to predict due to its pattern. We call it “im-
plementation variant A”.

We propose the other possible implementation as follows.

Example code 7 DLR applied to Example code 5
1: for i← 1, n step 2 do
2: s← 0;
3: for j ← 1, n do
4: s← s+A[i][j] ∗ x[j];
5: for j ← n, 1 do
6: s← s+A[i+ 1][j] ∗ x[j];
7: if n is odd then
8: for j ← 1, n do
9: s← s+A[n][j] ∗ x[j];

The second implementation (Example code 7) leads to a faster code, since the condi-
tional jump inside the i-loop is eliminated, but in fact, it is based on the loop unrolling.
We call it “implementation variant B”.
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Possible interference of DLR with heuristics in optimizing compilers On the other
hand, DLR may have a disadvantage due to the fact that it can confuse optimizing com-
pilers and hinder further loop optimizations. For example, in Example code 5, there are
two nested loops and after the application of DLR (implementation variant A), the code
contains also a conditional branch that is non-trivial for the compiler heuristics (see [33]).

The application of DLR on triple-nested loops In the previous text, DLR was applied
to double-nested loops, but it can also be applied to triple-nested loops. Consider the
following code skeleton (Example code 8):

Example code 8
1: for i← 1, n do
2: for j ← 1, n do
3: for k ← 1, n do
4: (* loop body *)

In Example code 8, there are three options how the DLR can be applied:

– on the i-loop: DLR(i→ j),
– on the j-loop: DLR(j → k),
– both transformations: DLR(i→ j) and DLR(j → k).

The last option lies in the composition of two transformations DLR(i→ j) and DLR(j →
k). This composition we will denoted as DLR(i→ j → k). In this case, the effect of DLR
is twofold: DLR(i → j) (on the outer pair of the loops) can improve a temporal locality
inside the L2 cache and DLR(j → k) (on the inner pair of the loops) can improve a
temporal locality inside the L1 cache.

3.4. Comparison and possible combinations of DLR and other loop restructuring
techniques

Loop unrolling Loop unrolling has two main effects. Firstly, it makes the sequential
code longer, so it may improve the data throughput, because the instructions could be bet-
ter scheduled and the internal pipeline could be better utilized. Secondly, the number of
test condition evaluations drops according to the unrolling factor. In general, the loop un-
rolling concentrates on maximizing the machine throughput, not on improving the cache
behavior.

If the straightforward implementation of DLR (variant A, see Section 3.3) is used, the
loop unrolling and DLR can be fully combined. If the second implementation (variant B,
see Section 3.3) is used, the loop unrolling is an essential part of a DLR implementation.
Hence it is a natural combination of both techniques, but the loop unrolling factor must
be even.
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Loop tiling (blocking) Loop tiling (sometimes called loop blocking or iteration space
tiling) is one of the advanced loop restructuring techniques (for details see [7, 31, 5, 6, 20,
28]). The compiler can use it to increase the cache hit rate. The following code (Example
code 9) is an example of an application of the loop tiling technique.

Example code 9
1: for i1 ← 1, n step Bf do
2: for j1 ← 1, n step Bf do
3: for k1 ← 1, n step Bf do
4: for i← i1,min(i1 +Bf − 1, n) do
5: for j ← j1,min(j1 +Bf − 1, n) do
6: for k ← k1,min(k1 +Bf − 1, n) do
7: C[i][j]← C[i][j] +A[i][k] ∗B[k][j];

One possible motivation for using this technique is the fact that the loop range (i.e.,
the size of the array traversed repeatedly within the loop) is too big and exceeds the data
cache size DCS. Thus, the loop should be split into two loops: the outer loop (out-cache
loop) and the inner loop (in-cache loop). The value Bf is called a tiling or block factor,
whose its optimal value depends on the cache size.

The loop tiling and DLR can be easily combined. DLR can be applied on every pair
of immediately nested loop, but it is useless to apply it for in-cache loops (i-loop, j-
loop, and k-loop). We consider loop tiling a competitor to DLR and thus we performed
experiments with both. These quantitative measurements of the effects of these techniques
are presented in Section 6.4.

4. Analytical model of the cache behavior for DLR

To estimate parameters for loop restructuring techniques, modern compilers use the poly-
tope model [32, 33]. We will present three cache behavior models based on reuse distances
(shortly RD) that can be derived from the polytope model.

4.1. Cache miss model with reuse distances

This model is inspired by the model introduced in [4, 3, 24]. We will call it basic RD
model.

Definition 1. Consider an execution of an algorithm on the computer with load/store
architecture and assume that the addresses of memory transactions form a sequence
P [1, . . . , n] = [addr1, . . . , addrn]. Then P is called a sequence of memory access ad-
dresses and P [i] = addri is the i-th transaction with memory address addri. The reuse
distance RD(t), where t ∈ (1, n], is the number of different memory addresses accessed
between two uses of the address P [t]. Formally, if P [t] = addrt and ε(t) > 0 is the mini-
mal integer number such that P [t−ε(t)] = addrt, thenRD(t) = |{P [t−ε(t)], . . . , P [t−
1]}|. If such an ε(t) does not exist, then RD(t) =∞.
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Obviously, in the above definition,RD(t) ≤ ε(t) orRD(t) =∞. The notion of reuse
distances can be used for developing a simple cache miss model based on estimating the
numbers of thrashing misses in fully-associative (h = 1) caches. If RD(t) > DCS/SD,
then the content of the cache block from the memory address P (t) is replaced by a new
value and a cache miss occurs. If RD(t) = ∞, then a compulsory miss occurs, other-
wise a thrashing miss occurs. Remember that we assume only caches with LRU block
replacement strategy.

In this basic RD model, the spatial locality of the cache memory is not considered, i.e.,
it is assumed that a cache block contains exactly one array element (BS = SD). However,
BS = c · SD, where c is typically 4 or 8 in modern processors, and therefore, spatial
locality must be taken into account in order to create a more realistic model.

4.2. The cache miss model with generalized reuse distances

To address this drawback of the basic RD model, we define a more general form of reuse
distances. We call this model generalized RD model.

Definition 2. Consider a sequence of memory access addresses P [1, . . . , n]. Address
addri from P is mapped onto a cache block marked by tag tagi computed by the cor-
responding cache memory mapping function. Then P ′[1, . . . , n] = [tag1, . . . , tagn] is
called a sequence of cache memory tags. Then the generalized reuse distanceGRD(t),
where t ∈ (1, n], is defined as the number of different cache blocks accessed between two
uses of the tag P ′[t]. Formally, if P ′[t] = tagt and ε(t) > 0 is the minimal integer number
such that P ′[t − ε(t)] = tagt, then GRD(t) = |P ′[t− ε(t)], . . . , P ′[t− 1]|. If such an
ε(t) does not exist, then GRD(t) =∞.

The generalized reuse distances can be useful for estimating the numbers of cache
misses. If GRD(t) > DCS/BS, then the content of cache block P ′(t) is replaced by a
new value, and a cache miss occurs (if GRD(t) = ∞, then a compulsory miss occurs;
otherwise, a thrashing miss occurs).

Both cache miss models based on the reuse distances (RD and GRD) has several
drawbacks:

– Reuse distances for a given memory address or cache memory tag vary in time.
Intervals of reuses are not the same during the execution (RD(t1) 6= RD(t2) for
P [t1] = P [t2]).

– The mapping function of the cache memory is not considered. Essentially, the cache
is assumed fully-associative (h = 1).

4.3. Simplified cache miss model for DLR

Even the basic RD model is too complicated for modeling the cache behavior of DLR
in real applications. Hence, we introduce the other model that is even more simplified.
The model will be called simplified RD model. We use this model for the enumeration
of cache misses saved by DLR. To derive an analytical model of a DLR effect on the
cache behavior, consider the following code skeleton (Example code 10) representing
most frequent memory access patterns during a matrix computation (k, l are the small
constant, k, l ∈ N , k > 0):
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Example code 10
1: statement1;
2: for i← i1, i2 do
3: statement2;
4: for j ← j1, j2 do
5: statement3;
6: · · · ← B[k ∗ j + l]; . Memory operation of type α
7: · · · ← B[k ∗ i+ l]; . Memory operation of type β
8: · · · ← A[i][k ∗ j + l]; . Memory operation of type γ
9: · · · ← A[j][k ∗ i+ l]; . Memory operation of type δ

10: statement4;
11: statement5;

We consider the following simplifying conditions:

A1 We assume that all matrices are stored in the row-major order.
A2 We assume that statements1−5 contain only local computation with register operands.

That is, we assume that statements1−5 have zero cache effects and the only memory
accesses are memory operations of type α− δ.

A3 We assume that the generalized reuse distances depend on the exact ordering of mem-
ory operations (inside the j-loop) only slightly and so does the number of cache
misses.

A4 We do not distinguish between load and store operations.
A5 We assume that the cache memory is big enough to hold all the data for one iteration

of the (inner) j-loop.
A6 We assume that the cache memory is not able to hold all the data for one iteration of

the outer i-loop. Otherwise, DLR has no effect in comparison to standard execution.
A7 This model is derived only for immediately nested loops.
A7 The size of the constant l does not have any impact on the generalized reuse distances.

Let us now analyse the effect of DLR(i→ j) on individual memory operations.

– A memory operation of type α is affected by DLR, because its operand (or its part)
can be reused. The effect of DLR can be estimated by an RD or GRD analysis.

– A memory operation of type β is not affected by DLR, because it returns the same
value (in the j-loop). It is usually eliminated by an optimizing compiler.

– A memory operation of type γ is not affected by DLR, because its operand cannot be
reused due to the row-major matrix format assumption.

– A memory operation of type δ is affected by DLR due to its spatial locality. But it
cannot be estimated by an RD analysis defined in Section 4.1. Instead, a GRD analysis
must be applied, as defined in Section 4.2.

Evaluation of simplified RD model The number of cache misses during one execution
of Example code 5 is denoted as X . The number of cache misses during one execution
of Example code 5 with DLR(i → j) is denoted as Y . The reduction of the number of
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cache misses during one execution of Example code 5 due to the DLR(i→ j) is denoted
as µsaved) and it is equal to X − Y . The value of µsaved has an upper bound

µsaved ≤ (i2 − i1) ·DCS/BS.

This general upper bound can be reached only for loops where all memory operations
are affected by DLR. In practical cases, the reduction of the number of cache misses is
smaller. To estimate the reduction of the number of cache misses during an execution of
Example code 5 with DLR, we need to count the number of iterations of the j-loop that
can reside in the cache. We will denote this number as Niter

Niter =
DCS

BS

∑
m SCMO(m)

, (1)

where

– m is a memory operation (of type α− δ) in the j-loop,
– SCMO(m) is the probability that a memory operation m loads data into a new cache

block.

SCMO(m) =


1 if m is a memory operation of the types β or δ

which are accessed in a column-like pattern.
min(1, kSD/BS) if m is a memory operation of the types α or γ

which are accessed in a row-like pattern.
(2)

If Niter < 1, then the assumption (A5) is not satisfied and µsaved = 0.
If Niter ≥ (j2 − j1), then the assumption (A6) is not satisfied and µsaved = 0.

We can also estimate the probability (denoted as PDLR(m)) that the memory loca-
tion accessed by a memory operation m is reused using DLR.

PDLR(m) =



0 if m is a memory operation of the types β or γ
(i.e., it is not affected by DLR;)

max(0, 1− kSD/BS) if m is a memory operation of type δ
(i.e., it is affected by DLR, for a column-like access,
the last elements k in cache-line are not counted;)

1 if m is a memory operation of type α
(i.e., it is affected by DLR,for a row-like access.)

(3)
Finally, the number of cache misses saved by DLR applied to the i-loop can be ap-

proximated by

µsaved = (i2 − i1) ·Niter

∑
m

(
PDLR(m) · SCMO(m)

)
, (4)

where m is a memory operation in the j-loop.
Comparisons of the numbers of estimated and measured cache misses are presented

in Section 6.3.
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5. Experimental evaluation of the DLR

5.1. Example codes

For measuring the effect of DLR (performance, cache miss rate, etc.), we implement the
following six simple codes in C/C++ (the implementations are inspired by [18]):

– matrix-matrix multiplication (MMM for short),
– Cholesky factorization (CHF for short),
– multiplication of two sparse matrices (spMMM for short),
– Knapsack problem (KP for short),
– Floyd-Warshall algorithm (FW for short),
– Maximum flow algorithm (MF for short).

We have deeply studied characteristics of these codes in the following sections:

– For performance results, see Section 6.1.
– For cache utilization results, see Section 6.2.
– We also evaluate precision of our analytical model for MMM STD code, see Section

6.3.
– We also combine effects of DLR and loop tiling for MMM STD code, see Section 6.4.
– For cache utilization results of spMMM CSR code, see Section 6.5.

Matrix-matrix multiplication We consider input real matrices A and B of the order
n. A standard sequential pseudocode for matrix-matrix multiplication C = A · B is the
following:

1: procedure MMM STD(in A,B;out C)
2: for i← 1, n do
3: for j ← 1, n do
4: sum← 0;
5: for k ← 1, n do
6: sum← sum+A[i][k] ∗B[k][j];
7: C[i][j]← sum;
8: return C;

Cholesky factorization Let A be a symmetric dense matrix of the order n. The task of
the Cholesky factorization is to compute a lower triangular matrix L of the order n such
that A = LLT . A standard algorithm for the Cholesky factorization is described by the
following pseudocode.
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1: procedure CHF STD(in A;out L) . The input matrix A is overwritten by the values
of a matrix L

2: for j ← 1, n do
3: sum← 0;
4: for l← 1, j − 1 do
5: sum← sum+ (A[j][l])2;
6: A[j][j]←

√
A[j][j]− sum;

7: for i← j + 1, n do
8: sum← 0;
9: for k ← 1, j − 1 do

10: sum← sum+A[i][k] ∗A[j][k];
11: A[i][j]← A[i][j]−sum

A[j][j] ;

12: L← A;
13: return L;

Multiplication of two sparse matrices We consider input real square sparse matrices A
and B of the order n represented in the CSR format (see Section 2.2), output matrix C
is a dense matrix of the order n. A standard sequential pseudocode for the sparse matrix-
matrix multiplication C = A ·B can be described by the following pseudocode:

1: procedure SPMMM CSR(in A,B;out C)
2: for y ← 1, n do
3: for i← A.Addr [y], A.Addr [y + 1]− 1 do
4: x← A.Ci[i];
5: for j ← B.Addr [x], B.Addr [x+ 1]− 1 do
6: x2← B.Ci[j];
7: C[y][x2]← C[y][x2] +A.Elem[i] ∗B.Elem[j];
8: return C;

Knapsack problem Let there be n items (i1 to in), where ik has a value vk and weightwk.
The maximum weight that can be carried in the bag is W . A standard sequential pseu-
docode for Knapsack problem using the dynamic programming follows:

1: procedure KP STD(in n,v,w,W ; out res)
2: for i← 1,W do
3: told[i]← 0;
4: for i← 1, n do
5: for j ← 1,W do
6: if j ≥ w[i] then
7: tnew[j]← max(told[j], told[j − w[i]] + v[i]);
8: else
9: tnew[j]← told[j];

10: exchange tnew and told;
11: res← told[W ];
12: return res;
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Floyd-Warshall algorithm We consider input graph G = (V,E). A standard sequential
pseudocode for the Floyd-Warshall algorithm follows:

1: procedure FW STD(in V ,E; out dist)
2: for i← 1, |V | do
3: for j ← 1, |V | do
4: dist[i][j]←∞;
5: for i← 1, |V | do
6: dist[i][i]← 0;
7: for i← 1, |V | do
8: (u, v)← Vi;
9: dist[u][v]← w(u, v); . the weight of the edge (u, v)

10: for k ← 1, |V | do
11: for i← 1, |V | do
12: for j ← 1, |V | do
13: dist[i][j]← min(dist[i][j], dist[i][k] + dist[k][j]);
14: return dist;

Maximum flow algorithm We consider an input network G = ((V,E), c, s, t). A stan-
dard sequential pseudocode for the Dinic’s blocking flow algorithm can be described by
the following pseudocode:

1: procedure MF STD(in G;out f )
2: loop
3: Construct GL from the residual graph Gf of G.
4: if @ path from s to t in GL then
5: break;
6: Find a blocking flow f ′ in GL

7: Augment flow f by f ′

8: return f ;

5.2. Hardware and software configuration of the experimental system

All cache events were evaluated by our software cache emulator [26] and verified by
the Intel Vtune or Cachegrind (a part of Valgrind [19]) tool. All DLR transformations
are done manually or using a simple wrapper on the source code level. In all codes, we
used the DLR implementation variant A (see Section 3.3). Implementation variant A is a
“pure”application of DLR, implementation variant B is a composition of DLR and loop
unrolling. So, for measurement of DLR effects only, implementation variant A is more
suitable.

The measurements of MMM STD and CHF STD are straightforward. But for the other
codes, the results depends not only on the problem size but on the exact structure of input
data (e.g. graph for MF STD code). So, it’s not possible to show results for all combina-
tions of input data.

– spMMM CSR code: For the testing purposes, we always generate five sparse matri-
ces with random locations of nonzero elements of given properties (the order of a
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matrix, the number of nonzero elements or density). The average value of these five
measurements were taken as a result.

– KP STD code: For the testing purposes, we always generate five inputs with same
value of n with random values of v and w. The average value of these five measure-
ments were taken as a result.

– FW STD code: For the testing purposes, we always generate five random graphs with
same value of |V |. The average value of these five measurements were taken as a re-
sult.

– MF STD code: For the testing purposes, we always generate five random graphs with
same values of |V | and |E|. The average value of these five measurements were taken
as a result.

Testing configuration 1

Some experiments were performed on the Pentium 4 Celeron at 2.4GHz, 512 MB,
running OS Windows XP Professional, with the following cache parameters:
• L1 data cache with DCS = 8K, BS = 32, s = 4, h = 64, and LRU strategy.
• L2 unified cache with DCS = 128K, BS = 32, s = 4, h = 1024, and LRU

strategy.
We used the Intel compiler version 7.1 with switches:
-O3 -fno_alias -pc64 -tpp6 -xK -ipo -align -Zp16

Testing configuration 2

Some experiments were measured at Pentium Celeron M420 (Yonah) at 1.6 GHz,
1GB at 266 MHz, running OS Windows XP Professional with the following cache
parameters:

• L1 data cache with BS = 64, CS = 32K, s = 8, h = 64, and LRU strategy.
• L2 unified cache with BS = 64, CS = 1MB, s = 8, h = 2048, and LRU

strategy.
We used the Intel compiler version 9.0 with switches:
-O3 -Og -Oa -Oy -Ot -Qpc64 -QxB -Qipo -Qsfalign16 -Zp16

Testing configuration 3

Some experiments were measured at dual-core (only one thread=core was used) Intel
i3-370M at 2.4 GHz, 4GB DDR3 at 532 MHz, running OS Windows 7 Home with
the 32KB L1, 256KB L2, 3MB L3 cache. We used the GCC compiler version 4.5.3
with switches: -O3.

Testing configuration 4

Some experiments were measured at quad-core (only one thread=core was used) Intel
i7-950 at 3.07 GHz, 24GB DDR3 at 1600 MHz, running OS Linux Ubuntu 12.04 with
the 4*32KB L1, 4*256KB L2, 8MB L3 cache. We used the GCC compiler version
4.7.3 with switches: -O3.
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Testing configuration 5

Some experiments were measured at a hypothetical processor with only L1 data cache
with CS = 1MB. We tested this processor with the following values of the cache
parameters:
5a) BS = 32, s = 1, h = 32K,
5b) BS = 32, s = 4, h = 8K,
5c) BS = 1024, s = 4, h = 256.

6. Results of an experimental evaluation

6.1. Performance evaluation of example codes

We count every floating point operation (multiplication, addition and so on). The perfor-
mance in MFLOPS is then defined as follows:

MFLOPS(MMM STD) =
2n3

execution time [µs]

MFLOPS(CHF STD) =
n3/3

execution time [µs]

MFLOPS(spMMM CSR) =
NZA ·NZB

n · execution time [µs]
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Fig. 7. Performance of CHF STD for Testing configuration 1.

The graphs in Figures 5, 6, 7, and 8 illustrate the performance with or without DLR.
These graphs illustrate that DLR increases the code performance due to better cache uti-
lization. There is a performance gap (e.g. for n = 210 for the CHF STD for Testing
configuration 1), which can be overcome by DLR.
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The graphs in Figures 9, and 10 illustrate the impact of cache utilization on the per-
formance of CHF STD (the numbers of cache misses are measures by the software cache
emulator [26]). We can conclude that the cache behavior has a great impact on the ex-
ecution time, so the majority of spikes in the performace graph have the corresponding
spikes in the cache utilization graph. Some spikes can not be interpreted in this way, they
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Fig. 11. Speedup of MMM STD for Testing configuration 1.

arise due to the other reasons (translation lookaside buffer misses, unsuccessful compiler
optimizations, etc.).

The graphs in Figures 11, 12, 13, 14, 15, and 16 show the speedup over the version
without the DLR. We can conclude that the fastest code is the version with DLR(i→ j → k)
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Fig. 13. Speedup of MMM STD for Testing configuration 4.

for the MMM STD code and with DLR(j → i → k) for the CHF STD code (for Testing
configuraton 1 and 2), and with DLR(j → i) for the CHF STD code (for Testing con-
figuraton 4) . We can also conclude that the measured speedup is more than 20% in the
measured set for the MMM STD code and more than 10% for the CHF STD code.
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Fig. 15. Speedup of CHF STD for Testing configuration 2.

The graphs in Figures 17 and 18 show the speedups over the version without DLR.
We can conclude that DLR can accelerate KP STD, FW STD, and MF STD codes.

For small input instances, a small slowdown was measured. While DLR can improve
the cache hit rate, it has more overhead due to more conditional loops. This effect becomes
even more important for DLR on the triple loops.
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6.2. Cache miss rate evaluation

The cache utilization is enumerated according to the following definitions.

Relative number of cache misses =
the number of cache misses with DLR

the number of cache misses without DLR
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The graphs on Figures 19, 20, 21, and 22 illustrate the number of cache misses occur-
ring during one execution of the MMM STD or CHF STD pseudocodes. We can conclude
that

– a DLR effect depends on the value of the parameter n and on the cache memory size
(this observation proves the results of the analytical model from Section 4.3)

– except for few cases, where the DLR transformation has a positive impact on cache
utilization.

6.3. Evaluation of a simplified RD model based on GRD

Analytical cache model for MMM STD To analyse this algorithm, we omit the accesses
in an array C at a code line (6), because they are much less frequent. In this simplified
model, the algorithm contains the following types of memory accesses:

– If DLR(i→ j) is applied, then memory operations with A[i][k] are of the type β and
memory operations with B[k][j] are of the type α.

– If DLR(j → k) is applied, then memory operations with A[i][k] are of the type α and
memory operations with B[k][j] are of the type δ.

Analytical cache model for CHF STD For analysing this algorithm, we omit the memory
accesses outside the k-loop at a code line (8), because their contributions are negligible.
Then, the algorithm contains the following types of memory accesses:
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Fig. 20. Relative number of cache misses during MMM STD for the L2 cache for Testing configura-
tion 1.

– If DLR(j → i) is applied, then memory operations with A[i][k] are of the type α and
memory operations with A[j][k] are of the type β.
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Fig. 22. Relative number of cache misses during CHF STD for the L2 cache for Testing configura-
tion 1.

– If DLR(k → i) is applied, then memory operations with A[i][k] are of the type γ and
memory operations with A[j][k] are of the type α.
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Analytical cache model for spMMM CSR,KP STD, and MF STD The analysis of the
cache behavior and DLR effects for these algorithms are beyond the scope of the compiler
due to its irregular memory pattern.

Example of the evaluation of the cache analytical model We apply DLR(j → k) on the
MMM STD pseudocode. In this case as we stated above, memory operations with A[i][k]
are of the type α and memory operations with B[k][j] are of the type δ.

Firstly, we must count how many iterations of the j-loop can reside in the cache. From
the types of memory operations (Eq. (2) on Page 1392), we can derive that

SCMO(A[i][k]) = SD/BS, PDLR(A[i][k]) = 1.

SCMO(B[k][j]) = 1, PDLR(B[k][j]) = 1− SD/BS.

So, the number of iterations is (from the cache parameters in Eq. (1) on Page 1392)

Niter =
DCS

BS(1 + SD/BS)
.

The number of cache misses saved by DLR(k, j) per one iteration of the j-loop (Eq. (4)
on Page 1392) is µsaved = Niter.

The total number of cache misses saved by DLR(j → k) during one execution of the
MMM STD pseudocode is

total µsaved = n2Niter.

For the given cache configuration, it gives the following results

– for Testing configuration 1:
• for L1 cache: Niter = 228.
• for L2 cache: Niter = 3640.

– for Testing configuration 2:
• for L1 cache: Niter = 455.
• for L2 cache: Niter = 14564.

The discussion on the precision of the simplified RD model Comparisons of the num-
bers of estimated and measured cache misses are shown in Figures 23, 24, 25, 26, and 27.
Our analytical model is derived from GRD which is based on a fully-associative cache
memory assumption. This assumption is the main source of errors in predictions. The
errors are higher for the caches with low associativity (e.g. the direct-mapped cache in
Testing configuration 5a, Figure 25). On the other hand, our model is relatively precise
(e.g. the caches in Testing configuration 5b or 5c, Figures 26 and 27) for caches with
higher associativity (i.e., s ≥ 4). This condition is true for the majority of modern CPU
caches.
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Fig. 23. Comparison of the numbers of estimated and measured cache misses (µsaved) saved by
DLR during the execution of MMM STD for the L1 cache.
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Fig. 24. Comparison of the numbers of estimated and measured cache misses (µsaved) saved by
DLR during the execution of MMM STD for the L2 cache.

6.4. Evaluation of the combination of DLR and loop tiling

We have also measured the performance and cache utilization for the pseudocode MMM TIL
and the effects of DLR transformation on this code.
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Fig. 25. Comparison of the numbers of estimated and measured cache misses (µsaved) saved by
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Fig. 26. Comparison of the numbers of estimated and measured cache misses (µsaved) saved by
DLR during the execution of MMM STD for Testing configuration 5b).

Graphs in Figures 28 and 29 illustrate the fact that the loop tiling can greatly improve
the cache utilization. On the other hand, the tiling factor must be chosen very carefully,
because the number of cache misses grows quickly with the distance of the tiling factor
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Fig. 27. Comparison of the numbers of estimated and measured cache misses (µsaved) saved by
DLR during the execution of MMM STD for Testing configuration 5c).

from the optimal value. When DLR is applied, the growth is more smooth, so the code is
less sensitive to the tiling factor value. Hence, the DLR technique is useful in the cases
when it is hard to predict a good value for the tiling factor.

6.5. Evaluation of DLR for the spMMM CSR code

The spMMM CSR code is a simple example of an irregular code. In this code, the memory
access pattern is hard to predict on the compiler level and loop tiling is excluded. But
DLR is usable and the application of this technique can save a reasonably large number
of the cache misses (see Figures 30, 31, and 32). The numbers of L1 cache misses remain
the same (without and with DLR), so graphs are shown only for the L2 cache utilization.

7. Automatic compiler support of DLR

The DLR transformation brings new possibilities to optimize the nested loops.

7.1. Proposed algorithm of an automatic compiler support of DLR

We assume that the optimizing compiler evaluates each loop nest (for details see [33])
independently. Let L1...b represent a b-dimensional loop nest (hierarchy of immediately
nested loops), where L1 is the outermost loop and Lb is the innermost loop. The control
variable for the loop Li is denoted as Ci. We propose the following function that returns a
list of the loop numbers that can profit from the DLR application. We plan to implement
more specific variant of this function into the compiler to support the DLR application
automatically.
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Fig. 28. The L1 miss rate for an MMM TIL algorithm (for n=1024) for small and large values of the
tile size.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0  50  100  150  200

L2
 c

ac
he

 m
is

s 
ra

te
 [-

]

Tile size [-]

no DLR
DLR(j->k)
DLR(i->j)

DLR(i->j->k)

(a)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  200  400  600  800  1000

L2
 c

ac
he

 m
is

s 
ra

te
 [-

]

Tile size [-]

no DLR
DLR(j->k)
DLR(i->j)

DLR(i->j->k)

(b)

Fig. 29. The L2 miss rate for an MMM TIL algorithm (for n=1024) for small and large values of the
tile size.

1: procedure DLR APPLICATION(in b,L, C;out res)
2: res = [];
3: for i← 1, b− 1 do . here we consider application of DLR(Ci → Ci+1)
4: if this DLR application is possible then . i.e., loop Li+1 is reversible
5: compute µsaved from the proposed cache model;
6: compute overhead of this DLR application;
7: if this DLR application pays-off then
8: add i to the res;
9: return res;

If this function returns an empty list (in variable res), then DLR does not pay off for
any loop in loop nest L. In another case, it returns a list (in variable res) of the loop
numbers x such that DLR should be applied to Lx, i.e., DLR(Cx → Cx+1) to increase
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Fig. 30. The L2 cache miss rate for an spMMM CSR algorithm (for density(A) = 7% and
density(B) = 21%)

the code performance. In real applications, the benefits of DLR application should be
compared to the other source code optimizations.

7.2. Discussion on the DLR applicability inside the compilers

The function in Section 7.1 is very brief. The compiler optimization must address more
issues:

– Where can DLR be applied? DLR can be applied on all nested reversible loops (ex-
cluding outermost loops). This condition can be easily checked by the compiler.

– Where should DLR be applied? DLR should be applied on a pair or triple of loops,
which causes a maximal effect on cache behavior (mentioned in Section 3.3). This
compiler decision is very similar as the one for the loop tiling.

– Does DLR have a significant effect? Yes. In most cases, higher speedups are achieved
by the loop unrolling or loop tiling. But DLR can be combined with these techniques
(see Section 6.4), and moreover, it can be applied on the codes, where the application
of the loop tiling is not possible (see Section 6.5).

– Is DLR supported in any compiler system? No, providing an automatic support of
DLR is a very difficult task. We have tried to develop the DLR support as a new
module for a LLVM project. The GCC system is the most popular compiler, but
there are strong connections between compilation stages, so add the support for other
source code optimization is very complicated. We also consider the DLR support in
other source transformation systems (e.g. Rascal Metaprogramming Language [16]).
During the (ongoing) implementation occur the following problems:
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Fig. 31. The L2 cache hit rate for an algorithm spMMM (for n=2200 and density(B) = 17%)

• The DLR pays off for the majority of measured situations, but the exact threshold
depends strongly on the measured problem and also on the exact configuration
for the measurement. The model of the cache behavior is introduced, but it can
predict the number of “saved”cache misses only for some types of accesses (this
model is unusable e.g. for the indirect access etc.)

• The presented model can predict “saved”cache misses, but the DLR transforma-
tion also increases the number of conditional branches. Furthermore, effects of
these cache misses or conditional branches are influenced by the other compiler
optimizations.

• The explicit use of DLR can confuse optimizing compilers and hinder further
loop optimizations (since it “destroys”perfectly nested loops etc.). So, it should
be applied as the last possible high-level optimization.

8. Conclusions

We have described a new code transformation technique, the dynamic loop reversal,
whose goal is to improve the locality of the accessed data and improve the cache uti-
lization. This transformation seems to be very useful for the codes with nested loops.
We have demonstrated significant performance gains for six basic algorithms from linear
algebra, graph theory etc.

We have also developed a probabilistic analytical model for this transformation and
compared the numbers of measured cache misses and the numbers of cache misses es-
timated by the model. The inaccuracies of the model occur mainly due to the fully-
associative cache memory assumption.

This work is to contribute to the development of more efficient compiler techniques.
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12. Šimeček, I., Tvrdı́k, P.: Sparse matrix-vector multiplication — final solution? In: Paral-

lel Processing and Applied Mathematics. PPAM’07, vol. 4967, pp. 156–165. Springer-
Verlag, Berlin, Heidelberg (2008), http://www.springerlink.com/content/
48x1345471067304/
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