
Computer Science and Information Systems 11(4):1315–1336 DOI: 10.2298/CSIS131204052B

Visual Programming of MPI Applications:
Debugging, Performance Analysis, and Performance

Prediction

Stanislav Böhm, Marek Běhálek, Ondřej Meca, and Martin Šurkovský

VŠB Technical University of Ostrava
17. listopadu 15/2172, 708 33 Ostrava

{stanislav.bohm, marek.behalek, ondrej.meca, martin.surkovsky}@vsb.cz

Abstract. In our research, we try to simplify the development of parallel appli-
cations in the area of the scientific and engineering computations for distributed
memory systems. The difficulties of this task lie not only in programming itself, but
also in a complexity of supportive activities like debugging and performance analy-
ses. We are developing a unifying framework where it is possible to create parallel
applications and perform various supportive activities. The unifying element, that
interconnects all these activities, is our visual model that is inspired by Colored Petri
Nets. It is used to define the parallel behavior and the same model is used to show
the inner state of the developed application back to the user. This paper presents
how to extend this approach for debugging, tracing, and performance predictions.
It also presents benefits obtained by their interconnection. The presented ideas are
integrated into our open source tool Kaira (http://verif.cs.vsb.cz/kaira). Kaira is a
prototyping tool, where a user can implement his/her ideas and experiment with
them in a short time, create a real running program and verify its performance and
scalability.

Keywords: MPI, debugging, performance analysis, performance prediction.

1. Introduction

Clusters – parallel computers with distributed memory – represent one of the most wide
spread category of computers for scientific and engineering computations. A lot of people
can participate in developing software for them, but there are well-known difficulties of
parallel programming. Therefore, for many non-experts in the area of parallel comput-
ing, it may be difficult to make their programs run in parallel. The industrial standard
for programming computational applications in the area of distributed memory systems
is Message Passing Interface (MPI)1. MPI specifies a library for C and Fortran for send-
ing messages between processes. Even if it is relatively simple to use, it represents quite
a low-level interface. There are tools like Unified Parallel C2 that simplify creating par-
allel applications, but the complexity of their development lies also in other supportive
activities like debugging, performance analyzing, verification, etc. Therefore, even an ex-
perienced programmer of sequential applications can spend a lot of time learning a new
set of complex tools.

1 http://www.mpi-forum.org/
2 http://upc.lbl.gov/

1316 Stanislav Böhm, Marek Běhálek, Ondřej Meca, and Martin Šurkovský

The overall goal of our research is to reduce complexity in parallel programming.
We want to build a unifying prototyping framework for creating, debugging, analyzing,
and formally verifying parallel applications, where a user can implement his/her ideas
in a short time and experiment with them, create a real running program and verify its
performance and scalability. The central role in our approach plays an abstract computa-
tional model and visual programming (based on Coloured Petri Nets [10]) that we use for
development of MPI applications [2–4].

This article extends paper [5], which presents the usage of our approach for debugging
and performance analyses. By a performance analysis, we mean an analysis of a real
run of an application. More precisely, we are focused on tracing, where the behavior
of an application is recorded and such record is analyzed. In this paper, we moreover
introduce another way of obtaining a performance characteristic of examined applications
performance predictions – the behavior of the application is evaluated in a simulated
environment. The presented ideas are implemented in Kaira (http://verif.cs.vsb.cz/kaira);
an open source tool that we are developing.

The contribution of this paper are the following: We show how can be an abstract com-
putational model integrated into the environment used by practitioners (C++ and MPI) in
a way that provides a unified approach to debugging, performance analysis and perfor-
mance prediction. These activities are unified in the sense of control, configuration and
results displaying.

In the following section, selected supportive tools from the area of parallel program-
ming are briefly introduced. Sections 3 and 4 describes tool Kaira and implemented sup-
portive activities. Section 5 provides a demonstration of the proposed approach. The last
section concludes presented ideas.

2. Related Works

This section briefly introduces tools for debugging, performance analyzing, and perfor-
mance predicting in the area of MPI applications. For a more detailed comparison we
refer to [2].

An MPI application runs on each computing node like a normal program; therefore,
we can use standard tools like GDB3 for debugging. This approach is sufficient to find
some types of bugs, but the major disadvantage is completely separated instances of the
supportive tool for each process. There are specialized debuggers to overcome this issue
like: Distributed Debugging Tool4 or TotalView5. They provide the same functionality
like ordinary debuggers (stack traces, breakpoints, memory watches), but they allow to
debug a distributed application as a single piece. Besides these tools, there are also non-
interactive tools like MPI Parallel Environment6. It provides additional features over MPI,
like displaying traces of MPI calls or real-time animations of communication. More about
debugging in MPI environment (and related difficulties) can be found in [17, 18].

As with debugging, tools for non-distributed application may be used to analyze the
performance of MPI applications. However it brings similar problems, because measure-

3 http://www.gnu.org/software/gdb/
4 http://www.allinea.com/products/ddt/
5 http://www.roguewave.com/
6 http://www.mcs.anl.gov/research/projects/perfvis/software/MPE/

Visual Programming of MPI Applications 1317

ments are performed separately for each MPI process. Tools Gprof 7 and Callgrind8 can
be named as examples of such tools. They usually provide a summary of events (profiles)
of the application’s run in a form of call time sums and frequencies for each function.
The approach of generating profiles can be extended into the environment of MPI. It is
implemented by Pgprof 9 or mpiP10.

However, the profile is not always as useful for parallel applications as it is for sequen-
tial applications. The reason is that computational times are affected by various commu-
nications costs, waiting times, synchronization, and so forth. Therefore many analytical
tools for parallel programs record a trace of an application’s run where important events
are stored with time stamps. The trace allows a more precise reconstruction and analysis
of an application’s behavior. Scalasca [8, 7] and TAU [16] can be named as examples of
tracing tools. The drawback of this approach is a greater overhead in comparison with
gathering a profile. Moreover, a trace grows with the length of a program’s run and with
the number of processes. Its size can be a major issue and post-processing huge tracelogs
may be computationally demanding. For trace visualizations, there are specialized tools
like Vampir [12] or Paraver [14].

For performance predictions, two major approaches exist: analytical approaches and
predictions by simulations. An example of the analytic approach can be found in [11]. It
consists of a handmade formal analysis of an algorithm. The result is given as a formula
describing how the computational time depends on the characteristics of a given computer.
The analytical approach is out of the scope of this paper and the more automatic approach
based on predictions by simulations will be considered.

Tools offering simulations fall into two categories: online simulators and offline sim-
ulators. An online simulator directly executes the application and mimics the behavior
of the target platform. It is implemented in tools BigSim [21] and SimGrid [6]. Because
of the direct execution, the major challenge is to reduce the demands on the CPU and
memory. These tools allow skipping of some computations and can simulate delays that
would be caused by executing these computations. It works only for applications with a
data-independent behavior, because some parts are not really computed. Many practical
applications satisfy this condition and this approach can provide good predictions in a
relatively short time. Another important aspect is the complexity of the network simu-
lation. The most precise method for the network simulation is a packet-level simulation
(MPI-NetSim [13]) but it can be very resource consuming. The other way (used in most
simulators) is a usage of a simple analytical model, for example BigNetSim (the network
simulator for BigSim). Results of a simulation are often provided in the form of a trace;
therefore, existing tools for displaying traces can be used.

Offline simulators ([19, 20, 9]) use a trace of an application’s run as the input instead
of the application itself. The tracelog is replayed in conditions of the simulated platform
to obtain predictions. The structure of communication is replayed as was recorded in the
trace; computing and waiting times are modified according to the target platform. This
way provides predictions while using fewer computations than online simulators, but the
problems occur for applications where the structure of the communication is not fixed.

7 http://sourceware.org/binutils/docs/gprof/
8 http://valgrind.org/docs/manual/cl-manual.html
9 http://www.pgroup.com/products/pgprof.htm

10 http://mpip.sourceforge.net/

1318 Stanislav Böhm, Marek Běhálek, Ondřej Meca, and Martin Šurkovský

In such cases, because of the different order of message arrivals, the program can get
to different states and send different messages than recorded. The reader can find more
detailed surveys about performance prediction tools in [1, 15].

3. Tool Kaira

This section serves as an overview for our tool Kaira; for more details see [2–5]. Our
goal is to simplify the development of distributed applications using MPI and create an
environment where all supportive activities are unified under one concept.

The key aspect of our tool is the usage of a visual model. It was chosen to obtain an
easy and clear way how to describe and expose parallel behavior of applications. The other
reason was that a distributed state of the application can be shown through such model.
The representation of an inner-state of distributed applications by a proper visual model
can be more convenient than traditional ways like stack-traces of processes and memory
watches. With this feature, we can provide visual simulations where a user can observe a
behavior of developed applications. This can be used for incomplete applications from an
early stage of the development. In a common way of developing MPI programs, it may
often takes a long time to get the developed application into a state where its behavior can
be observed. Moreover, we use the same visual model for mentioned activities and it is a
natural unifying element as will be demonstrated later.

On the other hand, we do not want to create applications completely through the visual
programming. Sequential parts of the developed application are written in the standard
programming language (C++) and combined with the visual model that catches parallel
aspects and communication. We want to avoid huge unclear visual diagrams; therefore, we
visually represent only what is considered as “hard” in parallel programming. Ordinary
sequential codes are written in a textual language. Moreover, this design allows for an
easy integration of existing C++ codes and libraries. C++ was chosen as one of major
programming languages with a large variety of existing libraries.

It is important to mention that our tool is not an automatic parallelization tool. Kaira
does not discover parallelisms in applications. The user has to explicitly define them,
however they are defined in a high-level way and the tool derives implementation details.

Semantics of our visual language is based on Coloured Petri nets (CPNs)[10]. In gen-
eral, Petri nets are formalism for the description of parallel processes. They also provide a
well-established terminology, a natural visual representation for visual editing of models,
and their simulations. Modeling tool CPN Tools11 was also the great inspiration for us;
especially for the visualization of the model.

To demonstrate how our model works, let us consider the model in Figure 1. It presents
a problem where some jobs are distributed across computing nodes and results are sent
back to process 0. When all the results arrive, they are written into a file. Circles (places
in terminology of Petri nets) represent memory spaces. Boxes (transitions) represent ac-
tions. Arcs run from places to transition (input arcs) or from transition to places (output
arcs). Places contain values (tokens). Input arcs specify which tokens a transition needs
to be enabled. An enabled transition can be executed. When the transition is executed, it
takes tokens from places according to input arcs. After finishing the computation of the

11 http://cpntools.org/

Visual Programming of MPI Applications 1319

transition, new tokens are placed into places according to output arcs. In CPNs, places
store tokens as multisets, in our approach we use queues. CPNs formalism was designed
as a general modeling language and multisets are suitable for this purpose. But in compu-
tational programs, it is usually desired to reduce nondeterminism of applications and for
this purpose, queues are more convenient.

A double border of a transition means that there is a C++ function inside and it is
executed whenever the transition is fired. A double border around of a place indicates
an associated C++ function creating the place’s initial content (in this example, places
are initialized only in process 0). Arcs’ inscriptions use C++ enriched by several simple
constructions. A computation described by this model runs on every process. Arc expres-
sions containing “@” define interprocess communication. The expression after “@” sign
defines a target process where tokens will be transferred.

Fig. 1. A simple model in Kaira

3.1. Example: Heat flow with load balancing

As a more advance example, we use the heat flow problem on the surface of a cylinder.
The borders of its lateral area have a fixed temperature and one fixed point in the area
is heated. The goal is to compute a heat distribution on the lateral area. In the presented
solution, the surface is divided into discrete points that form a grid as it is depicted in
Figure 2. Temperatures are computed by an iterative method; a new temperature of a
point is computed as an average temperature of its surrounding four points.

This approach can be easily parallelized by splitting this grid into parts; each part is
assigned to one process. In this example, we assume that the grid is split by horizontal
cuts. No communication is needed to compute new temperatures of inner points of the
assigned area. To compute temperatures in the top and bottom row, the process needs
to know rows directly above and below this area. Therefore each process exchanges its
border rows with neighbors in each iteration.

Additionally, load balancing of the computation is implemented. Rows of the grid are
not distributed to processes statically; rather, the distribution is changing in time according
to current performance of processes. This example implements a decentralized variant
of load balancing, i.e. no central arbiter is involved. Every process balances itself only

1320 Stanislav Böhm, Marek Běhálek, Ondřej Meca, and Martin Šurkovský

in cooperation with its neighbors. When an imbalance is detected then some rows are
transferred to a faster neighbor.

The implementation of this problem in Kaira is depicted in Figure 3 and Listing 1.1.
Transition Compute executes a single iteration of the algorithm. It takes a process’ part
of the grid and two rows, one from the above neighbor and one from the below one. It
updates the grid and sends top and bottom rows to its neighbors. When the desired number
of iterations (parameter LIMIT) is reached then the results are sent to process 0 where
they are written into a file.

Parameter LB_PERIOD controls how often (in the number of iterations) balancing is
performed. When balancing occurs, Compute does not send border rows but sends its own
performance information to its neighbors; it is the time spent in the computing phase and
the number of rows in its own part of the grid. Transition Balance determines how many
rows are needed to exchange for balancing computational times. The formula is based
on solving the equation: lm−∆

sm
= ln+∆

sn
, where ∆ is the number of rows that should be

sent from the process to the neighbor process, lm (ln) is the number of own (neighbor’s)
rows, and sm (sn) is own (neighbor’s) performance – a number of rows computed per
second. If b∆c > 0 then Balance sends rows to the neighbor. In each process, place
countToReceive indicates how many neighbors will send their rows to this process. This
value is monitored because it is important not to resume the computation in a process
until balancing with both neighbors is resolved; otherwise, the process would work with
an invalid part of a grid and send wrong border rows. Transition Merge adds received
rows into the local part of the grid. Transition Finish LB finishes the balancing, it can
be fired when all local balancing exchanges of rows are processed (i.e. countToReceive
contains zero). The transition resets variable lb_counter and sends border rows to its
neighbors; therefore the normal computation is resumed.

The init area (depicted as a blue rectangle) is used to set up initial values of places not
only in process 0 but over specified processes (all processes in our case).

The clock symbol on the left side of transition Compute means that the transition
gains access to a clock. It is used for the computation current performance of the node,
i.e. measure how much time it was spent on computations in transition Compute.

4. Features of Kaira

The main purpose of Kaira as a development environment is to create an application.
In Kaira, visual models together with C++ sequential codes can be created and edited.
From such model, the tools can automatically generate a stand-alone MPI application.
Besides this primary purpose, Kaira provides additional features for application developed
in our formalism. In this paper, we are focused on the situation when an application or its
prototype is working and we want to analyze it. This section describes features related to
debugging, performance analysis, and performance prediction.

4.1. Simulations

Besides generating standalone MPI applications, the user can also run the developed ap-
plication in the simulator. The main task of the simulator is to expose an inner state and
it allows controlling an execution of the generated application. The inner state is shown

Visual Programming of MPI Applications 1321

Listing 1.1. Head-code for the example of heat flow with load balancing

struct PerformanceInfo {
long time; /* Duration of computations in

the last balancing period (ms) */
int rows; /* Number of rows processed in

the last balancing period */
};

typedef std::vector<double> Row;
typedef std::vector<Row> Rows;

struct State {
State(int size_x, int size_y, int position) :

matrix(size_x, size_y),
position(position),
counter(0),
lb_counter(0),
time_sum(0) {}

DoubleMatrix matrix;
int position; /* The position of the local grid part */
int counter; /* The counter of iterations */
int lb_counter; /* Number of iterations

from last load balancing */
int time_sum; /* Time spent in the computational phase

from last load balancing */
};

struct Results {
Results(int position, const DoubleMatrix &matrix)
: position(position), matrix(matrix) {}

int position;
DoubleMatrix matrix;

};

1322 Stanislav Böhm, Marek Běhálek, Ondřej Meca, and Martin Šurkovský

Parallelization:Heat flow problem:

Exchanges of rows
in each iteration

Fi
xe

d
 t

em
p

er
at

u
re

s

Fig. 2. The heat flow problem on a cylinder and the used method of parallelization

in the form of labels over the original model (see Figure 4). Two types of information are
depicted:

– Tokens in places (The state of memory)
– Packets transported between nodes (The state of the communication environment)

These two types of information completely describe a distributed state of the applica-
tion. The user can control the behavior of the application by the two basic actions: start
an enabled transition and receive a message from a communication layer. By executing
these two types of actions, the application can be brought to any reachable state. The
model naturally hides irrelevant states during sequential computations and only aspects
important to parallel execution are visible and controllable.

Kaira does not catch intermediate states during sequential computations of transitions.
But still it allows putting the distributed application into any reachable state. The number
of observable states is smaller than in a classic debugger and it allows to store all states
showed during a simulation with a reasonable memory consumption, and the user may
browse in the history of the execution.

The user has a complete and well-formed control of the application in the simulator;
therefore, the application can be put into an interesting state (and the user can observe
the consequences) even if the application rarely reaches such state. This approach also
gives us a possibility to observe the behavior of the application in a very early state of
the development without any other additional debugging infrastructure. For example, we
can see which data are sent to another process even if there is no implementation of the
receiving part.

Visual Programming of MPI Applications 1323

Fig. 3. The net for the heat flow with load balancing example

1324 Stanislav Böhm, Marek Běhálek, Ondřej Meca, and Martin Šurkovský

Fig. 4. The model in the simulator. The full picture of the net is in Figure 3.

4.2. Tracing

An application developed in Kaira can be generated in the tracing mode. Such application
records its own run into a tracelog. When the application finishes its run, the tracelog can
be loaded back into Kaira and used for the visual replay or for a graphical representation
of performance data. Generally, issues with such post-mortem analysis can be categorized
into these basic groups: selection what to measure, instrumentation and presentation of
results.

Tracelogs can be useful both for performance analyses and debugging. In the case of
debugging, we usually want to collect detailed information of the run for the reconstruc-
tion of the cause of the problem. In the case of performance analyses, we want to discover
performance issues and therefore need to measure a run with time characteristics as close
as possible to real runs of the application. But the measurement itself creates an overhead
that devalues the gathered information about performance. Therefore, it is important to
specify what to store in the tracelog in both cases. In common tracers, specifications of
measurements are usually implemented as a list of functions that we want to measure/fil-
ter out. But it may be a non-trivial task to assemble such a list, especially in the case when
we use some third-party libraries. It often needs some experience to recognize what can
be safely thrown away.

In Kaira, the user specifies what is measured in terms of places and transitions. It is
done just by placing labels into a model (Figure 5). Tracing of transitions enables record-
ing of information about their execution. Tracing of places enables recording of infor-
mation about tokens that go through them. The user can easily control what to measure

Visual Programming of MPI Applications 1325

and it is obvious what information will be gained or lost after switching on or off each
setting. Moreover, our approach also allows for more detailed tracing. It is implemented
as connecting arbitrary C++ functions to places. These functions determine what will be
stored into the trace.

The second task is the instrumentation, i.e. putting the measuring code inside into the
application. In our case, Kaira can automatically place the measuring codes during the
process of generation of a parallel application. Parallel and communication parts are gen-
erated from the model, therefore we know where are interesting places to put measuring
codes. By this approach, we can obtain a traced version of the application that does not
depend on a compiler or a computer architecture. In contrast to a standard profiler or de-
bugger for generic applications, we do not have to deal with a machine code or manual
instrumentation.

As we already said, the results are presented to the user in the form of a visual replay
or as a graphical representation of performance data. In the replay, data stored in tracelogs
are shown in the same way as in the simulator, thus as the original model with tokens in
places, running transitions and packets in the communication layer (Figure 6). The user
can jump to any state in the recorded run. Our tool also provides standard charts like a
normal profiler, and additionally, information is presented using the terms of the model.
For example, the utilization of processes (Figure 7), the numbers of tokens in places, etc.

Fig. 5. Tracing labels, from left: Tracing names of tokens that arrive into the place; tracing values
obtained by applying a function to each token arriving to this place; tracing transition firing.

4.3. Combination of tracing and debugging

Combination of tracing and debugging is implemented through control sequences. This
feature naturally connects the infrastructure of our simulator with tracing abilities. A con-
trol sequence is a list containing actions. Each action is one of two basic types from
Section 4 (starting transitions and receiving packets). Actions contain information about
the process where the activity is executed, the transition’s name (in the case of transition
firing) and the source process of the message (in the case of receiving packets). When we
store this information we are able to repeat the run of the application.

Sequences are generated in the simulator or they are extracted from tracelogs. The
simulator can replay sequences and get the application into the desired state. Because the
control sequence and the model are loosely connected, the sequence remains relevant even
if we make some changes into the model. The usefulness can be exposed by the following
scenario: The user finds a problem by a visual replay or by summaries obtained from a
tracelog. Then a sequence that brings the application exactly one step before the problem
can be exported from the tracelog. Then the model can be enriched by more precise de-
bugging outputs. For example, a printf can be added into a transition’s code or it is

1326 Stanislav Böhm, Marek Běhálek, Ondřej Meca, and Martin Šurkovský

Fig. 6. The screenshot of a replay. The full picture of the net is in Figure 3.

Fig. 7. A utilization chart over processes

Visual Programming of MPI Applications 1327

Listing 1.2. A simple linear model of communication

ca::IntTime packet_time(casr::Context &ctx,
int source_id, int target_id, size_t size)

{
const ca::IntTime latency = 5847; // [ns]
double bandwidth = 1.98059; // [byte/ns]
return latency + size / bandwidth;

}

possible to add a whole new debugging transition. Now, it is possible to get the applica-
tion again into the state before the problem by replaying the sequence in the simulator,
but this time, we have the ability to obtain more information about the problem because
of the modified version of the application.

4.4. Performance prediction

The performance prediction in Kaira is implemented as online simulations, i.e. a full
computation of the program is performed in a simulated environment. The communication
layer is simulated through an analytical model. In Kaira, there is not a fixed number of
models, but the user may specify any model as a C++ function in a similar way as C++
sequential codes are edited in transitions or places. This function is called for each packet
and returns a time needed to transfer the packet. The basic information like the size of the
packet and process id of the sender and the receiver is passed to this function. A simple
linear model is shown in Listing 1.2.

Additionally, casr::Context enables the access to information about the value of
the global clock and the current workload of the network between each pair of processes.
Therefore more sophisticated models can be defined; models that reflect an overall situa-
tion in the network or models with dynamic changes of the bandwidth in time.

The model of communication is not the only configurable setting. In Kaira, execution
times of each transition and size of data transferred through each arc can be arbitrary
modified. It is designed to answering questions like “what will be the overall effect when a
code in a transition is optimized and is 20% faster than before the optimization”. However
it can be also used for reducing a computation time. Predictions can be performed with
smaller data while the behavior of the net is simulated with the original data size. The
former is demonstrated in Section 5.

The configuration of this feature is specified in the same way as for tracing, i.e. as
labels placed into the net (the example in Figure 8). In the case of a transition, the expres-
sion in the label specifies how the running time is modified. The transition is computed as
usual, but the program in the simulator behaves as if the computational time of the transi-
tion is the time obtained from the expression in the label. In the expression, an instance of
casr::Context is accessible through variable ctx and variable transitionTime
provides the access to the original computation time. For example, if the expression in the
label of a transition is transitionTime / 2, then the simulated program behaves
like the program where this transition is two times faster. Additionally, any variable from

1328 Stanislav Böhm, Marek Běhálek, Ondřej Meca, and Martin Šurkovský

expressions on input arcs of the transition can be used in the label, hence the simulated
computational times may depend on computed data.

The configuration for arcs works in a similar way by modifying the sizes of tokens
produced by an arc. This value is used when a token is transferred through the network; the
receiver obtains the data as they are sent, but the network simulation considers modified
sizes of packets. Variable size can be used in the label and it enables access to the
original size of the data.

Kaira additionally offers a special clock. It runs like an ordinary clock in a normal
run, but it may be arbitrarily modified in a simulation in the same way as running times
of transitions. A transition using this clock is depicted with a small clock symbol on
the left side. The clock provides methods tic() and toc() where toc() returns the
time elapsed from the last call of tic(). In the simulated run, the user may provide an
expression that is called after each toc() and modifies the returned time.

The simulated program produces a tracelog where the simulated run is recorded. It
uses the same infrastructure as was described in the text above, including the way in
which a measurement is specified and the results are post-processed. It provides richer
possibilities for tracing than do many of existing prediction tools, they can usually just
switch tracing on or off. Standard tracing tools cannot be used with simulators, because
of the simulated network environment and the time control.

4.5. Other features

Besides generating MPI application, Kaira can also generate an application with other two
modes: threading, and the sequential mode. Both modes emulate the behavior of MPI. The
threading mode emulates the MPI layer by pthreads instead of stand-alone processes. In
the sequential mode, the application is executed sequentially. It allows to use debugging
and analytical tools that are not designed for distributed applications.

This feature allows easy use of tools like GDB or Valgrind to debug sequential parts
of the application. Kaira is focused on debugging and analyzing parallelism and commu-
nication, and it is assumed that these existing tools are used to analyze sequential codes in
transitions. Any Kaira application can be generated in all three modes without changing
the application. The process of generation is fully automatic.

Another feature useful for debugging is the possibility to connect into a running ap-
plication. We can start a generated application in a mode where the application listens on
a TCP port. The application normally runs but when we connect to this port, the run is
paused and the inner state of the application is translated into the visual model and dis-
played in the same way as in the simulator. The application can be also controlled in the
same way. When the connection is closed, the application resumes its computation. This
way, we can easily debug situations when the application hangs up or we can just observe
how far the computation is. But in the current implementation there are some limitations;
this feature works only for applications generated with the thread backend (i.e. it does not
work for MPI applications).

Visual Programming of MPI Applications 1329

4.6. Drawbacks

The main contrast to universal debugging and analyzing tools is that these tools can work
with an arbitrary C/C++ application, Kaira works only with programs developed in it,
because our approach is tightly connected with our abstract model.

Kaira is focused on debugging parallel aspects; hence it does not support debugging
and analyzing of sequential codes inside transitions. But this problem can be solved with
external tools. Codes inside transitions are sequential without any communication so they
can be easily profiled or debugged separately. It can be further simplified by the fact that
we can always generate the sequential version of the application.

Other issues are connected with our current implementation. We have been focused on
minimizing the performance impact of the debugging and infrastructure of performance
analyses on generated applications. On the other hand, our tool itself was not the subject
of optimizations; therefore, post-processing a huge tracelog or a long control sequence
can be time consuming and memory demanding. Therefore, our infrastructure is not yet
suitable for debugging or analyzing long running applications with hundreds of processes.

5. Experiment

To demonstrate features mentioned in the previous section, let us assume that we want to
analyze the example from Section 3.1. Our goal is to check the behavior of the load bal-
ancing algorithm. Therefore, we are interested in monitoring the number of rows assigned
to each process and the average iteration computational time.

The first step is to discover the average computation times of iterations when load
balancing is disabled. Of course, such measurement should be done before the actual
implementation of load balancing. For the sake of the simplicity, we reuse the net where
load balancing is already implemented. The net showing the solution of the heat flow
example without load balancing can be seen in Figure 3 in paper [5].

The settings of tracing are shown in Figure 9. Two values are traced: the number of
rows is monitored by function rows_count in place Local state and the average time
of the computation is recorded through a new extra place, that is connected to transition
Balance.

We run the example on Anselm12, a cluster where each node is composed of: two Intel
Sandy Bridge E5-2665, 8-core, 2.4GHz processors; 64 GB of physical memory. When the
tracing run is complete, we exported the measured data by Kaira and after post-processing
in R, we obtained a chart shown in Figure 10. The chart shows that in the middle of the
computation, for some processes the computation time of one iteration is more than five
times bigger in comparison to other processes. Changing computational times of iterations
is caused by spreading non-zero elements in the grid. Therefore, when load balancing is
involved, it actively distributes rows between processes. The behavior of the program with
active load balancing is shown in Figure 11. It was again obtained in the same way as in
the previous case, by exporting the tracelog and post-processed in R. The results indicate
that load balancing works in the expected way; slower processes are disposing rows and
the average times for a single iteration are more balanced (dotted line are closer together)
than without load balancing.

12 http://support.it4i.cz/docs/anselm-cluster-documentation/hardware-overview

1330 Stanislav Böhm, Marek Běhálek, Ondřej Meca, and Martin Šurkovský

Fig. 8. The configuration of the simulated run. The full picture of the net is in Figure 3.

However, the described process allows us to see only the behavior that is reproducible
on our currently available hardware. The prediction environment can be used to predict
the behavior of the algorithm under more extreme conditions. Let us assume, that we
want to see the behavior when a process suddenly becomes much slower and then slowly
returns to its original speed. More precisely, after seven seconds of computing, process 4
becomes twelve times slower for another seven seconds and then it uniformly decreases
average computational time for another ten seconds. After that it returns to the original
speed. Because of simulation, we only need one CPU of the original computer to perform
the experiment.

Fig. 9. The tracing configuration for the net of the heat flow with load balancing. Function
rows count returns the number of rows in a grid. The new place at the bottom of the figure
is an extra place for tracing the computation times of iterations.

The settings in Figure 8 and function experiment_time shown in Listing 1.3 are
used to perform this experiment. The function changes the computation time of process 4
in the desired way. Besides changing the transition execution time, the clock that is used
by the load-balancing algorithm has to be also modified (it was described in Section 4.4).

Visual Programming of MPI Applications 1331

0 5 10 15 20 25 30

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

Time [s]

A
vg

. t
im

e
[s

]

process 0
process 1
process 2
process 3
process 4
process 5

Fig. 10. The average computation times of iterations in the heat flow example without load balancing
(6 processes; 2600× 2600; 6000 iterations).

In this example, the clock is started at the beginning of a transition execution and stopped
at the end of the computation; therefore the measured time almost exactly matches the
full time of the transition execution. Hence, in this case, the same function can be safely
used for both settings.

The result of the experiment is shown in Figure 12. After seven seconds of compu-
tations, process 4 suddenly slows down, and hence we see in the record that the compu-
tational time of an iteration is strongly increased. It is balanced in next three seconds by
disposing almost all rows to neighbors. When the execution time is returned to normal,
the time of iteration decreases and the rows are gradually returned to process 4.

This demonstration shows that the user can test developed programs in various situa-
tions just by changing a simple C++ expression and easily obtain results due to the tracing
framework.

6. Conclusion

In this paper, we have presented how our model can be used for debugging, performance
analyses, and performance predictions. We have introduced a simulator that allows live
introspections of developed programs. This simulator uses the original visual model. Thus
the developer is able to inspect the behavior of a developed application using the same vi-
sual model that he/she developed and that he/she understands. Using control sequences,
we are able to capture a simulation and later it can be reproduced even on a modified
visual model. Control sequences serve as basic infrastructure for exchanging informa-

1332 Stanislav Böhm, Marek Běhálek, Ondřej Meca, and Martin Šurkovský

0
5

10
15

20
25

30

0.0015 0.0025 0.0035 0.0045

T
im

e [s]

Avg. time [s]

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

300 400 500 600

rows

row
s

process 0
process 1
process 2
process 3
process 4
process 5

●●●●●●

A
vg. tim

e

process 0
process 1
process 2
process 3
process 4
process 5

Fig. 11. The average computation times of iterations and row counts in the heat flow example with
load balancing (6 processes; 2600× 2600; 6000 iterations; balancing period 100)

Visual Programming of MPI Applications 1333

0
5

10
15

20
25

30
35

0.005 0.010 0.015

T
im

e [s]

Avg. time [s]

●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

100 200 300 400 500 600 700

rows

row
s

process 0
process 1
process 2
process 3
process 4
process 5

●●●●●●

A
vg. tim

e

process 0
process 1
process 2
process 3
process 4
process 5

Fig. 12. The average computation times of iterations and row counts in the heat flow example with
load balancing (6 processes; 2600×2600; 6000 iterations; balancing period 100) in the experiment
where process 4 is slowed down.

1334 Stanislav Böhm, Marek Běhálek, Ondřej Meca, and Martin Šurkovský

Listing 1.3. The function used in configurations of time and clock substitutions for the
experiment with load balancing of heat flow

ca::IntTime experiment_time(casr::Context &ctx,
ca::IntTime time)

{
if (ctx.process_id() == 4) {

if (ctx.time() > 7e9 && ctx.time() < 14e9) {
return time * 12;

}
if (ctx.time() >= 14e9 && ctx.time() < 24e9) {

return (time * (24e9 - ctx.time()) * 12.0) / 10e9;
}

}
return time;

}

tion between analysis and debugging, and they allowed us to implement the deterministic
replay.

Also for tracing of applications, we use a similar approach and the original model.
It is used to present obtained data (application’s replay) and also to simplify measure-
ment specifications. This is crucial for tracing, because when we measure everything, the
obtained data are usually useless.

The proposed tool offers predictions of application behaviors through online simula-
tions with an analytical model of the network. The used model allows simple configura-
tion of predictions and observations of results. During predictions, the complete tracing
infrastructure is available. It can be used to check various “what if . . . ” scenarios.

Currently, our tool is not widely used. It is freely available, but we are not aware
of other users beside people who are involved in Kaira development. But features de-
scribed in this paper are ready to use. We have verified ideas and functionality on various
examples together with experimenting with resulting applications on Anselm – the super-
computer owned by IT4Innovations Center of Excellence13.

We are also working on new features, the most notable is verification. Again, we want
to interconnect it with our model and its’ results (along with results from other analyses)
can be used in the remaining Kaira infrastructure. It can serve as another argument why
to use Kaira as a prototyping tool for MPI applications.

Acknowledgments. The work is partially supported by GAČR P202/11/0340 and the IT4Innovations
Centre of Excellence project (CZ.1.05/1.1.00/02.0070), funded by the European Regional Devel-
opment Fund and the national budget of the Czech Republic via the Research and Development
for Innovations Operational Programme, as well as Czech Ministry of Education, Youth and Sports
via the project Large Research, Development and Innovations Infrastructures (LM2011033) and
by the project SPOMECH – Creating a multidisciplinary R&D team for reliable solution of me-
chanical problems, reg. no. CZ.1.07/2.3.00/20.0070 within Operational Programme ‘Education for

13 http://www.it4i.cz/

Visual Programming of MPI Applications 1335

competitiveness’ funded by Structural Funds of the European Union and state budget of the Czech
Republic.

References

1. Allan, R., Science, Britain), T.F.C.G.: Survey of HPC Performance Modelling and Prediction
Tools. Technical report (Science and Technology Facilities Council (Great Britain))), Science
and Technology Facilities Council (2010), http://books.google.cz/books?id= oirYgEACAAJ

2. Böhm, S.: Unifying Framework For Development of Message-Passing Applica-
tions. Ph.D. thesis, FEI VŠB-TUO Ostrava, 17. listopadu 15, Ostrava (11 2013),
http://verif.cs.vsb.cz/sb/thesis.pdf

3. Böhm, S., Běhálek, M.: Generating parallel applications from models based on Petri nets. Ad-
vances in Electrical and Electronic Engineering 10(1) (2012)

4. Böhm, S., Běhálek, M.: Usage of Petri nets for high performance computing. In: Proceedings
of the 1st ACM SIGPLAN workshop on Functional high-performance computing. pp. 37–48.
FHPC ’12, ACM, New York, NY, USA (2012), http://doi.acm.org/10.1145/2364474.2364481

5. Böhm, S., Běhálek, M., Meca, O., Šurkovsk, M.: Visual programming of MPI applications:
Debugging and performance analysis. In: The 4th Workshop on Advances in Programming
Language (WAPL) (2013)

6. Casanova, H., Legrand, A., Quinson, M.: Simgrid: A generic framework for large-scale dis-
tributed experiments. In: Proceedings of the Tenth International Conference on Computer Mod-
eling and Simulation. pp. 126–131. UKSIM ’08, IEEE Computer Society, Washington, DC,
USA (2008), http://dx.doi.org/10.1109/UKSIM.2008.28

7. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The Scalasca per-
formance toolset architecture. Concurrency and Computation: Practice and Experience 22(6),
702–719 (Apr 2010)

8. Geimer, M., Wolf, F., Wylie, B.J.N., Mohr, B.: A scalable tool architecture for diagnosing
wait states in massively parallel applications. Parallel Comput. 35(7), 375–388 (Jul 2009),
http://dx.doi.org/10.1016/j.parco.2009.02.003

9. Hermanns, M.A., Geimer, M., Wolf, F., Wylie, B.J.N.: Verifying causality between distant per-
formance phenomena in large-scale mpi applications. In: Parallel, Distributed and Network-
based Processing, 2009 17th Euromicro International Conference on. pp. 78–84 (2009)

10. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of Concurrent
Systems. Springer (2009)

11. Kerbyson, D.J., Alme, H.J., Hoisie, A., Petrini, F., Wasserman, H.J., Gittings, M.: Predictive
performance and scalability modeling of a large-scale application. In: SC. p. 37 (2001)

12. Knpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Mller, M., Nagel, W.:
The Vampir performance analysis tool-set. In: Resch, M., Keller, R., Himmler, V., Krammer,
B., Schulz, A. (eds.) Tools for High Performance Computing, pp. 139–155. Springer Berlin
Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-68564-7 9

13. Penoff, B., Wagner, A., Txen, M., Rngeler, I.: MPI-NetSim: A network simulation module for
MPI. In: Proc. of the 15th International Conference on Parallel and Distributed Systems (2009)

14. Pillet, V., Pillet, V., Labarta, J., Cortes, T., Cortes, T., Girona, S., Girona, S., Computadors,
D.D.D.: Paraver: A tool to visualize and analyze parallel code. Tech. rep., In WoTUG-18 (1995)

15. Pllana, S., Brandic, I., Benkner, S.: Performance modeling and prediction of parallel and dis-
tributed computing systems: A survey of the state of the art. In: CISIS. pp. 279–284 (2007)

16. Shende, S.S., Malony, A.D.: The tau parallel performance system. Int. J. High Perform. Com-
put. Appl. 20(2), 287–311 (May 2006), http://dx.doi.org/10.1177/1094342006064482

17. Squyres, J.M.: Mpi debugging – can you hear me now? ClusterWorld Magazine, MPI Mechanic
Column 2(12), 32–35 (December 2004), http://cw.squyres.com/

1336 Stanislav Böhm, Marek Běhálek, Ondřej Meca, and Martin Šurkovský

18. Squyres, J.M.: Debugging in parallel (in parallel). ClusterWorld Magazine, MPI Mechanic Col-
umn 3(1), 34–37 (January 2005), http://cw.squyres.com/

19. Tikir, M., Laurenzano, M., Carrington, L., Snavely, A.: Psins: An open source event tracer
and execution simulator for mpi applications. In: Sips, H., Epema, D., Lin, H.X. (eds.) Euro-
Par 2009 Parallel Processing, Lecture Notes in Computer Science, vol. 5704, pp. 135–148.
Springer Berlin Heidelberg (2009), http://dx.doi.org/10.1007/978-3-642-03869-3 16

20. Zhai, J., Chen, W., Zheng, W.: Phantom: predicting performance of parallel applications on
large-scale parallel machines using a single node. SIGPLAN Not. 45(5), 305–314 (Jan 2010),
http://doi.acm.org/10.1145/1837853.1693493

21. Zheng, G., Wilmarth, T., Jagadishprasad, P., Kalé, L.V.: Simulation-based performance pre-
diction for large parallel machines. Int. J. Parallel Program. 33(2), 183–207 (Jun 2005),
http://dx.doi.org/10.1007/s10766-005-3582-6

Stanislav Böhm is a junior researcher at IT4I - National Supercomputing Center. He
finished his Ph.D. study in 2014. His research topics cover programming and formal veri-
fication of parallel applications, and complexity of problems in automata theory. He is the
leader of the group developing tool Kaira.

Marek Běhálek is an Assistant Professor in Department of Computer science in VŠB
Technical University Ostrava. He is also a junior researcher in IT4I National Supercom-
puting Center. His research interests are the evolution of programming languages and
tools especially for programming of parallel/distributed systems. Now, he is focused on
visual programming of distributed applications, their analyzing and verifications.

Ondřej Meca has a diploma degree in computer science from VŠB-Technical University
of Ostrava. After graduation he started to study doctoral degree at the same university.
His research topics cover high performance computing and verification of parallel appli-
cations.

Martin Šurkovský is a PhD student at VŠB - Technical University of Ostrava. He got his
master’s degree in computer science at the same university in 2012. His main points of
interests are high performance computing and analyses of parallel programs.

Received: December 4, 2013; Accepted: June 6, 2014.

