
UDC 004.431.4

Integration of the ST Language in a Model-Based
Engineering Environment for Control Systems – An

Approach for Compiler Implementation

Elisabete Ferreira1, Rogério Paulo1, Daniela da Cruz2 and Pedro
Henriques2

1EFACEC Engenharia S.A., Maia, Portugal
2Universidade do Minho, Braga, Portugal

elisabete.fonseca@efacec.pt

Abstract. In the context of the INTEGRA project, compilation and code
generation features for behavior definition are to be integrated in an
existing model-based engineering environment for control systems. The
devised compiler architecture is domain-specific and provides support
for multiple input languages and multiple target platforms. In this paper
we discuss an architectural approach in which the compiling process is
organized in two different stages: the compiling stage and the linking
stage. The compiling stage generates target independent code from
possibly multiple input languages. The linking stage assembles pre-
compiled code modules and generates a target specific executable code
for a given virtual machine. To be more specific this paper describes the
integration of the ST language in the tool core meta-model and the ST
compiler is presented as an application case study.

Keywords. Code Compiler, Linker, C#, ANTLR, ASML, IEC 61131-3
ST.

1. Introduction

The INTEGRA [8] project is an industrial R&D project developed by EFACEC
in collaboration with REN1 and some universities, such as UP2 and UM3. This
project involves the development of a prototype for a command, control and
protection system for substations based on the new standard protocol for
communications.

The main objectives of the INTEGRA project were: to evaluate the
application of international standards in substation automation systems; to
confirm interoperability between devices from different manufacturers; to
develop embedded real-time devices for substation automation systems; and

1 REN – Rede Eléctrica Nacional, is responsible for the uninterrupted supply of

electricity and natural gas in Portugal.
2 UP – University of Porto, Faculty of Engineering
3 UM – University of Minho

Elisabete Ferreira, Rogério Paulo, Daniela da Cruz and Pedro Henriques

 ComSIS Vol. 5, No. 2, December 2008 88

to integrate engineering tools. The project also includes a demonstration
system installed in a transmission substation near Lisbon.

The purpose of the project described in this paper, developed in the context
of the INTEGRA project, is to integrate compilation and code generation
features for behavior definition in an existing model-based engineering. This
computer aided engineering tool, shown in fig. 1, is a specific graphical toolset
aimed at integrated configuration and management of distributed control
systems for power systems automation.

Fig. 1. The user interface of the engineering tool

In order to maximize user productivity the development and compilation
tools are to be seamlessly integrated within the core meta-model on which the
toolset is based and within the engineering environment itself. The compiler
architecture to be built should lend itself to support multiple input languages
and multiple target platforms in the same environment.

Traditionally a compiler is a standalone, non-interactive (batch), program
that takes as input a program, written in an High-Level Programming
Language, and generates as output another program with the same meaning
but written in a Machine-Level (low level) Programming Language (usually
Assembly or even ByteCode).

To accomplish its task, a traditional compiler is decomposed into two main
blocks [6, 7]: the first one, the front-end (FE), is responsible for the analysis of
the source text and the construction of an Internal, or Intermediate

Integration of the ST Language in a Model-Based Engineering Environment for Control
Systems – An Approach for Compiler Implementation

ComSIS Vol. 5, No. 2, December 2008 89

Representation (IR) carrying on the program's meaning; and the second one,
the back-end (BE), takes that IR and generates the final machine code.

Moreover, the FE is itself structured in three layers: the lexical analyzer, the
syntactic analyzer, and the semantic analyzer.

In a classic approach, the compiler is automatically generated as a whole
by a tool called compilers-compiler, or compiler-generator, that takes the
grammar (a translation grammar, or an attribute grammar) of the source
language and writes the code for the FE and BE of the desired compiler
(specified by that grammar).

So, a classic compiler processes one source language, and generates
(without interacting with other programs or with the user) code for one target
machine.

In the context of INTEGRA project, discussed along the paper, we are
interested in producing modules for the analysis or code-generation tasks that
interact with the other modules already implemented in the platform,
complying with pre-defined interfaces.
In the scope of this paper the adoption of ST Language, as described in
IEC 61131-3 International Standard [2] and the integration of a ST Compiler in
the environment is discussed and presented as a case study for the approach
above referred.

Section 2 presents the application domain. In section 3 the language meta-
model on which the engineering environment is based is briefly described. In
section 4 the ST language and its integration is presented. In section 5 our
proposed compiler architecture is described in detail and in section 6 the
compiler implemented in the INTEGRA project is briefly described. Section 7
presents the main conclusions of this work.

2. Application Domain

This work is to be applied in engineering of distributed control systems for
power systems automation. This application domain includes industrial control
systems targeted at, but not limited to, (i) distribution and transmission
substations, (ii) power stations (hydro, wind, etc.) and (iii) distribution
networks. In such industrial systems the control, automation and protection
functions are implemented in real-time autonomous systems involving
cooperating intelligent electronic devices with physical process interface,
various communication interfaces and user interface. The typical architecture
is characterized by functional levels within a control hierarchy with mostly
vertical information flows between levels and peer-to-peer communication at
each control level.

From a behavioral point of view these are soft real-time and event-driven
systems. Each device in the system runs both firmware and/or user code
which is characterized by boolean logic or more complex algorithms which are
run periodically or on-event (in response to external events, data changes or
time-based events). Program space state and temporal response is usually

Elisabete Ferreira, Rogério Paulo, Daniela da Cruz and Pedro Henriques

 ComSIS Vol. 5, No. 2, December 2008 90

ensured by program design and programming languages tend to be strongly
typed and to limit code constructions such as recursion or involving dynamic
memory allocation.

3. ASML at a Glance

The Automation System Modeling Language [9] (ASML) is a key element of
the engineering environment via which specific device and system models are
set-up, validated and deployed by the control system engineer.

Through this language it is possible to describe complete device or system
configurations including, but not limited to: (i) functionally-oriented control
system object models, including input and output status, measurands, settings
and controllable data, (ii) dynamic control system behavior, (iii)
diagrammatical interactive user interface4, (iv) device hardware, (v) device
local process interface, (vi) communication interfaces, (vii) data logging, etc.

The ASML definition is based on the OMG [10] four-layered meta-modeling
infrastructure. In fact, the abstract syntax of the language is defined as an M2
[10] model, including static validation rules, and formally defined in a M3 [10]
proprietary meta-meta-modeling language, similar to KM3 [11] or Ecore [12].
Several software components of the engineering toolset are generated by
custom code generators using the ASML meta-model as input, as is the case
of some graphical editors and model-checkers. The ASML itself is not a
complete language since it lacks a specific concrete syntax. Device or system
models are created and customized by the end-user with a set of text,
graphical and diagrammatical editors.

Functional design within ASML should incorporate function decomposition
in atomic units, behavior encapsulation with interface definition via inputs and
outputs, executable algorithmic definitions and function allocation to devices.

Since the ASML is based in international standards, the languages
selected for behavior definitions are to be compatible with the IEC 61131-3
standard [1], focused on programming languages for automation systems.

4. ST Language

The IEC 61313-3 [2, 3] is an international standard which describes
programming languages, both textual and graphical, for programmable
controller software.

The language introduced in this paper is a textual language called
Structured Text (ST), which is a high level language, similar to Pascal, Ada or
C.

4 To be displayed from small LCDs to full-featured standard computers.

Integration of the ST Language in a Model-Based Engineering Environment for Control
Systems – An Approach for Compiler Implementation

ComSIS Vol. 5, No. 2, December 2008 91

The standard defines about twenty elementary data:

– BOOL;
– SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT

(signed and unsigned integer data types);
– REAL, LREAL (floating point data types);
– TIME, DATE, TIME_OF_DAY, DATE_AND_TIME (time handling

data types);
– BYTE, WORD, DWORD, LWORD, STRING, WSTRING;

Derived data types, such as structures, arrays and enumerations, can also
be defined.

The language establishes three kind of program organization units (POU):
functions, function blocks and programs. Functions are conventional
procedures with parameters and return values; function blocks include both
procedure and data which may be kept between invocations. The main
difference between functions and function blocks is that function produce the
same result if called with the same arguments and functions blocks contain
both code and data which persists between invocations.

A program is a network of functions and function blocks, which is able to
access external data, such as physical input/output of the programmable
controller device. These units are run periodically or upon the occurrence of
specific events.

Expressions in ST are typical expressions built from operators,
variable/constant access and other conventional constructs which, when
evaluated, yield a value corresponding to one specific data type.

Four types of statements are available in ST:

– assignments;
– conditional branches (if and case);
– loops (for, while, repeat and until);
– function block invocations;

The invocation of a function consists of the function name followed by a list
of arguments. The list of arguments can take two different forms: the formal
argument list or the non-formal argument list. In the formal argument list, the
arguments list has the form of a set of assignments of actual values to the
formal argument names. In the non-formal argument list, the argument list
shall contain exactly the same number of arguments, in the exactly order as
given in the function definition.

Function blocks shall be called by a statement which consist of the name of
the function block instance followed by a formal or non-formal list of
arguments.

Elisabete Ferreira, Rogério Paulo, Daniela da Cruz and Pedro Henriques

 ComSIS Vol. 5, No. 2, December 2008 92

IN1

MAX
IN2

IN3

MIN

MinMax

Fig. 2. Function Block MinMax external interface

To exemplify the formal and the non-formal differences in invocations
consider the MinMax function block shown in fig. 2. After declaring the
variable minMaxInst as an instance of function block MinMax, the next two
statements in ST language are equivalents and would produce the same
output values:
minMaxInst(0, 6, 4);
minMaxInst(IN3 := 4, IN2 := 6);

4.1. Integration of the ST Language in the ASML Meta-model

Fig. 3. UML class diagram overview of the ASML meta-model

The conditions, actions and procedures associated with functions and
behavioral elements are described in ASML according to a meta-model
adapted from IEC 61131-3 Structured Text [2]. Behavior units are defined as
POUs which can be written in any supported language. The data typing meta-
model of the ASML is common to both behavior definition and other purposes,
namely for communication interface definition.

A simplified UML class diagram of the ASML meta-model is shown in fig. 3.

Integration of the ST Language in a Model-Based Engineering Environment for Control
Systems – An Approach for Compiler Implementation

ComSIS Vol. 5, No. 2, December 2008 93

To support encapsulation and reuse of complete system behavior the
ASML provides automation elements called Function Classes. A function
class encapsulates an internal structure, algorithms and defines an external
interface via data inputs, outputs and settings. The external interface of these
classes may be defined according to user/design requirements and existing or
future international standards of object models for power systems automation.
Logical node classes may represent internal device behavior, communication
interfaces, process interface or programmable behavior.

The ASML defines device functional structure by instantiating function
classes and allocating instances in different processing units (Resources) in
the physical device. Interactions between Functions and/or physical
input/output of the device are defined by input/output Associations.

A small example of an ASML model is shown in fig. 4. In this example a
Logical Node Class implementing a simplified alarm grouping is presented.

Function

Program

Variables

Logical Node
Classes

Libraries

External
Interface

Logical Node
Instances

Enumeration

Function Block

Device
Configuration

Fig. 4. Small example of an ASML model

Elisabete Ferreira, Rogério Paulo, Daniela da Cruz and Pedro Henriques

 ComSIS Vol. 5, No. 2, December 2008 94

5. Compiler Architecture

To facilitate reuse of definitions some ASML language meta-classes, such as
POUs, may be defined in libraries.

Libraries contain POU external interface and pre-compiled target
independent code. Therefore behavior implementation is hidden allowing
some level of intellectual property protection.

5.1. Compiler Overview

The compiling process, illustrated in fig. 5, is organized in two different stages:
the compiling stage and the linking stage.

Fig. 5. The compiling process

The compiling stage illustrated in fig. 6. the compiling stage overview, is
responsible to generate ObjectCode, which is target and language
independent code.

Fig. 6. The Compiling Stage Overview

The compiler receives an ASML model to compile and generates an
ObjectCode module containing both pre-compiled code and additional
information for the linking stage.

Integration of the ST Language in a Model-Based Engineering Environment for Control
Systems – An Approach for Compiler Implementation

ComSIS Vol. 5, No. 2, December 2008 95

The linking stage, illustrated in fig. 7, generates target specific executable
code, called ByteCode, by assembling and translating pre-compiled code
included in one or more ObjectCode modules.

Fig. 7. The Linking Stage Overview

The Linker effectively generates an executable code file for a specific
device. Hence the linker also receives additional data such as the device
configuration and target definitions defined in the source ASML model.

The ByteCode is generated according to both the device configuration,
omitting unnecessary code, and the platform definition. Thus, the ByteCode is
both target specific and platform dependent.

ByteCode files may be deployed to the corresponding device and executed
by a Virtual Machine or through other device specific means. A platform
independent virtual machine is also available for device integration and direct
execution of the generated ByteCode which is not analyzed in this paper.

5.2. Parser, Semantic Validator and Object Code Generator

The translation-scheme adopted to develop the compiler presented in this
paper was a semantic-directed translation. With this translation-scheme each
compiler component has one specific job in the compilation process. The
compiling stage is organized in three components: the Parser, the Semantic
Validator and the Object Code Generator, as shown in fig. 8.

With this architecture other programming languages can be easily plugged
by simply implementing a parser which analyses that specific language and
generates the same IR. No other components would, in principle, require
modification.

Elisabete Ferreira, Rogério Paulo, Daniela da Cruz and Pedro Henriques

 ComSIS Vol. 5, No. 2, December 2008 96

Fig. 8. Compiler Architecture

The Parser receives the POU body and instantiates the compiler
intermediate representation if the POU body is syntactical correct.

After constructing the intermediate representation all information needed
for the semantic validation and translation process is produced and the source
data may be discarded.

The semantic analyzer is responsible to check if the intermediate
representation of the POU body is semantically correct. The most relevant
semantic validations take place in variables, expressions and invocations.

– Each variable has a specific data type and optionally an initial value,
therefore is necessary to validate if variable data type and initial value
type are the same. When a variable is used in a statement is
necessary to validate if the variable is accessible for the requested
operation and if it is visible in the POU context.

– To validate an expression is necessary that all the operator and
operand data types are compatible.

– To validate a function or function block invocation is necessary to (i)
validate if the POU identifier is defined in the current ASML or in
libraries, (ii) check if the invocation is allowed, for example, functions
can not call function blocks, (iii) validate if the number of parameters
are correct and (iv) check if the arguments data types are compatibles
with the POU interface.

Once validated, the intermediate representation of all POUs defined in an
ASML source can feed ObjectCode generator. The Object Code Generator is
responsible to generate a list of instructions accordingly to the POU
intermediate representation.

The Object Code Generator traverses the intermediate representation and
generates a list of instructions for a stack based virtual machine.

Integration of the ST Language in a Model-Based Engineering Environment for Control
Systems – An Approach for Compiler Implementation

ComSIS Vol. 5, No. 2, December 2008 97

5.3. Linker and Assembler

The linking stage is organized in two components: the Linker and the
Assembler, as shown in fig. 9.

Fig. 9. Linker Architecture.

The first task of the linker is to determine which procedures (programs,
functions and function blocks) must be included in the ByteCode. Then, all
these procedures are included in a single ObjectCode module. If one or more
procedures cannot be found the linking stage is aborted and an error is
reported.

From this virtual ObjectCode module ByteCode can be generated
accordingly to some target Definitions. These Definitions describe the device
and the target platform, such as, byte order (little or big endian), unsupported
data types and other relevant target restrictions or configuration.

The Assembler is responsible to convert that virtual ObjectCode into a
target specific ByteCode. Essentially, the Assembler job is to resolve
instructions references (cross-references, references to variables, references
to POUs, etc.) and index resulting references to code or data area accordingly
to target variable size and instruction size.

After defining these positions/indexes it is possible to resolve instruction
references. The cross-references are replaced by the referenced instruction,
references to variables are translated into the variable position into the data
area and finally a reference to a POU is replaced into the position of its first
instruction.

Elisabete Ferreira, Rogério Paulo, Daniela da Cruz and Pedro Henriques

 ComSIS Vol. 5, No. 2, December 2008 98

At last, this ByteCode is serialized into a binary file which can be directly
interpreted (analyzed and executed) by, for example, a virtual machine.5

To exemplify the compiling process presented in this paper, fig. 10 contains
an example of a program that counts the number of times that a circuit
breaker opened. The open operation is detected by invoquing a standard
function block, the rising edge detector. Fig. 10 shows the intermediate
representation and the list of instructions generated for the if statement.

Structured Text

Instruction List

(...)

PUSHG_SI R_TRIG.Q

PUSHG_DI OpCnt.stVal

JZ

PUSH_DI 1

STOREG_DI OpCnt.stVal

ADD_DI

(...)

Condition

FBVarRef

R_TRIG Q

FBInstance FBVariable

ThenStatement[0]

Assignment

OpCnt.stVal

Variable Expression

Addition

1OpCnt.stVal

IF

Intermediate
Representation

R_TRIG(Pos.stVal <> Dbpos.On);
IF R_TRIG.Q

THEN
OpCnt.stVal := OpCnt.stVal + 1;

END_IF;

Fig. 10. Example of compiling process outputs.

6. Compiler Implementation

To assist the implementation of the ST Parser (Lexical Analyzer and
Syntactical Analyzer) we used ANTLR [4]. ANTLR, ANother Tool for
Language Recognition, is a language tool that provides a framework for
constructing recognizers, compilers and translators from grammatical
descriptions containing actions in a variety of target languages. To preserve
the technology adopted by the INTEGRA project, the selected language was
the C# [5].

Since the IEC 61131-3 [2] defines a context-free grammar for the ST
language, to build the ST Parser it was necessary to adapt the standard
grammar to fit the ANTLR syntax.

5 Code generation for Motorola and Intel based platforms was demonstrated.

Integration of the ST Language in a Model-Based Engineering Environment for Control
Systems – An Approach for Compiler Implementation

ComSIS Vol. 5, No. 2, December 2008 99

The meta-model of the Structured Text language described in the ASML
was developed in a Meta-Modeling Framework from EFACEC, the
Developer´s Workbench Modeler. This Meta-Modeling Framework was
developed in order to enhance software development productivity. Through
this framework meta-models may be defined, validated and C# code may be
generated according to some generation rules. The ST Parser instantiates the
intermediate representation of each POU body according to the ST meta-
model defined in the ASML.

Through the Developer´s Workbench Modeler it is also possible to specify
a set of model validation rules and generate a semantic validator. The
semantic analyzer was implemented using this approach.

The back-end of the compiler, the ObjectCode Generator, the Linker and
the Assembler were implemented in C#.

7. Results and Conclusions

In this paper we discussed a compiler architecture that supports multiple input
languages and multiple target platforms. The integration of the textual
language ST, described in the IEC 61131-3, in a model based engineering
environment for control systems was presented and the ST Compiler as an
application case study for the desired compiler architecture was described.

To simplify the generation of a target specific executable code the
compiling process was organized in two stages: the compiling stage and the
linking stage. The compiling stage adopts semantic-directed translation
methodology and generates target and language independent code that can
be used to generate any target/platform specific code. The linking/assembly
stage generates executable code according to the target device configuration
and platform definitions, being therefore independent of the source languages
used.

It is also important to emphasize that the presented compiler architecture
simplifies reuse, provides behavior encapsulation and makes use of library
inclusion in the engineering environment.

The implementation illustrated in this paper was applied in an on-site
control system pilot project effectively meeting the requirements of the
INTEGRA project. Results of the project have also met sufficient quality
criteria and are expected to be revised and incorporated in standard industrial
products.

8. References

1. IEC 61131-1 Programmable controllers Part 1: General Information.
(2003)

2. IEC 61131-3 Programmable controllers Part 3: Programming Languages.
(2003)

Elisabete Ferreira, Rogério Paulo, Daniela da Cruz and Pedro Henriques

 ComSIS Vol. 5, No. 2, December 2008 100

3. IEC 61131-8 Programmable controllers Part 8: Guidelines for the
application and implementation of programming languages. (2003).

4. Parr, T: The Definitive ANTLR Reference: Building Domain-Specific
Languages, First Edition. Pragmatic Bookshelf. (May 2007).

5. Jesse Liberty, Programming C#. Valerie Quercia, (2003).
6. Aho, Alfred V. and Lam, Monica S. and Sethi, Ravi and Ullman, Jeffrey

D.: Compilers: Principles, Techniques, and Tools (2nd Edition). Addison
Wesley (August 2006).

7. Waite, W., Goos, G.: Compiler Construction. Springer Verlag (1984).
8. Carrapatoso, A., Cartaxo, R., Matos, F., Paulo, R.:INTEGRA Project –

Applying IEC 61850 Technology. CIGRE (2006).
9. Paulo, R., Carvalho, A.: Towards Model-Driven Design of Substation

Automation Systems. CIRED (2005).
10. OMG Unified Modeling Language, Infrastructure, V2.1.2. (November

2007).
11. Jouault, F., Bézivin, J.: KM3: a DSL for Metamodel Specification.
12. The Eclipse Modeling Framework (EMF) Overview, Available:

http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.emf.doc//refere
nces/overview/EMF.html.

13. Rzonca, D., Sadolewsky, J., Trybus, B.: Executable form of the
IEC 61131-3 ST language programs in the CPDev environment. (2007).

Elisabete Fonseca Ferreira got a degree in "Mathematics and Computer
Science", at University of Minho, Portugal.
Currently holds a position as an R&D Engineer at Power Systems Automation
Business Unit, EFACEC Group.
She has been involved in compiler and virtual machine development for
embedded real-time devices. She is currently involved in the development of
engineering tools.

Rogério Dias Paulo got a degree in “Industrial Electronics Engineering”, at
University of Minho, Portugal and MsC. in “Industrial Informatics” from the
Oporto University, Portugal.
Currently holds an R&D Product Manager position at Power Systems
Automation Business Unit, EFACEC Group.
Has been involved in several R&D or product development projects in the
domains of Software engineering, Specification and development of
communication stacks, Intelligent electronic devices and Engineering tools.

Daniela Carneiro da Cruz got a degree in "Mathematics and Computer
Science", at University of Minho), and now she is starting a Ph.D. degree in
"Computer Science" also at University of Minho, under the MAPi doctoral
program.
She joined the research and teaching team of "gEPL, the Language
Processing group" in 2005. She is teaching assistant in different courses in

Integration of the ST Language in a Model-Based Engineering Environment for Control
Systems – An Approach for Compiler Implementation

ComSIS Vol. 5, No. 2, December 2008 101

the area of Compilers and Formal Development of Language Processors; and
Programming Languages and Paradigms (Procedural, Logic, and OO).
As a researcher of gEPL, Daniela is working with the development of
compilers based on attribute grammars and automatic generation tools. She
developed a completed compiler and a virtual machine for the LISS language
(an imperative and powerful programming language conceived at UM).
She was also involved in the PCVIA (Program Comprehension by Visual
Inspection and Animation), a FCT funded national research project; in that
context, Daniela worked in the implementation of "Alma", a program visualizer
and animator tool for program understanding.
She is now enrolled in a new bilateral cooperation project with Slovenia under
the subject "Program Comprehension for Domain Specific Languages".

Pedro Rangel Henriques got a degree in "Electrotechnical/Electronics
Engineering", at FEUP (Oporto University), and finished a Ph.D. thesis in
"Formal Languages and Attribute Grammars" at University of Minho. In 1981
he joined the Computer Science Department of University of Minho, where he
is a teacher/researcher.
Since 1995 he is the coordinator of the "Language Processing group". He
teaches many different courses under the broader area of programming:
Programming Languages and Paradigms (Procedural, Logic, Functional and
OO); Compilers and Formal Development of Language Processors; etc. He is
co-author of the "XML & XSL: da teoria a prática" book, publish by FCA in
2002.
Pedro Rangel Henriques has supervised M.Sc. (16) and Ph.D. (14) thesis,
and more than 100 graduating trainingships/projects, in the areas of:
language processing (textual and visual), and structured document
processing; program animation and program comprehension; knowledge
discovery from databases, data-mining, and data-cleaning.
He also was responsible for several applicational projects (in the interface
University/external-community, industry), mainly in the area of information
systems (databases and web oriented). From 2002 until 2004 he was the
Head of the Department, and at moment he is the President of APPIA, the
Portuguese Association for Artificial Intelligence.

Received: July 16, 2008; Accepted:November 20, 2008.

