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Abstract. In the context of the INTEGRA project, compilation and code 
generation features for behavior definition are to be integrated in an 
existing model-based engineering environment for control systems. The 
devised compiler architecture is domain-specific and provides support 
for multiple input languages and multiple target platforms. In this paper 
we discuss an architectural approach in which the compiling process is 
organized in two different stages: the compiling stage and the linking 
stage. The compiling stage generates target independent code from 
possibly multiple input languages. The linking stage assembles pre-
compiled code modules and generates a target specific executable code 
for a given virtual machine. To be more specific this paper describes the 
integration of the ST language in the tool core meta-model and the ST 
compiler is presented as an application case study.  

Keywords. Code Compiler, Linker, C#, ANTLR, ASML, IEC 61131-3 
ST. 

1. Introduction 

The INTEGRA [8] project is an industrial R&D project developed by EFACEC 
in collaboration with REN1 and some universities, such as UP2 and UM3. This 
project involves the development of a prototype for a command, control and 
protection system for substations based on the new standard protocol for 
communications.  

The main objectives of the INTEGRA project were: to evaluate the 
application of international standards in substation automation systems; to 
confirm interoperability between devices from different manufacturers; to 
develop embedded real-time devices for substation automation systems; and 

   
1 REN – Rede Eléctrica Nacional, is responsible for the uninterrupted supply of 

electricity and natural gas in Portugal. 
2 UP – University of Porto, Faculty of Engineering 
3 UM – University of Minho 
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to integrate engineering tools. The project also includes a demonstration 
system installed in a transmission substation near Lisbon. 

The purpose of the project described in this paper, developed in the context 
of the INTEGRA project, is to integrate compilation and code generation 
features for behavior definition in an existing model-based engineering. This 
computer aided engineering tool, shown in fig. 1, is a specific graphical toolset 
aimed at integrated configuration and management of distributed control 
systems for power systems automation.  

 
Fig. 1. The user interface of the engineering tool 

In order to maximize user productivity the development and compilation 
tools are to be seamlessly integrated within the core meta-model on which the 
toolset is based and within the engineering environment itself. The compiler 
architecture to be built should lend itself to support multiple input languages 
and multiple target platforms in the same environment. 

Traditionally a compiler is a standalone, non-interactive (batch), program 
that takes as input a program, written in an High-Level Programming 
Language, and generates as output another program with the same meaning 
but written in a Machine-Level (low level)  Programming Language (usually 
Assembly or even ByteCode). 

To accomplish its task, a traditional compiler is decomposed into two main 
blocks [6, 7]: the first one, the front-end (FE), is responsible for the analysis of 
the source text and the construction of an Internal, or Intermediate 
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Representation (IR) carrying on the program's meaning; and the second one, 
the back-end (BE), takes that IR and generates the final machine code. 

Moreover, the FE is itself structured in three layers: the lexical analyzer, the 
syntactic analyzer, and the semantic analyzer.  

In a classic approach, the compiler is automatically generated as a whole 
by a tool called compilers-compiler, or compiler-generator, that takes the 
grammar (a translation grammar, or an attribute grammar) of the source 
language and writes the code for the FE and BE of the desired compiler 
(specified by that grammar).  

So, a classic compiler processes one source language, and generates 
(without interacting with other programs or with the user) code for one target 
machine. 

In the context of INTEGRA project, discussed along the paper, we are 
interested in producing modules for the analysis or code-generation tasks that 
interact with the other modules already implemented in the platform, 
complying with pre-defined interfaces. 
In the scope of this paper the adoption of ST Language, as described in 
IEC 61131-3 International Standard [2] and the integration of a ST Compiler in 
the environment is discussed and presented as a case study for the approach 
above referred. 

Section 2 presents the application domain. In section 3 the language meta-
model on which the engineering environment is based is briefly described. In 
section 4 the ST language and its integration is presented. In section 5 our 
proposed compiler architecture is described in detail and in section 6 the 
compiler implemented in the INTEGRA project is briefly described. Section 7 
presents the main conclusions of this work. 

2. Application Domain 

This work is to be applied in engineering of distributed control systems for 
power systems automation. This application domain includes industrial control 
systems targeted at, but not limited to, (i) distribution and transmission 
substations, (ii) power stations (hydro, wind, etc.) and (iii) distribution 
networks. In such industrial systems the control, automation and protection 
functions are implemented in real-time autonomous systems involving 
cooperating intelligent electronic devices with physical process interface, 
various communication interfaces and user interface. The typical architecture 
is characterized by functional levels within a control hierarchy with mostly 
vertical information flows between levels and peer-to-peer communication at 
each control level. 

From a behavioral point of view these are soft real-time and event-driven 
systems. Each device in the system runs both firmware and/or user code 
which is characterized by boolean logic or more complex algorithms which are 
run periodically or on-event (in response to external events, data changes or 
time-based events). Program space state and temporal response is usually 
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ensured by program design and programming languages tend to be strongly 
typed and to limit code constructions such as recursion or involving dynamic 
memory allocation. 

3. ASML at a Glance 

The Automation System Modeling Language [9] (ASML) is a key element of 
the engineering environment via which specific device and system models are 
set-up, validated and deployed by the control system engineer. 

Through this language it is possible to describe complete device or system 
configurations including, but not limited to: (i) functionally-oriented control 
system object models, including input and output status, measurands, settings 
and controllable data, (ii) dynamic control system behavior, (iii) 
diagrammatical interactive user interface4, (iv) device hardware, (v) device 
local process interface, (vi) communication interfaces, (vii) data logging, etc. 

The ASML definition is based on the OMG [10] four-layered meta-modeling 
infrastructure. In fact, the abstract syntax of the language is defined as an M2 
[10] model, including static validation rules, and formally defined in a M3 [10] 
proprietary meta-meta-modeling language, similar to KM3 [11] or Ecore [12]. 
Several software components of the engineering toolset are generated by 
custom code generators using the ASML meta-model as input, as is the case 
of some graphical editors and model-checkers. The ASML itself is not a 
complete language since it lacks a specific concrete syntax. Device or system 
models are created and customized by the end-user with a set of text, 
graphical and diagrammatical editors. 

Functional design within ASML should incorporate function decomposition 
in atomic units, behavior encapsulation with interface definition via inputs and 
outputs, executable algorithmic definitions and function allocation to devices. 

Since the ASML is based in international standards, the languages 
selected for behavior definitions are to be compatible with the IEC 61131-3 
standard [1], focused on programming languages for automation systems.  

4. ST Language 

The IEC 61313-3 [2, 3] is an international standard which describes 
programming languages, both textual and graphical, for programmable 
controller software.  

The language introduced in this paper is a textual language called 
Structured Text (ST), which is a high level language, similar to Pascal, Ada or 
C.  

 
 
   

4 To be displayed from small LCDs to full-featured standard computers. 
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The standard defines about twenty elementary data: 

– BOOL; 
– SINT, USINT, INT, UINT, DINT, UDINT, LINT, ULINT 

(signed and unsigned integer data types); 
– REAL, LREAL (floating point data types); 
– TIME, DATE, TIME_OF_DAY, DATE_AND_TIME (time handling 

data types); 
– BYTE, WORD, DWORD, LWORD, STRING, WSTRING; 

Derived data types, such as structures, arrays and enumerations, can also 
be defined. 

The language establishes three kind of program organization units (POU): 
functions, function blocks and programs. Functions are conventional 
procedures with parameters and return values; function blocks include both 
procedure and data which may be kept between invocations. The main 
difference between functions and function blocks is that function produce the 
same result if called with the same arguments and functions blocks contain 
both code and data which persists between invocations.  

A program is a network of functions and function blocks, which is able to 
access external data, such as physical input/output of the programmable 
controller device. These units are run periodically or upon the occurrence of 
specific events. 

Expressions in ST are typical expressions built from operators, 
variable/constant access and other conventional constructs which, when 
evaluated, yield a value corresponding to one specific data type.  

Four types of statements are available in ST:  

– assignments; 
– conditional branches (if and case); 
– loops (for, while, repeat and until); 
– function block invocations; 

The invocation of a function consists of the function name followed by a list 
of arguments. The list of arguments can take two different forms: the formal 
argument list or the non-formal argument list. In the formal argument list, the 
arguments list has the form of a set of assignments of actual values to the 
formal argument names. In the non-formal argument list, the argument list 
shall contain exactly the same number of arguments, in the exactly order as 
given in the function definition.  

Function blocks shall be called by a statement which consist of the name of 
the function block instance followed by a formal or non-formal list of 
arguments.  
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MinMax

 
Fig. 2. Function Block MinMax external interface 

To exemplify the formal and the non-formal differences in invocations 
consider the MinMax function block shown in fig. 2. After declaring the 
variable minMaxInst as an instance of function block MinMax, the next two 
statements in ST language are equivalents and would produce the same 
output values:  
minMaxInst(0, 6, 4);  
minMaxInst(IN3 := 4, IN2 := 6);  

4.1. Integration of the ST Language in the ASML Meta-model 

 
Fig. 3. UML class diagram overview of the ASML meta-model 

The conditions, actions and procedures associated with functions and 
behavioral elements are described in ASML according to a meta-model 
adapted from IEC 61131-3 Structured Text [2]. Behavior units are defined as 
POUs which can be written in any supported language. The data typing meta-
model of the ASML is common to both behavior definition and other purposes, 
namely for communication interface definition. 

A simplified UML class diagram of the ASML meta-model is shown in fig. 3. 
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To support encapsulation and reuse of complete system behavior the 
ASML provides automation elements called Function Classes. A function 
class encapsulates an internal structure, algorithms and defines an external 
interface via data inputs, outputs and settings. The external interface of these 
classes may be defined according to user/design requirements and existing or 
future international standards of object models for power systems automation. 
Logical node classes may represent internal device behavior, communication 
interfaces, process interface or programmable behavior. 

The ASML defines device functional structure by instantiating function 
classes and allocating instances in different processing units (Resources) in 
the physical device. Interactions between Functions and/or physical 
input/output of the device are defined by input/output Associations. 

A small example of an ASML model is shown in fig. 4. In this example a 
Logical Node Class implementing a simplified alarm grouping is presented. 

 

Function

Program

Variables

Logical Node
Classes

Libraries

External
Interface

Logical Node
Instances

Enumeration

Function Block

Device
Configuration

 
Fig. 4. Small example of an ASML model 
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5. Compiler Architecture 

To facilitate reuse of definitions some ASML language meta-classes, such as 
POUs, may be defined in libraries. 

Libraries contain POU external interface and pre-compiled target 
independent code. Therefore behavior implementation is hidden allowing 
some level of intellectual property protection. 

5.1. Compiler Overview 

The compiling process, illustrated in fig. 5, is organized in two different stages: 
the compiling stage and the linking stage.  

 

 
Fig. 5. The compiling process 

The compiling stage illustrated in fig. 6. the compiling stage overview, is 
responsible to generate ObjectCode, which is target and language 
independent code.  

 

 
Fig. 6. The Compiling Stage Overview 

The compiler receives an ASML model to compile and generates an 
ObjectCode module containing both pre-compiled code and additional 
information for the linking stage. 
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The linking stage, illustrated in fig. 7, generates target specific executable 
code, called ByteCode, by assembling and translating pre-compiled code 
included in one or more ObjectCode modules.  

 

 
Fig. 7. The Linking Stage Overview 

The Linker effectively generates an executable code file for a specific 
device. Hence the linker also receives additional data such as the device 
configuration and target definitions defined in the source ASML model. 

The ByteCode is generated according to both the device configuration, 
omitting unnecessary code, and the platform definition. Thus, the ByteCode is 
both target specific and platform dependent. 

ByteCode files may be deployed to the corresponding device and executed 
by a Virtual Machine or through other device specific means. A platform 
independent virtual machine is also available for device integration and direct 
execution of the generated ByteCode which is not analyzed in this paper.  

5.2. Parser, Semantic Validator and Object Code Generator 

The translation-scheme adopted to develop the compiler presented in this 
paper was a semantic-directed translation. With this translation-scheme each 
compiler component has one specific job in the compilation process. The 
compiling stage is organized in three components: the Parser, the Semantic 
Validator and the Object Code Generator, as shown in fig. 8.  

With this architecture other programming languages can be easily plugged 
by simply implementing a parser which analyses that specific language and 
generates the same IR. No other components would, in principle, require 
modification. 
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Fig. 8. Compiler Architecture 

The Parser receives the POU body and instantiates the compiler 
intermediate representation if the POU body is syntactical correct.  

After constructing the intermediate representation all information needed 
for the semantic validation and translation process is produced and the source 
data may be discarded. 

The semantic analyzer is responsible to check if the intermediate 
representation of the POU body is semantically correct. The most relevant 
semantic validations take place in variables, expressions and invocations.  

– Each variable has a specific data type and optionally an initial value, 
therefore is necessary to validate if variable data type and initial value 
type are the same. When a variable is used in a statement is 
necessary to validate if the variable is accessible for the requested 
operation and if it is visible in the POU context. 

– To validate an expression is necessary that all the operator and 
operand data types are compatible.  

– To validate a function or function block invocation is necessary to (i) 
validate if the POU identifier is defined in the current ASML or in 
libraries, (ii) check if the invocation is allowed, for example, functions 
can not call function blocks, (iii) validate if the number of parameters 
are correct and (iv) check if the arguments data types are compatibles 
with the POU interface.  

Once validated, the intermediate representation of all POUs defined in an 
ASML source can feed ObjectCode generator. The Object Code Generator is 
responsible to generate a list of instructions accordingly to the POU 
intermediate representation. 

The Object Code Generator traverses the intermediate representation and 
generates a list of instructions for a stack based virtual machine.  
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5.3. Linker and Assembler 

The linking stage is organized in two components: the Linker and the 
Assembler, as shown in fig. 9.  

 

 
Fig. 9. Linker Architecture. 

The first task of the linker is to determine which procedures (programs, 
functions and function blocks) must be included in the ByteCode. Then, all 
these procedures are included in a single ObjectCode module. If one or more 
procedures cannot be found the linking stage is aborted and an error is 
reported. 

From this virtual ObjectCode module ByteCode can be generated 
accordingly to some target Definitions. These Definitions describe the device 
and the target platform, such as, byte order (little or big endian), unsupported 
data types and other relevant target restrictions or configuration. 

The Assembler is responsible to convert that virtual ObjectCode into a 
target specific ByteCode. Essentially, the Assembler job is to resolve 
instructions references (cross-references, references to variables, references 
to POUs, etc.) and index resulting references to code or data area accordingly 
to target variable size and instruction size.  

After defining these positions/indexes it is possible to resolve instruction 
references. The cross-references are replaced by the referenced instruction, 
references to variables are translated into the variable position into the data 
area and finally a reference to a POU is replaced into the position of its first 
instruction.  
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At last, this ByteCode is serialized into a binary file which can be directly 
interpreted (analyzed and executed) by, for example, a virtual machine.5 

To exemplify the compiling process presented in this paper, fig. 10 contains 
an example of a program that counts the number of times that a circuit 
breaker opened. The open operation is detected by invoquing a standard 
function block, the rising edge detector. Fig. 10 shows the intermediate 
representation and the list of instructions generated for the if statement.  

Structured Text

Instruction List

(...)

PUSHG_SI R_TRIG.Q

PUSHG_DI OpCnt.stVal

JZ

PUSH_DI 1

STOREG_DI OpCnt.stVal

ADD_DI

(...)

Condition

FBVarRef

R_TRIG Q

FBInstance FBVariable

ThenStatement[0]

Assignment

OpCnt.stVal

Variable Expression

Addition

1OpCnt.stVal

IF

Intermediate
Representation

R_TRIG(Pos.stVal <> Dbpos.On);
IF R_TRIG.Q

THEN 
OpCnt.stVal := OpCnt.stVal + 1;

END_IF;

 
Fig. 10. Example of compiling process outputs. 

6. Compiler Implementation 

To assist the implementation of the ST Parser (Lexical Analyzer and 
Syntactical Analyzer) we used ANTLR [4]. ANTLR, ANother Tool for 
Language Recognition, is a language tool that provides a framework for 
constructing recognizers, compilers and translators from grammatical 
descriptions containing actions in a variety of target languages. To preserve 
the technology adopted by the INTEGRA project, the selected language was 
the C# [5]. 

Since the IEC 61131-3 [2] defines a context-free grammar for the ST 
language, to build the ST Parser it was necessary to adapt the standard 
grammar to fit the ANTLR syntax.  

   
5 Code generation for Motorola and Intel based platforms was demonstrated. 
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The meta-model of the Structured Text language described in the ASML 
was developed in a Meta-Modeling Framework from EFACEC, the 
Developer´s Workbench Modeler. This Meta-Modeling Framework was 
developed in order to enhance software development productivity. Through 
this framework meta-models may be defined, validated and C# code may be 
generated according to some generation rules. The ST Parser instantiates the 
intermediate representation of each POU body according to the ST meta-
model defined in the ASML. 

Through the Developer´s Workbench Modeler it is also possible to specify 
a set of model validation rules and generate a semantic validator. The 
semantic analyzer was implemented using this approach. 

The back-end of the compiler, the ObjectCode Generator, the Linker and 
the Assembler were implemented in C#. 

7. Results and Conclusions 

In this paper we discussed a compiler architecture that supports multiple input 
languages and multiple target platforms. The integration of the textual 
language ST, described in the IEC 61131-3, in a model based engineering 
environment for control systems was presented and the ST Compiler as an 
application case study for the desired compiler architecture was described.  

To simplify the generation of a target specific executable code the 
compiling process was organized in two stages: the compiling stage and the 
linking stage. The compiling stage adopts semantic-directed translation 
methodology and generates target and language independent code that can 
be used to generate any target/platform specific code. The linking/assembly 
stage generates executable code according to the target device configuration 
and platform definitions, being therefore independent of the source languages 
used. 

It is also important to emphasize that the presented compiler architecture 
simplifies reuse, provides behavior encapsulation and makes use of library 
inclusion in the engineering environment. 

The implementation illustrated in this paper was applied in an on-site 
control system pilot project effectively meeting the requirements of the 
INTEGRA project. Results of the project have also met sufficient quality 
criteria and are expected to be revised and incorporated in standard industrial 
products. 
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