
UDC 004.438

ComponentJ: A Component-Based Programming
Language with Dynamic Reconfiguration

João Costa Seco, Ricardo Silva and Margarida Piriquito

CITI – Centre for Informatics and Information Technology, and
Departamento de Informática, Universidade Nova de Lisboa, Portugal

joao.seco@di.fct.unl.pt, {ardoric, mpiriquito}@gmail.com

Abstract. This paper describes an evolution of the ComponentJ pro-
gramming language, a component-based Java-like programming lan-
guage where composition is the chosen structuring mechanism. Com-
ponentJ constructs allow for the high-level specification of component
structures, which are the basis for the definition of compound objects. In
this paper we present a new language design for ComponentJ which is
more flexible and also allows the dynamic reconfiguration of objects.
The manipulation of components and composition operations at the pro-
gramming language level allows for the compile time verification, by a
type system, of safety structural properties of ComponentJ programs.
This work is based on earlier fundamental results where the main con-
cepts are presented and justified in the form of a core component calcu-
lus.

Keywords: Programming Languages, Dynamic Reconfiguration, Com-
ponent Oriented Programming, Type Systems, Java.

1. Introduction

Component-Oriented Programming has been, for the past few years, an
emergent programming paradigm. However, it has been supported mainly by
low-level technological solutions which support the interoperability of inde-
pendently developed objects. Traditionally, modularity in object-oriented lan-
guages has been based on the notion of class, and software reuse achieved
by either implementation inheritance or object aggregation. On the one hand,
inheritance is only useful in a limited set of scenarios and has been proved to
become problematic in the context of large-scale software systems, as it may
hinder evolution and interfere with issues such as dynamic loading [14]. On
the other hand, object aggregation is usually implemented by ad-hoc idioms
that manually build webs of objects.

This paper describes a component-based programming language, Com-
ponentJ, which introduces, at the level of the Java framework, appropriate
programming language abstractions and typing discipline for expressing the
assembly, adaptation, and evolution of software components. ComponentJ
was first introduced in [22] as the implementation of a basic model for typed

João Costa Seco, Ricardo Silva and Margarida Piriquito

 ComSIS Vol. 5, No. 2, December 2008 64

component programming. ComponentJ is presented in this paper with a new
language design implementing the more general component model presented
in [23,21] in the form of a core typed programming language whose first-class
values are objects, components, and configurators. In this abstract program-
ming model, objects are component instances (cf. class instances) which ag-
gregate state and functionality in the standard object-oriented sense; Com-
ponents are the entities that specify the structure and behavior of objects by
means of a combination and adaptation of smaller components and user-
defined building blocks. Each component is defined by a network of elements
which is specified by a functional-like value, a configurator. Configurator val-
ues denote composition operations which aggregate or connect existing ele-
ments in an implementation independent way, and are uniformly used to pro-
duce components or modify the internal structure of objects. Thus, this variety
of values and language constructs allows for both the expression of dynamic
construction of new components (based on runtime decisions) and the unan-
ticipated reconfiguration of component instances.

The ability to express component structures at a high-level of abstraction
allows for the static verification of structural soundness of components and
objects, by means of a type system. In particular, typing configurators with
intensional type information, revealing certain aspects of their internal struc-
ture, permits type safe composition and reconfiguration actions to be per-
formed on runtime values. Reconfiguration actions are, to some extent, a vio-
lation of the encapsulation principle ensured by the type system. In such cir-
cumstances, type safety is not entirely ensured at compile time, but is
achieved by a combination of a static type checking and a light-weight dy-
namic compatibility check. ComponentJ’s type system mimics that of the
component calculus introduced in [23,21] and carries to the Java environment
some of its key features, for instance, a structure-based type equivalence re-
lation instead of the name-based type equivalence of Java. The base calculus
also features bounded universal quantified types which are mapped into stan-
dard Java generic types.

The novelty of this approach when compared with other component models
lays in the dynamic construction and runtime modification of the structure and
behavior of objects in a statically typed Java-like setting. ComponentJ pro-
vides full computational power to build sophisticated and declaratively defined
networks of objects while clearly maintaining the definition of architecture and
computation separate. Existing approaches providing type safe assembly of
components choose either to establish the construction of module structures
at compile/link time [3,19] or limit the creation of extensible structures by de-
fining fixed extension patterns [2]. Other component models and associated
scripting and composition languages [16] have sophisticated runtime support
systems and provide a wide range of composition mechanisms. However,
component construction is based on programming conventions, reflection
mechanisms and explicit control over the structure of objects using opera-
tional code. We focus on a more fundamental approach where the con-
struction of new components and reconfiguration of objects and correspond-
ing soundness properties are defined together in a unique programming lan-

ComponentJ: A Component-Based Programming Language with Dynamic
Recofiguration

ComSIS Vol. 5, No. 2, December 2008 65

guage and a single type system. This provides the language with a higher
level of expressiveness and statically ensures the absence of runtime errors
due to ill-formed component structures.

In the remainder of the paper we present ComponentJ’s component model,
its main ingredients and features. We next use a small toy example to illus-
trate the language constructs and the properties ensured by the type system.
At the end of the paper, we relate this work with that of others and make some
final remarks about the resulting implementation.

2. Component Model

The abstract model underlying the ComponentJ language design aims to pro-
vide a new structuring mechanism in the setting of an object-oriented pro-
gramming language that safely expresses, at the programming language
level, the programming idioms typical of the component-oriented programming
style. This model is fully presented in [21] where it is instantiated in a typed
component core calculus. In order to provide such a structuring mechanism it
follows some fundamental design principles: making dependencies explicit,
promoting the notion of dynamic construction of systems, support the modifi-
cation of objects behavior at runtime, and guide the overall development by a
typeful approach.

Dependencies between modules are implicit in most programming lan-
guages and are resolved at compile time for each particular module. This
makes platforms based on dynamic loading of code prone to runtime errors
due to missing modules. The first principle pursued in this model is to make
explicit all dependencies between modules that would otherwise be incon-
spicuous in the code. This goal is achieved by representing modules as black-
boxes with explicitly declared required and provided interfaces, where control
over dependencies is placed at the programming language level. This ap-
proach resembles that of classic distributed systems defined in the style of
Architecture Definition Languages [15,17] or the layout of electronic circuits
where components are connected by wires. In both cases a system’s archi-
tecture and the implementation of its components are treated separately. One
of the important features of ComponentJ programming language is that it en-
sures the separation between the design of component’s structure and that of
computation by giving its runtime values a clear semantic interpretation.

Secondly, the abstract model aims at promoting the notion of dynamic con-
struction of systems as a way of swiftly adapting and evolving an application
to handle a large variety of situations. Therefore, the model states that the
definition of functionality and that of structure should be placed at the same
level, without compromising the separation of these concerns. Nevertheless,
computational code should have full expressive power to guide the construc-
tion of new component structures.

Another goal of the abstract model is to support the unforeseen modifica-
tion of the behavior of objects at runtime. The definition of language abstrac-

João Costa Seco, Ricardo Silva and Margarida Piriquito

 ComSIS Vol. 5, No. 2, December 2008 66

tions for composition operations allows for the definition and modification of
components and objects to be uniformly expressed and controlled. This is
achieved by defining small-grain composition operations and by mapping the
structure of components to that of the runtime representation of objects. Such
reconfiguration actions can be triggered in the course of computations and
modify the network of elements and connections that define their target ob-
jects. Reconfiguration can be used in the case of an exception being raised by
an object, or can be used in a planned way to implement software updates
during runtime.

The last and most important guideline for developing the component model
is typeful programming [9]. The representation of programming idioms, to
build component structures, by means of high-level programming language
abstractions allows for the application of type verification techniques to ensure
good properties of composition and reconfiguration actions. Type systems for
module languages usually ensure that module clients conform to their avail-
able interface information, that the implementation of modules satisfies the
declared interface, and that they properly use other concrete modules. Com-
ponentJ’s type system also ensures that components are defined without in-
conspicuous references to external services and, therefore, that the resulting
networks of connected objects are well formed. Furthermore, it ensures that
the internal structure of dynamically built components is well defined and that
reconfigured objects are sound. Intuitively, this corresponds to the absence of
method-not-found and null-dereferencing runtime errors regarding references
representing relations between objects in manually built webs of objects.

2.1. The Model Ingredients

The main ingredients of our model, which are also first-class values in Com-
ponentJ, are Objects, Components and Configurators. The interactions be-
tween the values of the language are depicted in Figure 1.

Objects aggregate state and functionality in the standard object-oriented
sense, and implement services (sets of methods) specified by standard inter-
face types. In opposition to the notion of objects in class-based languages,
which collapse a set of implemented services into one single provided inter-
face, objects in ComponentJ provide a separate view for each service. These
views are called ports and are identified by a name. Unlike other component-
based programming languages [2,11], which refer to the object-like entities as
components, objects in ComponentJ are component instances.

ComponentJ: A Component-Based Programming Language with Dynamic
Recofiguration

ComSIS Vol. 5, No. 2, December 2008 67

Fig. 1. Model Ingredients and Interactions.

Components are entities that specify the internal structure and behavior of
objects. The implementation of services provided by component instances is
defined by combination and adaptation of services provided by smaller com-
ponents. At the component level, ports also play an important role as the con-
nection unit between elements. A component declares a set of required ports,
which denote abstract implementations of external services, and a set of pro-
vided ports, which it must implement. In this sense, the implementation de-
fined in a component is parameterized in its required ports, which must be
satisfied before the component is used to produce objects.

Finally, configurators are the basic building blocks of the language; they de-
note composition operations that describe the way in which components are
aggregated and adapted to define other components or modify existing ob-
jects. The result of the application of a composition operation is called a com-
ponent structure. Configurators define new scripting blocks implementing
methods from scratch, introduce new elements into component structures,
declare provided or required ports, or connect resources in a component
structure. Configurators can also be combined to create other configurators
that produce their joint effect. Unlike component composition, where only the
required and provided ports are available to be connected in a black-box
style, the elements introduced by two combined configurators bind without
any visibility borders in a white-box style.

João Costa Seco, Ricardo Silva and Margarida Piriquito

 ComSIS Vol. 5, No. 2, December 2008 68

Fig. 2. ComponentJ language syntax

3. Programming Language

In this section we illustrate the syntax and semantics of ComponentJ. We pre-
sent the syntax of the language constructs and illustrate the language seman-
tics using a simple step-by-step presentation of an example of a component
implementing a counter.

3.1. Syntax

The syntax of ComponentJ, depicted in Figure 2, builds on an imperative frag-
ment of Java, features top-level declarations for components, and high-level
language constructs to express the manipulation of configurators, compo-
nents and objects. In this syntax we assume a set of user-defined types
whose identifiers are represented by the letter T, a set of component names
represented by the letter C and we use x, p, m to denote locally defined identi-
fiers.

The core of ComponentJ constructs is the set of expressions for basic
composition operations on configurators (requires, provides, methods, uses,
and plug) and a composition operation (c;c where expressions c and c’ de-
note configurators). Each composition operation denotes a configurator, which
is the kind of value expected as argument of expression compose, and in top-
level component declarations, to define its internal structure. The next expres-
sion in Figure 2 is the instantiation expression (new) which has a sub-
expression denoting a component and a list of port assignments (p:=…). Port

<componentDecl> ::= component C {<expression>}

<expression> ::= ... (Java expressions)
| provides T p
| requires T p

| methods m { <declaration> }

| uses x = <expression>
| plug <portname> into <portname>
| <expression> ; <expression>
| compose (<expression>)

| new <expression> with [p:= <expression>]

<portname> ::= x | x.p

<statement> ::= … (Java statements)
| reconfig <expression> using <expression>

with [p:= <expression>]

in <statement> else <statement>

ComponentJ: A Component-Based Programming Language with Dynamic
Recofiguration

ComSIS Vol. 5, No. 2, December 2008 69

assignments are the way to connect references of existing objects to newly
created component instances. Notice that method blocks include a set of dec-
larations of state variables and methods (cf. a Java class), which are written
using the imperative fragment of the language.

We also introduce the statement (reconfig o using c …) that applies a re-
configuration action, denoted by expression c to an object denoted by ex-
pression o. The outcome of the reconfiguration statement depends on the
result of a runtime procedure that checks whether the reconfiguration action is
safe based on a small amount of runtime type information. The in branch of
the statement is chosen if the reconfiguration is considered safe and the
modifications have taken place. Any new provided ports added to the object
are visible here. The else branch is chosen otherwise. Since reconfiguration
actions may introduce new required ports, and they must be connected to
some existing implementation, the reconfig statement also admits a with
clause. Notice that whenever this list of port assignments is empty the with
clause can be omitted.

We next illustrate the semantics of the language by means of an example.

3.2. An Example

We start by defining a component named Counter, implementing a service
specified by a port interface ICounter at a port named p. In this example, we
assume that there is an interface ICounter declared as having a method
named tick receiving an integer argument and returning an integer as result.
The functionality of component Counter is defined from scratch using only
the basic building blocks of the language.
component Counter {

provides ICounter p;
methods m {

int s = 0;
int tick(int n) {

s = s + n;
return s;

 }
}
plug m into p;}

Fig. 3. Component Counter

João Costa Seco, Ricardo Silva and Margarida Piriquito

 ComSIS Vol. 5, No. 2, December 2008 70

The top-level declaration above defines a component value statically asso-
ciated with the identifier Counter. The structure of component Counter is
depicted in Figure 3 where a black-triangle is used to denote a port at the
component border and the solid line connecting it to the method block m de-
notes the explicit connection of the service implementation to port p. Compo-
nent Counter is defined by a configurator value denoted by the sequence of
composition operations its declaration encloses. The composition operations
incrementally define its internal structure by declaring which elements it in-
cludes and how they are connected. A component definition establishes a
visibility border around its internal components and building-blocks, thus limit-
ing the communication with the outer context to well defined spots, the re-
quired and provided ports.

The first composition operation in this sequence, provides ICounter p,
declares a provided port named p, which acts as a placeholder for an imple-
mentation of the service. The next composition operation defines an imple-
mentation of a service by means of the composition operation methods m
{...}, a basic building block with the local name m, which includes state
variables (s) and method implementations (tick). The implementation de-
fined in method block m is connected to the declared port p by means of com-
position operation plug m into p. Method bodies are programmed using
an imperative fragment of the Java programming language.

Component Counter is next used to produce an object using the instantia-
tion operator new, and method tick is called at port p using standard dot
notation.

o = new Counter;
o.p.tick(1);

Notice that calling method tick on port p implies actually calling method

tick in method block m, which is explicitly connected to port p in the defini-
tion of component Counter.

Notice that component Counter above is a runtime value of the language;
in this case the identifier Counter is permanently bound to that particular
component. Next we define another component value by means of the com-
position and adaptation of existing components in a hierarchical way. The
component value is here assigned to a variable named ZeroCounter. To do
so, we use the composition operation uses c = Counter which introduces
component Counter under the local name c as an element of the component
structure being defined. An inner component is an element of a component
structure where only it’s required and provided ports are visible and can be
referred by other composition operations (see Figure 4).

ComponentJ: A Component-Based Programming Language with Dynamic
Recofiguration

ComSIS Vol. 5, No. 2, December 2008 71

ZeroCounter = compose (
provides ICounter p;
uses c = Counter;
methods x {

int tick (int y) {
if (y == 0) return c.p.tick(1);
else return 0;

}
 };

plug x into p);

Notice that the local name c for the provided port is bound to the occurrence
of the identifier c inside method tick. Since composition operations are ex-
pressions evaluated separately and configurators are values of the language,
we defined two separate name spaces which ensure the separation between
computation and component structures. There are names which denote val-
ues of the language (objects, components, and configurators) which follow the
standard name resolution strategy, and there are names visible in the context
of compositions and which are bound by the explicit composition operation on
configurators. An alternative to this kind of hierarchical composition, where
ZeroCounter is defined containing component Counter, is to factor out the
adaptation code in a separate component and composing it with a component
Counter at a different abstraction level. We next define component Zero-
Filter, whose internal structure is depicted in Figure 5, to intersect the calls
to method tick made at a provided port p implementing a service ICounter

Fig. 4. Component ZeroCounter

Fig. 5. Component ZeroFilter

João Costa Seco, Ricardo Silva and Margarida Piriquito

 ComSIS Vol. 5, No. 2, December 2008 72

and redirecting only the calls made with 0 as argument to an external imple-
mentation available at a required port c.

Fig. 6. Component Structure Using ZeroFilter

ZeroFilter = compose (
provides ICounter p;
requires ICounter c ;
methods x {

int tick (int y) {
if (y == 0) return c.tick(1);
else return 0;

}
};
plug x into p);

The composition operation requires ICounter c declares a required

port representing an external implementation of a service ICounter. This
required port is introduced in the component structure under the local name c.
Notice that before being actually used, required port c must be connected to
some concrete implementation. This may be achieved by using component
ZeroFilter in another component structure where a service ICounter is
available and connected to port c. The expression denoting such a composi-
tion is depicted in Figure 6:

provides ICounter p;
uses c = Counter;
uses f = ZeroFilter;
plug c.p into f.c ;
plug f.p into p

This expression denotes a configurator that can then be used to produce a
component.

A similar effect can be achieved by instantiating component ZeroFilter
and providing a reference to an existing port (of an already instantiated com-
ponent). Notice that a component can only be instantiated when all required
ports are connected to concrete service implementations. In spite of this re-
striction, ComponentJ features a component instantiation mechanism that
allows components with declared required ports to be instantiated as long as
existing implementations are connected to existing ports of objects (instead of
being composed with other components). This is a fundamental mechanism
that allows sharing of object references between several instances of compo-

ComponentJ: A Component-Based Programming Language with Dynamic
Recofiguration

ComSIS Vol. 5, No. 2, December 2008 73

nents. The code instantiating and connecting the required services is the fol-
lowing

z = new ZeroFilter with [c := o.p];

Notice that we assume here the existence of object o with a port named p
providing a service ICounter.

So far in the example, configurators are composition operations which de-
fine component structures used to define components. By choosing an ade-
quate internal representation for objects at runtime, we are able to use the
same composition operations on objects and in this way modify their internal
structure. Consider configurator addReset below

addReset =

provides IReset r;
methods y {

void reset() {
while (m.tick(1) > 0);

}
};
plug y into r

Notice that the configurator addReset refers to a method block m implement-
ing method tick which increments a counter with a given amount, and which
is now used to decrement a counter until it reaches 0.

An instance of component Counter, object o, can then be changed (and
used) by means of the following expression
reconfig o using addReset in o.r.reset() else...

The reconfig statement applies the composition operation denoted by con-
figurator addReset directly on the internal structure of object o. The applica-
tion of the configurator addReset to an instance of component Counter has
an effect which is approximate to the instantiation of a component defined by
a compound configurator that adds the elements of component Counter and
then the elements of addReset. Strictly from a structural point of view we can
say that composition and instantiation commute through reconfiguration, the
only difference being the modifications on the state of the objects. One of the
strongest points of our approach is that reconfiguration and composition are
defined uniformly using the same composition operations.

The typing discipline we present next ensures that reconfiguration is
atomic, meaning that it is either fully applied, or it is not applied at all and the
object’s internal consistency is maintained. This demands for a runtime test to
be performed before applying the reconfiguration operation to ensure that re-
configuration actions can proceed. The test is based on both static and dy-
namic type information which can be pre-processed to implement an efficient

João Costa Seco, Ricardo Silva and Margarida Piriquito

 ComSIS Vol. 5, No. 2, December 2008 74

test procedure, without the need for re-analyzing the source code. If the test
succeeds, then it is guaranteed that both target object and reconfiguration
action are conformant with the type checking performed statically and the re-
configuration can proceed. The internal structure of the target object is modi-
fied according to the given configurator and the object is available in the in
branch of the statement possibly exhibiting new provided ports. If the test fails
no reconfiguration is performed and an alternative action will be triggered in
the else branch.

4. Typing

ComponentJ instantiates the type system defined for the core component cal-
culus in [23,21]. The implementation keeps many characteristics of the base
model, such as structure-based type equivalence up to a certain level, and
extends the initial proposal with a new notion of subtyping between configura-
tors. It also introduces some improvements related to the usability of the lan-
guage, avoiding type annotations in some operations.

Besides a small set of primitive types, we define four different kinds of
types: port interfaces, object interfaces, component interfaces and script inter-
faces.

Port interfaces type the services available in the ports of objects, defined by
lists of method prototypes. In the case of the example presented in section 3,
port interface ICounter is defined by

port interface ICounter {

int tick (int n);
}

Object interfaces describe the type information of the services that objects
implement. ComponentJ keeps the decoupling between typing and implemen-
tation introduced in the base language, for instance, the instances of compo-
nent Counter have type

object interface OCounter {

provides ICounter p;
}

which means that objects with type OCounter implement a service typed with
ICounter located at a port named p. Based on this information we can al-
ready verify that the expression o.p.tick(1) is well typed: method tick is
called on a service with type ICounter located at port p which is selected
from object o with type OCounter.

Similarly, component interfaces also contain the type information about the
provided services of a component. Additionally, they register the services re-
quired by components. For instance, component Counter has type

ComponentJ: A Component-Based Programming Language with Dynamic
Recofiguration

ComSIS Vol. 5, No. 2, December 2008 75

component interface TCounter {

provides ICounter p;
}

this means that its instances have a type equivalent to OCounter above. On
the other hand, the type associated with component ZeroFilter is
component interface TCounterFilter {

requires ICounter c;
provides ICounter p;

}

TCounterFilter declares that the components it types depend on an ex-
ternal implementation of a service with type ICounter on port c in order to
implement a service of type ICounter on port p. Nevertheless, the instances
of ZeroFilter are typed the same way as the instances of component
Counter, with type OCounter.

Configurator values are typed more extensively; they are functional like
values whose type reveals type information about the elements they manipu-
late. This allows for the verification of the flexible composition mechanism we
presented for configurators (white-box) which is based on the nature of the
elements they manipulate and their local names. Configurator values are
typed with script interface types whose structure is split into two separate sec-
tions: introduced resources and needed resources
script interface S needs {
...
} introduces {
...
}

The first set of resources describes the elements needed by the composition
operation, i.e. the preconditions for its application. The other set of resources
describes the elements that remain visible for further composition after the
configurator has been applied, i.e. the post-conditions of its application. A re-
source in a script interface indicates the presence (introduced or required) of
an element in the component structure denoted by the configurator. It is ex-
pressed by a combination of a name (simple or compound), a role and a type.
A simple name (e.g. m) may denote a method block, a required port, or a pro-
vided port in a component structure; a compound name (e.g. c.p) denotes a
port of an inner component. Every entry in either the needed or introduced
sections follows one of the forms
open T <portname>
available T <portname>
provided T <portname>

João Costa Seco, Ricardo Silva and Margarida Piriquito

 ComSIS Vol. 5, No. 2, December 2008 76

required T <portname>
The meaning of a resource depends on whether it is included in the needs
section or the introduces section of the type. For instance, an open re-
source in the introduces section means that there is an unsatisfied depend-
ency (e.g. the configurator provides), whereas if it is used in the context of
needed resources, it means that in order for the configurator to perform its
action some other configurator must introduce an open resource (e.g. the
plug configurator). Available resources represent the implementation of a
given service, which can be used in compositions with other configurators.
Again, when used in the introduces set, it means that the current configurator
holds the implementations for others to use, and when in the needs set, it
means that some other configurator must introduce the resource so that it can
be used. Provided and required resources denote ports that are either intro-
duced or needed by the configurator. When two configurators are composed
together, the resulting type is the composition of both types, where entries in
the needed resources set are to be fulfilled by the other configurator intro-
duced resources, and vice-versa.

Take the example of the configurator provides ICounter p, which is
typed by the following script interface (S):
script interface S introduces {

open ICounter p;
provided ICounter p;

}

By adding a provided port to a component structure, this configurator in-
troduces the need for a compatible implementation, denoted by the resource
open ICounter p. The type also declares that this configurator adds a pro-
vided port, with type ICounter and name p which will appear in the interface
of every component made from these configurators.

The configurator plug m into p has type T described as follows:
script interface T needs {

available ICounter m;
open ICounter p;

} introduces {
available ICounter m;

}

The connection between two elements of a component structure has the pre-
condition that the source of the connection must be available to be connected,
that the target must be open for connection, and that the corresponding types
must be compatible. Unlike in the base component calculus the syntax of the
plug operation in ComponentJ is not type annotated. In this particular case,
the configurator could be used to connect any two elements, named m and p,

ComponentJ: A Component-Based Programming Language with Dynamic
Recofiguration

ComSIS Vol. 5, No. 2, December 2008 77

with two compatible types. In ComponentJ we assign the configurator with the
most general type possible.

When two configurators are composed, the resulting type is the composi-
tion of both types. The entries in the set of needed resources in the second
configurator may be fulfilled by resources introduced by the first configurator;
if not, the needed and introduced resources remain in the resulting type. By
composing the two configurators
provides ICounter p; plug m into p

we obtain the type

script interface U needs {

available ICounter m;
} introduces {

available ICounter m;
provided ICounter p;

}

This type describes the resulting configurator where a provided port is in-
troduced, and its implementation is connected to a method block m not yet de-
termined. The precondition denoted by the resource open ICounter p, in-
troduced by the provides configurator, is satisfied in the compound configu-
rator by the operation plug m into p (which has the corresponding post-
condition). The presence of an available building block m which implements a
service of type ICounter remains unresolved in the compound type.

The composition of configurator types is defined in such a way that the re-
sulting type describes the combined effect of the two configurators. A condi-
tion imposed by the type system is that configurators used to build compo-
nents must have an empty set of needed resources and must not introduce
any open resource in the end. Thus, the resulting component has a sound
structure. These properties over typing and semantics are expressed and
proved correct for the component calculus in a subject reduction result and
are expected to hold for ComponentJ [21].

The type system of the base calculus is adapted to ComponentJ by adding
some type inference for plug operations and method blocks. Method blocks
may reference ports, inner components or other method blocks from the com-
ponent structure they are enclosed in. The type system needs to figure out
what are the most general types for the unbound names that appear in
method bodies, so that, at composition time, these names can be bound to
the corresponding elements in a type-safe way. For plug operations, the type
constraints necessary to connect the referred elements without instantiating
them completely need to be maintained until the types of the concrete ele-
ments are determined.

A way to increase the flexibility of the language is by introducing a subtyp-
ing relation, as it provides a means of increasing functionality without having
to change the original system [9]. This kind of relation is also established in

João Costa Seco, Ricardo Silva and Margarida Piriquito

 ComSIS Vol. 5, No. 2, December 2008 78

ComponentJ, allowing the comparison of both object and component types.
The subtyping relation on object types is achieved by relating the different
structures with each other. If, for instance, an object a provides a given port of
type t, and another object b also provides a port of the same type t, and an-
other of type s, then it can be said that the type of object b is a subtype of the
type of object a, as it provides, at least, the same set of ports. When compar-
ing component types, the subtyping relation is as intuitive as between objects,
however, component types gather information not only about provided ports,
but also regarding required ones. In this case, the set of required ports is
compared contravariantly, and the set of provided ports is compared in a co-
variant way. Intuitively the principle of substitution between component values
states that a component value can replace another if it provides at least the
same services and if it requires at most the same services.

Typing reconfiguration actions requires more than static type information.
Although the interface of a given object is taken into account at compile time,
its internal structure is not known and cannot be used to type reconfiguration
actions. In order to establish the safety of a reconfiguration action, static typ-
ing is complemented with a runtime verification based on type information
gathered during the compilation process. The dynamic test compares type
information stored within the object and configurator values and checks for
their compatibility. The type system ensures that the changes in the interface
of the target object are visible and its future uses are well typed. Since the
type system detects and chooses whether to proceed with the reconfiguration
action, this implies having two different branches in a reconfig construct. In
one of the branches the object is visible with a modified interface, and in the
other branch the object is left unmodified.

5. ComponentJ Compiler

Although ComponentJ is a full-fledged language its main expected usage is
as a glue language for existing components which are then used in standard
Java code. For the sake of simplicity, the ComponentJ compiler [25,1] trans-
lates ComponentJ code into Java code supported by a lightweight runtime
support system. The compiler also generates special classes based on type
information, stubs and skeletons, aimed at helping in the process of using
ComponentJ components in Java and writing native components in Java.

In this section we will describe some of the implementation details of the
runtime support system we developed to support the execution of Compo-
nentJ programs, and in particular how the various entities in our model are
translated to Java code.

ComponentJ: A Component-Based Programming Language with Dynamic
Recofiguration

ComSIS Vol. 5, No. 2, December 2008 79

5.1. Runtime Support System

The internal structure of ComponentJ’s values is far richer than that of the ob-
jects in the Java virtual machine. The runtime support system designed to
support ComponentJ programs is responsible for the manipulation of compo-
nents and configurators as values and for the bookkeeping necessary in the
reconfiguration of objects.

The translation of ComponentJ into Java code mimics the semantics of the
base model [21] where objects contain four sets of internal elements, each
denoting different kinds of elements: required ports, provided ports, instances
of method blocks and internal component instances. In order to allow the un-
expected modification of the internal structure of an object the compile-time
names of component internal elements must be kept at runtime. This informa-
tion is essential whenever an object is reconfigured. In the current unopti-
mized version of the compiler this information is also used whenever a port is
accessed. Nevertheless, it is foreseeable that this penalty can be avoided and
direct references from ports to implementations can be used.

Components are first class values that work as object factories. They are
represented at runtime by Java objects containing a consistent sequence of
composition operations, which are used to assemble and produce its in-
stances. Components declared at top-level, statically bound to a name, are
represented by singleton classes with the same name. The values associated
with those components are similar to the dynamically created ones.

Finally, configurators are the first class entities representing the composi-
tion operations of the language. These operations range from the declaration
of the building blocks of an object, an operation to connect some of these
elements and a configurator composition operation. As first class entities in
our model, they are also supported by Java objects at runtime. Configurators
are applied to an object in order to change its internal structure, at instantia-
tion and reconfiguration time, by direct manipulation of their sets of inner ele-
ments. By using objects to represent configurators we can create and com-
pose new configurators and therefore support the translation of the sophisti-
cated composition mechanism of ComponentJ.

5.2. Instantiation

A crucial part of the translation of ComponentJ to Java is to correctly code the
instantiation process. The process of instantiating a component includes
some delicate issues that must be taken into consideration. One of these is-
sues is the order by which the internal components must be instantiated and
connected. This is particularly relevant because the language allows the com-
position of mutually dependent components. We solve this issue by dividing
the instantiation process into two phases: one phase where all instances are
created unlinked and connected at the level of the present composition, and
another where the connections are propagated throughout the hierarchy of

João Costa Seco, Ricardo Silva and Margarida Piriquito

 ComSIS Vol. 5, No. 2, December 2008 80

component instances. To support this two-phase assembly process we use
placeholder objects for port implementations which are useful to define the
connections without actually needing an already defined implementation. We
call these placeholder objects Port Providers, and their job is to maintain in-
formation about the port it is connected to, regardless it is directly provided by
a method block or indirectly provided by another port.

Once the first phase of the instantiation process is complete, all required in-
ternal objects are guarantied to exist, and all ports have a connection to their
implementation. In the second phase of the instantiation process we use this
information and follow all redirections so that all ports have a direct reference
to the method block implementing their service. This phase is crucial to avoid
following port redirections every time a port’s service is accessed and ending
up with uninitialized ports in the case of circular references.

5.3. Reconfiguration

In order to allow for the reconfiguration of objects we keep the structure of
port providers of an object even after the instantiation phase. The information
contained in these port providers is useful during the reconfiguration opera-
tions to allow references to be automatically updated whenever a port’s im-
plementation is changed. We perform these updates in a bottom-up fashion
and we use a publish-subscribe policy to maintain a network of port providers
that need to be notified when changes are made in a particular port.

5.4. Integration with Java Programs

The Java code obtained from compilation of a ComponentJ program is struc-
tured in a series of classes using the runtime support system at a low level of
abstraction in the manipulation of the runtime representation of configurators,
components, and objects. In order for ComponentJ to be well-integrated with
the Java language we need configurators, components, and ComponentJ ob-
jects to be manipulated in a user-friendly and type safe way at a level of ab-
straction close to that of ComponentJ.

Integration goes both ways: to use ComponentJ components in Java pro-
grams and to use components programmed using the Java language inside
ComponentJ programs. In order to do so our compiler generates two kinds of
helper classes: stubs, which are used to help the programmer use Compo-
nentJ components in Java, and skeletons, which are used to help the pro-
grammer in the process of programming in Java a component usable by
ComponentJ.

Stub classes are based on the type information present in the ComponentJ
code, and can be generated for each declared component interface. Stub
classes also provide a wrapper around a ComponentJ component and allow
the creation of instances with the help of a more natural and type safe inter-

ComponentJ: A Component-Based Programming Language with Dynamic
Recofiguration

ComSIS Vol. 5, No. 2, December 2008 81

face than the one available in the runtime support system. The resulting com-
ponent instances are equipped with methods that directly access the services
on each port as well as methods to access the corresponding port provider
should it be needed as a requirement for the instantiation of other component
instances. Stub classes also support the two-phase instantiation process de-
scribed earlier in this section. Port assignments can be satisfied by calling
special setter methods on the newly created object. The resulting object can-
not be used before the second phase is complete.

Skeletons are abstract classes that take care of the internal representation
of components and component instances and leave the implementation of the
provided services to be specified by user defined subclasses. They are de-
signed in such a way that almost all methods must be implemented by the
user or else the Java compiler fails to typecheck the concrete class.

6. Related Work

It is commonly accepted that the central issues of component-based lan-
guages are modularity and code composition. These issues are notably iso-
lated and studied in the field of mixin-modules [6,14,18]. The approaches us-
ing mixin-modules usually divide the languages in two layers: a first layer
where modules are built and composed, and another layer, the base lan-
guage, where the functionality of modules is defined. Composition is defined
by binding of names and renaming operations instead of explicit connection of
exported and imported names as in ComponentJ. One approach taken to im-
plement Mixin modules in Java, SmartJavaMod [3], defines a meta-language
to build and compose Java-modules. Unlike this approach, ComponentJ
brings the composition operations to execution time and allows the module
structure to be manipulated at runtime.

Other component based programming languages, such as ArchJava [2],
use composition as a possible structuring mechanism at the programming
language level. Both ArchJava and ComponentJ present mechanisms that
allow the building of composite components, however, in ArchJava it is not
possible, for instance, to export the behavior of internal components and to
define new component structures at runtime. Unlike ComponentJ, whose
components are used to instantiate objects, ArchJava’s components hold
state variables, implemented methods and communication ports. By doing so,
dynamic construction of component structures is only allowed within pre-
established connection patterns.

The Fractal component model [7,8] is a runtime support system that can be
used both to define software architecture and functionality, as well as to per-
form dynamic reconfigurations of Fractal structures. These goals are achieved
by means of a series of calls to a sophisticated support system or by using its
underlying scripting language FScript. In Fractal, dynamic reconfiguration is
achieved by introducing a control layer in the component definition, allowing
external interfaces to introspect and reconfigure the components internal fea-

João Costa Seco, Ricardo Silva and Margarida Piriquito

 ComSIS Vol. 5, No. 2, December 2008 82

tures. The safety of these operations is not ensured, although some ap-
proaches to solving this problem have been suggested [16]. In ComponentJ,
however, dynamic configuration is achieved with no need to perform intro-
spection, and is ensured to be safe by a combination of static type checking
and a lightweight dynamic verification.

One of ComponentJ’s main features is the ability to perform dynamic re-
configuration of software systems, while ensuring that reconfiguration only
occurs if no typing problems arise in the reconfigured system. Other ap-
proaches have been presented to reconfigure systems at runtime by manipu-
lating modules at system level [26,5] and at the level of programming lan-
guages [24,12]. However, our approach allows the modeling of unanticipated
reconfiguration of objects, which seems to be a new approach at the level of
strongly typed programming language design. Reconfiguration is also a topic
addressed in mixin-modules in a stateless context of modules [13] where
composition operations can be interleaved with computation. Unlike this work
we deal with an object-oriented and imperative setting.

SOFA (SOFtware Appliances) and DCUP (Dynamic Component UPdate)
[20] were designed with the goal of dealing with common component-based
programming and automated software downloading challenges, such as com-
ponent updating at runtime, and silent software modification (minimum human
interaction). Update operations in SOFA are very similar to the dynamic re-
configuration ones in ComponentJ, as templates (or configurator in Compo-
nentJ) are applied to objects to change their functionality with no need to re-
compile the application. However, DCPU architecture introduces a new notion
where components are split into two parts, permanent and replaceable parts,
as well as into a functional and a control part. Updates only update the re-
placeable part of the component, replacing it with a newer version. The updat-
ing process is controlled by a component manager, which exists in the per-
manent part of the component, thus making the component itself responsible
for how the updating process is performed. Unlike this approach, the recon-
figuration mechanism in ComponentJ is designed to express unanticipated
reconfiguration actions at the program level.

Other component-based models and architectures have also been studied,
for application in specific domains, instead of general purpose ones. This is
the case of, for instance, SCA (Service Component Architecture) [10], which
provides a programming model (runtime system support) for systems based
on a service oriented architecture. It advocates the principles of service com-
position and reuse: a system can be composed of new services specifically
tailored for the intended application, as well as of components extracted from
existing systems and/or applications. SCA provides support for a wide spec-
trum of programming languages and frameworks (e.g. BPEL, PHP, Java) and
diverse communication mechanisms (e.g. Remote Procedure Call, Web ser-
vices). The assembly model defines the system in terms of service compo-
nents and composites. The former implement and use services; the latter de-
scribe the assembly of components from the point of view of its function. This
includes connections between components/services and the references the
system offers for its use. Again our approach lies on the design of fundamen-

ComponentJ: A Component-Based Programming Language with Dynamic
Recofiguration

ComSIS Vol. 5, No. 2, December 2008 83

tal type safe programming language mechanisms and not on the design of a
runtime support system with rich tools to address composition in multiple sce-
narios.

7. Concluding Remarks

We present a Java-like programming language that captures programming
abstractions related to the component oriented programming style. The de-
sign of ComponentJ inherits the four basic principles of an abstract compo-
nent model presented in [21,23]: explicit dependencies between components,
dynamic composition of new components, runtime reconfiguration of objects,
and strong typing. ComponentJ was first introduced in [22] already featuring
explicit dependencies between components and dynamic composition of new
components and is improved by the work presented in this paper to also allow
for the runtime reconfiguration of objects. These principles are captured in a
programming model [21] and presented in a core component calculus which is
closely followed in the design of ComponentJ. ComponentJ manipulates three
kinds of values: objects which are the central computing entity, similar to ob-
jects in the object-oriented programming paradigm; components which are
used to create objects, as classes in class-based languages; and configura-
tors which are used to define components and change existing objects. The
type system for ComponentJ ensures that components are well defined and
that reconfiguration maintains the soundness of the reconfigured objects.

The prototype compiler presented in this paper translates ComponentJ pro-
grams to Java, which allows ComponentJ components to be used in Java pro-
grams, and also permits the definition of native components in Java.

8. References

1. The ComponentJ Site. http://ctp.di.fct.unl.pt/~jcs/componentj.
2. Jonathan Aldrich, Craig Chambers, and David Notkin. Architectural Rea-

soning in ArchJava. In European Conference on Object-Oriented Pro-
gramming (ECOOP), pages 334-367. Springer, 2002

3. D. Ancona, G. Lagorio, and E. Zucca. Smart modules for Java-like lan-
guages. In 7th Intl. Workshop on Formal Techniques for Java-like Pro-
grams, 2005.

4. Davide Ancona and Elena Zucca. A Calculus of Module Systems. Journal
of Functional Programming, 12(2):91-132, 2002.

5. Gavin Bierman, Michael Hicks, Peter Sewell, and Gareth Stoyle. Formal-
izing Dynamic Software Updating. In On-line Proceedings of the Second
International Workshop on Unanticipated Software Evolution (USE), April
2003.

6. Gilad Bracha. The Programming Language Jigsaw: Mixins, Modularity
and Multiple Inheritance. PhD thesis, University of Utah, 1992.

João Costa Seco, Ricardo Silva and Margarida Piriquito

 ComSIS Vol. 5, No. 2, December 2008 84

7. E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. An
Open Component Model and its Support in Java. In Proceedings of the
International Symposium on Component-based Software Engineering
(CBSE'2004), Edinburgh, Scotland, 2004.

8. E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The
Fractal Component Model and Its Support in Java. In Software Practice
and Experience, special issue on Experiences with Auto-adaptive and
Reconfigurable Systems, 2006.

9. Luca Cardelli. Typeful Programming. In E. J. Neuhold and M. Paul, edi-
tors, Formal Description of Programming Concepts, pages 431{507.
Springer-Verlag, Berlin, 1991.

10. D. Chappel. Introducing SCA. Technical report, Chappell & Associates,
2007

11. Thierry Coupaye and Jean-Bernard Stefani. Fractal Component-based
Software Engineering. In Object-Oriented Technology. ECOOP 2006
Workshop Reader, volume 4379/2007 of Lecture Notes in Computer Sci-
ence, pages 117-129. Springer Berlin / Heidelberg, 2007.

12. Sophia Drossopoulou, Ferruccio Damiani, Mariangolia Dezani-
Ciancaglini, and Paola Giannini. Fickle: Dynamic Object Re-Classification.
In European Conference on Object-Oriented Programming (ECOOP).
Springer, 2001.

13. Sonia Fagorzi and Elena Zucca. A Calculus for Reconfiguration. In On-
line proceedings of International Workshop on Developments in Computa-
tional Models (DCM at ICALP05), 2005.

14. Ira R. Forman, Michael H. Conner, Scott H. Danforth, and Larry K. Raper.
Release-to-release binary compatibility in SOM. SIGPLAN Not.,
30(10):426-438, 1995.

15. David Garlan. Software architecture: a roadmap. In ICSE '00: Proceed-
ings of the Conference on The Future of Software Engineering, pages 91-
101, New York, NY, USA, 2000. ACM.

16. Marc Léger, Thomas Ledoux, and Thierry Coupaye. Reliable dynamic
reconfigurations in the fractal component model. In ARM '07: Proceedings
of the 6th international workshop on Adaptive and reflective middleware,
pages 1-6, New York, NY, USA, 2007. ACM.

17. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed
Software Architectures. In W. Schafer and P. Botella, editors, Proc. 5th
European Software Engineering Conf. (ESEC 95), volume 989, pages
137-153, Sitges, Spain, 1995. Springer-Verlag, Berlin.

18. Henning Makholm and J. B. Wells. Type inference, principal typings, and
letpolymorphism for first-class mixin modules. In Proceedings of the 10th
International Conference on Functional Programming, pages 156{167.
ACM Press.

19. S. McDirmid, M. Flatt, and W. Hsieh. Jiazzi: New-age components for old
fashioned Java. 2001.

20. František Plášil, Dušan Bálek, and Radovan Janeček. SOFA/DCUP: Ar-
chitecture for Component Trading and Dynamic Updating. pages 43-52.
IEEE CS Press, 1998.

ComponentJ: A Component-Based Programming Language with Dynamic
Recofiguration

ComSIS Vol. 5, No. 2, December 2008 85

21. J. C. Seco. Languages and Types for Component-Based Programming.
PhD thesis, Faculdade de Ciências e Tecnologia, Universidade Nova de
Lisboa, 10 2006.

22. J. C. Seco and L. Caires. A Basic Model of Typed Components. In Elisa
Bertino, editor, ECOOP 2000 - Object-Oriented Programming, 14th Euro-
pean Conference., number 1850 in Lecture Notes in Computer Science,
pages 108-128. Springer-Verlag, 06 2000.

23. J. C. Seco and L. Caires. Types for Dynamic Reconfiguration. In Peter
Sestoft, editor, Programming Languages and Systems, 15th European
Symposium on Programming, ESOP 2006, number 3924 in Lecture Notes
in Computer Science. Springer-Verlag, 03 2006.

24. Manuel Serrano. Wide Classes. In European Conference on Object-
Oriented Programming (ECOOP). Springer, 1999.

25. Ricardo Silva. Compilador e Sistema de Suporte à Execução da
Linguagem de Programação ComponentJ. Technical report, Faculdade
de Ciências e Tecnologia, Universidade Nova de Lisboa, 2008.

26. Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter Sewell, and Iulian
Neamtiu. Mutatis Mutandis: Safe and Flexible Dynamic Software Updat-
ing. In Proceedings of the ACM Conference on Principles of Programming
Languages (POPL), pages 183-194, January 2005.

João Costa Seco has received his B.Sc. in Computer Science by the Faculty
of Science and Technology of the New University of Lisbon in 1993, and his
M.Sc. and Ph.D. in Computer Science by the New University of Lisbon in
1997 and 2006, respectively. From 1996 to 2006 he has been a Teaching
Assistant at the Computer Science Department of the Faculty of Science and
Technology of the New University of Lisbon, and since 2006 he is an Assis-
tant Professor at the same University. His teaching activities are in the area of
Introductory Programming, Data structures, and Advanced Courses on Pro-
gramming Languages and Compilers. His research activities are related to
programming languages design and implementation. His PhD is focused on
type systems for component-based languages. His current interests also in-
clude type systems for programming languages with primitive support for con-
currency.

Ricardo Silva has received a B.Sc. in Computer Science by the Faculty of
Science and Technology of the New University of Lisbon in 2008, and is cur-
rently doing his M.Sc. at the same university. His research activities are in the
area of programming languages and models. Ricardo Silva is partially sup-
ported by the CITI/PLM/1000/2007 grant.

João Costa Seco, Ricardo Silva and Margarida Piriquito

 ComSIS Vol. 5, No. 2, December 2008 86

Margarida Piriquito has received her B.Sc. in Computer Science by the Fac-
ulty of Science and Technology of the New University of Lisbon in 2007. Cur-
rently she is enrolled in a M.Sc. in Computer Science Degree offered by the
same University. Her research activities are in the area of design and imple-
mentation of programming languages.

Received: July 16, 2008; Accepted: November 19, 2008.

