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Abstract. The system presented in this paper uses Contextual Logic 
Programming as a computational hub for representing and reasoning 
over knowledge modeled by web ontologies, integrating the approach 
with similar mechanisms which we already developed. As a result of its 
Logic Programming heritage, the system may also recursively 
interrogate other ontologies or data repositories, providing a semantic 
integration of multiple sources. The components required to behave as a 
SPARQL query engine are explained and examples of integration of 
different sources are shown – in particular, the case of multiple OWL 
ontologies is discussed.  
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1. Introduction 

The Semantic Web [5] is currently one of the most active and exciting 
research areas in computer science. Standard web pages provide data 
adequate for human comprehension, mixing presentation with content, which 
means that an automated agent cannot easily extract or reason about that 
information. The Semantic Web is a natural evolution of the World Wide Web 
which, hopefully, will provide the foundations for intelligent systems and agent 
layers over the Web.  

One important step towards the fulfilling of this vision is the emergence of 
systems that can, not only understand and reason over Semantic Web 
documents, but also retrieve and process knowledge originating from multiple 
heterogeneous information sources. One motivation and purpose for our work 
is to use contextual constraint logic programming [1] as a framework for 
Semantic Web agents, in which knowledge representation and reasoning for 
ontology documents can be carried out. As such, we adopted the GNU 
Prolog/CX programming system, partly described in [2] which incorporates 
persistence and program structuring through the use of contexts [1]. 
Throughout this paper, we describe a prototype implementation of a Semantic 
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Web system with three main components:  
− A core that is capable of representing web ontologies, integrating that 

representation with normal GNU Prolog/CX predicates and modules, in 
order to make them interoperable.  

− A SPARQL agent which can answer SPARQL queries about ontologies,  
– A back-end capable of mapping GNU Prolog/CX to SPARQL queries, 
thereby able to query external Semantic Web agents, returning the results as 
bindings for logic variables present in a GNU Prolog/CX program. This back-
end is meant to be integrated with the ISCO [2] framework and is similar to 
the built-in SQL generation.  

Web Ontology Languages 

The Semantic Web is based on existing standard technologies such as XML, 
RDF and RDF-Schema [16]. Although RDF Schema provides additional 
modeling primitives, like classes and properties, that enable the hierarchical 
organization of Web documents, a richer ontology modeling language was 
necessary. DAML-OIL [7] was then taken as the starting point for the W3C 
Web Ontology Working Group in defining OWL [17], the language that is 
aimed to be the standardized and broadly accepted ontology language for the 
Semantic Web [3]. OWL is defined as an extension of a sub set of the RDF 
vocabulary and is divided into three species [8]: OWL Lite, OWL DL and OWL 
Full.  

Query Languages 

An open research issue has been the specification of a standard query 
language that can access this kind of data. There are a variety wide of 
Semantic Web query languages [11], ranging from pure selection languages 
with limited expressivity to general purpose languages supporting di�erent 
data representation formats and complex queries. Among all the possibilities, 
we chose to follow the W3C working groups proposed standard: SPARQL 
[19], an RDF query language and protocol.  

The work presented herein is expanded from what was described in [15, 
10, 14], we explain some of the implementation choices and introduce some 
real world examples. The remainder of this article is structured as follows: 
Contextual Logic Programming is briefly recalled in section 2, in section 3 we 
discuss the knowledge representation and ontology querying using 
Contextual Logic Programming. The issue of querying remote SPARQL 
agents from within the CxLP framework is discussed in section 5. Finally, 
section 6 provides preliminary conclusions and points out possible directions 
for future research.  
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Related Work 

Since its emergence, the Semantic Web idea has been clearly exposed both 
in goals and vision. However, many decisions are yet to be made and many 
problems and issues remain to be resolved. Among others, capabilities for 
querying and data interchanging in the Semantic Web are two crucial steps 
towards the success of the vision. Although a few di�erent approaches to this 
topic already exist, we propose a contribution that focus on a di�erent point of 
view of the problem. Other available systems provide similar capabilities to 
XPTO, either in the representation of the ontologies, SPARQL query engines 
or in both aspects. Some of these systems are briefly introduced next:  
− Thea [22] - An OWL tool capable of parsing an OWL ontology and 

representing it using Logic Programming. It uses The SWI-Prolog Semantic 
Web library to parse the OWL ontologies into RDF triples and then builds 
the representation based on these results. The ontology is represented as 
Prolog terms and its structure is further described in [23];  

− Racer [21] - An OWL reasoner and inference engine for the Semantic Web. 
Implemented in Common Lisp, Racer is able to start multiple reasoners on 
the local machine and distribute its load among the Racer instances. It also 
uses query caching, each query sent by clients and each answer to that 
query obtained through reasoning can be cached by the system;  

− Protege [18] - A Semantic Web platform that provides tools to construct 
Web ontologies. It has a plug-in interface [13] that allows integration with 
Web ontology reasoners such as Racer;  

− Jena [12] - An Open Source Java framework for the Semantic Web. It 
provides API’s for two Semantic Web languages (OWL and RDF) and a 
SPARQL query engine known as ARQ, which allows Jena from within its 
framework to query an external SPARQL agent and process the returning 
results;  

− Pellet [20] - A reasoner for the OWL DL sub-language. It contains a query 
engine which supports answering queries formulated using SPARQL and 
supports reasoning with multiple ontologies;  

− F-OWL - F-OWL is implemented using Flora-2 which is a extension of F-
logic, a logic based language with some aspects of Ob ject-Oriented 
Programming. F-OWL is a rule based ontology inference engine for OWL 
which makes use of mechanisms of the underlying technology (XSB 
Prolog) such as tabling for result caching.  

2. Contextual Logic Programming  

Contextual Logic Programming (CxLP) is a simple yet powerful extension to 
the Prolog logic programming language which provides a mechanism for 
modularity.  

In CxLP a finite set of Horn clauses with a given name is designated by 
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unit. Abreu and Diaz [1] provide a revised specification for CxLP, which 
emphasizes the OOP aspects by means of a stateful model, allowed by the 
introduction of unit arguments. We now informally focus on some aspects of 
CxLP, namely parametric units; a more complete discussion can be found in 
[1].  

A unit is a parametric module, constituting the program’s static definition 
building blocks. Unit descriptor terms can be instantiated and collected into a 
list to form a context, which can be thought of as a dynamic property of 
computations. A context specifies the actual program (or theory) against 
which the current goal is to be resolved. In short, it specifies the set of 
predicates which are applicable. These predicates have definitions which 
result from the specific units which make up the context. A more extensive 
description of CxLP may be found in [1, 2].  

Some immediate parallels can be made between CxLP and Object 
Oriented Programming (OOP):  
Context and object (instance): A (possibly partly) bound context is a list of 
units which can be described as an ob ject instance. There is no true analog 
for the class concept, units being conceptually similar to components, 
although the context term skeleton may come close.  
Predicate and method : A predicate present in a unit is equivalent to a 
method definition in an OO setting;  
Goal and message : a goal evaluated in a particular context can be 
interpreted as sending a message (the goal) to an ob ject (the context);  
Unit argument and instance variable : unit arguments are variables whose 
scope is the entire unit, much like instance variables in OO;  
GNU Prolog/CX introduces a set of language operators called the context 
operators which are used to modulate the context part of a computation. In a 
nutshell, when executing a goal G in a context C = u1 .u2 ... where each ui is 
a parameterized unit, a CxLP Engine will traverse C looking for the first 
(topmost) unit that contains a definition for G’s predicate. G is then executed 
as if it were regular Prolog, in a new context that is the su�x of C which starts 
with unit ui . Some of the most frequently used operations and operators in 
GNU Prolog/CX are:1  
Context extension: U :> G, this operation extends the current context with 
unit U and then reduces goal G in the resulting context;  
Context switch: C :< G, evaluates goal G in context C , bypassing the 
current context;  
Supercontext: :^ G, evaluates goal G in the context obtained by removing 
the topmost unit from the current context. This is useful to layer specialized on 
top of generic behavior;  
Current context: :< C , unifies C with the current context;  
Calling context: :> C , unifies C with the cal ling context, i.e. the context 
which was active when the present goal was initially evaluated.  
In short, GNU Prolog/CX can be used to take an OO approach while retaining 
the benefits of (Constraint) Logic Programming, namely nondeterminism via 

   
1 For a more detailed and formal description, the reader is referred to [1]. 
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backtracking or constraint propagation and the logical variable as a means of 
carrying incomplete information. Informally, GNU Prolog/CX has been used 
as one of the base components for building web-based information systems, 
the other component being ISCO, a layer which provides persistence at the 
Prolog level by means of a relational database interface.  

Collectively, GNU Prolog/CX and ISCO become a flexible mediator 
framework in which different information sources may be integrated. This 
flexibility extends to the reasoning abilities of the resulting system as it can 
rely on a structured context to provide a variable theory against which to 
match goals: the context in which a CxLP goal is being proved provides its 
semantics. The CxLP context is made up of units which are the specific 
components that determine how a goal is interpreted; it is viable to have units 
which map to querying a relational database, others which compute their 
results using regular Prolog predicates and yet others which resort to different 
mechanisms, for instance querying a web service using SPARQL.  

3. System architecture  

The XPTO system is designed to achieve a exact representation of OWL 
ontologies using the methods provided by GNU Prolog/CX. The main 
motivation of the development of XPTO is the integration with ISCO [2], which 
allows accessing several heterogeneous sources of information: the ontology, 
other SPARQL agents or web services, the outcome of Prolog computations 
as well as relational databases.  

 

 
Fig. 1. System architecture 

The initial implementation of the XPTO system is divided in three parts:  
the core, a SPARQL front-end agent (FE) and a back-end (BE) that maps 
GNU Prolog/CX to SPARQL queries as represented in Figure 1.  
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3.1. Representation of ontologies  

Ontologies are represented using units: there will be one unit that indicates 
the elements (classes and properties) of the ontologies, another unit for 
individuals and one for each OWL class and property. This arrangement is 
illustrated in Figure 2.  
The individuals, along with their property values, are represented in the unit 
individuals. This unit stores, for each individual, the class it belongs to and, for 
each of the individual properties, its value.  

 
Fig. 2. Ontology representation schema 

The set of known ontologies are represented in a unit named ontology 
which lists the classes and properties of each loaded ontology. Each property 
and class listed in this unit can then be accessed in a uniform manner using 
the operator .> (See Section 3.3). This operator is defined as a context 
extension operation, i.e., based on the unit name it constructs a new context 
in which to evaluate the goal.  

In this paper, the ontology examples are taken from the Wine ontology [24] 
and the queries are also performed over this ontology. Next are described in 
more detail, along with partial examples2, each element of the representation:  

Ontology Unit This unit represents the ontology information: namespaces, 
headers, classes and properties. This is done by defining predicates for each 
case: ns/3, header/3, class/2 and prop/2. Each predicate contains, in the 
case of headers and namespaces, an entry with the ontology name, the 
respective “abbreviation” and its value and, for classes and properties, simply 
the ontology name and the class or property name.  

The information in this unit may be used to query which units belong to the 
ontology, thereby providing access to all the individuals in the ontology.  

It is possible to represent several ontologies, i.e. to load more than one 
ontology into XPTO, and thus querying multiple ontologies also becomes 
possible. To achieve this, it was necessary to alter both the naming of units 
and unit files, that is an evolution from the description provided in [14] (where 
property and class units where named after the property or class). To avoid 
name clashes, these units were given an internal unique name generated with 
a prefix property (or class ) and a sequential number. A mapping between the 
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unit name and the ontology element is kept in the ontologies unit in the 
predicate that lists the currently available properties and classes: prop/3 and 
class/3 respectively. A simple example follows: 
2 Due to space considerations, we omit the prefix 
http://www.w3.org/TR/2003/PR-owl-guide-20031209/ from the ontology URIs, 
which get shortened to &wine; and &food;, respectively  
 
prop(ontology_1, ’http://example.org/’#someProp, prop_1).  

class(ontology_1, ’http://example.org/’#someClass, class_1). 
 

The internal representation of the ontology elements stores the base 
namespace along with the name of the element, this choice provides a safe 
behavior when dealing with elements of di�erent ontologies with the same 
name. An example of this unit is presented in Figure 3.  

 
:- unit(ontologies).  
ns(ontology_1, xmlns, ’&wine;’).  
ns(ontology_1, xmlns:vin, ’&wine;’).  
header(ontology_1, rdfs:comment, ’ An example OWL ontology’).  
header(ontology_1, owl:priorVersion,  
’http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine’).  
class(ontology_1, ’&wine;’#’Wine’, class_1).  
class(ontology_1, ’&wine;’#’Vintage’, class_2).  
prop(ontology_1, ’&wine;’#locatedIn, prop_1).  
prop(ontology_1, ’&wine;’#adjacentRegion, prop_2).  
Fig. 3. Unit “ontologies” (partial)  

Property Units Each property unit contains the information relative to a 
specific property. The type of the property (datatype or ob ject) and, if 
specified any other information such as domain and range, property 
inheritance and property relations. This can be seen in Figure 4.  

These properties also define the method to access its value, given the 
individual name that shall be retrieved previously from the context.  

 
n:- unit(prop_1(A)).  
object(rdf:type(’http://www.w3.org/2002/07/owl’#’TransitiveProperty’)).  
domain_name(’http://www.w3.org/2002/07/owl’#’Thing’).  
range(’&wine;’#’Region’).  
type(object).  
item :- item(_).  
item(B) :- :^ item(B),  
access_property(B, prop_1, A).  
Fig. 4. Unit “prop 1” (partial)  

Class Units These units will represent the classes of the ontology and all 
information relevant to that class (as shown in Figure 5). The information 
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includes restrictions on the individual properties and class inheritance.  
It also includes a predicate class name/1 that provides the name of the 

current class. This predicate is used in by the query engine to determine the 
class that the query refers to.  

 
:- unit(class_1).  
axiom(subClassOf(’&wine;’#’Wine’,’&food;’#’PotableLiquid’)).  
subClassOf(’&food;’#’PotableLiquid’).  
descriptor(restriction(’&wine;’#hasMaker,  
constraint(allValuesFrom, ’&wine;’#’Winery’))).  
superClassOf(’&wine;’#’LateHarvest’).  
superClassOf(’&wine;’#’EarlyHarvest’).  
superClassOf(’&wine;’#’DessertWine’).  
unit_name(class_1).  
class_name(’&wine;’#’Wine’).  
Fig. 5. unit “class 1” (partial)  

Individuals Unit This unit is the unit that contains all the individuals, its 
properties and the information about individual relations. A partial example of 
this unit is presented in Figure 6. The individuals properties are stored as 
triples, much in the manner of RDF. These properties are defined in the 
predicate property/3. The first argument of this predicate indicates the name 
of the individual, the second indicates the property and the third argument 
contains the value of the property for that individual. All the individuals, along 
with their class, are listed in the predicate individual class/2. Individuals from 
unnamed classes are not included in this listing: they are only present in the 
unit that represents the class. This is done to avoid unwanted repetitions 
when querying the individuals that would be generated if the individuals of the 
unnamed classes were listed as the other individuals. These individuals are 
only available in the predicate individual/1 present in each unnamed class.  

There may also be present predicates for defining individual relations, such 
as differentFrom/2 and sameAs/2, each with individual names as their 
arguments. These indicate, respectively, that the individuals referred are 
different or the same [17]. The constructor owl:AllDifferent is represented as 
several differentFrom statements, each individual present in the constructor 
will generate one differentFrom statement relating it to every other individual 
in the list.  
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:- unit(individuals).  
individual_class(’Year1998’, ’&wine;’#’VintageYear’).  
individual_class(’USRegion’, ’&wine;’#’Region’).  
property(’MedocRegion’, locatedIn, ’&wine;’#’BordeauxRegion’).  
property(’LoireRegion’, locatedIn, ’&wine;’#’FrenchRegion’).  
differentFrom(’OffDry’, ’&wine;’#’Dry’).  
differentFrom(’OffDry’, ’&wine;’#’Sweet’).  
Fig. 6. Unit “individuals” (partial)  

3.2. Building the representation  

In order to query an ontology, that ontology must first be transformed and 
loaded into the system, in a way similar to the compilation process. This 
results in the ontology being represented as the structure described in Section 
3.1.  

XML parse 

In this step the ontology is handled as a plain XML file and therefore parsed 
using a standard XML parser.  

The selected parser was the “The Expat XML Parser”.3 The parser creates 
a Prolog term that is an accurate representation of the XML file, and apart 
from the possible comments in the ontology file, there is no loss of information 
in this transformation.  

Name analysis 

The next process is to match the term created by Expat and build a dictionary 
with all the information we need to generate the units and predicates that will 
represent the ontology. The body of the ontology is mapped focusing mostly 
on classes, properties, individuals and relations between these elements. 
Ontology headers are also stored to be included in the ontology definition unit.  

Unit generation 

At this stage, the system has all the information needed to generate the units 
that will represent the ontology, where each class and property will rise a 
di�erent unit. Those elements are available in the symbol table, so the 
mapping engine must walk through it, and for every item generate a unit 
according with the structure discussed in section 3.1.  

Compiling and loading the units: In GNU Prolog/CX, an unit must first be 
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compiled and loaded before one can execute its predicates. This means the 
system, after parsing an ontology and generating the units, must compile and 
load the Prolog file that contains each unit. This is achieved using the 
dynamic loading of GNU Prolog/CX. Compiling and loading the units 
represents the last step of the whole core system process, which starts by 
parsing the ontology, then the name analysis, unit generation, and finally the 
compilation and loading of the units.  

3.3. Querying an ontology  

The new ontology representation schema implies a new query format: it is 
necessary to explicitly include the namespace of the property or class in the 
query.  

This may be a logic variable (as shown in Figure 7) which can be used to 
either specify or inquire about the namespace part.  

 
3 http://expat.sourceforge.net/  
| ?- N#someClass .> someProp(F) :> item(I).  
F = ’http://example.org/’#’somePropValue’  
I = ’http://example.org/’#’someIndividual’  
N = ’http://example.org/’ ?  
Fig. 7. Query example  

The most direct way of retrieving the class individuals is to use the goal 
item/1 as shown in Figure 8. There is also a goal item/0 that has the exact 
behaviour of item/1 but has no direct arguments, this predicate, when used 
with the predicate units in the query will allow to access the property values 
ignoring the name of the individual.  

The item/1 goal binds, by backtrack, its argument to each individual of the 
class. There is also the possibility of querying all the individuals in the 
ontology by omitting a class in the query.  

The value of the properties can be accessed by including the unit that 
represents the property in the context query. This enables selecting only a 
subset of the properties. The argument of the property unit will be bound to 
the value of the property for the corresponding individual, as shown in Figure 
9.  
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| ?- N#’IceWine’ .> item(N#A).  
A = ’SelaksIceWine’  
N = ’http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine’ ?  
Fig. 8. Accessing an individual of a class  

| ?- N#’IceWine’ .> hasFlavor(N#F) :> hasBody(N#B) :> item(N#I).  
B = ’Medium’  
F = ’Moderate’  
N = ’http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#’  
I = ’SelaksIceWine’ ?  
Fig. 9. Accessing individuals and properties  

3.4. Units for refining ontology queries  

We propose a number of units which may be used to form queries. We 
proceed to briefly describe them.  

individual/1  

Including this unit in the context unifies its argument with the individual name 
in the same manner as item/1. Using this unit provides a more explicit query, 
by indicating we want the individual name and calling the goal item/0 instead 
of item/1. Use of this unit is shown in Figure 10.  

 
| ?- .> individual(N#I) :> item.  
I = ’WhitehallLanePrimavera’  
N = ’http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine’ ?  
Fig. 10. individual example  

class/1  

If this unit is included in the context it will unify its argument with the class of 
the matching individual. This is useful to determine the class of the individual 
when querying the entire ontology, as shown in Figure 11.  

property/2  

This unit allows to access the properties of the individual without prior 
knowledge of its name or to query for the property name based on the 
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property value. The first argument is the property name and the second the 
property value (Figure 12).  

all/2  

Including this unit in the execution context is analogous to using a findall in 
Prolog. The first argument is the element and the second will be the list of the 
elements in the specified form. This allows to retrieve the set of solutions for 
the variables present in the query, as exemplified in Figure 13.  

 
| ?- .> class(_N#C) :> item(_N#I).  
C = ’IceWine’  
I = ’SelaksIceWine’ ?  
Fig. 11. class example  

| ?- N#’IceWine’ .> individual(N#I) :> property(N#P,N#V) :> item.  
I = ’SelaksIceWine’  
N = ’http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine’  
P = locatedIn  
V = ’NewZealandRegion’ ?  
Fig. 12. property example  

optional/1  

This unit receives as its argument another unit such as property/2 or a 
property unit and will succeed with the results if the unit specified in its 
argument succeeds. Otherwise it will succeed leaving any variables in its 
argument unbound. This is similar to the SPARQL optional statement [19].  

3.5. Native Prolog query representation  

To make simple queries easier for Prolog programmes, there is the possibility 
of creating custom predicates that encapsulate the contextual queries. The 
arguments to these predicates must be defined explicitly after loading the 
ontology and are follow the conventions:  
− Predicate functor is the name of the class  
− The first argument is the name of the individual.  
The arguments that are present in the predicate after the individual name are 
specified when defining the predicates. This specification requires indicating 
the class for which to generate the predicate (that will be the functor of the 
predicate) and a list of properties that corresponds to the sequence of 
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arguments after  
 

| ?- N#’Chardonnay’ .> individual(N#I):> all(I, L) :> item.  
L = [’BancroftChardonnay’,  
’FormanChardonnay’,  
’MountEdenVineyardEdnaValleyChardonnay’,  
’MountadamChardonnay’,  
’PeterMccoyChardonnay’]  
Fig. 13. all example  

the individual. This allows the user to choose which properties will be present 
in the generated predicate.  
The generated Prolog representation is listed in Figure 14.  
 
’IceWine’(A, B, C) :-  
 _N#’IceWine’ .> optional(hasMaker(_N#B)) :>  
 optional(hasColor(_N#C)) :>  
 item(_N#A).  
Fig. 14. generated predicate  

This approach is limited because of the fixed arity of the predicates. Some 
individuals may not have a value for all the properties (an unbound variable 
for that property will be returned in this case) and other individuals may have 
properties that are not present in the predicate and thus the user is unable to 
retrieve its value with these predicates, using this method.  

4. A SPARQL agent in CxLP 

SPARQL is a Candidate Recommendation for a RDF query language [19] that 
is under continued development towards becoming the standard query 
language for the Semantic Web [11].  

This chapter describes the Front End (FE), the component of the 
application dedicated to SPARQL query resolution: it allows for the possibility 
of querying the internal representation of the ontology using the SPARQL 
query language. The FE is split into 3 parts: the parser, the query resolution 
and the returning of the results as XML. The implemented SPARQL parser 
follows the specifications of the language defined in [19] and the results are 
returned in XML as specified in [4].  

SPARQL has 4 types of queries: select, ask, construct and describe. The 
select query is used to retrieve the values of the properties and individuals. 
Ask simply returns a boolean answer depending on the veracity of the query. 
The construct and describe are not currently implemented as they would 
return data as RDF graphs.  

The parser constructs a GNU Prolog/CX context representing the query; 
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this context is then activated by sending a message to calculate the output 
and display the resulting XML form. This specification allows our system to be 
easily made available trough a web service.  

The following sections briefly describe the SPARQL query language, the 
resolution of queries and the XML output of the system.  

4.1. Query representation  

The mapping process (SPARQL parser) transforms a SPARQL query into a 
GNU Prolog/CX context. The execution of this context will bind the variables 
present in the query with the results.  

The representation of query elements, such as SPARQL variables and 
resources, is presented next.  

Representation of variables and resources SPARQL variables appear in 
the generated context for the query using the PrologVariable representation, 
enabling a simple access to the value of the variable or direct instantiation of 
an unbound variable. This representation can be seen in the GNU Prolog/CX 
context shown in Figure 16.  

There are some other structures needed to display the results: it is 
necessary to store the name of the variable in the SPARQL query in order to 
return it in the results. To achieve this, all the variables in the SPARQL query 
are stored in a list that will be the argument of the unit vars/1. The elements of 
this list are in the format SparqlVariableName = PrologVariable that 
represents the assignment of each SPARQL variable present in the query to a 
logic variable. PrologVariable will start unbound and, as the context is 
resolved, will be instantiated with the solutions it may have.  

Resources are represented using Prolog terms (for prefixed IRIs) or atoms 
in the case of complete IRIs. For example, <http://example.org/book/book1> 
will be is represented as ’http://example.org/book/book1’.  

For prefixed names are represented as Prolog compound terms of arity 2 
with the functor ’:’. Assuming the following prefix definition: PREFIX dc: 
<http://purl.org/dc/elements/1.1/>, the prefixed name dc:title is represented as 
dc:title. If the prefix name is empty the atom ’’ will be used to represent it.  

This representation allows for the IRI to be resolved using the information 
stored in the unit prefix which contains the prefixes specified in the SPARQL 
query.  

Context structure The parser receives as input a SPARQL query, shown in 
Figure 15, and returns the context to be executed (Figure 16). The example 
query presented in Figure 15 is a select query containing two basic graph 
patterns with a shared variable: ?t and the context produced by the parser in 
shown in Figure 16.  

A SPARQL query is represented as GNU Prolog/CX context whose 
structure is similar to the structure of the query. The elements of the query 
can be clearly identified in the representation: select, where as well as the 
Modifiers (if there are any present in the query).  

A context is represented by a Prolog list containing unit names. The first 
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element of the list will be the unit that first tries to evaluate the goal upon 
execution. The individuals and property values are gathered from the units in 
a higher position in the context. This way in the final positions of the list are  
 
SELECT  
?flavor ?color  
WHERE {  
?t :hasFlavor ?flavor .  
?t :hasColor ?color .  
}  

Fig. 15. Query example (simple select)  

[ where([set([  
triple(A,hasFlavor,B),  
triple(A,hasColor,C) ])  
]),  
select([flavor=B,color=C]),  
vars([flavor=B,color=C,t=A]) ]  
Fig. 16. Generated context (partial) for the query in Figure 15  

found the units select/1 (in the case of a select query) and vars/1. These units 
contain in their arguments a list of variables and will allow any unit in the 
context to access either all the variables in the context or the selected 
variables.  

The generated parser was tested against a set of the most common 
SPARQL queries and against SPARQL syntax examples present in [19]. 
Although there are cases not being handled by the resolution system the 
parser itself is able to generate the correct context for the query.  

Each of the elements present in the SPARQL query is represented in the 
generated context by one or more parametrized units. The already described 
vars/1 and select/1 units hold the all the variables present in the query and 
the variables that are to be returned, respectively.  

Although not presented in Figure 15 the units from, prefix and base are 
always present in the generated context (even if absent in the query). If any of 
these keywords are not present in the query the corresponding unit will 
contain an empty list (this can be noted in the complete context presented in 
Figure 18).  

A group of graph patterns, that appears in the SPARQL query enclosed by 
’{’ and ’}’ is represented as the unit set/1, where the argument of the unit 
contains the representation (as units) of the enclosed graph patterns.  

The unit that is the core of the query engine is triple/3. This unit will 
represent a simple graph pattern and the arguments of the unit are 
respectively the subject, property and object of the graph pattern. This unit 
will be responsible for accessing the dataset in order to bind the variables that 
may appear in the arguments or test if the pattern has a solution.  
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PREFIX foaf: <http://xmlns.com/foaf/0.1/>  
PREFIX dc: <http://purl.org/dc/elements/1.1/>  
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>  
SELECT ?name  
WHERE { ?x foaf:givenName ?givenName .  
OPTIONAL { ?x dc:date ?date } .  
FILTER ( bound(?date) ) }  
Fig. 17. Query example  

[where([set([  
triple(A,foaf:givenName,B),  
optional([set([  
triple(A,dc:date,C)  
])]),  
filter([bound(C)])  
])]),  
from([]),  
select([name=D]),  
prefix([foaf=’http://xmlns.com/foaf/0.1/’,  
dc=’http://purl.org/dc/elements/1.1/’,  
xsd=’http://www.w3.org/2001/XMLSchema#’]),  
base([]),  
vars([name=D,x=A,givenName=B,date=C])]  
Fig. 18. Context generated for the query in Figure 17  

4.2. Result extraction and output  

The query resolution is triggered by evaluating the goal item in the context 
returned by the mapping process. This is akin to sending the message item to 
an object. The core unit in this process is the unit triple/1 which is responsible 
for instantiating the variables in the query by accessing the internal 
representation of the ontology.  

Also, currently, the from clause has no effect since the instantiation is done 
with an already loaded ontology.  

triple/3  

The core unit in this process is the unit triple/3 which is responsible for 
instantiating the variables in the query by accessing the internal 
representation of the ontology. The implementation of this unit is shown in 
Figure 19.  

It generates one query to the system core for each property that appears in 
the SPARQL query. The pattern in line 3 of Figure 16 will generate the 
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following query:  
 

.> property(hasFlavor,F) :> item(I).  
 

The argument of the item/1 goal will be instantiated with the name of the 
individual (in this case the variable I). The arguments of the unit property are 
the name of the property being queried and the value of that property for the 
returned individual. Using the property unit to query the internal 
representation has the advantage of being able to perform the query using a 
variable in the position of the property name (instead of “hasFlavor” in the 
example).  

The results of this query will be bound to the representation of the variables 
present in the SPARQL query.  

 
:- unit(triple(S, P, O)).  
item :-  
 .> property(P,O) :> item(S).  
Fig. 19. Unit triple  

Also, currently, the from clause has no effect since the instantiation is done 
with an already loaded ontology.  

Each basic operation is represented as a unit. All the units that are present 
in the context generated by the SPARQL parser will answer to the goal item/0 
or item/1 (in case of the unit returning a bound solution). Each unit will then 
perform the operation it represents based on its arguments and on the result 
of the parent context.  

The units that alter the query results (the Solution Modifiers ), such as 
order by, limit and distinct fetch all the bound variables from the parent 
context collecting them in a list. They them perform its operation on over the 
elements of the list thus achieving a new list with the results. This will be the 
final list to be presented as XML.  

XML output The output of the SPARQL query execution is an XML 
document with a sparql element. This element has then two sub-elements: 
the head element and the results element (always shown in this order).  

The first element for a select query is a list of all the variable names 
present in the SPARQL query. For an ask query (that only returns a boolean) 
no elements are present. The second element (results) is a list of result 
elements.  

The result element has two boolean attributes: ordered and distinct, that 
are always specified. They indicate, respectively, if the list of results is 
ordered and if the elements are all different. Its value is defined by the 
presence or absence of the modifiers distinct and order by in the SPARQL 
query. The resulting XML of the query in Figure 15 is shown in Figure 20.  
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<sparql>  
<head>  
<variable name="flavor"/>  
<variable name="body"/>  
</head>  
<results ordered="false" distinct="false">  
<result>  
<binding name="flavor">"Medium"</binding>  
<binding name="body">"Moderate"</binding>  
</result>  
</results>  
</sparql>  
Fig. 20. XML output of the query example   

5. Mapping Prolog to SPARQL Queries  

The back-end component of XPTO behaves as a mapping system from GNU 
Prolog/CX queries to SPARQL which is capable of communicating with 
SPARQL endpoints. Although it can be viewed as a single independent 
component, the purpose is to integrate it in a manner that it will allow the 
XPTO-using programmer to query external and internal ontologies using the 
same query syntax and declarative context mechanics as the internal system. 
Figure 21 illustrates the architecture of XPTO with the integration of the 
SPARQL back-end component.  

To query the external SPARQL endpoints the next steps are followed:  
1. The back-end translates a GNU Prolog/CX goal into a SPARQL query;  
2. The resulting SPARQL query is sent to the appropriate SPARQL web 

service;  
3. The solution set, described by an XML document, is fetched and the 

corresponding logic variables which occurred in the original query are 
nondeterministically bound.  
It is necessary to provide additional information in order to query the 

external agent if the SPARQL protocol [6] is to be used. This includes, among 
others, the url of the service, the data format of the response and, possibly, 
an ontology URI. The latter means that external agents may have capabilities 
for querying ontologies from any given Internet location, such as the XML 
Armyknife Semantic Web service [9]. The response format can vary from 
different types like simple HTML for Internet browsing purposes, or the 
SPARQL Query Results XML Format [4] for agents like ours.  
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Fig. 21. System architecture 

5.1. Generating SPARQL SELECT queries  

A SPARQL query in the back-end environment is a GNU Prolog/CX context 
execution similar to the ones defined by the XPTO main mapping engine. The 
query is always composed of three parts:  
1. One URI of the external Semantic Web service;  
2. One or more property restrictions;  
3. An execution predicate which refers individuals.  
Figure 22 illustrates a definition of a back-end query and its three 
components.  

 
QUERY := sparql(URI) /> N1#P1 ... Nn#Pn :> ITEM  
URI := URL  
P := property(VALUE) or where(PROP, VALUE)  
ITEM := item(INDIVIDUAL)  
Fig. 22. Back-End Query Definition  

On the left side of the main operator ’/>’ the external SPARQL endpoint 
URI is specified and, on the right side, the goals and query restrictions. The 
latter part of the query triggers the query that will be mapped to SPARQL.  

This translation is obtained by transforming each property present in the 
query into a triple that relates the property value to the individual.  
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The triples are extracted by the union of each property term of the right 
side and the item term, which represents the sub ject of the triple. The 
following query:  

 
sparql(’uri.org’) /> N1#property1(V1) :>  
N2#where(PROP, ’value2’) :> item(IND).  
 
will be translated into the triples:  
 
(?IND, N1#property1, ?V1)  
(?IND, N2#?PROP, ’value2’)  
 

All unbound Prolog variables represent SPARQL variables in the triples. To 
state a value in the query and therefore apply a restriction to the solution, a 
Prolog atomic value can be used to bind a Prolog variable.  

If more than one solution is available for the query, all the results are 
retrieved using the Prolog backtracking mechanism.  

To ask for a property name, i.e, to generate a triple in which the property 
position is a variable, the auxiliary unit where/2 should be used (as illustrated 
in the previous example). Note that this clause can also be used like a single 
ask property, by grounding the first argument to a Prolog atom named with 
some property that describes the individual.  

The triples generation process divides the GNU Prolog/CX query 
information into two parts: the variables, i.e, what is asked and the triple sets. 
This will result in a direct and transparent translation to SPARQL, where the 
variables in the query will be the SELECT clause arguments and the triples 
will form the sets in the WHERE clause.  

5.2. Query example  

Figure 23 shows an example of a back-end query that asks a SPARQL 
endpoint to search the Wine4 ontology for all the individuals that have both 
hasBody and hasColor properties.  

The generated SPARQL query (Figure 24) is then sent to the SPARQL 
endpoint. In order to successfully communicate with it, the back-end must first 
encode the query as specified in the SPARQL Protocol for RDF [6] and if a 
successful query response code is returned, a solution file is received. This 
file follows the SPARQL Query Results XML Format [4] and includes one 
solution.  
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?- sparql(’http://xmlarmyknife.org/api/rdf/sparql/’) />  
N#hasBody(A) :>  
N#hasColor(B) :> item(I).  
A =’Medium’  
B =’White’  
N =’http://www.w3.org/2001/sw/WebOnt/guide-src/wine’  
I =’http://www.w3.org/2001/sw/WebOnt/guide-src/wine’ # ’SelaksIceWine’  
Fig. 23. GNU Prolog/CX query and solution  

It is then parsed and the solution values are returned as bindings for Prolog 
variables as illustrated by the last lines in Figure 23.  

In the present example, the solution presents exactly one individual, 
SelaksIceWine, and the values Medium and White for properties hasBody 
and hasColor respectively. This means the whole ontology only has one 
individual that has both of these properties defined.  

 
4The ontology is accessible in http://www.w3.org/TR/owl-guide/wine.rdf 
SELECT ?id ?hasColor ?hasBody  
WHERE { ?id :hasColor ?hasColor. ?id :hasBody ?hasBody.}  
Fig. 24. Generated SPARQL query  

6. Conclusion  

The system we described and implemented provides a representation 
abstraction layer for web ontologies that can be accessed by logic programs.  
The selected web languages, SPARQL and OWL, have been shown to be 
appropriate for the scope of our work: to build a working proof-of-concept 
system which allows us to experiment with Contextual Logic Programming to 
represent and query ontologies in a way which draws on Prolog’s 
expressiveness as well as the powerful composition mechanisms of CxLP.  

We illustrated how this representation can be used to develop Semantic 
Web agents by describing two components: a front-end and a CxLP back-
end. There are aspects of other, existing systems that will benefit from the 
ability to query SPARQL sources: for instance, we are working on 
transparently integrating the SPARQL back-end into the ISCO [2] system.  

Future Work 

Supporting a well-defined OWL sublanguage is necessary in order to provide 
reliable, trusted semantic web agents which will be usable in wider application 
sceneries. We are working towards providing provably correct OWL DL 
compatibility at the reasoning level, over the internal representation. This 
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issue is orthogonal to the rest of the work described herein but it is essential if 
we expect the system to gain acceptance in the design of Semantic Web 
agents.  

The implemented SPARQL agent currently does not cover the full language 
specification. Although full SPARQL language support is not our immediate 
intended purpose, we are working towards providing complete support for it. A 
performance study, including a proper comparison with related systems, has 
already been partially performed [14] and will be further expanded as the 
implementation evolves.  
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