
UDC 004.42

Representing and Querying Multiple Ontologies
with Contextual Logic Programming

Nuno Lopes1, Cláudio Fernandes2, and Salvador Abreu2

1Digital Enterprise Research Institute,
National University of Ireland, Galway

nuno.lopes@deri.org
2Universidade de Évora
{cff,spa}@di.uevora.pt

Abstract. The system presented in this paper uses Contextual Logic
Programming as a computational hub for representing and reasoning
over knowledge modeled by web ontologies, integrating the approach
with similar mechanisms which we already developed. As a result of its
Logic Programming heritage, the system may also recursively
interrogate other ontologies or data repositories, providing a semantic
integration of multiple sources. The components required to behave as a
SPARQL query engine are explained and examples of integration of
different sources are shown – in particular, the case of multiple OWL
ontologies is discussed.

 Keywords: Ontologies (OWL), Logic Programming, SPARQL.

1. Introduction

The Semantic Web [5] is currently one of the most active and exciting
research areas in computer science. Standard web pages provide data
adequate for human comprehension, mixing presentation with content, which
means that an automated agent cannot easily extract or reason about that
information. The Semantic Web is a natural evolution of the World Wide Web
which, hopefully, will provide the foundations for intelligent systems and agent
layers over the Web.

One important step towards the fulfilling of this vision is the emergence of
systems that can, not only understand and reason over Semantic Web
documents, but also retrieve and process knowledge originating from multiple
heterogeneous information sources. One motivation and purpose for our work
is to use contextual constraint logic programming [1] as a framework for
Semantic Web agents, in which knowledge representation and reasoning for
ontology documents can be carried out. As such, we adopted the GNU
Prolog/CX programming system, partly described in [2] which incorporates
persistence and program structuring through the use of contexts [1].
Throughout this paper, we describe a prototype implementation of a Semantic

Nuno Lopes, Cláudio Fernandes, and Salvador Abreu

40 ComSIS Vol. 5, No. 2, December 2008.

Web system with three main components:
− A core that is capable of representing web ontologies, integrating that

representation with normal GNU Prolog/CX predicates and modules, in
order to make them interoperable.

− A SPARQL agent which can answer SPARQL queries about ontologies,
– A back-end capable of mapping GNU Prolog/CX to SPARQL queries,
thereby able to query external Semantic Web agents, returning the results as
bindings for logic variables present in a GNU Prolog/CX program. This back-
end is meant to be integrated with the ISCO [2] framework and is similar to
the built-in SQL generation.

Web Ontology Languages

The Semantic Web is based on existing standard technologies such as XML,
RDF and RDF-Schema [16]. Although RDF Schema provides additional
modeling primitives, like classes and properties, that enable the hierarchical
organization of Web documents, a richer ontology modeling language was
necessary. DAML-OIL [7] was then taken as the starting point for the W3C
Web Ontology Working Group in defining OWL [17], the language that is
aimed to be the standardized and broadly accepted ontology language for the
Semantic Web [3]. OWL is defined as an extension of a sub set of the RDF
vocabulary and is divided into three species [8]: OWL Lite, OWL DL and OWL
Full.

Query Languages

An open research issue has been the specification of a standard query
language that can access this kind of data. There are a variety wide of
Semantic Web query languages [11], ranging from pure selection languages
with limited expressivity to general purpose languages supporting di�erent
data representation formats and complex queries. Among all the possibilities,
we chose to follow the W3C working groups proposed standard: SPARQL
[19], an RDF query language and protocol.

The work presented herein is expanded from what was described in [15,
10, 14], we explain some of the implementation choices and introduce some
real world examples. The remainder of this article is structured as follows:
Contextual Logic Programming is briefly recalled in section 2, in section 3 we
discuss the knowledge representation and ontology querying using
Contextual Logic Programming. The issue of querying remote SPARQL
agents from within the CxLP framework is discussed in section 5. Finally,
section 6 provides preliminary conclusions and points out possible directions
for future research.

Representing and Querying Multiple Ontologies with Contextual Logic Programming

ComSIS Vol. 5, No. 2, December 2008. 41

Related Work

Since its emergence, the Semantic Web idea has been clearly exposed both
in goals and vision. However, many decisions are yet to be made and many
problems and issues remain to be resolved. Among others, capabilities for
querying and data interchanging in the Semantic Web are two crucial steps
towards the success of the vision. Although a few di�erent approaches to this
topic already exist, we propose a contribution that focus on a di�erent point of
view of the problem. Other available systems provide similar capabilities to
XPTO, either in the representation of the ontologies, SPARQL query engines
or in both aspects. Some of these systems are briefly introduced next:
− Thea [22] - An OWL tool capable of parsing an OWL ontology and

representing it using Logic Programming. It uses The SWI-Prolog Semantic
Web library to parse the OWL ontologies into RDF triples and then builds
the representation based on these results. The ontology is represented as
Prolog terms and its structure is further described in [23];

− Racer [21] - An OWL reasoner and inference engine for the Semantic Web.
Implemented in Common Lisp, Racer is able to start multiple reasoners on
the local machine and distribute its load among the Racer instances. It also
uses query caching, each query sent by clients and each answer to that
query obtained through reasoning can be cached by the system;

− Protege [18] - A Semantic Web platform that provides tools to construct
Web ontologies. It has a plug-in interface [13] that allows integration with
Web ontology reasoners such as Racer;

− Jena [12] - An Open Source Java framework for the Semantic Web. It
provides API’s for two Semantic Web languages (OWL and RDF) and a
SPARQL query engine known as ARQ, which allows Jena from within its
framework to query an external SPARQL agent and process the returning
results;

− Pellet [20] - A reasoner for the OWL DL sub-language. It contains a query
engine which supports answering queries formulated using SPARQL and
supports reasoning with multiple ontologies;

− F-OWL - F-OWL is implemented using Flora-2 which is a extension of F-
logic, a logic based language with some aspects of Ob ject-Oriented
Programming. F-OWL is a rule based ontology inference engine for OWL
which makes use of mechanisms of the underlying technology (XSB
Prolog) such as tabling for result caching.

2. Contextual Logic Programming

Contextual Logic Programming (CxLP) is a simple yet powerful extension to
the Prolog logic programming language which provides a mechanism for
modularity.

In CxLP a finite set of Horn clauses with a given name is designated by

Nuno Lopes, Cláudio Fernandes, and Salvador Abreu

42 ComSIS Vol. 5, No. 2, December 2008.

unit. Abreu and Diaz [1] provide a revised specification for CxLP, which
emphasizes the OOP aspects by means of a stateful model, allowed by the
introduction of unit arguments. We now informally focus on some aspects of
CxLP, namely parametric units; a more complete discussion can be found in
[1].

A unit is a parametric module, constituting the program’s static definition
building blocks. Unit descriptor terms can be instantiated and collected into a
list to form a context, which can be thought of as a dynamic property of
computations. A context specifies the actual program (or theory) against
which the current goal is to be resolved. In short, it specifies the set of
predicates which are applicable. These predicates have definitions which
result from the specific units which make up the context. A more extensive
description of CxLP may be found in [1, 2].

Some immediate parallels can be made between CxLP and Object
Oriented Programming (OOP):
Context and object (instance): A (possibly partly) bound context is a list of
units which can be described as an ob ject instance. There is no true analog
for the class concept, units being conceptually similar to components,
although the context term skeleton may come close.
Predicate and method : A predicate present in a unit is equivalent to a
method definition in an OO setting;
Goal and message : a goal evaluated in a particular context can be
interpreted as sending a message (the goal) to an ob ject (the context);
Unit argument and instance variable : unit arguments are variables whose
scope is the entire unit, much like instance variables in OO;
GNU Prolog/CX introduces a set of language operators called the context
operators which are used to modulate the context part of a computation. In a
nutshell, when executing a goal G in a context C = u1 .u2 ... where each ui is
a parameterized unit, a CxLP Engine will traverse C looking for the first
(topmost) unit that contains a definition for G’s predicate. G is then executed
as if it were regular Prolog, in a new context that is the su�x of C which starts
with unit ui . Some of the most frequently used operations and operators in
GNU Prolog/CX are:1
Context extension: U :> G, this operation extends the current context with
unit U and then reduces goal G in the resulting context;
Context switch: C :< G, evaluates goal G in context C , bypassing the
current context;
Supercontext: :^ G, evaluates goal G in the context obtained by removing
the topmost unit from the current context. This is useful to layer specialized on
top of generic behavior;
Current context: :< C , unifies C with the current context;
Calling context: :> C , unifies C with the cal ling context, i.e. the context
which was active when the present goal was initially evaluated.
In short, GNU Prolog/CX can be used to take an OO approach while retaining
the benefits of (Constraint) Logic Programming, namely nondeterminism via

1 For a more detailed and formal description, the reader is referred to [1].

Representing and Querying Multiple Ontologies with Contextual Logic Programming

ComSIS Vol. 5, No. 2, December 2008. 43

backtracking or constraint propagation and the logical variable as a means of
carrying incomplete information. Informally, GNU Prolog/CX has been used
as one of the base components for building web-based information systems,
the other component being ISCO, a layer which provides persistence at the
Prolog level by means of a relational database interface.

Collectively, GNU Prolog/CX and ISCO become a flexible mediator
framework in which different information sources may be integrated. This
flexibility extends to the reasoning abilities of the resulting system as it can
rely on a structured context to provide a variable theory against which to
match goals: the context in which a CxLP goal is being proved provides its
semantics. The CxLP context is made up of units which are the specific
components that determine how a goal is interpreted; it is viable to have units
which map to querying a relational database, others which compute their
results using regular Prolog predicates and yet others which resort to different
mechanisms, for instance querying a web service using SPARQL.

3. System architecture

The XPTO system is designed to achieve a exact representation of OWL
ontologies using the methods provided by GNU Prolog/CX. The main
motivation of the development of XPTO is the integration with ISCO [2], which
allows accessing several heterogeneous sources of information: the ontology,
other SPARQL agents or web services, the outcome of Prolog computations
as well as relational databases.

Fig. 1. System architecture

The initial implementation of the XPTO system is divided in three parts:
the core, a SPARQL front-end agent (FE) and a back-end (BE) that maps
GNU Prolog/CX to SPARQL queries as represented in Figure 1.

Nuno Lopes, Cláudio Fernandes, and Salvador Abreu

44 ComSIS Vol. 5, No. 2, December 2008.

3.1. Representation of ontologies

Ontologies are represented using units: there will be one unit that indicates
the elements (classes and properties) of the ontologies, another unit for
individuals and one for each OWL class and property. This arrangement is
illustrated in Figure 2.
The individuals, along with their property values, are represented in the unit
individuals. This unit stores, for each individual, the class it belongs to and, for
each of the individual properties, its value.

Fig. 2. Ontology representation schema

The set of known ontologies are represented in a unit named ontology
which lists the classes and properties of each loaded ontology. Each property
and class listed in this unit can then be accessed in a uniform manner using
the operator .> (See Section 3.3). This operator is defined as a context
extension operation, i.e., based on the unit name it constructs a new context
in which to evaluate the goal.

In this paper, the ontology examples are taken from the Wine ontology [24]
and the queries are also performed over this ontology. Next are described in
more detail, along with partial examples2, each element of the representation:

Ontology Unit This unit represents the ontology information: namespaces,
headers, classes and properties. This is done by defining predicates for each
case: ns/3, header/3, class/2 and prop/2. Each predicate contains, in the
case of headers and namespaces, an entry with the ontology name, the
respective “abbreviation” and its value and, for classes and properties, simply
the ontology name and the class or property name.

The information in this unit may be used to query which units belong to the
ontology, thereby providing access to all the individuals in the ontology.

It is possible to represent several ontologies, i.e. to load more than one
ontology into XPTO, and thus querying multiple ontologies also becomes
possible. To achieve this, it was necessary to alter both the naming of units
and unit files, that is an evolution from the description provided in [14] (where
property and class units where named after the property or class). To avoid
name clashes, these units were given an internal unique name generated with
a prefix property (or class) and a sequential number. A mapping between the

Representing and Querying Multiple Ontologies with Contextual Logic Programming

ComSIS Vol. 5, No. 2, December 2008. 45

unit name and the ontology element is kept in the ontologies unit in the
predicate that lists the currently available properties and classes: prop/3 and
class/3 respectively. A simple example follows:
2 Due to space considerations, we omit the prefix
http://www.w3.org/TR/2003/PR-owl-guide-20031209/ from the ontology URIs,
which get shortened to &wine; and &food;, respectively

prop(ontology_1, ’http://example.org/’#someProp, prop_1).

class(ontology_1, ’http://example.org/’#someClass, class_1).

The internal representation of the ontology elements stores the base
namespace along with the name of the element, this choice provides a safe
behavior when dealing with elements of di�erent ontologies with the same
name. An example of this unit is presented in Figure 3.

:- unit(ontologies).
ns(ontology_1, xmlns, ’&wine;’).
ns(ontology_1, xmlns:vin, ’&wine;’).
header(ontology_1, rdfs:comment, ’ An example OWL ontology’).
header(ontology_1, owl:priorVersion,
’http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine’).
class(ontology_1, ’&wine;’#’Wine’, class_1).
class(ontology_1, ’&wine;’#’Vintage’, class_2).
prop(ontology_1, ’&wine;’#locatedIn, prop_1).
prop(ontology_1, ’&wine;’#adjacentRegion, prop_2).
Fig. 3. Unit “ontologies” (partial)

Property Units Each property unit contains the information relative to a
specific property. The type of the property (datatype or ob ject) and, if
specified any other information such as domain and range, property
inheritance and property relations. This can be seen in Figure 4.

These properties also define the method to access its value, given the
individual name that shall be retrieved previously from the context.

n:- unit(prop_1(A)).
object(rdf:type(’http://www.w3.org/2002/07/owl’#’TransitiveProperty’)).
domain_name(’http://www.w3.org/2002/07/owl’#’Thing’).
range(’&wine;’#’Region’).
type(object).
item :- item(_).
item(B) :- :^ item(B),
access_property(B, prop_1, A).
Fig. 4. Unit “prop 1” (partial)

Class Units These units will represent the classes of the ontology and all
information relevant to that class (as shown in Figure 5). The information

Nuno Lopes, Cláudio Fernandes, and Salvador Abreu

46 ComSIS Vol. 5, No. 2, December 2008.

includes restrictions on the individual properties and class inheritance.
It also includes a predicate class name/1 that provides the name of the

current class. This predicate is used in by the query engine to determine the
class that the query refers to.

:- unit(class_1).
axiom(subClassOf(’&wine;’#’Wine’,’&food;’#’PotableLiquid’)).
subClassOf(’&food;’#’PotableLiquid’).
descriptor(restriction(’&wine;’#hasMaker,
constraint(allValuesFrom, ’&wine;’#’Winery’))).
superClassOf(’&wine;’#’LateHarvest’).
superClassOf(’&wine;’#’EarlyHarvest’).
superClassOf(’&wine;’#’DessertWine’).
unit_name(class_1).
class_name(’&wine;’#’Wine’).
Fig. 5. unit “class 1” (partial)

Individuals Unit This unit is the unit that contains all the individuals, its
properties and the information about individual relations. A partial example of
this unit is presented in Figure 6. The individuals properties are stored as
triples, much in the manner of RDF. These properties are defined in the
predicate property/3. The first argument of this predicate indicates the name
of the individual, the second indicates the property and the third argument
contains the value of the property for that individual. All the individuals, along
with their class, are listed in the predicate individual class/2. Individuals from
unnamed classes are not included in this listing: they are only present in the
unit that represents the class. This is done to avoid unwanted repetitions
when querying the individuals that would be generated if the individuals of the
unnamed classes were listed as the other individuals. These individuals are
only available in the predicate individual/1 present in each unnamed class.

There may also be present predicates for defining individual relations, such
as differentFrom/2 and sameAs/2, each with individual names as their
arguments. These indicate, respectively, that the individuals referred are
different or the same [17]. The constructor owl:AllDifferent is represented as
several differentFrom statements, each individual present in the constructor
will generate one differentFrom statement relating it to every other individual
in the list.

Representing and Querying Multiple Ontologies with Contextual Logic Programming

ComSIS Vol. 5, No. 2, December 2008. 47

:- unit(individuals).
individual_class(’Year1998’, ’&wine;’#’VintageYear’).
individual_class(’USRegion’, ’&wine;’#’Region’).
property(’MedocRegion’, locatedIn, ’&wine;’#’BordeauxRegion’).
property(’LoireRegion’, locatedIn, ’&wine;’#’FrenchRegion’).
differentFrom(’OffDry’, ’&wine;’#’Dry’).
differentFrom(’OffDry’, ’&wine;’#’Sweet’).
Fig. 6. Unit “individuals” (partial)

3.2. Building the representation

In order to query an ontology, that ontology must first be transformed and
loaded into the system, in a way similar to the compilation process. This
results in the ontology being represented as the structure described in Section
3.1.

XML parse

In this step the ontology is handled as a plain XML file and therefore parsed
using a standard XML parser.

The selected parser was the “The Expat XML Parser”.3 The parser creates
a Prolog term that is an accurate representation of the XML file, and apart
from the possible comments in the ontology file, there is no loss of information
in this transformation.

Name analysis

The next process is to match the term created by Expat and build a dictionary
with all the information we need to generate the units and predicates that will
represent the ontology. The body of the ontology is mapped focusing mostly
on classes, properties, individuals and relations between these elements.
Ontology headers are also stored to be included in the ontology definition unit.

Unit generation

At this stage, the system has all the information needed to generate the units
that will represent the ontology, where each class and property will rise a
di�erent unit. Those elements are available in the symbol table, so the
mapping engine must walk through it, and for every item generate a unit
according with the structure discussed in section 3.1.

Compiling and loading the units: In GNU Prolog/CX, an unit must first be

Nuno Lopes, Cláudio Fernandes, and Salvador Abreu

48 ComSIS Vol. 5, No. 2, December 2008.

compiled and loaded before one can execute its predicates. This means the
system, after parsing an ontology and generating the units, must compile and
load the Prolog file that contains each unit. This is achieved using the
dynamic loading of GNU Prolog/CX. Compiling and loading the units
represents the last step of the whole core system process, which starts by
parsing the ontology, then the name analysis, unit generation, and finally the
compilation and loading of the units.

3.3. Querying an ontology

The new ontology representation schema implies a new query format: it is
necessary to explicitly include the namespace of the property or class in the
query.

This may be a logic variable (as shown in Figure 7) which can be used to
either specify or inquire about the namespace part.

3 http://expat.sourceforge.net/
| ?- N#someClass .> someProp(F) :> item(I).
F = ’http://example.org/’#’somePropValue’
I = ’http://example.org/’#’someIndividual’
N = ’http://example.org/’ ?
Fig. 7. Query example

The most direct way of retrieving the class individuals is to use the goal
item/1 as shown in Figure 8. There is also a goal item/0 that has the exact
behaviour of item/1 but has no direct arguments, this predicate, when used
with the predicate units in the query will allow to access the property values
ignoring the name of the individual.

The item/1 goal binds, by backtrack, its argument to each individual of the
class. There is also the possibility of querying all the individuals in the
ontology by omitting a class in the query.

The value of the properties can be accessed by including the unit that
represents the property in the context query. This enables selecting only a
subset of the properties. The argument of the property unit will be bound to
the value of the property for the corresponding individual, as shown in Figure
9.

Representing and Querying Multiple Ontologies with Contextual Logic Programming

ComSIS Vol. 5, No. 2, December 2008. 49

| ?- N#’IceWine’ .> item(N#A).
A = ’SelaksIceWine’
N = ’http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine’ ?
Fig. 8. Accessing an individual of a class

| ?- N#’IceWine’ .> hasFlavor(N#F) :> hasBody(N#B) :> item(N#I).
B = ’Medium’
F = ’Moderate’
N = ’http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#’
I = ’SelaksIceWine’ ?
Fig. 9. Accessing individuals and properties

3.4. Units for refining ontology queries

We propose a number of units which may be used to form queries. We
proceed to briefly describe them.

individual/1

Including this unit in the context unifies its argument with the individual name
in the same manner as item/1. Using this unit provides a more explicit query,
by indicating we want the individual name and calling the goal item/0 instead
of item/1. Use of this unit is shown in Figure 10.

| ?- .> individual(N#I) :> item.
I = ’WhitehallLanePrimavera’
N = ’http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine’ ?
Fig. 10. individual example

class/1

If this unit is included in the context it will unify its argument with the class of
the matching individual. This is useful to determine the class of the individual
when querying the entire ontology, as shown in Figure 11.

property/2

This unit allows to access the properties of the individual without prior
knowledge of its name or to query for the property name based on the

Nuno Lopes, Cláudio Fernandes, and Salvador Abreu

50 ComSIS Vol. 5, No. 2, December 2008.

property value. The first argument is the property name and the second the
property value (Figure 12).

all/2

Including this unit in the execution context is analogous to using a findall in
Prolog. The first argument is the element and the second will be the list of the
elements in the specified form. This allows to retrieve the set of solutions for
the variables present in the query, as exemplified in Figure 13.

| ?- .> class(_N#C) :> item(_N#I).
C = ’IceWine’
I = ’SelaksIceWine’ ?
Fig. 11. class example

| ?- N#’IceWine’ .> individual(N#I) :> property(N#P,N#V) :> item.
I = ’SelaksIceWine’
N = ’http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine’
P = locatedIn
V = ’NewZealandRegion’ ?
Fig. 12. property example

optional/1

This unit receives as its argument another unit such as property/2 or a
property unit and will succeed with the results if the unit specified in its
argument succeeds. Otherwise it will succeed leaving any variables in its
argument unbound. This is similar to the SPARQL optional statement [19].

3.5. Native Prolog query representation

To make simple queries easier for Prolog programmes, there is the possibility
of creating custom predicates that encapsulate the contextual queries. The
arguments to these predicates must be defined explicitly after loading the
ontology and are follow the conventions:
− Predicate functor is the name of the class
− The first argument is the name of the individual.
The arguments that are present in the predicate after the individual name are
specified when defining the predicates. This specification requires indicating
the class for which to generate the predicate (that will be the functor of the
predicate) and a list of properties that corresponds to the sequence of

Representing and Querying Multiple Ontologies with Contextual Logic Programming

ComSIS Vol. 5, No. 2, December 2008. 51

arguments after

| ?- N#’Chardonnay’ .> individual(N#I):> all(I, L) :> item.
L = [’BancroftChardonnay’,
’FormanChardonnay’,
’MountEdenVineyardEdnaValleyChardonnay’,
’MountadamChardonnay’,
’PeterMccoyChardonnay’]
Fig. 13. all example

the individual. This allows the user to choose which properties will be present
in the generated predicate.
The generated Prolog representation is listed in Figure 14.

’IceWine’(A, B, C) :-
 _N#’IceWine’ .> optional(hasMaker(_N#B)) :>
 optional(hasColor(_N#C)) :>
 item(_N#A).
Fig. 14. generated predicate

This approach is limited because of the fixed arity of the predicates. Some
individuals may not have a value for all the properties (an unbound variable
for that property will be returned in this case) and other individuals may have
properties that are not present in the predicate and thus the user is unable to
retrieve its value with these predicates, using this method.

4. A SPARQL agent in CxLP

SPARQL is a Candidate Recommendation for a RDF query language [19] that
is under continued development towards becoming the standard query
language for the Semantic Web [11].

This chapter describes the Front End (FE), the component of the
application dedicated to SPARQL query resolution: it allows for the possibility
of querying the internal representation of the ontology using the SPARQL
query language. The FE is split into 3 parts: the parser, the query resolution
and the returning of the results as XML. The implemented SPARQL parser
follows the specifications of the language defined in [19] and the results are
returned in XML as specified in [4].

SPARQL has 4 types of queries: select, ask, construct and describe. The
select query is used to retrieve the values of the properties and individuals.
Ask simply returns a boolean answer depending on the veracity of the query.
The construct and describe are not currently implemented as they would
return data as RDF graphs.

The parser constructs a GNU Prolog/CX context representing the query;

Nuno Lopes, Cláudio Fernandes, and Salvador Abreu

52 ComSIS Vol. 5, No. 2, December 2008.

this context is then activated by sending a message to calculate the output
and display the resulting XML form. This specification allows our system to be
easily made available trough a web service.

The following sections briefly describe the SPARQL query language, the
resolution of queries and the XML output of the system.

4.1. Query representation

The mapping process (SPARQL parser) transforms a SPARQL query into a
GNU Prolog/CX context. The execution of this context will bind the variables
present in the query with the results.

The representation of query elements, such as SPARQL variables and
resources, is presented next.

Representation of variables and resources SPARQL variables appear in
the generated context for the query using the PrologVariable representation,
enabling a simple access to the value of the variable or direct instantiation of
an unbound variable. This representation can be seen in the GNU Prolog/CX
context shown in Figure 16.

There are some other structures needed to display the results: it is
necessary to store the name of the variable in the SPARQL query in order to
return it in the results. To achieve this, all the variables in the SPARQL query
are stored in a list that will be the argument of the unit vars/1. The elements of
this list are in the format SparqlVariableName = PrologVariable that
represents the assignment of each SPARQL variable present in the query to a
logic variable. PrologVariable will start unbound and, as the context is
resolved, will be instantiated with the solutions it may have.

Resources are represented using Prolog terms (for prefixed IRIs) or atoms
in the case of complete IRIs. For example, <http://example.org/book/book1>
will be is represented as ’http://example.org/book/book1’.

For prefixed names are represented as Prolog compound terms of arity 2
with the functor ’:’. Assuming the following prefix definition: PREFIX dc:
<http://purl.org/dc/elements/1.1/>, the prefixed name dc:title is represented as
dc:title. If the prefix name is empty the atom ’’ will be used to represent it.

This representation allows for the IRI to be resolved using the information
stored in the unit prefix which contains the prefixes specified in the SPARQL
query.

Context structure The parser receives as input a SPARQL query, shown in
Figure 15, and returns the context to be executed (Figure 16). The example
query presented in Figure 15 is a select query containing two basic graph
patterns with a shared variable: ?t and the context produced by the parser in
shown in Figure 16.

A SPARQL query is represented as GNU Prolog/CX context whose
structure is similar to the structure of the query. The elements of the query
can be clearly identified in the representation: select, where as well as the
Modifiers (if there are any present in the query).

A context is represented by a Prolog list containing unit names. The first

Representing and Querying Multiple Ontologies with Contextual Logic Programming

ComSIS Vol. 5, No. 2, December 2008. 53

element of the list will be the unit that first tries to evaluate the goal upon
execution. The individuals and property values are gathered from the units in
a higher position in the context. This way in the final positions of the list are

SELECT
?flavor ?color
WHERE {
?t :hasFlavor ?flavor .
?t :hasColor ?color .
}

Fig. 15. Query example (simple select)

[where([set([
triple(A,hasFlavor,B),
triple(A,hasColor,C)])
]),
select([flavor=B,color=C]),
vars([flavor=B,color=C,t=A])]
Fig. 16. Generated context (partial) for the query in Figure 15

found the units select/1 (in the case of a select query) and vars/1. These units
contain in their arguments a list of variables and will allow any unit in the
context to access either all the variables in the context or the selected
variables.

The generated parser was tested against a set of the most common
SPARQL queries and against SPARQL syntax examples present in [19].
Although there are cases not being handled by the resolution system the
parser itself is able to generate the correct context for the query.

Each of the elements present in the SPARQL query is represented in the
generated context by one or more parametrized units. The already described
vars/1 and select/1 units hold the all the variables present in the query and
the variables that are to be returned, respectively.

Although not presented in Figure 15 the units from, prefix and base are
always present in the generated context (even if absent in the query). If any of
these keywords are not present in the query the corresponding unit will
contain an empty list (this can be noted in the complete context presented in
Figure 18).

A group of graph patterns, that appears in the SPARQL query enclosed by
’{’ and ’}’ is represented as the unit set/1, where the argument of the unit
contains the representation (as units) of the enclosed graph patterns.

The unit that is the core of the query engine is triple/3. This unit will
represent a simple graph pattern and the arguments of the unit are
respectively the subject, property and object of the graph pattern. This unit
will be responsible for accessing the dataset in order to bind the variables that
may appear in the arguments or test if the pattern has a solution.

Nuno Lopes, Cláudio Fernandes, and Salvador Abreu

54 ComSIS Vol. 5, No. 2, December 2008.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT ?name
WHERE { ?x foaf:givenName ?givenName .
OPTIONAL { ?x dc:date ?date } .
FILTER (bound(?date)) }
Fig. 17. Query example

[where([set([
triple(A,foaf:givenName,B),
optional([set([
triple(A,dc:date,C)
])]),
filter([bound(C)])
])]),
from([]),
select([name=D]),
prefix([foaf=’http://xmlns.com/foaf/0.1/’,
dc=’http://purl.org/dc/elements/1.1/’,
xsd=’http://www.w3.org/2001/XMLSchema#’]),
base([]),
vars([name=D,x=A,givenName=B,date=C])]
Fig. 18. Context generated for the query in Figure 17

4.2. Result extraction and output

The query resolution is triggered by evaluating the goal item in the context
returned by the mapping process. This is akin to sending the message item to
an object. The core unit in this process is the unit triple/1 which is responsible
for instantiating the variables in the query by accessing the internal
representation of the ontology.

Also, currently, the from clause has no effect since the instantiation is done
with an already loaded ontology.

triple/3

The core unit in this process is the unit triple/3 which is responsible for
instantiating the variables in the query by accessing the internal
representation of the ontology. The implementation of this unit is shown in
Figure 19.

It generates one query to the system core for each property that appears in
the SPARQL query. The pattern in line 3 of Figure 16 will generate the

Representing and Querying Multiple Ontologies with Contextual Logic Programming

ComSIS Vol. 5, No. 2, December 2008. 55

following query:

.> property(hasFlavor,F) :> item(I).

The argument of the item/1 goal will be instantiated with the name of the
individual (in this case the variable I). The arguments of the unit property are
the name of the property being queried and the value of that property for the
returned individual. Using the property unit to query the internal
representation has the advantage of being able to perform the query using a
variable in the position of the property name (instead of “hasFlavor” in the
example).

The results of this query will be bound to the representation of the variables
present in the SPARQL query.

:- unit(triple(S, P, O)).
item :-
 .> property(P,O) :> item(S).
Fig. 19. Unit triple

Also, currently, the from clause has no effect since the instantiation is done
with an already loaded ontology.

Each basic operation is represented as a unit. All the units that are present
in the context generated by the SPARQL parser will answer to the goal item/0
or item/1 (in case of the unit returning a bound solution). Each unit will then
perform the operation it represents based on its arguments and on the result
of the parent context.

The units that alter the query results (the Solution Modifiers), such as
order by, limit and distinct fetch all the bound variables from the parent
context collecting them in a list. They them perform its operation on over the
elements of the list thus achieving a new list with the results. This will be the
final list to be presented as XML.

XML output The output of the SPARQL query execution is an XML
document with a sparql element. This element has then two sub-elements:
the head element and the results element (always shown in this order).

The first element for a select query is a list of all the variable names
present in the SPARQL query. For an ask query (that only returns a boolean)
no elements are present. The second element (results) is a list of result
elements.

The result element has two boolean attributes: ordered and distinct, that
are always specified. They indicate, respectively, if the list of results is
ordered and if the elements are all different. Its value is defined by the
presence or absence of the modifiers distinct and order by in the SPARQL
query. The resulting XML of the query in Figure 15 is shown in Figure 20.

Nuno Lopes, Cláudio Fernandes, and Salvador Abreu

56 ComSIS Vol. 5, No. 2, December 2008.

<sparql>
<head>
<variable name="flavor"/>
<variable name="body"/>
</head>
<results ordered="false" distinct="false">
<result>
<binding name="flavor">"Medium"</binding>
<binding name="body">"Moderate"</binding>
</result>
</results>
</sparql>
Fig. 20. XML output of the query example

5. Mapping Prolog to SPARQL Queries

The back-end component of XPTO behaves as a mapping system from GNU
Prolog/CX queries to SPARQL which is capable of communicating with
SPARQL endpoints. Although it can be viewed as a single independent
component, the purpose is to integrate it in a manner that it will allow the
XPTO-using programmer to query external and internal ontologies using the
same query syntax and declarative context mechanics as the internal system.
Figure 21 illustrates the architecture of XPTO with the integration of the
SPARQL back-end component.

To query the external SPARQL endpoints the next steps are followed:
1. The back-end translates a GNU Prolog/CX goal into a SPARQL query;
2. The resulting SPARQL query is sent to the appropriate SPARQL web

service;
3. The solution set, described by an XML document, is fetched and the

corresponding logic variables which occurred in the original query are
nondeterministically bound.
It is necessary to provide additional information in order to query the

external agent if the SPARQL protocol [6] is to be used. This includes, among
others, the url of the service, the data format of the response and, possibly,
an ontology URI. The latter means that external agents may have capabilities
for querying ontologies from any given Internet location, such as the XML
Armyknife Semantic Web service [9]. The response format can vary from
different types like simple HTML for Internet browsing purposes, or the
SPARQL Query Results XML Format [4] for agents like ours.

Representing and Querying Multiple Ontologies with Contextual Logic Programming

ComSIS Vol. 5, No. 2, December 2008. 57

Fig. 21. System architecture

5.1. Generating SPARQL SELECT queries

A SPARQL query in the back-end environment is a GNU Prolog/CX context
execution similar to the ones defined by the XPTO main mapping engine. The
query is always composed of three parts:
1. One URI of the external Semantic Web service;
2. One or more property restrictions;
3. An execution predicate which refers individuals.
Figure 22 illustrates a definition of a back-end query and its three
components.

QUERY := sparql(URI) /> N1#P1 ... Nn#Pn :> ITEM
URI := URL
P := property(VALUE) or where(PROP, VALUE)
ITEM := item(INDIVIDUAL)
Fig. 22. Back-End Query Definition

On the left side of the main operator ’/>’ the external SPARQL endpoint
URI is specified and, on the right side, the goals and query restrictions. The
latter part of the query triggers the query that will be mapped to SPARQL.

This translation is obtained by transforming each property present in the
query into a triple that relates the property value to the individual.

Nuno Lopes, Cláudio Fernandes, and Salvador Abreu

58 ComSIS Vol. 5, No. 2, December 2008.

The triples are extracted by the union of each property term of the right
side and the item term, which represents the sub ject of the triple. The
following query:

sparql(’uri.org’) /> N1#property1(V1) :>
N2#where(PROP, ’value2’) :> item(IND).

will be translated into the triples:

(?IND, N1#property1, ?V1)
(?IND, N2#?PROP, ’value2’)

All unbound Prolog variables represent SPARQL variables in the triples. To
state a value in the query and therefore apply a restriction to the solution, a
Prolog atomic value can be used to bind a Prolog variable.

If more than one solution is available for the query, all the results are
retrieved using the Prolog backtracking mechanism.

To ask for a property name, i.e, to generate a triple in which the property
position is a variable, the auxiliary unit where/2 should be used (as illustrated
in the previous example). Note that this clause can also be used like a single
ask property, by grounding the first argument to a Prolog atom named with
some property that describes the individual.

The triples generation process divides the GNU Prolog/CX query
information into two parts: the variables, i.e, what is asked and the triple sets.
This will result in a direct and transparent translation to SPARQL, where the
variables in the query will be the SELECT clause arguments and the triples
will form the sets in the WHERE clause.

5.2. Query example

Figure 23 shows an example of a back-end query that asks a SPARQL
endpoint to search the Wine4 ontology for all the individuals that have both
hasBody and hasColor properties.

The generated SPARQL query (Figure 24) is then sent to the SPARQL
endpoint. In order to successfully communicate with it, the back-end must first
encode the query as specified in the SPARQL Protocol for RDF [6] and if a
successful query response code is returned, a solution file is received. This
file follows the SPARQL Query Results XML Format [4] and includes one
solution.

Representing and Querying Multiple Ontologies with Contextual Logic Programming

ComSIS Vol. 5, No. 2, December 2008. 59

?- sparql(’http://xmlarmyknife.org/api/rdf/sparql/’) />
N#hasBody(A) :>
N#hasColor(B) :> item(I).
A =’Medium’
B =’White’
N =’http://www.w3.org/2001/sw/WebOnt/guide-src/wine’
I =’http://www.w3.org/2001/sw/WebOnt/guide-src/wine’ # ’SelaksIceWine’
Fig. 23. GNU Prolog/CX query and solution

It is then parsed and the solution values are returned as bindings for Prolog
variables as illustrated by the last lines in Figure 23.

In the present example, the solution presents exactly one individual,
SelaksIceWine, and the values Medium and White for properties hasBody
and hasColor respectively. This means the whole ontology only has one
individual that has both of these properties defined.

4The ontology is accessible in http://www.w3.org/TR/owl-guide/wine.rdf
SELECT ?id ?hasColor ?hasBody
WHERE { ?id :hasColor ?hasColor. ?id :hasBody ?hasBody.}
Fig. 24. Generated SPARQL query

6. Conclusion

The system we described and implemented provides a representation
abstraction layer for web ontologies that can be accessed by logic programs.
The selected web languages, SPARQL and OWL, have been shown to be
appropriate for the scope of our work: to build a working proof-of-concept
system which allows us to experiment with Contextual Logic Programming to
represent and query ontologies in a way which draws on Prolog’s
expressiveness as well as the powerful composition mechanisms of CxLP.

We illustrated how this representation can be used to develop Semantic
Web agents by describing two components: a front-end and a CxLP back-
end. There are aspects of other, existing systems that will benefit from the
ability to query SPARQL sources: for instance, we are working on
transparently integrating the SPARQL back-end into the ISCO [2] system.

Future Work

Supporting a well-defined OWL sublanguage is necessary in order to provide
reliable, trusted semantic web agents which will be usable in wider application
sceneries. We are working towards providing provably correct OWL DL
compatibility at the reasoning level, over the internal representation. This

Nuno Lopes, Cláudio Fernandes, and Salvador Abreu

60 ComSIS Vol. 5, No. 2, December 2008.

issue is orthogonal to the rest of the work described herein but it is essential if
we expect the system to gain acceptance in the design of Semantic Web
agents.

The implemented SPARQL agent currently does not cover the full language
specification. Although full SPARQL language support is not our immediate
intended purpose, we are working towards providing complete support for it. A
performance study, including a proper comparison with related systems, has
already been partially performed [14] and will be further expanded as the
implementation evolves.

7. References

1. Salvador Abreu and Daniel Diaz. Objective: in Minimum Context. In
Catuscia Palamidessi, editor, Logic Programming, 19th International
Conference, ICLP 2003, Mumbai, India, December 9-13, 2003,
Proceedings, volume 2916 of Lecture Notes in Computer Science, pages
128–147. Springer-Verlag, 2003. ISBN 3-54020642-6.

2. Salvador Abreu and Vítor Nogueira. Using a Logic Programming
Language with Persistence and Contexts. In Masanobu Umeda and
Armin Wolf, editors, Declarative Programming for Knowledge
Management, volume 4369 of LNCS, Fukuoka, Japan, 2006. Springer.

3. Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer. The
MIT Press, 2004.

4. D. Beckett and J. Broekstra. SPARQL Query Results XML Format. W3C
recommendation, W3C, April 2006. Available at:
http://www.w3.org/TR/2006/CR-rdf-sparql-XMLres-20060406/.

5. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, 284(5), 2001.

6. Kendall Grant Clark. SPARQL Protocol For RDF. Candidate
recommendation, World Wide Web Consortium, 6 October 2006.
http://www.w3.org/TR/rdf-sparql-protocol/.

7. DARPA. DAML. http://www.daml.org/, 3 February 2007.
8. M. Dean, G. Schreiber, S. Bechhofer, Frank van Harmelen, J. Hendler, I.

Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL
web ontology language reference. W3C recommendation, W3C, Feb
2004. http://www.w3.org/TR/owl-ref/.

9. Leigh Dodds. XML Army Knife.
http://xmlarmyknife.org/api/rdf/sparql/query, 5 December 2006.

10. Cláudio Fernandes, Nuno Lopes, and Salvador Abreu. On querying
ontologies with contextual logic programming. In Christine Golbreich,
Aditya Kalyanpur, and Bijan Parsia, editors, OWL: Experiences and
Directions 2007, volume 258 of CEUR Workshop Proceedings ISSN
1613-0073, June 2007.

11. Tim Furche, Benedikt Linse, Fran¸cois Bry, Dimitris Plexousakis, and
Georg Gottlob. Rdf querying: Language constructs and evaluation

Representing and Querying Multiple Ontologies with Contextual Logic Programming

ComSIS Vol. 5, No. 2, December 2008. 61

methods compared. In Pedro Barahona, Fran¸cois Bry, Enrico Franconi,
Nicola Henze, and Ulrike Sattler, editors, Reasoning Web, volume 4126 of
Lecture Notes in Computer Science, pages 1–52. Springer, 2006.

12. Jena. A Semantic Web Framework for Java. http://jena.sourceforge.net/,
30 November 2006.

13. Holger Knublauch, Mark A. Musen, and Alan L. Rector. Editing description
logic ontologies with the prot´eg´e owl plugin. In Volker Haarslev and Ralf
Moller, editors, Description Logics, volume 104 of CEUR Workshop
Proceedings. CEUR-WS.org, 2004.

14. Nuno Lopes, Cláudio Fernandes, and Salvador Abreu. Contextual logic
programming for ontology representation and querying. In Axel Polleres,
David Pearce, Stijn Heymans, and Edna Ruckhaus, editors, 2nd
International Workshop on Applications of Logic Programming to the Web,
Semantic Web and Semantic Web Services, September 2007.

15. Nuno Lopes, Cláudio Fernandes, and Salvador Abreu. Representing and
querying multiple ontologies with contextual logic programming. July
2008.

16. Frank Manola and Eric Miller. RDF Primer. W3C Recommendation, World
Wide Web Consortium, February 2004.

17. Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology
Language Overview. W3C Recommendation, World Wide Web
Consortium, February 2004.

18. Protégé. Free, open source ontology editor and knowledge-based
framework. http://protege.stanford.edu/, 30 November 2006.

19. Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for
RDF. Technical report, W3C, 2006. Available at:
http://www.w3.org/TR/2006/CR-rdf-sparql-query-20060406/.

20. Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical owl-dl reasoner. J. Web Sem., 5(2):51–
53, 2007.

21. Software Systems Institute. Racer Manager. http://racerpro
ject.sourceforge.net/, 19 February 2007.

22. Vangelis Vassiliadis. Thea OWL Parser for Prolog.
http://www.semanticweb.gr/TheaOWLParser/, 12 October 2006.

23. Vangelis Vassiliadis. Thea A Web Ontology Language - OWL Parser for
[SWI] Prolog.
http://www.semanticweb.gr/downloads/Thea%20OWL%20Parser.doc, 19
January 2007.

24. W3C. Wine Ontology. http://www.w3.org/TR/owl-guide/wine.rdf, 22 July
2006.

Nuno Lopes, Cláudio Fernandes, and Salvador Abreu

62 ComSIS Vol. 5, No. 2, December 2008.

Nuno Lopes After obtaining his Licenciatura at Universidade de Évora, Nuno
Lopes worked as software developer at the same University while also
studying for his Masters. From his research work, entitled “A SPARQL Query
Engine over Web Ontologies using Contextual Logic Programming”, resulted
several international conference and workshop papers. Currently he is
working towards his PhD and is involved in the development of several
Semantic Web related software applications, such as XSPARQL
(http://xsparql.deri.org) and Semantic Web related plugins
(http://sourceforge.net/projects/dlvhex- semweb) for the DLVHEX system.

Cláudio Fernandes is currently working as a software developer at University
of Évora, the very same institution he graduated from, in Informatics
Engineering, in 2005 and two years later concluded his masters degree. The
resulting research work entitled X.P.T.O. - A system for representing and
querying Semantic Web ontologies originated several conference and
workshop publications. His research interests include Semantic Web
technologies and Declarative Programming languages.

Salvador Abreu is Associate Professor at the Computer Science Department
of Universidade de Évora and Researcher at CENTRIA, the Artificial
Intelligence Research Center of Universidade Nova de Lisboa. He graduated
in Informatics Engineering at Universidade Nova de Lisboa in 1987, and got
his PhD. in Computer Science in 1994 also at Universidade Nova de Lisboa.
In 1995, he joined Universidade de Évora as Assistant Professor at the
Mathematics Department. He was one of the founding members of the
Computer Science Department, created in 2000. His research interests
include Declarative Programming languages and applications, with a focus on
Logic and Constraint programming as well as efficient and transparent parallel
program execution.

Article received on July 16, 2008, accepted on November 17, 2008.

