
UDC 004.434 

Using Customizable Properties to make Object 
Representation a First-class Citizen 

Koen Vanderkimpen, Marko van Dooren, and  
Eric Steegmans 

Department of Computer Science, 
Katholieke Universiteit Leuven, 

Celestijnenlaan 300A 
3000 Leuven, Belgium 

{koen.vanderkimpen, marko.vandooren, eric.steegmans}@cs.kuleuven.be 

Abstract. Many object-oriented programming languages use fields to 
represent object state. This representation however, cannot be altered 
sufficiently when subclassing. Moreover, in languages such as Java and 
C#, proper encapsulation of fields necessitates a lot of boilerplate code. 
In this paper, we introduce our concept of properties, which are far more 
flexible for use with inheritance and greatly reduce boilerplate code 
compared to C# properties. Using our properties makes it easier for 
programmers to model programs in a more consistent manner. 
Furthermore, our Properties allow redefining an object's attributes in 
ways that equal the possibilities for redefinition of virtual methods in 
many programming languages, which makes them better suited to deal 
with unanticipated reuse. Specifically, using our construct, it becomes 
possible to join several superclass attributes into only one at the 
subclass level, conjointly decreasing memory consumption. 

1. Introduction 

In object-oriented programming languages, the representation or state of an 
object is stored in fields. This representation however, cannot be altered 
sufficiently when subclassing: classes simply inherit all features, including the 
fields, from their superclasses. This has an adverse effect on a number of 
subclassing problems that are already difficult or impossible to deal with if the 
superclasses were not designed to anticipate them. One problem is 
consistency: when two superclass fields represent the same concept in a 
subclass, it requires effort to ensure they remain equal at all times. Another 
problem is redundancy: when a superclass field is no longer used by a 
subclass, it requires effort to ensure it is not used by accident. 

Specialization inheritance, for instance, usually involves a strengthening of 
constraints on the representation, typically caused by stronger class 
invariants that come with this kind of subtyping. This could cause certain 
fields to become obsolete and thus redundant, because they can be derived 



Koen Vanderkimpen, Marko van Dooren, and Eric Steegmans 

ComSIS Vol. 4, No. 2, December 2007 28 

from others. For example, suppose we have a class of rectangles that we 
specialize into a subclass of squares. A rectangle has a width and a height, 
but for a square, the class invariant says these two are equal. It would 
therefore be enough to store only one field, making the other redundant. 

Such problems are even worse when using multiple inheritance. When a 
class inherits from two similar superclasses, for instance, we can select and 
refine features of both, but when each class introduces a field for one and the 
same feature, we get an overlap in state, and thus, again, a redundant field. 
For example, suppose we are trying to make two codebases compatible, and 
we use multiple inheritance to inherit from classes introduced by both 
codebases. Suppose the two codebases both introduce a class of cars and 
that both those classes introduce a weight for a car. When we inherit from the 
two car classes, we will get two fields for the weight, of which one will be 
redundant. 

Beyond those problems, there’s also the fact that proper encapsulation of 
the representation is usually not imposed. Not encapsulating fields makes it 
all but impossible to guarantee class contracts while still being able to revise 
an object’s representation, as most changes would break already existent 
clients that depend on the non-encapsulated fields. For example, a field that 
is not encapsulated in the superclass makes it impossible to impose any 
constraints on it [12], or an encapsulated field, accessed by other methods 
than by its getter and setter, increases the chance for unexpected side effects 
when these methods, or the getters and setters, are overridden. 
Unfortunately, in languages such as Java and C#, encapsulation necessitates 
a lot of boilerplate code, which complicates class contracts. 

Effectively dealing with these kinds of problems in current programming 
languages is difficult, especially if the classes were not designed with the 
needed kind of subclassing in mind. For example, redundant state and most 
other problems can be anticipated and/or solved by clever programming 
methods and design patterns [4,8], or by completely reengineering a (self-
contained) program [14,15]. From the subclass point of view, this could go as 
far as to wrap the superclasses entirely. In the superclasses, it often involves 
encapsulating a field and allowing to override the methods that access it. Like 
that, two fields that represent the same feature can be kept the same at all 
times, or an unnecessary field can be kept out of the code so it does not get 
used. These solutions, however, are not elegant because they blur the 
connection between the modelled state and the code used to model it. They 
also require a lot of effort: both from the creators of the superclasses, who 
have to anticipate reuse, as from the designers of the subclasses, who need 
to carefully override many methods. In addition, this effort usually involves 
introducing boilerplate code. In Java, for example, when we want proper 
encapsulation of a property, but still want to make it available to clients, we 
first need to write a getter and a setter for it. Thus the current solutions are not 
satisfying: redundant fields should be non-existent fields, boilerplate code 
should be non-existent code, and useless effort should be non-existent effort. 

This paper tackles the inflexibility with which object representation is 
inherited by introducing our properties as a new, more versatile concept for 



Using Customizable Properties to make Object Representation a First-class Citizen 

ComSIS Vol. 4, No. 2, December 2007 29 

object representation. The use of our properties allows a more consistent 
relation between the code and the state it models, which allows programmers 
to better reflect the modelled state in the code. Furthermore, our properties 
allow redefining an object's attributes in ways that equal the possibilities for 
redefinition of virtual methods in many programming languages, which makes 
them better suited to deal with unanticipated reuse. Specifically, using our 
construct, it becomes possible to join several superclass attributes into only 
one at the subclass level, effectively decreasing memory consumption. 

In the next section, properties are introduced for single classes, already 
showing the benefit of a reduction in boilerplate code. In section 3, we explain 
the use of properties in hierarchies of classes, in which their true power 
becomes visible. Section 4 deals with transformation to Java and direct 
compilation of properties. Section 5 evaluates the property concept and 
section 6 relates it to existing work. In section 7, we present future work, and 
we conclude in section 8. 

2. Properties in a Single Class 

In this section, we introduce our property concept, with syntax similar to that 
of a property in C#. In our examples, we use a language based on Java1, 
enriched with multiple class inheritance, as in [2]. 

2.1. Basic Semantics 

This section discusses the semantics of basic, customizable, stored 
properties. A basic stored property consists of a private value, a getter, and a 
setter, all of which can be customized. 

Default Properties. Consider the class of persons in Figure 1, which plays a 
central role in a framework for computer games, specifically, a framework for 
role playing games or RPGs, in which the human player is the hero of a story 
taking place in a fantasy world. The hero interacts with other people who 
reside in the game world and who are controlled by the computer. Both the 
Hero and the non-player characters can be represented by the Person class. 
A Person has two properties: a name and a number of hitpoints. 
 
 

                                                      
1 A major advantage being that we can omit virtual and override keywords, since 

all our examples use virtual methods. 



Koen Vanderkimpen, Marko van Dooren, and Eric Steegmans 

ComSIS Vol. 4, No. 2, December 2007 30 

public class Person {
public property String name;
public property int hitPoints = 10;

}  
Fig. 1.  Properties in the Class of Persons. 

In the example, the second line declares a private String field name and 
its associated public getter and setter. Just as in C#, it is possible to allow 
getting and setting the property as if it were a field, but using our properties, it 
is not necessary to declare the name and type of a field twice (as is 
sometimes necessary in C#: once as a field and once as a property). The 
main differences between a property and a normal field are automatic 
encapsulation and the possibility to override the getter and/or the setter to 
accommodate custom behaviour. In the third line, hitpoints, which 
represent how much damage the character can take in a fight, are initialized 
to ten, which implicitly invokes the default setter. 

Customizing Properties. Our methods of customizing a property's behaviour 
are at least equally powerful and more self-contained as the possibilities 
offered by C#: everything non-standard about a property can be declared 
inside a property block. There are however some syntactic differences. Since 
there no longer exists an explicitly declared private field to store the property, 
an implicit variable value, which defaults to the property's type, is used to 
denote it when changes, such as a different type, are needed. Another implicit 
variable called argument, which for isolated properties always has the 
property's own type, is used to denote the argument for the setter2. 
 

public class Person {
...
public property Date birthDate {

long value = 0;
get { return new Date(value); }
set { value = argument.getTime(); }

}
}  

Fig. 2. A Customized Property 

To illustrate this, a birthDate, represented internally by a long and 
externally by a Date object, has been added to the class Person in Figure 2. 
This is a robust way to circumvent the encapsulation problems associated 
with the Date class in Java [3], which is mutable and should therefore not be 
disclosed to clients. 

                                                      
2 Note that the name value is used differently in C#, where it denotes the setter's  

argument. 



Using Customizable Properties to make Object Representation a First-class Citizen 

ComSIS Vol. 4, No. 2, December 2007 31 

The private value of a property is only visible inside the declaring property 
block and in overriding property blocks. The getter's visibility is linked to that 
of the property and the setter's default visibility also equals that of the 
property, but it can be made more restricted. This is for example needed 
when we want a property that can be assigned to in the declaring class, but 
not by clients. When a property is not private, however, the setter cannot 
be made less visible than protected, since it has to remain overridable. 

2.2. Derived Properties 

Often, many of an object's properties are derived from others: they are not 
stored separately. A square's surface and perimeter, for example, can be 
derived from its side. In C# [7], it is possible to use derived properties, simply 
by neglecting to introduce a new instance variable and programming the 
getter and setter to use other variables and/or methods. Using that feature, all 
getters without arguments in a class can be made properties. 

Our properties can also be made derived. When the getter and setter are 
overridden in the property-block without use of the value keyword, the 
compiler will infer that the property is derived and no private value need be 
stored. Often, the setter is omitted and the property is made readonly, since 
derived properties cannot usually be altered directly. 
 

public class Person {
public property int vitality;

public property int hitPoints {
get { return vitality*10; }
set { vitality = argument/10; }

}
}  

Fig. 3. A Derived Property 

Consider our Person class in Figure 3. We introduce an integer property 
vitality and we make a person's hitpoints equal to this vitality multiplied3 
by ten. 

Note that a derived property’s type is independent from the type of the 
properties it is derived from; the programmer is responsible for the code of the 
getter and setter being able to handle the derived property’s declared type 
and perform any calculations accordingly. 

                                                      
3 We ignore overflow in the setter. 



Koen Vanderkimpen, Marko van Dooren, and Eric Steegmans 

ComSIS Vol. 4, No. 2, December 2007 32 

2.3. Additional Qualifiers 

Several additional qualifiers for properties exist. These allow modifications to 
the default in a quick and easy way, and they are also a clear sign to clients of 
the special qualifications a property might posses. 

The Like Keyword. The like keyword can be used to declare properties in 
a shorter way. When declaring a property to be like another property, we say 
it has the same type as the base property, while still remaining a separate 
property. In Figure 4, we have used this in the class Person to introduce the 
property intelligence. By declaring it to be like the vitality, it’s type also 
becomes integer. 
 

public class Person {
...
public property int vitality = 10;

public property intelligence like vitality = 20;
}  

Fig. 4. The Like Keyword 

The benefit of using the like keyword for properties in a single class is that 
we are able to declare a large number of related properties and quickly 
change the type for all of them, if a change in design would require so. For 
example, a set of lengths of sides in a class of polygons. 

The use of the like keyword for completely unrelated properties that 
happen to be of the same type, such as the house number and age of a 
Person, should of course be avoided. 

The Readonly Keyword. It often occurs that properties in a class may only 
be read. To accommodate this, we allow the keyword readonly to be added 
to a property's declaration. As a result, it does not have a setter, and clients 
know that this property cannot be assigned to. When using the readonly 
keyword, the compiler forces us to omit the setter when customizing the 
property, and if we omit the setter, we have to include the readonly keyword 
or this will also result in a compile time error. When the keyword is used with 
a default stored property, the setter simply does not exist. An example of a 
readonly property is given in Figure 5. 
 



Using Customizable Properties to make Object Representation a First-class Citizen 

ComSIS Vol. 4, No. 2, December 2007 33 

public class Person {
...
public readonly property int hitPoints {

get {
return vitality*10;

}
}

}  
Fig. 5. A Readonly Property 

Our readonly keyword should not be confused with the same keyword in 
[16], in which it means that the object the reference points to cannot be 
mutated through this reference. For default stored properties, the definition of 
our readonly keyword is equal to the definition of the final keyword in 
Java. For derived properties, like the hitpoints in Figure 5, however, it does 
not mean that the value of the property will never change, only that the 
property cannot be assigned to, not even in an initializer or in the constructor. 
For default stored readonly properties, a single such initialization is still 
possible and would apply to the private value directly. 

The Constant Keyword. Another useful construct, especially for the clients of 
a class, is the constant keyword. Its definition is simple: the property 
remains constant for the duration of the object's life. Obviously, this implies it 
being readonly, but it is a stronger constraint. A constant property can still 
be derived, but it can only be derived from other constant properties. 

3. Properties in Class Hierarchies 

The true power of properties is revealed when using inheritance: about 
everything about a property can be overridden when redeclaring it in a 
subclass. 

Suppose the class Person from Figure 1 had already introduced a 
birthDate for persons, using a default stored property, and we were not 
able to alter that class to use the birthDate property from Figure 2. If we 
were working with C#, we could override the getter and setter of the property 
in a subclass MyPerson, but not the privately stored Date field from the 
superclass that would be inherent to such an implementation. As such, the 
field would become hidden and a waste of memory space for every 
MyPerson object. 

Using our properties, we can override the property as a whole, simply by 
providing the implementation from Figure 2 in a subclass. The getter and 
setter, as well as the private value, are overridden by the new ones provided 
in the customized implementation, and in that manner, the redundant field is 
avoided. Replacing the stored value itself is possible because the mandatory 



Koen Vanderkimpen, Marko van Dooren, and Eric Steegmans 

ComSIS Vol. 4, No. 2, December 2007 34 

encapsulation of the value inside the property block ensures unexpected side 
effects cannot occur, as it cannot be used outside the block. 

Overriding simple properties to avoid redundant fields is one thing, but if 
the superclass(es) provide us with redundant fields to begin with, we can still 
remove them, by joining multiple properties together, which we will discuss in 
more detail, first for multiple inheritance, and then for single inheritance. 

3.1. Joining Properties in Multiple Inheritance 

When subclassing, two or more properties coming from the superclasses can 
be merged together, freeing up memory slots in the subclass objects. This is 
used when a relationship between two previously independent variables from 
the superclasses occurs in the subclass. 

A common situation that benefits from multiple inheritance, enhanced with 
our properties, is the following: consider two frameworks. The first is a 
framework for computer games, without anything built on top of it, with our 
Person class as its central component. The second framework includes 
graphical user interfaces (GUIs), and the use of the Observer pattern [8] for 
communication between the GUI and the program logic.  
 

public class Character {
public property String name;
public property Date dateOfBirth;

public void addObserver(...) {...};
}  

Fig. 6. The Class of Characters. 

Obviously, we want to be able to reuse the second framework because of 
its GUI, but we still want to retain the functionality of our first framework. The 
second one, however, introduces its own model classes. For example, 
consider Figure 6. The Observer-based4 framework class Character also 
introduces a name and birth date for a person. The birth date in Character 
does not behave like it does in the class Person of our first framework, and 
the class does not include any of the other properties introduced in Person. 
So we want to use our model from the first framework with the GUI of the 
second one. 
 

                                                      
4 For simplicity, the actual code to observe the state has been omitted. 



Using Customizable Properties to make Object Representation a First-class Citizen 

ComSIS Vol. 4, No. 2, December 2007 35 

Person

name
birthDate
hitPoints

Character

name
dateOfBirth

framework 1 framework 2

PersonWrapper

Observer

 
Fig. 7. Using the Adaptor Pattern as a Work-Around. 

A traditional method to deal with this problem is to use the adaptor pattern: 
we can wrap an instance of Person in an instance of a subclass of 
Character. Like that, our object has the correct interface for use with 
framework 2, and the behaviour is that of the Person class in framework 1, 
as all calls are forwarded. This design is demonstrated in Figure 7. 

But such an approach has several downsides. For one, we get a longer call 
chain, because all method calls need to be forwarded. Second and more 
important is the fact that we inherit two redundant variables from the 
Character class. 
 

Person

name
birthDate
hitPoints

Character

name
dateOfBirth

framework 1 framework 2

CharacterPerson

Observer

 
Fig. 8. Using Multiple Inheritance and Properties. 

Using properties, we can simply subclass both the model classes to get the 
behaviour and interface we need, as seen in Figure 8. Obviously, we do not 
want to store the name and birthDate attributes twice, so we join those 
properties together. Multiple inheritance takes care of our objects having the 
correct interface. 



Koen Vanderkimpen, Marko van Dooren, and Eric Steegmans 

ComSIS Vol. 4, No. 2, December 2007 36 

The Join Keyword. Joining properties can be done by placing a join 
keyword after the property declaration in the subclass, followed by a list of the 
superclass properties to be joined. The effect being that the subclass property 
replaces both superclass properties, and at most one private field exists. The 
getter and setter in the subclass property override all the getters and setters 
in the superclass properties. If the join would cause inheritance of two or 
more conflicting versions of the getter, setter or private values, they have to 
be overridden or one of the versions must be selected, as is the case for the 
birthDate property in Figure 9, which demonstrates the Character-
Person class as a subclass of Person and Character. One exception to 
this rule exists: when all superclass properties are default properties (no 
block) and have the same type, no further specification is needed. This is the 
case for the name property in the example in Figure 9. 

When the superclass properties have different names, as is often the case, 
polymorphism allows those properties to be accessed using their old name 
through their superclass interface, and by both the old and the new names 
through the subclass interface. Since properties are virtual, a virtual function 
table makes sure that the correct implementation is used under all these 
circumstances. The difference in names can be safely ignored for the getters 
and setters, as these methods are never literally used by clients, but only 
function as a means to implement the retrieval and assignment of the property 
as if it were a field. 

 
public class CharacterPerson extends Person, Character {

public property String name join Person.name, Character.name;
public property Date birthDate join Person.birthDate,

Character.dateOfBirth {
value,get,set : Person.birthDate;

}
}  

Fig. 9. The Class CharacterPerson. 

Joining properties coexists with dynamic binding: the single property in the 
subclass is used when objects of that class get polymorphic calls to their 
superclass interface(s). For this to work correctly, the Liskov substitution 
principle [10] has to be respected. 

More precisely, this means that the argument type for the setter in the new 
subclass has to be a supertype for all the joined setter argument types, since 
for method arguments, we have contravariance [5]. The obvious choice is the 
least upper bound, which always exists, but might degenerate to Object. We 
can, however, statically check the type to be any of the types allowed by the 
superclasses, so we do not have to accept assignments where the right-hand 
side is of type Object. 

Conversely, the greatest lower bound of all joined property types is the new 
type for the joined property and its getter, because we have covariance [5] of 



Using Customizable Properties to make Object Representation a First-class Citizen 

ComSIS Vol. 4, No. 2, December 2007 37 

the return types of the getters. The latter may not always exist, and such a 
join would thus result in a compile-time error. 
 

public class CharacterPerson extends Person, Character {
...
public property CharacterPerson spouse

join Person.spouse, Character.spouse {
//argument’s type is Object, value’s is CharacterPerson
set {

value = (CharacterPerson)argument;
}

}
}  

Fig. 10. Joining Properties with Different Types. 

This selection mechanism may result in different types for the getter and 
setter of a property. In that case, the programmer has two options. The first is 
overriding the setter to accept arguments of the more general type, 
transforming and storing them in a private value of the more specific type. The 
second is to override the getter to transform a private value of the more 
general type into the most specific type before returning it. Beyond overriding 
one of the methods, it will sometimes be necessary to select an 
implementation for the other one, when the mechanism does not choose one 
with a desirable type. 

An example of joining when properties with different types are inherited, is 
shown in Figure 10. Suppose both the Person and Character class 
introduce a property for the spouse of a person, which of course has the 
same type as the class it is declared in. In the depicted class 
CharacterPerson, the type of spouse therefore needs to be specialized. 
The implementation in Figure 10 overrides the setter and uses a default getter 
that simply returns the private value, which defaults to the type of the 
property. If it is guaranteed that when CharacterPerson is used in the 
program, no instances of Person or Character are used, then the code in 
the setter will never throw a ClassCastException, even if the argument 
type is in fact Object. The latter can be explained by the fact that statically, 
we can still reject code in which the argument type is Object, or anything 
other than a subclass of Person or Character. 

We can go even further when type-checking statically. Contravariance of 
the setter arguments does not necessarily mean that, at compile time, we 
have to accept a contravariant right-hand side of an assignment. For 
example: a class A introduces a property p of type C, and subclass B of A 
redefines the property's type to type D, subtype of C. In some client code, we 
have a variable b of type B and a variable c of type C. While the getter in 
class B still accepts arguments of type C, we can choose to forbid the 
assignment ‘b.p = c’, because, statically, c's type does not match the 
redefined property p's type in class B. This check is not obligatory, but can be 
easily implemented, as it can be done statically. 



Koen Vanderkimpen, Marko van Dooren, and Eric Steegmans 

ComSIS Vol. 4, No. 2, December 2007 38 

Joining and Deriving. Derived properties can be joined just like stored ones, 
and both types can be mixed together. Depending on which versions of getter 
and setter are selected, the resulting property uses zero to one memory slots. 
When the selection mechanism would choose a getter or setter from a stored 
property being put together with a setter or getter from a derived one, we 
have to override or manually select both. 

3.2. Joining Properties in Single Inheritance 

It is also possible to join multiple properties from a single superclass; the 
same mechanics (such as the selection mechanism) apply. The merger of 
properties coming from one superclass is useful when a relationship between 
previously independent fields from that class occurs in the subclass, usually 
because of stronger class invariants. Consider a typical two-class example: a 
superclass Rectangle and a subclass Square. A rectangle has a width and 
a height, which for a square are equal and are named the side. This can be 
accomplished easily by joining the width and height of Rectangle with a 
property side in the subclass Square, as can be seen in Fig. 11. 
 

public class Rectangle {
public property int width;
public property int height;

}

public class Square extends Rectangle {
public property int side join width, height;

}  
Fig. 11. The Classes of Rectangle and Square. 

This has several consequences. First, it means that there is now an implicit 
constraint on the representation, saying that for squares, the width and height 
are equal (this is like making the class invariant stronger, as allowed by the 
principles of substitutability [10]). Second, width and height are both 
renamed to side. If any of the properties width, height or side are 
assigned to on a Square, both the width and height properties of a 
variable of type Rectangle that points to that Square will be changed. 

The ability to join properties in both single and multiple inheritance can 
avoid a catastrophic blow-up of unused variables in certain class hierarchies, 
without the need for specific hacks, such as storing all variables in a hashmap 
or arraylist. Consider a more extended hierarchy of quadrangles, as given in 
Table 1. Each successive subclass of Quadrangle requires less variables to 
completely define its form. Using normal inheritance without joining, the class 
Square would have four extra unused variables, wasting memory space for 
each square in the system. Using a combination of joining and deriving 



Using Customizable Properties to make Object Representation a First-class Citizen 

ComSIS Vol. 4, No. 2, December 2007 39 

properties, we can reduce the number of used variables to what is strictly 
needed. 

Table 1. The Need for Fields 

Class Required Fields How to reduce Field 
Quadrangle 4 lengths, 1 angle  

Trapeze 3 lengths, 1 angle Derive one length 
Parallelogram 2 lengths, 1 angle Join two lengths twice 

Rhombus 1 length, 1 angle Join two lengths 
Rectangle 2 lengths Make angle constant 

Square 1 length Join two lengths / Make angle constant 

3.3. Advanced Redefinitions 

As was mentioned before, anything about a property can be redefined in a 
subclass. In this section, we discuss the behaviour of the various modifiers for 
properties under inheritance. 

The Like Keyword. The like construct is a kind of type anchoring, which 
can also be found in Eiffel [11]. In a subclass, it is possible to define a 
property to be like a property from the superclass. This makes sure it 
always has the same type, even if we change this type for the superclass 
property. This has little effect on stable libraries, but it can be quite useful for 
a codebase under development, and can make it easier to reason about 
fragile base class or fragile subclass problems. 

Another one of the keyword’s effects is that, when redefining a property’s 
type, property’s that are declared to be like that property also have their  
type redefined automatically. An example where this could be useful is when 
we have a class dealing with financial transactions, in which a lot of properties 
of a type ‘MoneyAmount’ exist. If we want to specialize this class for 
transactions of a single kind of currency, we could redefine the property on 
which the others are based to be of the type of that currency (e.g. 
‘EuroAmount’), and all the other properties would be redeclared without 
further effort. 

Derived to Stored and Vice Versa. Stored properties can easily be made 
derived in a subclass. This is done by overriding them with a new property 
block that makes no use of the value keyword, essentially the same as when 
declaring a new derived property. 

For the reverse, going from derived to stored, it is possible to write a new 
property-block that uses the value field, but we can also simply redeclare the 
property without block, in which case the default stored implementation will 
override the previous one. 



Koen Vanderkimpen, Marko van Dooren, and Eric Steegmans 

ComSIS Vol. 4, No. 2, December 2007 40 

Readonly Properties and Subclassing. The readonly keyword is an 
indication that a property cannot be assigned to for a single class. It implies 
not providing a setter and guarantees clients that objects of that class’s type 
will not allow that property to be assigned to. 

This guarantee, however, only stretches as far as the class itself. When the 
property is overridden in a subclass, the readonly constraint is not 
necessarily repeated, and the property can receive a mutator. 

We introduce a new modifier, called immutable, to denote properties that 
are readonly in the class they first receive this modifier, and in all subclasses. 

When overriding, a readonly property can be made mutable as well as 
immutable. A mutable property can never be made readonly or 
immutable, because that would be against the principles of substitutability. 
An immutable property must always remain immutable, so that clients 
using it benefit from a very strong contract. 

4. Transformation and Compilation 

This section explains how properties can be transformed to Java, providing a 
way in which they can already be compiled. Direct compilation is also 
discussed, but is considered future work. 

It is our intention to provide this compilation in the future, to be able to do 
benchmarking on a medium- to large-scale case study. 

4.1. Transformation to Java 

Our properties can be easily transformed into regular Java code. For each 
property, the necessary get- and set- methods are simply created in the 
translated Java class. An example of a transformed model can be seen in 
Figure 12. 

The main difficulty is to get rid of unused fields. These appear when stored 
properties become derived or when two or more of them are joined. We can 
solve this using the State pattern [8]. For each class in our enhanced version 
of the language, we create two classes in plain Java: one representing the 
class itself, and another representing the state or representation. This 
separation between behaviour and state makes it possible to simulate the 
removal of stored variables and thus the joining and overriding of properties. 

The primary class follows the correct inheritance hierarchy (e.g. Square 
inherits from Rectangle). It contains all the necessary methods, including 
those generated because of properties, but does not include any instance 
variables, except one: a reference to an object of the corresponding 
Representation class. Those latter classes do not follow the normal 
inheritance hierarchy (so SquareRepresentation does not inherit from 
RectangleRepresentation). Instead, they all directly inherit from the 



Using Customizable Properties to make Object Representation a First-class Citizen 

ComSIS Vol. 4, No. 2, December 2007 41 

class Representation, a class introduced so we cannot have arbitrary 
objects as representations. This method allows classes to have the correct 
number of instance variables at all times. 

 

PObject

Rectangle

getWidth ()
setHeight (int )
...

Representation

Square

getSide ()
...

RectRep

width
height

SquareRep

side

 
Fig. 12. The Classes of Rectangles and Squares after Transformation. 

The representation classes support the simple get- and set- methods for 
their fields, which can then be called by the primary classes. All superclass 
methods related to an overridden property, which call the representation in 
the superclass, are overridden to call the one from the subclass. When joining 
properties, two methods previously calling different representation methods 
now call the same one, which can be derived from the join-clause for the 
joining property. For example, setWidth and setHeight in Rectangle 
need to be overridden in Square to call the representation's setSide 
method. 

This is obviously tedious and repetitive work, but it can easily be done by a 
transformation tool, which we have written. It makes use of the Chameleon 
[17] framework for metamodels of programming languages. It parses the code 
and transforms the AST to a model, then transforms that model to a regular 
Java-model, and finally outputs the code for the transformed model. 

4.2. Direct Compilation 

Such a simple transformation to Java obviously fails to support the memory-
efficiency benefits of properties, since, for each object in the source model, 
we now have two objects in the transformed model. Even worse, the 
obligation to work with the existing Java API prevents us from using 
properties beneficially when inheriting from already existing classes. 



Koen Vanderkimpen, Marko van Dooren, and Eric Steegmans 

ComSIS Vol. 4, No. 2, December 2007 42 

Therefore, to realize the full potential of properties, we need some form of 
direct compilation to byte-code. 

A deeper investigation of how properties could be compiled would draw us 
too far in this paper, but we can at least conclude it would necessitate fields 
being treated as redefinable (virtual) methods and included in a virtual 
function table, instead of the fixed position in an object's memory block they 
have now. Since properties would be treated the same as virtual methods and 
all changes about a superclass, when it is redefined in a subclass, can be 
done when compiling the subclass, classes can still be compiled separately. 

The virtualization of properties would cause a space/time trade-off, since 
stored state takes longer to access in this way, but there are no longer any 
unused variables included in that state. Nevertheless, when programming in 
object-oriented languages in a decent way (certainly in Java), fields are 
encapsulated in getters and setters, which also requires a method lookup. 
Bearing this in mind, the difference in lookup-time is negligible. Furthermore, 
much research has been done in the area of eliminating virtual function calls 
in optimizing compilers [1,9,18]. 

5. Evaluation 

The use of properties and the ability to join them have several advantages. 
Above all, we can represent objects more consistently than in other object-
oriented languages. If a square has one defining feature while a rectangle has 
two, we are able to drop one and make Square a subtype of Rectangle, as 
it is in the real world. If we inherit from multiple classes and two or more of 
them have implemented a similar property, we can join those properties and 
all of their corresponding methods easily. This increases the consistency 
between code and the state it models. 

Another advantage is simplicity: programmers don't have to worry about 
rewriting methods to make sure a redundant variable is no longer used in a 
subclass. The alternative, to keep several existing variables consistent behind 
the scenes, is at least equally cumbersome to accomplish. All getters and 
setters are merged by joining properties, and the other, more complex 
methods, are written in function of those, so they don't have to change. 

The compilation of properties necessitates a virtualization of stored 
features, potentially decreasing runtime efficiency. This, however, is balanced 
by better memory efficiency and countered by constantly improving compiler 
optimization techniques. Furthermore, the same reduction in runtime 
efficiency occurred before, when we manually encapsulated those features, 
whereas now, they are automatically encapsulated. Thus, practically, there is 
no real decrease. In any case, when it comes to being able to write code 
more correctly, faster and more easily, we feel that runtime efficiency is of 
secondary importance. With today's increasingly performant machinery, well-
designed and reusable code is a lot more important than being able to 
execute it faster. 



Using Customizable Properties to make Object Representation a First-class Citizen 

ComSIS Vol. 4, No. 2, December 2007 43 

6. Related Work 

C#. In C# [7], it is possible to define a property block, but the getter and setter 
still need to be explicitly implemented, as well as the private field that stores 
the property. Moreover, in C#, properties cannot be joined and stored 
properties cannot be eliminated. 

Eiffel. In Eiffel [11], features (methods and attributes) inherited from multiple 
superclasses can be joined by renaming and undefining them in all except 
one of the superclasses. For this to work, they need to be renamed to the 
same name as the feature in the class in which they are not undefined. But it 
is not possible to rename two features of a single superclass to the same 
name; that would introduce an ambiguity. Deferring one of them is not an 
option, since the rename clause has to precede the undefine clause, and 
thus, when they are renamed to the same name, they would both be deferred. 

Furthermore, it is possible in Eiffel to merge two or more stored properties, 
also called attributes, when they are from superclasses with a common base 
class, but not in other cases. In the language, we can only turn derived 
properties into stored ones, not vice versa. 

Cecil. In Cecil [6], fields are similar to our properties. An instance variable, or 
field, can be declared, and will automatically be hidden. Getter and setter 
methods are also automatically created for such a field. Because the 
representation is always wrapped by methods, it becomes possible in Cecil to 
override methods by instance variables and vice versa. Joining fields explicitly 
without having to override many methods, however, is not possible. 

Self. In the dynamically-typed language Self [13], variables and procedures 
are united into a single construct. Because it is prototype-based, redefinitions 
not resulting in redundant state, similar to those for properties, are possible. 
As in Cecil, explicit joining is not supported. 

7. Future Work 

We would like to introduce constraints on properties as a language concept, 
as is possible for methods in Eiffel. This will allow us to better explore the 
consequences of using and joining properties on class contracts. If we were 
able to associate invariants with properties, it would be possible to see a join 
between properties as simply an extra class invariant, declaring equality 
between existing properties. 

The current manner in which properties deal with redefinitions of their type, 
is to allow the setter to get a more general type and for the getter to receive a 
more specific type, allowing the programmer to work around the difference, if 
any. A better solution would be to have covariance for the getter as well as 



Koen Vanderkimpen, Marko van Dooren, and Eric Steegmans 

ComSIS Vol. 4, No. 2, December 2007 44 

the setter, which would more logically comply with the subclass receiving a 
stronger class invariant: A property of type P in the superclass will be of 
subtype P’ in the subclass. This would however break certain calls on 
variables of the superclass type pointing to objects of the subclass type that 
have an object of type P as their argument. In that case, we propose a new 
kind of exception, a so-called ‘MaltypedAssignmentException’, which would 
be thrown automatically, just like a NullpointerException. As future work, the 
implications of such a construct will be studied. 

8. Conclusion 

We have shown how the current storage of fields in statically typed object-
oriented languages is inadequately able to cope with certain changes when 
subclassing, which results in redundant fields or an obscured connection 
between the modelled state and the code. We have also explained how this 
may unnecessarily complicate a programmer's work. 

To solve these problems, we have introduced the concept of properties in 
those languages. Properties are a kind of advanced attributes, which 
encapsulate fields and automatically introduce getters and setters in a class. 
They can be read and assigned to as if they were fields, but the getters and 
setters will be called in the background. 

Properties can be made stored or derived, and this can be changed in 
subclasses. Derived properties do not take up space in memory. Properties 
can also be joined in subclasses, stating that in the subclass, several 
superclass attributes always have the same value. Joined properties use only 
one slot of memory. Some properties are readonly, meaning they do not 
introduce a public setter. 

The use of properties helps to program an object's representation more 
logically and consistently, and increases the memory efficiency of programs. 
Furthermore, it reduces boilerplate code. 

9. References 

1. G. Aigner and U. Hölzle. Eliminating virtual function calls in C++ programs. In 
ECOOP ’96: Proceedings of the 10th European Conference on Object-Oriented 
Programming, pages 142–166, London, UK, 1996. Springer-Verlag. 

2. L. Bettini, M. Loreti, and B. Venneri. On multiple inheritance in Java. In 
Technology of Object-Oriented Languages, Systems and Architectures, Proc. of 
TOOLS Eastern Europe 2002, pages 1–15. Kluwer Academic Publishers, 2003. 

3. J. Bloch. Effective Java: Programming Language Guide. Java series. Addison-
Wesley, Boston, 2001. 

4. G. Booch. Object-oriented analysis and design with applications (2nd ed.). 
Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA, 1994. 

5. G. Castagna. Covariance and contravariance: conflict without a cause. ACM 
Trans. Program. Lang. Syst., 17(3):431–447, 1995. 



Using Customizable Properties to make Object Representation a First-class Citizen 

ComSIS Vol. 4, No. 2, December 2007 45 

6. C. Chambers. The Cecil language: Specification and rationale. Technical Report 
TR-93-03-05, 1993. 

7. M. Corporation. Microsoft C# Language Specifications. Microsoft Press, 
Redmond, WA, USA, 2001. 

8. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of 
Reusable Object-Oriented Software. Addison Wesley, Reading, Massachusetts, 
1994. 

9. K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Nakatani. A study of 
devirtualization techniques for a Java just-in-time compiler. In OOPSLA ’00: 
Proceedings of the 15th ACM SIGPLAN conference on Object-oriented 
programming, systems, languages, and applications, pages 294–310, New York, 
NY, USA, 2000. ACM Press. 

10. B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Trans. 
Program. Lang. Syst., 16(6):1811–1841, 1994. 

11. B. Meyer. Object-oriented software construction (2nd ed.). Prentice-Hall, Inc., 
Upper Saddle River, NJ, USA, 1997. 

12. D. L. Parnas, P. C. Clements, and D. M. Weiss. Enhancing reusability with 
information hiding. In Software reusability: vol. 1, concepts and models, pages 
141–157, New York, NY, USA, 1989. ACM Press. 

13. R. B. Smith and D. Ungar. Self: The power of simplicity. In LISP and Symbolic 
Computation, pages 187–205, Netherlands, 2005. Springer. 

14. G. Snelting and F. Tip. Reengineering class hierarchies using concept analysis. In 
SIGSOFT ’98/FSE-6: Proceedings of the 6th ACM SIGSOFT international 
symposium on Foundations of software engineering, pages 99–110, New York, 
NY, USA, 1998. ACM Press. 

15. F. Tip and P. F. Sweeney. Class hierarchy specialization. OOPSLA SIGPLAN 
Not., 32(10):271–285, 1997. 

16. M. S. Tschantz and M. D. Ernst. Javari: Adding reference immutability to Java. In 
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA 
2005), pages 211–230, San Diego, CA, USA, October 18–20, 2005. 

17. M. van Dooren. Abstractions for improving, creating, and reusing object-oriented 
programming languages. PhD, Department of Computer Science, K.U.Leuven, 
Leuven, Belgium, June 2007. 

18. Y. Zibin and J. Gil. Two-dimensional bi-directional object layout. In ECOOP ’03 -  
Proceedings of the 17th European Conference on Object-Oriented Programming, 
pages 329–350, Berlin, Germany, 2003. Springer-Verlag. 

 
Koen Vanderkimpen is a researcher at the software development 
methodology research group of the department of computer science at the 
K.U.Leuven, Belgium, since 2005. His research focuses on improvements to 
object oriented programming languages. 
  
Marko van Dooren is a postdoctoral researcher at the software development 
methodology research group of the department of computer science at the 
K.U.Leuven, Belgium, since 2001. He received his PhD degree in 2007. His 
research focuses on improvements to object oriented programming 
languages. 
  
Eric Steegmans is a professor at the department of computer science at the 
K.U.Leuven, Belgium, since 1990. He is the leader of the software 



Koen Vanderkimpen, Marko van Dooren, and Eric Steegmans 

ComSIS Vol. 4, No. 2, December 2007 46 

development methodology research group and teaches several courses in 
object oriented software development. 

 


