
UDC 004.41

Prototype environment for controller
programming in the IEC 61131-3 ST language1

Dariusz Rzońca, Jan Sadolewski, and Bartosz Trybus

Rzeszów University of Technology, Division of Informatics and Control,
ul. Wincentego Pola 2, 35-959 Rzeszów, Poland

{drzonca, js, btrybus}@prz-rzeszow.pl

Abstract. A prototype compiler of the ST language (Structured Text), its
operation and internal structure is presented. The compiler is a principal
part of CPDev engineering environment for programming industrial
controllers according to IEC 61131-3 standard. The CPDev is under
development at Rzeszów University of Technology. The compiler
generates an universal executable code as final result. The code can be
interpreted on different platforms by target-specific virtual machines.
Sample platforms include AVR, ARM, MCS-51, PC.

1. Introduction

The main goal of the IEC 61131-3 standard introduced in 1998 was to
increase quality of programmable controllers software [5]. By defining special
programming languages and procedures it frees designers from using general
purpose languages like C, focusing instead on implementation of control
algorithms.

This paper describes a prototype environment for programming industrial
controllers according to the IEC 61131-3 standard. The environment, called
CPDev (Control Program Developer), is built around the Microsoft .NET
Framework [8] using C# language. Its main component is the compiler which
transforms programs written in ST, one of five IEC 61131-3 languages [5], to
an universal executable code. ST is a high level language, similarly to Pascal,
Ada and C. Among the other IEC languages, ST seems the most flexible, so it
was chosen as the base for CPDev. Specification of the executable code has
been prepared in such a way, that the resulting code can be executed on
different target platforms, so small microcontrollers or larger microprocessors,
via target-specific virtual machines. Therefore the code is called universal.
The machines operate as interpreters of this code. Generally speaking, the
approach resembles the concept of Java virtual machines designed for
implementation on different platforms [6]. The CPDev basic machine is written
in industry standard C for easy adaptation for various C compilers.

1 This research has been supported by MNiSzW under the grant R02 058 03

Dariusz Rzońca, Jan Sadolewski, and Bartosz Trybus

ComSIS Vol. 4, No. 2, December 2007 134

2. IEC 61131-3 standard and ST language

The IEC 61131-3 standard defines five programming languages - LD, IL,
FBD, ST and SFC. Instruction List IL and Structured Text ST are text
languages, Ladder Diagram LD, Functional Block Diagram FBD and
Sequential Function Chart SFC are graphical. LD and IL are fairly simple, so
appropriate mainly for small applications. FBD, ST and SFC are
recommended for medium- and large scale projects. John's and Tiegelkamp’s
book [12] is a good source to learn IEC programming. According to [9],
familiarity with the languages by engineering staff looks as follows: LD 90%,
FBD 60%, IL 35%, ST 30%, SFC 15%. Computer and control engineers with
experience in structural programming usually prefer ST.

Common components of the five languages are names (identifiers), data
types, constants and variables. Twenty elementary data types of IEC 61131-
3, together with memory sizes and ranges in the CPDev environment, are
shown in Tab. 1. In practice BOOL, INT, REAL and TIME are the most
common. Examples of corresponding constants are FALSE, 13, -4.1415 and
T#1m3s. The IEC standard defines three access levels to variables, namely
LOCAL, GLOBAL and ACCESS. LOCAL variables are available in the program
or function block. GLOBALs can be used in the whole project, but programs or
blocks must declare them as EXTERNAL. ACCESS variables exchange data
between different systems.

Table 1. Elementary data types of IEC 61131-3, their size and range in the CPDev
environment

Data type Memory size and range Data type Memory size
SINT 1B (-128 .. 127) TIME 4B
INT 2B (-32768 .. 32767) DATE 4B
DINT 4B (-231 .. 231 – 1) TIME_OF_DAY 4B
LINT 8B (-263 .. 263 – 1) DATE_AND_TIME 8B
USINT 1B (0 .. 255) STRING Variable length
UINT 2B (0 .. 65536) BOOL 1B (0, 1)
UDINT 4B (0 .. 232 – 1) BYTE 1B
ULINT 8B (0 .. 264 – 1) WORD 2B
REAL 4B IEEE-754 format DWORD 4B
LREAL 8B IEEE-754 format LWORD 8B

Functions, function blocks and programs are components of the IEC
projects. Function blocks, designed for multiple reuse in different parts of the
program, are essential. Typical block involves input and output variables, and
employs values from previous executions. The IEC standard defines a small
set of standard blocks, such as flip-flops, edge detectors, timers and
counters. Four of them are shown in Fig. 1.

Of the five IEC languages, ST is particularly suitable for implementation of
nonstandard or complex algorithms. Most development systems recommend

Prototype environment for controller programming in the IEC 61131-3 ST language

ComSIS Vol. 4, No. 2, December 2007 135

ST as a default language for defining user function blocks. Therefore it has
been chosen as a base language for the CPDev environment.

SR
S1
R

Q1BOOL
BOOL

BOOL
R_TRIG

CLK QBOOL BOOL
TON

IN
PT

QBOOL
TIME

BOOL
TIMEET

S1

R
Q1

CLK
Q

1 cykl

IN

ET
Q PT

CTU
CU
R

QBOOL
BOOL

BOOL

INTCVPVINT

CU
Q
R

CV
CV=0 CV=PV

Fig. 1. IEC 61131-3 standard blocks: SR flip-flop, rising edge detector R_TRIG, timer
TON, counter CTU

Initial part of an ST program involves declarations of variables and block
instances written between VAR and END_VAR keywords. The declarations are
followed by sequence of program instructions. The instructions contain
expressions which involve operators such as: bracket, function call, negation,
arithmetical operators, comparison, boolean operators (in descending
priority). Similarly as in Pascal, the symbol := denotes assignment. An
example for starting or stopping an engine has the following form:
engine := (start OR engine) AND NOT stop AND NOT alarm;

Four types of control instructions are available in ST:

− conditional branches: IF, CASE,
− loops: FOR, WHILE, REPEAT,
− brake or stop: RETURN, EXIT, END,
− function block call.

Example of the last one may look as follows. After declaring Timer1: TON
as an instance of the TON block (Fig. 1), one can call it by

Timer1(IN:=engine1, PT:=t#2.5s);

Output Q of the timer can be assigned to a variable in the following way

engine2:=Timer1.Q;

Alternatively, both input and output parameters may be included in a single
call, i.e.
Timer1(IN:=engine1, PT:=t#2.5s, Q=>engine2);

Dariusz Rzońca, Jan Sadolewski, and Bartosz Trybus

ComSIS Vol. 4, No. 2, December 2007 136

3. The CPDev environment

Engineering environments are integrated tools for development, debugging,
deployment and maintenance of control software. Structure of the CPDev
environment is shown in Fig. 2. It involves separate logical and physical
layers what simplifies programming and compiling for different hardware
platforms.

Compilation
Universal executable

code
ST source code

Error list
Debugger

information

ST language
rules

Primitive instruction
list

Libraries

Simulation

Logical
layer

Hardware resource
configuration

Target
platform

I/O interface
specification

Communication interface
specification

Hardware resource
allocation map

Target
platform

Physical
layer

Fig. 2. Structure of the CPDev development system

ST compiler is an essential part of the logical layer. It translates ST
programs into the universal executable code interpreted later by a virtual
machine on the target platform. The compiler employs ST language rules,
function block libraries and a set of primitive instructions implemented in the
virtual machine. Single ST instruction is translated into one or several
primitive instructions. Logical layer is also responsible for debugging
information, deployment, simulation and list of errors.

Hardware resource configuration at the physical layer involves
specifications of memory, input/output interfaces and communications. The
specifications describe memory types and areas, inputs and outputs,
addresses and types of communication channels, failure indicators, etc.
Hardware allocation map (Fig. 2) is a table, which assigns symbolic names
from the ST program to physical addresses. By using it, the compiled code
can be assembled for a particular platform to create final, universal
executable code. Hardware platforms differ only in hardware allocation maps
while compiled code is identical (before assigning addresses).

Prototype environment for controller programming in the IEC 61131-3 ST language

ComSIS Vol. 4, No. 2, December 2007 137

Fig. 3. User interface of the CPDev system

Three basic windows of the CPDev user interface are shown in Fig. 3 [11].
They involve:

− trees of project structure, hardware configuration and program resources -
left part, interchangeable,

− program in ST language - center,
− message list - bottom.

The windows can be moved across the screen or minimized, frames
adjusted and the contents scrolled. Window of the StartStop project (Fig. 3)
contains the program PRG1 which consists of CTD, CTU, RS, SR function
blocks and the main task DEF_TASK. The main program involves global
variables START, STOP to OUT3 with addresses %MX0000, %MX0001 up to
%MX000F, respectively (directly represented variables). According to IEC
61131-3, the %MX prefix indicates a variable stored in memory (M) and
occupying a single bit (X). The first instruction of the program activates output
OUT0, similarly as control of the engine in Sec. 2. Next, if OUT0 is on, the
outputs OUT1, OUT2 and OUT3 are activated every 2s. The PRG1 program is
executed every 200ms.

Hardware configuration tree, which would replace the project structure (left
window) represents hardware of the controller (inputs/outputs, communication
modules etc.), or a group of controllers if a distributed system is designed.
Program resource tree contains lists of global and system variables, linked

Dariusz Rzońca, Jan Sadolewski, and Bartosz Trybus

ComSIS Vol. 4, No. 2, December 2007 138

libraries and list of user-defined variable types (arrays, structures, etc.).
TASK_CYCLE and TIME_COUNT are system variables.

In practice a typical ST program is a sequence of function block calls,
where outputs from the previous block become inputs to the next one. Two
libraries are available for the user in the CPDev system, i.e.:

− IEC 61131-3 standard blocks (Sec. 2 and Fig. 1),
− general purpose blocks (flip-flops, signal processing, on/off control, PID,

set point generator, positioner, drive control, sequencer and some others).

Table 2. Programs of TON, SR and R_TRIG standard function blocks

Function block: TON Function blocks: SR, R_TRIG

FUNCTION_BLOCK TON
VAR
 stime: TIME;
END_VAR
VAR_INPUT
 IN: BOOL;
 PT: TIME;
END_VAR
VAR_OUTPUT
 Q: BOOL;
 ET: TIME;
END_VAR

FUNCTION_BLOCK SR
 VAR_INPUT
 S1: BOOL;
 R: BOOL;
 END_VAR
 VAR_OUTPUT
 Q1: BOOL;
 END_VAR
Q1 := S1 OR (NOT R AND
 Q1);
END_FUNCTION_BLOCK

IF NOT IN THEN
 Q := FALSE;
 ET := t#0ms;
 stime := CUR_TIME();
ELSE
 IF NOT Q THEN
 ET := CUR_TIME()
 - stime;
 IF ET >= PT THEN
 Q := TRUE;
 ET := PT;
 END_IF
 END_IF
END_IF
END_FUNCTION_BLOCK

FUNCTION_BLOCK R_TRIG
 VAR_INPUT
 CLK: BOOL;
 END_VAR
 VAR_OUTPUT
 Q: BOOL;
 END_VAR
 VAR
 CLKp: BOOL := FALSE;
 END_VAR

Q := CLK AND NOT CLKp;
CLKp := CLK;
END_FUNCTION_BLOCK

Additional blocks can be programmed by the user and stored in additional
libraries. To create a new block, one should begin with FUNCTION_BLOCK
keyword in the upper window (Fig. 3). Blocks from all linked libraries can be
accessed. Simple programs of three standard blocks are presented in Tab. 2.
The flip-flop SR and edge detector R_TRIG are self-explanatory (CLKp
denotes previous value of CLK). Operation of TON has been illustrated in
Fig. 1. The input PT denotes preset time, while the output ET is elapsed time
beginning from activation of the input IN. ET is evaluated as the difference

Prototype environment for controller programming in the IEC 61131-3 ST language

ComSIS Vol. 4, No. 2, December 2007 139

between current value of the system time counter (value returned by
CUR_TIME() function) and the value stime read when rising edge at IN has
appeared.

The CPDev environment uses the XML format for libraries, programs,
configurations etc. as proposed in [13].

4. ST compiler components

The ST compiler contains three basic components, i.e. scanner, parser and
code generator (Fig. 4).

Character
stream

SCANNER
Token list

PARSER
Mnemonic code

CODE

GENERATOR
Executable

format

ST language
source file

Sequence of ST
tokens and their

categories

Collection of
identifiers

descriptions and
their code
(VMASM)

Portable binary
file

Fig. 4. ST compiler components

Main task of the compiler is to convert character stream into an executable
format. This is done in three steps. First, lexical analyzer (scanner) analyzes
a stream of characters in the input ST language source file and decomposes
it into tokens. Category of the tokens is also determined according to Tab. 3.
The tokens are stored in a list passed to the parser (Fig. 4).

Table 3. Token types recognized by the compiler

Type name Token example Type name Token example
identifier PRG1 integer constant 50
keyword FUNCTION operator +
typed constant DINT#1722211 delimiter ,
comment (*assign outputs*) directive (*$READ*)
real constant 18.32 white space
string constant 'Temperature: ' invalid character \

In the second step, the parser recognizes the tokens and checks validity of

token constructions. It ignores comments and white spaces. The parser
utilizes built-in elementary data types, operators, and a set of primitive
instructions of virtual machine. Examples of the instructions are shown in
Tab. 4. Derived data types [5,11], functions and function blocks stored in
additional libraries are also parsed (if needed). The parser translates the
token list into an identifier collection and creates an intermediate mnemonic
code called VMASM (Virtual Machine Assembler). This code uses a special
text format for storing primitive instructions and their operands. Finally, the
code generator produces a portable executable code for the virtual machine.

Dariusz Rzońca, Jan Sadolewski, and Bartosz Trybus

ComSIS Vol. 4, No. 2, December 2007 140

Modules of the mnemonic code can be merged together and converted into
the executable format.

Table 4. Primitive instructions of the virtual machine

Function Meaning Operator Function Meaning
EXPT Power ** OR Logical or
NEG Negation - (unary) XOR Logical xor
SUB Subtraction - (arithm.) NOT Binary negation
MUL Multiplication * SHL Shift left
DIV Division / SHR Shift right
ADD Addition + (arithm.) ROL/ROR Rotate left/right
CONCAT String concatenation + (text) JMP Unconditional jump
GT Greater > JZ
GE Greater or equal >= JNZ Conditional jumps
LE Less or equal <= JR Relative jump
LT Less < JRN
EQ Equal = JRZ

Conditional relative
jumps

NE Not equal <> RETURN Return from
a function

AND Logical and & MCD Constant
initialization

The essential components of the compiler are designed as classes in the
C# language [1,3]. The parser is built according to top-down scheme with
syntax-directed translation [4]. Each unit of the ST language is encapsulated
into an object of corresponding class (Fig. 5). The classes inherit from an
abstract STIdentificator class. During compilation, identifiers are
collected into lists. The lists employ predicates for finding appropriate
identifiers and eliminate the need for hash tables (normally used while
developing compilers). There is a list of global identifiers and local lists which
store identifiers of functions, function blocks, programs, etc. Identifiers in a list
are checked for uniqueness. When identical names are found compilation is
stopped and error reported. If local identifier hides a global one, the compiler
produces an information.

The parser generates text sequence of primitive instructions. Each
instruction is represented by a mnemonic followed by operand names. Code
generator replaces mnemonics and variable names with appropriate number
identifiers (indexes). While processing an instruction, the generator extracts
some information from libraries, e.g. operand size, type and passing method.
The number identifier can be interpreted as a pointer to variable or as
immediate value. Instructions for the virtual machine resulting from
compilation are represented by instances of VMInstruction class. The
operand list is also stored as a member of this class. By using lists of
operands typical problems with fixed-size operand tables are avoided.

Prototype environment for controller programming in the IEC 61131-3 ST language

ComSIS Vol. 4, No. 2, December 2007 141

Fig. 5. Object representation of ST language units

5. Compilation stages

A project in CPDev, stored in the XML format, can contain global variables,
functions, function blocks, programs, task and libraries. The following
example, illustrated by Figs. 6, 7, shows the process of compiling a project for
a function block TON (see Tab. 2). First, project items are merged into a single
source file (Fig. 6, center). This source code, with definition of TON, will be
processed to result in the universal executable code for the virtual machine.

Project

Project items:

- global

variables

- functions

- function

blocks

- programs

- tasks

- libraries

join

Source ST file
FUNCTION_BLOCK TON
VAR
 stime: TIME;
END_VAR
VAR_INPUT
 IN: BOOL; PT: TIME;
END_VAR
VAR_OUTPUT
 Q: BOOL; ET: TIME;
END_VAR
IF NOT IN THEN
 Q := FALSE;
 ET := t#0ms;
 stime := CUR_TIME(); ELSE
 IF NOT Q THEN
 ET := CUR_TIME()
 - stime;
 IF ET >= PT THEN
 Q := TRUE;
 ET := PT;
 END_IF
 END_IF
END_IF
END_FUNCTION_BLOCK

compilation

Mnemonic code
(VMASM)

001 NOT ?IF?B00A6, IN
002 JZ ?IF?B00A6, :IF?B00A7
003 MCD Q, #/01, #/00
004 MCD ET, #/04, #/00000000
005 CUR_TIME STIME
006 JMP :IF?E00AB
007 :IF?B00A7
008 NOT ?IF?B00AC, Q
009 JZ ?IF?B00AC, :IF?E00AB
010 CUR_TIME ?FCL00AF
011 SUB ET, ?FCL00AF, STIME
012 GE ?IF?B00B1, ET, PT
013 JZ ?IF?B00B1, :IF?E00AB
014 MEMCP Q, ?L_TRUE, #/0100
015 MEMCP ET, PT, #/0400
016 :IF?E00AB
017 RETURN

STEP 1 STEP 2

Fig. 6. Compilation process - steps 1 and 2

In the first step the scanner splits input character stream into tokens. Then,
the token list is passed to the parser, which removes white spaces and

Dariusz Rzońca, Jan Sadolewski, and Bartosz Trybus

ComSIS Vol. 4, No. 2, December 2007 142

comments. The parser also checks for invalid or unknown tokens and
eventually reports an error, giving the file name and position of the bad token.
If there are no syntax errors, the compilation begins. In the example of Fig. 6,
the token FUNCTION_BLOCK is recognized as a keyword. The next token
(TON) is treated as a new identifier and stored in the global identifier list as an
object of STFunctionBlock type (Fig. 5). The declaration clauses beginning
with VAR are interpreted by the parser according to its syntactic diagram
(Fig. 8) [10]. At this stage the compiler also defines memory areas for input
parameters, outputs variables, and local variables.

Library configuration file
(LCF)

<function name="GE" vmcode="110B"
return="BOOL">
 <args>
 <arg no="0" type="TIME"/>
 <arg no="1" type="TIME"/>
 </args>
 <comment>Check if first argument is
greater or equal than second argument</
comment>
</function>

consolidation

Universal executable code

address: function operand
address: next operands

002A: 05 10 0E 00
002E: 04 00
0030: 1C 02 0E 00
0034: 4E 00
0036: 1C 15 09 00
003A: 01 00
003C: 1C 15 0A 00
0040: 00 19
0042: 1C 17 00 00
0046: 1C 00 84 00
004A: 05 10 14 00
004E: 09 00
0050: 1C 02 14 00
0054: 84 00 ...

Virtual machine memory
model

.CODE
05 10 0E 00 04 00 ...
.END
.DATA
00 00 1F 01 00 00 ...
.END

dump

Output files

- data segment

- code segment

- information
for simulation

- compilation
report

STEP 3

Mnemonic code
(VMASM)

001 NOT ?IF?B00A6, IN
002 JZ ?IF?B00A6, :IF?B00A7
003 MCD Q, #/01, #/00
004 MCD ET, #/04, #/00000000
005 CUR_TIME STIME
006 JMP :IF?E00AB
007 :IF?B00A7
008 NOT ?IF?B00AC, Q
009 JZ ?IF?B00AC, :IF?E00AB
010 CUR_TIME ?FCL00AF
011 SUB ET, ?FCL00AF, STIME
012 GE ?IF?B00B1, ET, PT
 ...

Fig. 7. Compilation process - step 3 and object dump

Compilation of the function block code section begins when next token
does not match any of the declaration clauses. In the example the keyword
IF indicates a conditional instruction. Therefore the text up to the keyword
THEN is assumed to be a boolean expression. The result of evaluation of this
expression is stored in an auxiliary local variable ?IF?B00A6, so with the
name preceded by quotation mark ?. This mark is used for every element of
the code which has not been explicitly given any name. The expression
between IF and THEN is converted into the lines 001-002 of the mnemonic
code (right box in Fig. 6). Line 001 contains primitive instruction NOT that
stores result in ?IF?B00A6 variable. Line 002 contains conditional jump JZ
dependent on ?IF?B00A6 to the label :IF?B00A7. If NOT returns FALSE
(zero in ?IF?B00A6), the lines 003–004 initialize the output Q with FALSE and
ET with T#0ms. Line 005 calls the system function CUR_TIME (current system
time) and stores returned value in stime. Unconditional jump JMP in the line
006 completes the evaluation for FALSE (from NOT). The lines 008–010

Prototype environment for controller programming in the IEC 61131-3 ST language

ComSIS Vol. 4, No. 2, December 2007 143

contain similar code executed when NOT returns TRUE. Subtraction SUB in
the line 011 involves the variable ?FCL00AF which now keeps the current
time, and the initial stime. The label :IF?B00A7 in the line 007 and
:?IF?E00AB in 016 follow from ELSE and END_IF, respectively. RETURN at
the end causes virtual machine to finish execution of the function block.

VAR

CONSTANT

RETAIN

identifier

,

Type ident.

STRING

:

:=

; END_VAR

const

(const)

[const]

Fig. 8. Syntactic diagram for the VAR declaration clause

In the third step the final executable code is created. The compiler links the
compiled code with all required modules (Fig. 7). The mnemonic code is
translated into binary executable by replacing:

− mnemonic function names with number identifiers (opcodes),
− variable names with data area indexes,
− label names with code addresses (absolute or relative).

The last step involves Library Configuration File (LCF; Fig. 7, lower left).
This is an XML file with additional information required during compilation
such as mnemonics of the primitive functions and opcodes, argument order
and types. It can also contain some target-specific information, like big- or
little-endian byte order. Resulting universal executable code is shown in the
upper right box in Fig. 7. As seen, 1009 (hex) is the opcode of the first
instruction GT. The others follow accordingly.

6. Virtual machine

Software deployment process can be represented as in Fig. 9. The universal
executable code is transferred to a target controller where it is executed by
the virtual machine.

Dariusz Rzońca, Jan Sadolewski, and Bartosz Trybus

ComSIS Vol. 4, No. 2, December 2007 144

Controller executive
program

I/O interface
Universal

executable code

Virtual machine

On-line tests
(commissioning)

Hardware resource
allocation map

Communication
interface

PC

Fig. 9. Software deployment process for different hardware platforms

RUN mode ?

Reading inputs

Execution
Task

 - program 1
 - program 2
 - . . .

Writing outputs

YES

NO

Next cycle

Cycle
time

Fig. 10. Phases of the virtual machine cycle

As indicated before, the machine is specific for a particular microprocessor
and operates as an interpreter. Code and data are stored in two different
memory areas (similarly as in Harvard architecture processors). The virtual
machine is an automaton operating according to Fig. 10. Following IEC
61131-3 standard, a task consists of programs executed successively.
Universal code of the compiled program contains identifiers of primitive
instructions and their operands (Fig. 7). While executing a program, the
machine fetches successive instruction, decodes it, fetches the operands,
and finally executes the instruction. The machine monitors time cycles of the
tasks and alarms if timeout appears. It also triggers input/output procedures
responsible for external variables (Fig. 10).

Prototype environment for controller programming in the IEC 61131-3 ST language

ComSIS Vol. 4, No. 2, December 2007 145

I/O functions

Instruction interpreter

Memory
access

Platform-dependent

UniversalStack
emulation

Data type
handling

Time & clock Multitasking

Fig. 11. Virtual machine’s internal structure

The virtual machine code consists of universal and platform dependent
modules (Fig. 11). The machine maintains program counter with the index to
currently executed instruction and with base address to memory area with
variables. Together with stack emulation, this allows for multiple and
concurrent calls of functions and function blocks (which employ internal
variables). The machines provide relatively short execution times due to
similarity of primitive instructions (Tab. 4 earlier) to assemblers of typical
microprocessors, as well as indexing techniques used for interpretation [10].

Device memory

Instruction select

...

Adding

...

Reference reg.

Internal memory

...

01 22 00 08 2A 07

...

Code segment
...

00 08: 21 D2

...

00 41: 1A 57
...

Data segment

Fig. 12. Memory segments of the virtual machine

The virtual machine instructions and their operands are stored in the code
segment of memory (Fig.12). It is read–only memory, so none of primitive
instructions can modify the contents. The data segment contains variables
and constant values, function blocks and programs. This segment can be
accessed directly or indirectly by special registers. Internal memory contains
stacks, registers and the interpreter code. The internal memory cannot be
accessed by primitive instructions. Virtual machine is able to execute multiple
instances of programs.

Modular structure of the virtual machine simplifies implementation in
different hardware platforms. Usually only the platform-dependent modules
have to be rewritten or modified. Code of the universal modules remains
unchanged (the source code must be compiled for the target CPU anyway).
The platform-dependent modules (Fig. 11) interface the machine to particular
hardware, executing VM requests to low-level procedures. For example the
Time&clock employs timer interrupt to compute task cycle and set timeout
flag. If real-time clock chip is available, it can trigger events that occur at

Dariusz Rzońca, Jan Sadolewski, and Bartosz Trybus

ComSIS Vol. 4, No. 2, December 2007 146

regular, long intervals (e.g., every Sunday midnight). I/O functions provide
interface to analog and binary inputs and outputs, and to communication
fieldbus or network. The multitasking module is optional, since it employs
multitasking mechanisms provided by host operating system. In such
arrangement, task instances use private copies of global variables to avoid
conflicts (so-called process image mechanism).

The virtual machine has been written in the industry standard C language,
so it can be directly adapted to different microprocessors. If limited hardware
resources are available, an XML configuration file specifies simplified version
of the machine. For example, one can limit the number of elementary data
types or define a subset of primitive instructions to be used. Till now, the
machines for AVR, MCS-51 and PC platforms have been developed. Another
one for ARM-core based microprocessors is being considered.

a)

b)

RS-485

USB

PC

CPDev
SCADA

inputs outputs

SM5 SM4

SMC

Fig. 13. a) SMC controller, b) simple SMC-based system

First applications of the CPDev has already been tested in cooperation with
LUMEL Zielona Góra company. The SMC programmable controller (Fig. 13a)
and appropriate firmware including special version of the virtual machine have
been developed. The controller employs AVR ATmega 128 CPU [2]. SMC
operates as a central unit of mini-distributed system in control, measurement
and monitoring applications. Usually it is equipped with SM1 – SM5
input/output modules (Fig. 13b), but other devices can be connected to RS-
485 interface using industry standard MODBUS RTU protocol [7].

7. Summary

A compiler of IEC 61131-3 Structured Text language, basic component of the
CPDev development system, has been presented in the paper. ST programs
are translated into specially designed universal executable code. Target-
specific virtual machine can execute such code on a controller CPU.

Prototype environment for controller programming in the IEC 61131-3 ST language

ComSIS Vol. 4, No. 2, December 2007 147

Although more advanced environments are available from commercial
manufacturers, e.g. Step7 from Siemens, Control Builder from ABB, Concept
from Schneider, they can handle only manufacturers’ hardware. The CPDev
is oriented towards small-and-medium scale manufacturers and supports, or
will support, a range of popular platforms, such as AVR, MCS-51, ARM or PC.
It is being created having in mind both generality and openness, which means
that it can be adjusted to specific needs.

8. References

1. Appel A., Palsberg J.: Modern compiler implementation in Java. Second edition.
Cambridge University Press. (2002)

2. ATmega 128 Datasheet. Atmel 2007. [Online]. Available:
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf (current
November 2007)

3. C# Language Specification - [Online]. Available: http://msdn2.microsoft.com/en-
us/vcsharp/aa336809.aspx (current November 2007)

4. Cooper K., Torczon L.: Engineering a Compiler. Morgan Kaufmann, San
Francisco. (2003)

5. IEC 61131-3 standard: Programmable Controllers - Part 3, Programming
Languages. IEC. (2003)

6. Lindholm T., Yellim F.: Java Virtual Machine Specification Second Edition. Java
Software, Sun Microsystems Inc. (2004)

7. Modicon MODBUS Protocol Reference Guide. MODICON, Inc., Industrial
Automation Systems, Massachusetts (1996). [Online]. Available:
www.modbus.org/docs/PI_MBUS_300.pdf

8. MS .NET Framework Developer's Guide - [Online]. Available:
http://msdn2.microsoft.com/en-US/library/aa720433.aspx (current November
2007)

9. Pietrusewicz K.: Biggest study of Polish PLC controllers market. Control
Engineering Polska, 26-38. (February 2007) (in Polish).

10. Rzońca D., Sadolewski J., Trybus B.: IEC 61131-3 standard ST compiler into
universal executable code. In: Real-Time Systems. Methods and Applications,
WKŁ, Warsaw, 189-198. (2007) (in Polish).

11. Stec A., Świder Z., Trybus L.: Functional characteristic of the prototype system for
embedded systems programming. In: Real-Time Systems. Methods and
Applications, WKŁ, Warsaw, 179-188. (2007) (in Polish).

12. John K.H., Tiegelkamp M.: IEC 61131-3: Programming Industrial Automation
Systems. Berlin Heidelberg, Springer-Verlag. (2001)

13. XML Formats for IEC 61131-3 ver. 1.01 - Official Release. [Online]. Available:
www.plcopen.org/

Dariusz Rzońca, Jan Sadolewski, and Bartosz Trybus

ComSIS Vol. 4, No. 2, December 2007 148

Dariusz Rzońca is an assistant at the Department of Informatics and Control,
Rzeszów University of Technology. He received B.Sc. in mathematics in
2002, and M.Sc. in computer engineering in 2004. His research focuses on
coloured Petri nets and communication in microprocessor systems.

Jan Sadolewski is an assistant at the Department of Informatics and Control,
Rzeszów University of Technology. He received M.Sc. in computer
engineering in 2006. His interests are in C, C#, Delphi, Java, and Assembly
8086. He currently works on modern programming languages and compiler
implementations.

Dr. Bartosz Trybus is an assistant professor at the Department of
Informatics and Control, Rzeszów University of Technology. He received
Ph.D. in computer engineering in 2004 from AGH University of Science and
Technology, Cracow. His research focuses on real-time systems and design
techniques for control applications.

