

Volume 8, Number 2, 2011
Novi Sad

Computer Science and Information Systems

Special Issue on Advances in Formal Languages,
Modeling and Applications

ISSN: 1820-0214

ComSIS Journal is sponsored by:

Ministry of Education and Science of Republic of Serbia - http://www.mpn.gov.rs/

Computer Science and
Information Systems

AIMS AND SCOPE

Computer Science and Information Systems (ComSIS) is an international refereed journal, pub-
lished in Serbia. The objective of ComSIS is to communicate important research and development
results in the areas of computer science, software engineering, and information systems.

We publish original papers of lasting value covering both theoretical foundations of computer
science and commercial, industrial, or educational aspects that provide new insights into design
and implementation of software and information systems. ComSIS also welcomes surveys papers
that contribute to the understanding of emerging and important fields of computer science.
Regular columns of the journal cover reviews of newly published books, presentations of selected
PhD and master theses, as well as information on forthcoming professional meetings. In addition
to wide-scope regular issues, ComSIS also includes special issues covering specific topics in all
areas of computer science and information systems.

ComSIS publishes invited and regular papers in English. Papers that pass a strict reviewing
procedure are accepted for publishing. ComSIS is published semiannually.

Indexing Information
ComSIS is covered or selected for coverage in the following:
٠ Science Citation Index Expanded (also known as SciSearch) and Journal Citation Reports /

Science Edition by Thomson Reuters,
٠ Computer Science Bibliography, University of Trier (DBLP),
٠ EMBASE (Elsevier),
٠ Scopus (Elsevier),
٠ Summon (Serials Solutions),
٠ EBSCO bibliographic databases,
٠ IET bibliographic database Inspec,
٠ FIZ Karlsruhe bibliographic database io-port,
٠ Index of Information Systems Journals (Deakin University, Australia),
٠ Directory of Open Access Journals (DOAJ),
٠ Google Scholar,
٠ Center for Evaluation in Education and Science and Ministry of Science of Republic of Serbia

(CEON) in cooperation with the National Library of Serbia,
٠ Serbian Citation Index (SCIndeks),
٠ doiSerbia.

Information for Contributors
The Editors will be pleased to receive contributions from all parts of the world. An electronic
version (MS Word or LaTeX), or three hard-copies of the manuscript written in English, intended
for publication and prepared as described in "Manuscript Requirements" (which may be
downloaded from http://www.comsis.org), along with a cover letter containing the corresponding
author's details should be sent to one of the Editors.

Criteria for Acceptance
Criteria for acceptance will be appropriateness to the field of Journal, as described in the Aims
and Scope, taking into account the merit of the content and presentation. The number of pages
of submitted articles is limited to 30 (using the appropriate Word or LaTeX template).

Manuscripts will be refereed in the manner customary with scientific journals before being
accepted for publication.

Copyright and Use Agreement
All authors are requested to sign the "Transfer of Copyright" agreement before the paper may be
published. The copyright transfer covers the exclusive rights to reproduce and distribute the
paper, including reprints, photographic reproductions, microform, electronic form, or any other
reproductions of similar nature and translations. Authors are responsible for obtaining from the
copyright holder permission to reproduce the paper or any part of it, for which copyright exists.

Computer Science and Information Systems

Volume 8, Number 2, Special Issue, May 2011

CONTENTS

Editorial

Invited Papers

225 Challenges and Directions in Formalizing the Semantics of

Modeling Languages
Barrett R. Bryant, Jeff Gray, Marjan Mernik, Peter J. Clarke, Robert B.
France, Gabor Karsai

255 Software Agents: Languages, Tools, Platforms
Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, Mirjana
Ivanović

Regular Papers

299 SPEM Ontology as the Semantic Notation for Method and
Process Definition in the Context of SWEBOK
Miroslav Líška, Pavol Navrat

317 Ontology Driven Development of Domain-Specific Languages
Ines Čeh, Matej Črepinšek, Tomaž Kosar, Marjan Mernik

343 Domain-Specific Language for Coordination Patterns
Nuno Oliveira, Nuno Rodrigues, Pedro Rangel Henriques

361 From DCOM Interfaces to Domain-Specific Modeling
Language: A Case Study on the Sequencer
Tomaž Kos, Tomaž Kosar, Jure Knez, Marjan Mernik

379 A DSL for PIM Specifications: Design and Attribute Grammar
based Implementation
Ivan Luković, Maria João Varanda Pereira, Nuno Oliveira, Daniela da
Cruz, Pedro Rangel Henriques

405 UML Profile for Specifying User Interfaces of Business
Applications
Branko Perišić, Gordana Milosavljević, Igor Dejanović,
Branko Milosavljević

427 Formalizing Business Process Specifications
Andreas Speck, Sven Feja, Sören Witt, Elke Pulvermüller, Marcel
Schulz

447 An Approach to Assess and Compare Quality of Security
Models
Raimundas Matulevičius, Henri Lakk, Marion Lepmets

477 GammaPolarSlicer
Sérgio Areias, Daniela da Cruz, Pedro Rangel Henriques, Jorge Sousa
Pinto

501 Animation of Tile-Based Games Automatically Derived from
Simulation Specifications
Jan Wolter, Bastian Cramer, Uwe Kastens

517 Solving Difficult LR Parsing Conflicts by Postponing Them
C. Rodriguez-Leon, L. Garcia-Forte

533 Detecting Concurrency Anomalies in Transactional Memory
Programs
João Lourenço, Diogo Sousa, Bruno Teixeira, Ricardo Dias

EDITORIAL

Everyone recognizes the importance of formal modeling activities as support
for software development. These models must use an appropriate abstraction
level in order to describe systems without unnecessary details. The main
objective is to describe the domain (concepts and relations) and the actions
using a formal representation. For that, ontologies have been used and
domain specific languages (DSL) have been created. The implementation of
new DSLs implies the construction of new language-based tools. This can be
done automatically using traditional language processing techniques based
on grammars.

This special issue contains revised and expanded versions of selected high
quality papers presented either at the Conference on Compilers,
Programming Languages, Related Technologies and Applications
(CoRTA’2010) or at the Fourteenth East-European Conference on Advances
in Databases and Information Systems (ADBIS 2010) or at the workshop
integrated in this last one called MDASD - Model Driven Approaches in
System Development. One of the invited papers comes from the International
Workshop on Formalization of Modeling Languages (FML 2010).

The first conference, organized by the University of Minho, took place on
September 09-10, 2010, in Braga, Portugal. The latter was organized in co-
operation with Faculty of Sciences and Faculty of Technical Sciences from
University of Novi Sad and took place on September 20 - 24, 2010, Novi Sad,
Serbia. FML 2010 was collocated with ECOOP 2010 and took place on June
21, 2010, in Maribor, Slovenia.

CoRTA2010 (4th edition) is a forum where researchers, developers,
educators present their work under development and exchange new ideas
and information about language design, processing, assessment, and
application (http://corta2010.di.uminho.pt/). CoRTA2010 was a track under
INForum -- Simpósio de Informática: http://inforum.org.pt/INForum2010.

ADBIS 2010 provided a forum for the dissemination of research work and it
promoted the interaction and collaboration between the database and
information systems research communities. MDASD workshop (http://perun.
pmf.uns.ac.rs/adbis2010/workshop-mdasd.php) gathered researchers working
on Model-Driven (MD) languages, techniques and tools, as well as DSLs.
These techniques were applied in information system and application
development, databases and related areas. So, MDASD participants could
exchange their experience, discuss new ideas and evaluate and improve MD
approaches.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 ii

The purpose of FML 2010 was to provide a forum to discuss challenge areas
in formalizing modeling languages and constructing automated tools from
such formalizations (http://www.cis.uab.edu/FML2010/).

There are several common topics between CoRTA, MDASD, ADBIS and FML
like:

 Modeling languages and model-driven development;

 Automatic generation of modeling tools;

 Specification of domain specific languages;

 Ontologies as a formal model to develop languages and tools;

 Paradigms, concepts, methodologies, and novel constructs on
programming languages;

 Language quality assessment and grammar metrics.

At the end of all these events, some of the high quality submitted papers were
selected for possible publication in a special issue of ComSIS and their
authors were invited to prepare extended versions of their papers. These
extended versions were then reviewed by experts in the field. In order to
ensure the best possible quality, the improved papers were then submitted to
a second round of reviewing.

This special issue includes two invited papers. The first one “Challenges and
Directions in Formalizing the Semantics of Modeling Languages” by Barrett
Bryant, Jeff Gray, Marjan Mernik, Peter Clarke, Robert France and Gabor
Karsai, discuss semantics-based approaches for the formalization of modeling
languages and the automatic construction of modeling tools. The tools for
model-driven engineering are usually based on manual processes. In order to
automatize their development it is necessary to formalize the modeling
language underlying. A semantics-based approach for that purpose is
described in this paper.

“Software Agents: Languages, Tools, Platforms” by Costin Badica, Zoran
Budimac, Hans-Dieter Burkhard and Mirjana Ivanović is the second invited
paper. It presents a very complete survey about agent-based software
development. Significant languages, tools, platforms and development
activities are described.

The first regular paper has the title “SPEM Ontology as the Semantic Notation
for Method and Process Definition in the Context of SWEBOK” and the
authors are Miroslav Liška and Pavol Návrat. This paper presents a meta-
model ontology that adds a semantic notation for software process definition.
This approach provides concepts for knowledge based software process
engineering and it was applied to several case studies.

“Ontology Driven Development of Domain-Specific Languages” by Ines Čeh,
Matej Črepinšek, Tomaž Kosar and Marjan Mernik is the second regular
paper and it explains a new approach to develop DSLs where the design

ComSIS Vol. 8, No. 2, Special Issue, May 2011 iii

phase is based on ontologies. The main idea is to present a set of rules that
allow the automatic translation of ontology concepts into grammar symbols.
Preliminary results of the Ontology2DSL framework are presented.

The next paper “Domain-Specific Language for Coordination Patterns” by
Nuno Oliveira, Nuno Rodrigues, Pedro Rangel Henriques presents the
development of a new DSL to specify coordination patterns of system
components. The main objective is to separate the architecture decision
features from other code in order to improve the system comprehension
process.

In “From DCOM Interfaces to Domain-Specific Modeling Language: A Case
Study on the Sequencer” by Tomaž Kos, Tomaž Kosar, Jure Knez and Marjan
Mernik a domain-specific modeling language developed to enable domain
experts to program or model their own measurement procedures is described.
This approach turns them independent from the measurement system
producers. Some experiences were performed to prove the effectiveness of
this new domain-specific modeling language.

The paper “A DSL for PIM Specifications: Design and Attribute Grammar
based Implementation” by Ivan Luković, Maria João Varanda Pereira, Nuno
Oliveira, Daniela da Cruz and Pedro Rangel Henriques, presents the design
and implementation of a new DSL that will allow to specify easily Platform
Independent Model (PIM) specifications. These specifications are used by a
model driven software tool (IIS*Case) for system modeling and prototype
generation.

The next paper “UML Profile for Specifying User Interfaces of Business
Applications” by Branko Perišić, Gordana Milosavljević, Igor Dejanović and
Branko Milosavljević, presents a DSL-based approach to perform automatic
generation of user interfaces. Since the new DSL created is based on UML, it
can be easily integrated with other application UML models.

“Formalizing Business Process Specifications” by Andreas Speck, Sven Feja,
Sören Witt, Elke Pulvermüller, Marcel Schulz addresses formalisms to specify
business processes in particular the use of temporal logic. In order to avoid
the complexity of temporal logic, a graphical notation is proposed and
semantic specializers are used to identify and check element types.

Raimundas Matulevicius, Henri Lakk and Marion Lepmets in “An Approach to
Assess and Compare Quality of Security Models” describe an approach to
perform a comparative study of security models in order to assess their
quality.

In the paper “GrammaPolarSlicer”, the authors SérgioAreias, Daniela da Cruz,
Pedro Rangel Henriques and Jorge Sousa Pinto propose an approach to
ensure the software quality on reusing processes. The paper introduces the

ComSIS Vol. 8, No. 2, Special Issue, May 2011 iv

concept of “caller-based slicing” as a way to certify the integration of
components into legacy systems and proposes the use of visualization
techniques to improve the approach.

“Animation of Tile-Based Games Automatically Derived from Simulation
Specifications” by Bastian Cramer, Jan Wolter and Uwe Kastensis is
concerned with the implementation of visual languages using Devil. When the
language has an execution semantics the gap between program depiction
and program execution disappears. This tool allows the rapid development of
simulations and animations based on several kinds of visual languages:
diagrammatic, iconic and graph based ones.

Concerning the Language Processing subject, a new technique to solve LR
parsing conflicts is presented by Luis Garcia-Forte and Casiano Rodriguez-
Leonin “Solving Difficult LR Parsing Conflicts by Postponing Them”. The main
idea is to avoid grammar modifications when reduce-reduce conflicts are
detected. The solution is based on a postponing approach.

The paper “Detecting Concurrency Anomalies in Transactional Memory
Programs” by João Lourenço, Diogo Sousa and Bruno Teixeira presents a
framework for detection of both low and high-level anomalies in transaction
memory programs. The tool was applied to a set of programs and the authors
proved the effectiveness of using static analysis in the process of anomalies
identification.

On behalf of the Editorial Board and the ComSIS Consortium, we would like to
thank the authors for their high-quality contributions, and also the reviewers
for the effort and time invested into the preparation of this issue of Computer
Science and Information Systems journal.

Ivan Luković,
Mirjana Ivanović and
Maria João Varanda Pereira
Guest Editors

DOI:10.2298/CSIS110114012B

Challenges and Directions in

Formalizing the Semantics of Modeling Languages

Barrett R. Bryant1, Jeff Gray
2
, Marjan Mernik

3
, Peter J. Clarke

4
,

Robert B. France
5
, and Gabor Karsai

6

1 Department of Computer and Information Sciences,
University of Alabama at Birmingham, Birmingham, Alabama 35294-1170, USA

bryant@cis.uab.edu
2 Department of Computer Science, University of Alabama

Tuscaloosa, Alabama 35487-0290, USA
gray@cs.ua.edu

3 Faculty of Electrical Engineering and Computer Science, University of Maribor
2000 Maribor, Slovenia

marjan.mernik@uni-mb.si
4 School of Computing and Information Sciences, Florida International University

Miami, Florida 33199, USA
clarkep@cis.fiu.edu

5 Computer Science Department, Colorado State University
Fort Collins, Colorado 80523-1873

france@cs.colostate.edu
6 Institute for Software-Integrated Systems, Vanderbilt University

Nashville, Tennessee 37235
gabor.karsai@vanderbilt.edu

Abstract. Developing software from models is a growing practice and

there exist many model-based tools (e.g., editors, interpreters,
debuggers, and simulators) for supporting model-driven engineering.
Even though these tools facilitate the automation of software
engineering tasks and activities, such tools are typically engineered
manually. However, many of these tools have a common semantic
foundation centered around an underlying modeling language, which
would make it possible to automate their development if the modeling
language specification were formalized. Even though there has been
much work in formalizing programming languages, with many successful
tools constructed using such formalisms, there has been little work in
formalizing modeling languages for the purpose of automation. This
paper discusses possible semantics-based approaches for the
formalization of modeling languages and describes how this formalism
may be used to automate the construction of modeling tools.

Keywords: model-based tools, modeling languages, semantics.

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 226

1. Introduction

With increasing frequency, scientists and engineers in diverse areas of focus,
as well as end-users with specific domain expertise, are requiring
computational processes to allow them to complete some task (e.g., avionics
engineers who seek input on a modeled design from verification tools, or
geneticists who need to describe computational queries to process a gene
expression). A challenge emerges from the lack of knowledge of such users in
terms of expressing their computational desire (i.e., such users typically are
not familiar with programming languages). Model-driven engineering (MDE) is
an approach that provides higher levels of abstraction to allow such users to
focus on the problem, rather than the specific solution or manner of realizing
that solution through lower level technology platforms [46][52]. However, the
potential impact of modeling is reduced due to the imprecise nature in which
modeling languages are defined [26]. The large majority of modeling
languages are defined in an ad hoc manner that lacks precision and a
common reference definition for understanding the meaning of language
concepts. In current practice, the meaning of a modeling language is often
contained only in a model translator (we will use the term model interpreter in
this paper to refer to such translators) that converts a model representation
into some other form (e.g., source code). The current situation in MDE is not
unlike the early period of computing when the definition of a programming
language was delegated to “what the compiler says it means.” Such an
approach not only promotes misunderstanding of the meaning of a modeling
language, but also limits opportunities for automating the generation of
various language tools (much like the adoption of grammars provided a
reference point for compiler and other tool generation for a programming
language).

The advantages of formal specification of programming language
semantics are well-known. First, the meaning of a program is precisely and
unambiguously defined; second, it offers a unique possibility for automatic
generation of language-based tools (e.g., [27]). Unfortunately, formal
specifications, syntax and semantics, of modeling languages have not been
developed to this level yet. Although the syntax of modeling languages is
commonly specified by metamodels, an appropriate and standard formalism
for specifying the (behavioral) semantics of modeling languages does not yet
exist. Hence, there is no automatic generation of model interpreters,
debuggers, simulators and verification tools.

In this paper, we describe challenges and directions in formalizing the
semantics of modeling languages. The ideas developed in this paper were
derived from the Workshop on Formalization of Modeling Languages held in
conjunction with the European Conference on Object-Oriented Programming
(ECOOP) in Maribor, Slovenia, on June 21, 2010. The paper is organized as
follows. Section 2 motivates the need for semantics in modeling languages
and reviews existing work in this area. In Section 3, we describe an approach
based on state machine models. Section 4 describes a metamodel-based
approach to semantics. In Sections 5 and 6, we discuss our experiences with

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 227

semantics-based modeling tools for verification. Finally, we conclude in
Section 7.

2. The Need for Semantics in Modeling Languages

Much of the success of MDE is dependent on the descriptive power of
domain-specific modeling languages (DSMLs) [24][29][50]. One of the current
challenges of adopting a DSML is the lack of a precise description of the
semantics of the DSML. Initial attempts are described in [9], [10] and [16]. The
typical technique for specifying the syntax and static semantics of a DSML is
to use a metamodel, which describes concepts in a problem domain and their
relationships. A standard known as MOF (Meta-Object Facility) has been
proposed for defining the syntax of modeling languages by following a similar
role as BNF and its variants (e.g., EBNF) for programming languages.
Metamodels are currently even used for specifying the syntax of domain-
specific programming languages [42]. However, the situation concerning
syntactical description of languages is completely different from semantics. It
is often easier to describe the structure of a DSML using a metamodel than it
is to specify the syntax of a programming language using BNF. However,
specifying detailed behavior (semantics) is much harder with DSMLs. In our
opinion, this is why only the syntax of current DSMLs are formally described,
but the semantics are left toward other less than desirable means. For
example, as will be discussed further in Section 5, the semantics of the UML
(Unified Modeling Language) metamodel is defined using a mixture of OCL
(Object Constraint Language) and informal text, which is clearly unacceptable
for formal analysis. Hence, the meaning (semantics) of models are often not
formally described. For this purpose, general-purpose programming
languages (e.g., C++) are often used to define model interpreters that have an
internal representation of the semantics of a DSML. The lack of a formal
definition of DSML semantics contributes to several problems, as highlighted
in the following paragraphs.

Tool Generation Challenges: The semantics of DSMLs are not defined
formally. Hence, proving properties about concepts and relationships in the
domain is not possible. Moreover, a model interpreter cannot be automatically
generated in most cases. A further consequence is that various other model-
based tools (e.g., debuggers, test engines, simulators, verifiers) also cannot
be generated automatically.

Tool Analysis Challenges: Model interpreters are often implemented with
general-purpose programming languages (GPLs). This has several
consequences. Verifying a model interpreter is a very difficult, if not
impossible task. As such, verification, optimization, and parallelization of
models can be expressed only through GPLs.

Formal Language Design: DSMLs are also languages that need to be
designed properly. This leads to several key questions: What are the design

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 228

principles for modeling languages? How are the results of domain analysis
used in modeling language design?

Modeling Language Composition: In practice, multiple domains might be
involved to describe different perspectives of a modeled system. In such a
case, there is a need for composing DSMLs together. Presently, there is little
support for formal composition and evolution of DSMLs.

2.1. Related Work in Modeling Language Definition

Some work on the generation of various modeling tools has already been
investigated. Different approaches to the issue of defining the semantics of
DSMLs have been proposed; these differ in their applicability and potential of
leveraging automatic or at least semi-automatic language tool generation.

2.2. Mapping the DSML into Existing Formal Languages

A common way of defining the semantics of a modeling language is through
translation semantics, where the abstract syntax of the main DSML is mapped
into the abstract syntax of an existing formal language, with well-defined and
understood semantics. The mapping is achieved through model
transformations. An advantage of this approach is that the DSML can convey
existing tools of the language into which it is translated. A common critique of
this approach is that since the semantics definition is not defined in the
metamodel of the DSML, it is very challenging to correctly map the constructs
of the DSML into the constructs of the target language. The underlying cause
for this is that the mappings are not at the same level of abstraction and the
target language may not have a simple mapping from the constructs in the
source language. Another issue of the translation semantics approach is the
mapping of execution results (e.g., error messages, debugging traces) back
into the DSML in a meaningful manner, such that the domain expert using the
modeling language understands the result.

One concrete approach that uses translation semantics is called semantic
anchoring [9], which uses the well-known Abstract State Machines (ASM)
formalism [7] to define the semantics. We will discuss the technique in detail
below. This solution maps the abstract syntax of the DSML, which was
defined in the GME (Generic Modeling Environment) metamodeling tool [33],
into well-established semantic domains, called semantic units (e.g., timed
automata, and discrete event systems) that have been defined in the ASML
(Abstract State Machine Language) tool. The initial work on semantic
anchoring did not show any application of tool generation from the semantics
specification, although the usage of ASML enables compilation, simulation,
test case generation and verification of ASML specifications, as will be
discussed further in Section 3. A similar concrete approach was proposed by
Di Ruscio et al. [16], which also did not demonstrate any tool generation

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 229

based on the semantics definition. Gargantini, Riccobene and Scandurra [22]
introduce a semantic framework based on ASM, which also includes three
translational semantics techniques: semantic mapping, semantic hooking and
semantic meta-hooking. The authors do not demonstrate any tool generation
from their semantics specifications. The Moses tool suite [21], which defines
the syntactical aspects (e.g., vertex edge/types, syntactical predicates) of the
language with a Graph Type Definition Language (GTDL), uses ASM for
prototyping model interpreters to achieve the definition of semantics. Based
on this kind of formal specification, the Moses tool suite generates animation
and debugging tools for visual models. The work presented in [43] describes a
translation semantics definition with Maude, which is a rewriting logic-based
language. Based on such a semantics definition simulation, reachability and
model-checking analysis tools can be generated. Sadilek and Wachsmuth
[44] present a semantics definition based on a transition system, where the
states are defined by metamodel instances and the transitions are defined by
model transformations. The work of Hahn [25] uses the Object-Z language
[48] as the means of defining the translation semantics.

2.3. Weaving the Semantics into the Metamodel

Another approach is to weave behavior into the abstract syntax (i.e., the
metamodel) by a meta-language (also called action language), which can be
used to specify the bodies of operations that occur in the metamodel. This
permits the model to be executable, because the semantics are defined inside
the operation bodies. The significant drawback of this approach is the fact that
some meta-languages are very similar to 3rd generation programming
languages; therefore, they have to be used in an operative way. The
advantage of this approach is the fact that this kind of semantics specification
can be mastered by most domain experts.

A well-known representative of this approach is the Kermeta tool [40],
which extends an abstract meta-layer with an imperative action language to
weave a semantic definition within the metamodel. Kermeta constructs
contain specification of operations over metamodel elements. The built-in
support for specification of operational semantics enables the automatic
generation of simulation and testing tools. Another example is the approach
proposed by Scheidgen and Fischer [45], where an operation is specified
through the use of OCL statements and an activity diagram. The graphical
format of this meta-language is particularly familiar to users with a strong
modeling background. The authors mentioned that in the future they will work
on automatic debugger generation. Soden and Eichler [49] propose a similar
approach based on the usage of activity diagrams as the meta-language.
Their future work will be implemented in a framework known as the Model
Execution Framework (MXF) and should take an important place in the
Eclipse environment. Based on the semantics definition, various tools like
trace analysis and runtime verification will be automatically generated. The
Mosaic XMF framework [3], which uses an extended OCL language to provide

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 230

semantics, is another representative of the semantics definition approach.
Initial work that corresponds to the behavior weaving approach was also
undertaken in UML [51], where action semantics were proposed to achieve
the goal of executable UML models. To define the semantics of a new
language, no notation was enforced, but the authors “suggest activities with
action semantics for language modelling.” Ducasse et al. [17] use Smalltalk as
a meta-language in their DSML semantics definition.

2.4. Defining the Semantics with Rewrite Rules

Semantics also can be specified through rewriting systems, where the system
typically consists of rewrite rules. Each rewrite rule consists of a left- and a
right-hand side. The execution of a rewrite system is based on the repeated
application of the rewrite rules to an existing configuration (e.g., model). A rule
is applied when the left-hand side of the rule is found in the configuration, in
such a way that this occurrence will be replaced by the right-hand side of the
rule. The execution is complete when there is no rule that can be applied to
the configuration. Typically, the existing approaches employ graph rewriting
where the semantics can be specified in an operational fashion through the
graphical definition given by graph grammars. Graph rewriting provides a
mathematically precise and visual specification technique by combining the
advantages of graphs and rules into a single computational paradigm [53].

Graph rewriting specification was employed in the AToM3 tool [32], which
uses triple graph grammars as rewriting rules. One of the interesting features
of AToM3 is that the definition of rewriting rules is given through concrete
syntax, which makes semantic specification especially amenable for domain-
experts. AToM3 can use graph grammar definitions to generate visual model
simulators and implement model optimizations and code generation. The
dynamic metamodeling [19] approach describes the semantics of UML
behavior diagrams with collaboration diagrams, which are used in graph
transformations. The authors mention future work on the generation of model
simulators. Ermel et al. [20] enable translation of UML behavior diagrams into
graph transformations, which are the basis for semantics that are used to
generate a visual simulator of UML models.

2.5. Other Approaches to the Definition of Semantics

There also exist other examples of generating tools from semantic definitions
that are described in GPLs. Perhaps a valuable lesson can be learned even
from these examples. One of the most well-known approaches is Ptolemy
[18], which is a tool that enables animated interpretation of hierarchically
composed domain-specific models. Models in Ptolemy consist of
heterogeneous domains (models of computation) that can have different
semantics. Adding a new DSML to Ptolemy is cumbersome, because the

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 231

syntax and semantics have to be defined manually (i.e., hand-coded) in Java
by implementing a “director” that assigns executable semantics to the DSML
constructs.

3. Defining the Semantics of Modeling Languages

We view semantics as a mapping from the abstract syntax (A) of the DSML
to some semantic domain (D). The abstract syntax defines the fundamental
modeling concepts, their relationships, and attributes used in the DSML, and
the semantic domain is some mathematical framework whose meaning is
well-defined. The abstract syntax defines the data structures that represent
the modeling constructs, and, as such, it can be considered as a schema for
the models. For instance, in a modeling language representing Finite State
Machines (FSMs), we will need data structures for states and transitions,
which need to be related to each other such that one can find the source and
target states of transitions. Instances of such data structures do represent
FSMs, and algorithms are available to analyze them. The concrete syntax (S)
is the human-readable manifestation of the abstract syntax. In our FSM
example, the concrete syntax can be textual (e.g., a simple language where
an FSM is represented as a set of names for states, and a set of transitions
represented in the form „state1  state2‟, where state1 and state2 are names
of states), or it can be graphical (e.g., a graphical notation with bubbles
representing states and arrows connecting bubbles representing the
transitions). There is always a well-defined mapping between A and S. We
use the concrete syntax to create and modify the models, with the assistance
of a customized metamodeling tool, such as the GME. Note that changes on
the models performed using the concrete syntax must eventually be reflected
as changes in the abstract syntax form of the models.

An example for the visual depiction of abstract syntax is shown in Figure 1,
which uses the UML class diagram graphical formalism. The abstract syntax

is that of a Stateflow-style [36] hierarchical state machine, with States and

Transitions being the main elements. The top-level model element

Stateflow is a Folder that acts as a container for models. This container

will contain States that contain other States and Transitions. The

recursive containment of states within states allows the composition of

hierarchical state machines. Transitions connect TransConnectors that are

abstract (only their derived classes can be instantiated), and that could be

States, Junctions, initial transitions (TransStart), history junctions

(History), or references (ConnectorRef) that point to other

TransConnectors. States may also contain Data or Event elements, as well

as an optional reference to a data type (TypeBaseRef). Note that this

composition expressed as abstract syntax follows the legal composition of
model elements available in the Stateflow language. For example, a

Transition cannot connect a Data element to a State – there is no legal

association between them.

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 232

Fig. 1. Abstract syntax for a DSML representing a Hierarchical FSM

One can also define well-formedness constraints (C) over the abstract
syntax. In our example, a well-formedness constraint could specify that there
must be precisely one state marked as “initial” among the states contained in
a Stateflow model, and the sub-states of a state. Such constraints delineate
what models are considered „correct‟ with respect to a static notion of
semantics; the constraints can be checked on the models directly, without
referring to a semantic domain.

The semantic domain for such a DSML could be a finite state machine (M)
(implemented in hardware or software), with a finite set of states (with
precisely one, distinguished state called the initial state), a finite set of
triggering events, and state transitions between states. Transitions are labeled
with triggering events and Boolean guard expressions over some variables of
the system. A model expressed in the DSML compliant with the abstract
syntax will map to a specific machine that operates as follows: The machine is
always in a specific state, called the current state. When the execution starts,
the current state is the initial state. When an event arrives, it is matched
against the event labels attached to transitions emanating from the current
state, and if a matching label is found the transition is selected. The guard for
the selected transition is evaluated, and if it is true then the current state
becomes the target state the transition points to. If the event does not match
any event on an outgoing transition (or if it does match, but the guard is false),
the current state does not change. It is required that if multiple transitions are

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 233

selected, at most one guard can be true, otherwise the behavior is non-
deterministic and the model is incorrect. Note that this machine does not have
hierarchical states.

The semantics of the models can be defined by a mapping m : A → D that
instantiates a specific (non-hierarchical) finite state machine from a model.
After the machine is created, it operates in some environment according to
the algorithm described above. Note that the semantics is ultimately defined
by our understanding of how the machine works: although it can be
formalized, it is still dependent on our (possibly inaccurate) understanding of
the operation of the machine. After this understanding is refined, we can
„build‟ it as a digital circuit or as a software simulator. Note that the semantic
domain defines the meaning of a model with respect to a dynamic notion of
semantics; one needs a “machine” to execute the computation denoted by the
model.

Note that not all DSMLs have an executable (or „operational‟) semantics.
For instance, UML class diagrams are not „executable,‟ however, they can be
expressed in various forms (e.g., C++ code consisting of classes with data
members and member functions). Some DSMLs have very weak opportunity
for semantics definition; for instance, UML use-case diagrams can only be
paraphrased in a natural language, without any formal mapping. Below, we
restrict the discussion to DSMLs that do have executable semantics.

Drawing from the example, we can observe that the specification of
semantics may be accomplished in two steps: (1) defining the ‟semantic
domain,‟ and (2) defining the mapping between the abstract syntax and the
constructs of the semantic domain. For a pragmatic approach one can
envision a translator for (2), and a simulator (or interpreter) for (1) that
interprets the result of (2) with some input. Below we describe two variations
on how these steps can be accomplished.

3.1. Definition via a Semantic Unit

Assume we have well-defined, accepted, and well-understood modeling
languages whose semantics are simple and defined in a non-ambiguous,
preferably executable way. Let‟s call these core modeling languages semantic
units. An example of a semantic unit could be the domain of simple finite state
machines, as described in the previous section. If a new DSML needs to be
defined, one has to specify the semantics of this new language by showing
how the models built in the new language could be reduced to (or transformed
into) the well-defined semantic units. The principle is illustrated in Figure 2.

In this method, the semantics are mainly defined by the transformation
MDSMLi,SU that maps the abstract syntax of the DSML (A of DSML-i) to the
abstract syntax of a semantic unit (A of SU). The concrete syntax (C) of the
DSML is related to the abstract syntax of the DSML (A) via a mapping (MCi).
The semantic domain of the DSML is some S, and the notional semantics of
the DSML is defined via the mapping MSi. The key idea here is that we define
the MSi mapping in two steps: (1) the transformation (MDSMLi,SU), and (2) the

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 234

semantic mapping of the semantic unit MSU. Note that semantic units also
have a DSML: a concrete syntax (C of SU), a semantic domain (S of SU), an
abstract syntax (A of SU), and the mappings: MC2 for the syntax and MSU for
the semantics. The base semantic domain is much simpler than a higher level
DSML. The transformation can be specified formally, for instance in the form
of graph transformation rules [2], which represent how to rewrite a higher level
DSML into the lower level DSML; hence, establishing a formal, yet executable
mapping between the two languages. For the example described above, the
transformation rewrites the hierarchical, Statechart-like state machine into a
flat, non-hierarchical state machine.

Fig. 2. Defining semantics via a transformation and a semantic unit

For specifying the semantic unit, a tool has been created that uses the
Abstract State Machine Language (ASML) [38] to represent semantic units.
ASML allows building these semantics units using the Abstract State Machine
concepts [7] (i.e., essentially as transition systems with sophisticated data
structures representing the state of the system). A number of prototype model
transformations have been built that show how a non-trivial DSML (e.g., a
Statechart-like language) can be formally defined via the transformation [9].
These form the initial components of a tool suite where one can define the
abstract syntax of a language, together with its semantics using semantic
units and transformations. An interesting property of ASML is that it is
executable, thus one can rapidly prototype and experiment with DSMLs by
executing their models as ASML “programs.”

In this approach, the main complexity is in the model transformation
process, and semantic units are typically simple. A semantic unit is a subject
of reuse: it is designed to be used with different DSMLs. Because of this
desired property, all of the semantic (and possibly syntactic) variations are
kept in the transformation part. Note that the semantic unit can be expressed

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 235

in any formalism that does not have to be executable. ASML was used in the
projects described above and is suitable for execution and test generation, but
formalisms better suited for model checking (e.g., nuSMV [12]) can be used
as well.

3.2. Definition via an Interpreter

The approach described in the previous section is well-suited for cases when
one semantic unit can serve a number of DSMLs and all the semantic
variations can be captured in the transformation. However, this is not the case
for many DSMLs, most notably the 20+ variants of the Statechart notation [5].
In this case, another approach is to simplify the translation part and define the
semantics using an interpreter that directly executes the models.

Fig. 3. Defining semantics via an interpreter

Formally, an interpreter is a mapping i that depends on the model M, and
implements i(M) : I × S(M) → O × S(M), where I is the input event alphabet, O
is the output event alphabet, and S is the set of the internal states of the
interpreter, also dependent on the model. The concept is illustrated in Figure
3. The model is a read-only data structure that controls the interpreter‟s
behavior, while the state is updated by the interpreter as it processes inputs.
Of course, an interpreter is not different conceptually from a semantic unit, but
typically much more complex.

Such interpreters can be defined in any executable language, including
conventional languages. This has advantages: (1) any developer skilled in the
implementation language can understand the specification of the semantics,
(2) all the formal reasoning and analysis tools available for the implementation
language can be used, (3) fast prototyping of semantics is feasible, (4)
program verification, debugging, and testing tools available for the
implementation language can be immediately used. The disadvantages of the
approach are: (1) reasoning about programs is typically more difficult than
reasoning about models, (2) verifying an interpreter + model assembly is
inefficient, as the resulting system has many more states than strictly needed

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 236

by the model, and (3) treating non-deterministic behavior as complex,
because a concrete interpreter is always deterministic.

We have used this interpreter-based approach to define the semantics of
two Statechart variants: (1) UML State machines, and (2) Matlab Stateflow.
Each has a specification of about 100 pages in English, and for some subsets
formal specifications exist, but are documented in journal papers. We have
defined a common data structure (an abstract syntax) for the models, and
coded the interpreter in pure Java (only the core libraries were used). The
code for the abstract syntax part was about 600 lines; functional code
common across the two variants required about 250 lines; the Stateflow-
specific code had about 600 lines; and the UML State machine variant had
about 400 lines. All the code was reviewed by 3-4 programmers and
thoroughly tested and compared to existing tools using carefully chosen
examples (models and input/output sequences). Our experience indicates that
such interpreter-based specification is feasible, and can be quite compact.

3.3. Challenges

When defining the semantics of DSMLs, several challenges arise, some of
which are listed below.

Existence of valid models. One can define an abstract syntax with very
restrictive well-formedness constraints, such that no valid models can be
constructed. In the case of a complex DSML, it may become a challenge to
recognize such a problem.

Existence of valid models that generate an acceptable behavior. A
secondary problem is to verify if a valid model exists that generates an
acceptable behavior, which, for instance satisfies certain properties (e.g.,
deadlock freedom). It is a defect of the semantics definition if such a model
cannot be constructed.

Composability. In a project, multiple DSMLs are often used. Syntactic
composition can be simple, but composition of semantics needs to be
investigated more thoroughly as a core research topic.

Efficiency of verification with interpreters. The interpreter-based method
has a shortcoming: the system has much more states than the original model,
so its verification is more complex. We need techniques to introduce
abstractions over the states of an interpreter-based system to reduce the
complexity.

Reusability. One goal of the semantic units was reusability, and the same
applies to the interpreter-based approach. We were able to take advantage of
the features of the implementation language (namely, inheritance and
polymorphism) when developing the interpreters for the Statechart variants,
but the question arises regarding how this can be extended to other cases.

Dissemination. Definition of the semantics for a DSML must be published in
a form supporting review by the stakeholders. A key research question
regards the best way of disseminating or sharing such specifications.

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 237

4. A DSML with Metamodel-Based Semantics

Recent advances in unified communication, mobile technology, and the desire
for collaborators from geographically dispersed teams to coordinate their
communication activities are becoming commonplace. There is a strong
demand for an easy and flexible way of building user-centric communication
services that effectively shields users of these systems from the heterogeneity
of communication technologies, and that supports the dynamic nature of
communication-based collaboration. Many existing communication service
frameworks are custom-built, inflexible, costly, and technology specific. They
provide little or no support for user-driven specification, adaptation and
coordination of communication services performed in response to changes in
highly dynamic environments (e.g., those found in disaster management and
healthcare).

To address the aforementioned problems, Deng et al. [14] proposed the
Communication Virtual Machine technology which consists of an interpreted
DSML, the Communication Modeling Language (CML), and a semantic rich
platform to execute the communication models, the CVM. In this section we
present an extension of CML called the Workflow Communication Modeling
Language (WF-CML) that better supports the dynamic coordination of
communication services. WF-CML defines communication-specific
abstractions of workflow concepts found in many of the major general-
purpose workflow languages, including UML activity diagrams [41], YAWL [1],
and Windows Workflow Foundation [39]. The definition of WF-CML includes
the metamodel and the dynamic semantics. Due to space limitations, we only
present a subset of the metamodel and an overview of the dynamic
semantics, yet to be completed.

4.1. Motivating Scenario

To further motivate the need for WF-CML, we present a scenario developed
at the Miami Children‟s Hospital [8]. The following are the actors in the
scenario: A Discharge Physician (DP), a Senior Clinician (SC), a Primary
Care Physician (PCP), a Nurse Practitioner (NP) and the Attending Physician
(AP). Patient Discharge Scenario:

(1) On the day of discharge, Dr. Burke (DP) establishes an audio
communication with Dr. Monteiro (SC) to discuss the discharge of baby Jane.
During the conversation, Dr. Burke composes a discharge package,

DisPkg_1, referred to as a form, and sends it to Dr. Monteiro to be validated.

The DisPkg_1 form consists of a RecSum-Jane.txt (text file), summary of

patient‟s condition; xRay-Jane.jpg, an x-Ray of the patient‟s heart, (non-

streamfile); and a HeartEcho-Jane.mpg (video clip), an echocardiogram

(echo) of the patient's heart. After DisPkg_1 is sent, Dr. Burke contacts Dr.

Sanchez (PCP) to join the conversation with Dr. Monteiro to discuss the

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 238

patient‟s condition. During the conversation, Dr. Monteiro validates DisPkg_1

and sends it to Dr. Burke.

(2) Since the form DisPkg_1 is received within 24 hours and is validated,

Dr. Burke then sends it to Nurse Smith (NP) and Dr. Wang (AP) (If the form
had not been validated and received within 24 hours, the workflow requires

that Dr. Burke send out an interim discharge note (InterimNote_1)). At the

same time, Dr. Burke continues his conference with Drs. Monteiro and
Sanchez.

-workFlowID : EString

CommWorkFlow

InitialNode

#commProcName : EString

CommProcNode

ControlNode

FinalNode

-edgeID : EString

-edgeType : EdgeType

WF-Edge1

edges1..*

1

cmlSchema1

1

triggerEvent0..1

CompositeCommProcNode

AtomicCommProcNode

1

nestedWorkflow

1

#nodeID : EString

WF-Node

1

nodes

1..*

-IsElse : EBoolean

EdgeAnnotation

1

annotation0..1

ForkNode JoinNode

MergeNode

DecisionNode
#communicationID : EString

#schemaID : EString

CommSchema

-eventID : EString

-communicationID : EString

-connectionID : EString

-workflowID : EString

-nodeID : EString

TriggerEvent

target 1

incomingEdge

0..*

source

1

outgoingEdge 0..*

+ReguarEdge

+DecisionEdge

«enumeration»

EdgeType

Fig. 4. Partial Abstract Syntax for WF-CML

4.2. Metamodel

The metamodel for WF-CML consists of the abstract syntax, represented as a
UML class diagram, and the static semantics defined using OCL. Figure 4
shows a partial class diagram of the abstract syntax for WF-CML. The
complete class diagram and static semantics can be found on the project‟s
web page1.

A WF-CML model is a graph (CommWorkFlow) consisting of nodes (WF-

Node), edges (WF-Edge), and trigger events (TriggerEvent) as shown in

Figure 4. The nodes are described as follows: InitialNode and

FinalNode – signify the beginning and ending of a model representing the

coordination of communication processes. CommProcNode (communication

process node) - is either an atomic communication model

(AtomicCommProcNode) or a nested workflow model (Composite-

CommProcNode) and has zero or one trigger event associated with the node.

The atomic communication model represents a model created using pre-

1 http://cml.cs.fiu.edu/

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 239

workflow CML. DecisionNode, ForkNode, JoinNode and MergeNode -

express control flow between communication processes. There are two types
of edges (decision and regular). A decision edge is annotated with zero or
more atomic events. If there is no event annotation on the decision edge, it is
considered an else edge.

[FormEvent_1][Else]

Trigger Event

1. FormEvent_1: Discharge_Pack Received

and Discharge_Pack.validity EQ True

2. FormEvent_2: Discharge_Pack

NotReceived 24 hrs After Sent

Trigger Event

1. MediaEvent: InterimNote_1

Sent

Trigger Event

1. FormEvent: Discharge_Pack

 Sent

CommProc_1

CommProc_2 CommProc_3

DP SC

DP
AP

NP

DP AP

Fig. 5. WF-CML Model for Scenario

Figure 5 shows the WF-CML model for the scenario described in the

previous section. The CML model in CommProc_1, top node in the figure,

specifies the communication between the DP and the SC, the user ids and
names are instantiated when the WF-CML model is executed by Dr. Burke,
and he loads the contact information for the SC. There are two types defined

for this communication, a form type (Discharge_Pack) and a built-in media

type (LiveAudio). The trigger event in CommProc_1 states that this node is

exited when a validated patient form of type Discharge_Pack is received, in

this case DisPkg_1, and it is validated; or the patient form is not received 24

hours after being sent.

4.3. Dynamic Semantics

The semantic rules of WF-CML extend the semantic rules for CML [54]. We
first provide an overview of the semantic rules for realizing CML models
followed by the semantics rules for WF-CML models.

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 240

CML:
((CIin, DIin), CSP_Envi) => ((CIout, DIout), Scriptout, Eventout, CSP_Envi+1)
where:
(CIin, DIin) - input control and data instances capturing a user‟s communication

needs to be realized by the communication service.
CSP_Envi - state of the CS process including the state of the executing

control and data instances, (CIi, DIi), negotiation state, Negi, and
media transfer state, MTi.

(CIout, DIout) - updated control and data instances generated during the
transition.

Scriptout - communication control script generated, including (re)negotiation
and media transfer scripts, executed by the CVM middleware.

Eventout - output event generated during the execution of the CS process,
including media events or negotiation events.

CSP_Envi+1 - updated environment of the CS process. The structure is similar
to CSP_Envi stated above.

WF-CML:
(Eventin, WF_Envi) => ((CIout, DIout), WF_Envi+1)
where:
Eventin - an input event that may trigger the execution of the next node in the

WF-CML model. These events include negotiation events, data
transfer events and exception events.

WF_Envi - the current configuration of a process executing the WF-CML
model (WF_Proc). Its state is defined as (WFexec, CS_Procs,
Curr_CS),
where:
WFexec - the currently executing WF-CML model in the WF_Proc

process.
CS_Procs - a list of executing CS processes in the executing

WF_Proc process.
Curr_CS - currently active CS processes with respect to the WF Proc

process.
WF Envi+1 - the updated configuration of the WF Proc process.

The rules describing the semantics for CML and WF-CML models may be
applied to the motivating scenario presented in Section 4.1 as follows. The
WF-CML model is processed using the semantics rule for WF-CML and
shown in Tables 1 and 2. Table 1 shows the left-hand side of the rule and
Table 2 the right-hand side of the rule. The input to the rule, shown in the
third row in Table 1 (i.e., when i = 0), includes: (1) the null event, and (2) the
workflow environment (WFexe). The current workflow environment includes:
(a) the WF-CML model shown in Figure 5, (b) the list of executing processes

(CS_Procs), which is empty, and (c) the currently active CS processes in the

workflow (Curr_CS), which is null. The output of the rule includes: (1) the

control instance and data instance pair (CI, DI) to be processed by the CML
semantic model, (2) the currently executing WF-CML model (Figure 5), (3) the

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 241

list of executing processes which is Comm_Proc_1, the top node in Figure 5,

and (4) the currently active node in the WF-CML model, Comm_Proc_1.

Table 1. Left-hand side of the semantic rule used for WF-CML.

i Eventin WF_Envi

 WFexec CS_Procs Curr_CS

0 null
WF-CML model
(see Figure 5)

empty null

…

k FormEvent_1
WF-CML model
(see Figure 5)

CommProc_1
(see Figure 5, top
node)

CommProc_1
(see Figure 5, top
node)

…

Table 2. Right-hand side of the semantic rule used for WF-CML.

i (CIout, DIout) WF_Envi+1

 WFexec CS_Procs Curr_CS

0 (M1, null)
WF-CML model
(see Figure 5)

CommProc_1
(see Figure 5, top
node)

CommProc_1
(see Figure 5, top
node)

…

k (Mp, null)
WF-CML model
(see Figure 5)

CommProc_1,
CommProc_3
(see Figure 5)

CommProc_3
(see Figure 5,
bottom right)

…

The (CI, DI) model pair extracted from the WF-CML model is processed by

the semantic rule for CML. The left-hand and right-hand sides of the rule are
shown in Tables 4 and 5, respectively. Table 3 shows some of the CML
models used during the realization of the communication. The third row of
Table 4, where j = 0, shows the input model pair of (M1, null). Table 3 shows
that M1 is a model representing the communication between two persons and
the connection (C1) supports the transmission of live audio and a patient
discharge form. The media and form types on the connection are not labeled.
We use the pair (null, null) in Table 4 to represent the initial models in the
system. The initial states for the negotiation and media transfer state

machines are the negotiation ready state (Neg_Ready) and the media

transfer ready state (MT_Ready), respectively. After applying the rule, Table 5

shows the output generated and the updated state of the system. The models
generated are the same as the input models because these models are used
during negotiation; the script generated creates a connection with the remote
party in the connection, Dr. Monteiro, and sends the control model (M1); the

event generated (Neg_Initiated) reflects that negotiation has started. The

entries in the table for j=1 and j=2 represents the negotiation process. The
application of the rule shown in Tables 4 and 5 with the row labeled j=2 shows
the application of the rule to enable live audio.

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 242

Table 3. Some of the CML models used in the motivating scenario.

Model ID Graphical Representation of the CML model

M1

(control instance) monteiro41burek23 C1

M2

(control instance) monteiro41burek23 C1

M3

(data instance) medium

LiveAudio

C1

…

Mp
smith35

burek23 C2
wang12

Table 4. Left-hand side of the semantic rule used for CML.

j (CIin, DIin) CSP_Envi Comments

 (CIi, DIi) Negi MTi

0 (M1, null) (null, null) Neg_Ready MT_Ready

M1 is the control
instance model
created by the
local participant,
Dr. Burke

1 (M2, null) (M1, null) WaitingSameCI MT_Ready

M2 is the control
instance model
received by Dr.
Burke‟s CVM
from the remote
participant, Dr.
Monteiro

2 (M2, M3) (M2, null) Neg_Ready MT_Ready

M3 is the model
that represents
the activation of
live audio

…

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 243

During the communication for CommProc_1 an event will eventually be

triggered that moves the workflow onto the next node. In the scenario, the

FormEvent_1 is triggered, as shown in Table 1 row labeled i = k. The right-

hand side of the WF-CML rule in Table 2 shows that both CommProc_1 and

CommProc_3 are now active and the currently active node with respect to

workflow is CommProc_3. Two communication processes are active since our

semantics do not force the termination of a communication after the workflow
model moved on to the next node. Note that the control model (Mp) is now
processed by the CML semantic rule which establishes a new connection with
two participants, Nurse Smith and Dr. Wang.

Table 5. Right-hand side of the semantics rule used for CML.

j (CIout, DIout) Scriptout Eventout CSP_Envi+1

 (CIi+1,DIi+1) Negi+1 MTi+1

0 (M1, null)

createConnection
(“C1”);
sendSchema
(“C1”, “burke23”,
“monteiro41”, “M1,
null”)

Neg_ Initiated (M1, null)
Neg_
Initiated

MT_
Ready

1 (M2, null)

sendSchema
(“C1”, “burke23”,
“monteiro41”, “M2,
null”);
addParticipant
(“C1”,
“monteiro41”)

Neg_
Complete

(M2, null)
Neg_
Complete

MT_
Ready

2 (M2, M3)

enableInitiator
(“C1”,
“LiveAudio”);
sendSchema
(“C1”, “burke23”,
“monteiro41”, “M2,
M3”)

Enable_
Stream

(M2, M3) Neg_ Ready
Stream_
Enabled

…

4.4. Challenges

WF-CML supports the execution of communication models in a distributed
environment, where participants in the communication are allowed to change
the currently executing communication process. The complexity of executing
WF-CML models directly provide us with the following challenges: (1) What
notation should be used to define the dynamic semantics (e.g., operational,
denotational, or axiomatic)? (2) How to define the environments for a
communication process and workflow process? (3) How can the semantics be
extended to support dynamic adaptation of the WF-CML?

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 244

5. Model-Based Verification Tools

MDE provides a context in which formal specification and verification
techniques can be applied. There is evidence that this is already taking place
(e.g., see [11], [23], [30], [34], [47]). With respect to the UML, in the late
nineties the precise UML (pUML) group helped raise awareness of the need
for more formal descriptions of UML semantics to enable rigorous analysis of
structural and functional properties of systems captured in UML models. Over
the last decade, we have seen a significant number of papers on using
relatively mature formal verification techniques to analyze properties
described in particular UML models (e.g., there has been significant work on
using model checking techniques to analyze UML state machine models, and
Petri net variants to analyze activity models).

Despite the focused attempts, there are very few UML-based verification
tools that can be described as usable by practitioners. In the following, we
discuss some of the opportunities for applying verification techniques in MDE
and discuss some of the challenges. For the most part, the opportunities and
challenges are presented in terms of UML modeling issues, primarily because
this is one of the more widely used (and misused) MDE languages, and there
is a dire need for practical UML-based verification tools.

5.1. Towards Usable UML-based Verification Tools

The UML has reached a level of maturity that now allows us to reach for some
of the lower hanging fruit (not necessarily the same as low-hanging fruit!)
where application of rigorous verification techniques are concerned. One of
the frustrating experiences that a modeling student or practitioner learning a
language such as the UML goes through is determining if his/her model is, in
some sense, a valid description. In the case of students, the only feedback
that they often receive is the instructor‟s grade of their work. There is a need
to provide modelers, in particular, UML modelers, with some means of
checking the validity of their model.

An obvious approach is to provide some support for executing or animating
models. The Colorado State University (CSU) UMLAnT (UML Animation and
Testing) tool provides a means for dynamically analyzing (testing) UML
design models. A UMLAnT design model consists of class diagrams with
operations specified in a Java-like action language called JAL [15]. UMLAnT
is an Eclipse plug-in that provides support for (1) generating test inputs that
satisfy criteria based on coverage of elements in a sequence diagram that
describes the scenarios that will be exercised in a test, (2) executing the
design model using test inputs (a test input is an operation with parameter
values), and (3) showing execution progress in terms of sequence diagrams
and changes to object configurations. We are currently updating the tool to
the latest version of Eclipse and improving its robustness.

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 245

We are also developing lightweight scenario-based analysis techniques
that allow developers to check whether a scenario describing a desired or
undesired behavior is supported by a model [56]. The technique provides a
less expensive way of analyzing a system in the cases where exhaustive
formal analysis is not possible or cost-effective. In the approach we are
developing, a behavior is described as a sequence of snapshots, where a
snapshot is an object configuration that conforms to a class diagram. A class
model with operations specified in the OCL is transformed to a class model,
called a Snapshot Model, that characterizes all possible behaviors
(sequences of snapshots). A verifier then provides scenarios (expressed as
sequence diagrams) and the analysis tool we are developing checks whether
these scenarios conform to the Snapshot Model.

One of the problems that our analysis approaches and those developed by
other researchers face is that they do not handle incomplete models well. This
is one of the challenges that we are currently tackling in our analysis work.
Another aspect that requires attention is ensuring consistency of behavioral
and structural concepts across different modeling views. This is a particularly
challenging problem in the UML, and is sometimes one of the reasons
practitioners limit their use to one or two UML diagram types (typically class
diagrams, sequence diagrams or state machine diagrams). One of the
problems that hinders research in this area is the size of the UML language
(as reflected in its metamodel) - this makes it very difficult to determine
precisely the consistency relationships that must hold across elements in
different diagrams. Furthermore, it has not been verified that the UML
metamodel is a valid description that can be relied upon correctly to define
these relationships. A good usability challenge problem for verification tools is
finding an answer to the question “is the UML metamodel correct?”

5.2. Formal Verification Challenges: Transformations, Semantic

Variations, and Models@Run.Time

The previous subsection identified some obvious opportunities for applying
verification techniques in the MDE context. That was just the tip of the
iceberg; there are other more challenging verification problems that should be
tackled in MDE. A challenging problem concerns verification of model
transformations [35]. In a recently published paper on testing model
transformations, we highlighted some of these challenges [4]. One of the
major problems concerns generating an adequate set of test models.
Generating test inputs for programs that use inputs with simple structures is
challenging in itself; when the inputs are models with complex structures the
challenges are greater.

Another problem that must be considered is the variety of semantics that
can be associated with languages such as the UML. In the UML, some parts
of the semantics are intentionally left undefined to allow users to tailor
semantics to their needs. While formal methods purists may argue for defining
a single semantics for the UML, the practical reality is that different groups

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 246

use the UML differently, and this need must be supported. It is highly unlikely
that a single verification approach would meet all structural, functional and
behavioral analysis needs. To tackle this problem we have started a research
initiative called GeMoC (Generic Model of Computation) with the goal of
developing a verification framework that can be used in a modeling
environment that supports a variety of semantics (or models of computation).

An emerging MDE research area that attempts to extend the use of models
to runtime management is models@run.time [6]. There has been significant
work on using models to support runtime adaptation of software. Verifying
adaptations at runtime is a particularly challenging problem that groups
working in this area are currently addressing.

6. Semantics-Based Tools in Domain-Specific Modeling

As mentioned in Section 2, a formal description of a modeling language
allows for the automatic generation of supporting tools that are based on the
modeling language semantics. This section motivates the need for such tool
generation by summarizing our previous work in generating debuggers and
testing engines for domain-specific languages (DSLs) [31], [37]. Our
framework (Figure 6) for automatic generation of DSL debuggers and test
engines reuses existing GPL tools [55]. The framework consists of a mapping
process that records the correspondence between the DSL program and the
generated GPL code, a tool methods mapping that specifies how DSL tool
actions are mapped to GPL tool actions (e.g., a DSL debugging command
might request execution of several GPL debugging commands), and a tool
results mapping, which specifies how obtained results should be displayed to
the end-user using only DSL abstractions.

Existing approaches for defining the formal semantics of programming
languages can be used to specify the semantics of DSMLs. However, a
critical point of this work is that a semantics definition should be model-based.
To fulfill this objective and accomplish transparency of low-level formalisms,
three steps are followed. The first step focuses on the methodology to specify
state transitions to show dynamic behavior of meta-elements. The second
step concerns the visual language to control the sequence of the defined state
transitions and runtime configurations. The third step includes transformation
of specifications into the different language-based tools. The combination of
all outcomes of these steps will form the semantic framework. Figure 7 shows
an outline of the approach. The first part of the figure demonstrates abstract
syntax and static semantic definitions; current platforms provide a means for
specifying these definitions. The second part depicts the dynamic semantics
specification technique based on activity diagrams and graph grammars.
These tools are used to define a sequence of state transitions. The last part
shows specification of verification properties within domain boundaries.
Finally, all these specifications can be transformed into the different language-
based tools (e.g., interpreter, code generator, simulator, verifier).

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 247

Re-interpreter GPL Tool Server

Source Code

Mapping

Tool Results

Mapping

Tool Methods

Mapping

Translator

GPL

Tool Actions

DSL Tool-Specific View

DSL Level

GPL Level

End-User

GPL Tool

Commands

DSL

Fig. 6. The framework for automatic generation of DSL tools

MetaElem1 MetaElem2

MetaElem4

-End1

1

-End2

*

MetaElem3

-End3

*

-End4*

MetaElem5

MetaElem6

-End51

-End6

*

{OCL}

End1
End2

MetaElem2

MetaElem5

{OCL}

End1
End2

Abstract Syntax & Static Semantics Dynamic Semantics Verification Properties

ActionState1

ActionState3

ActionState4

ActionState5

NAC LHS RHS

MetaElem1 Meta2 Meta3-End7

1

-End8

*

Meta2 Meta3

Meta4 -End91

-End10

*

VerifierInterpreter Code Generator

Debugger Simulator

Fig. 7. Semantics-Based Tool Generation

In [13], we performed some experiments on semi-automatic generation of
tools for modeling languages and focused on how to specify the behavioral
semantics of a DSML by a sequence of graph transformation rules, enabling
transformation of a modeling language specification into the model checking
tool Alloy [28]. In our initial study, we demonstrated specification of sequential
system semantics that connects the initial model to possible result models.
First, we focused on how to specify the behavioral semantics of a DSML by a

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 248

sequence of graph transformation rules. While each graph transformation rule
represents a state change of a sequential system, a sequence of state
changes is defined by an activity diagram. Sequence definitions control what
state transition is to be fired, in what order, and what condition. All these steps
are mapped into a transition system that is used to generate a state space.
We provided an example to demonstrate semantics definition of a DSML and
verification of an assertion in one of the model checking tools (i.e., Alloy). The
activities investigated in our initial work can be summarized by the following
items:

1. mapping metamodel elements to Alloy abstract signatures,
2. mapping model elements to Alloy concrete signatures,
3. mapping graph transformation rules to Alloy predicates, and
4. mapping verification tasks to Alloy asserts.
Abstract signatures are used to define the meta-layer of the models. To

define a model layer in Alloy, these abstract signature definitions are
extended into concrete signatures. Each model element is mapped into an
appropriate concrete signature in Alloy. Behavioral specifications, which we
define by means of graph transformation rules, are mapped into Alloy
predicates. Each task defined in a semantics definition is transformed into an
Alloy predicate having two parameters, g and g‟, representing the current
state and the next state. Finally, the assertions that would be satisfied at the
final states are transformed into Alloy assert definitions.

Although our current investigation was performed manually, it
demonstrated how DSML designers can define semantic and verification
specifications using visual models. We are currently investigating how to
generalize and automate this process.

7. Conclusions

DSMLs allow end-users and domain experts to specify the core essence of a
problem using visual abstractions that are close to the problem space of a
specific domain. A key research challenge in the adoption of such modeling
languages concerns the manner in which the semantics of each DSML is
specified. Typically, the behavioral semantics of a DSML is described within
individual hard-coded model interpreters. Such a representation of the
semantics is not specified in a manner that is ameliorable to formal analysis
and generation of model-based tools. As such, the utility of a DSML is
hampered due to the lack of a single representation that formally denotes the
semantics of the language. This paper has described several research
projects that investigate and develop a formal, yet widely usable, means to
specify DSML semantics. Our future work is automatic generation of model
interpreters, simulators, debuggers and verifiers from such semantic
specifications, which would have significant impact on the current practice of
model-driven engineering in terms of automating many tasks that are currently
done ad hoc in a manual hand-crafted manner.

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 249

Acknowledgments. This work was supported in part by United States National

Science Foundation awards CAREER CPA-1052616, CCF-0811630, CCF-1018711,
HRD-0833093, OISE-0730065, and OISE-0968596, and programs by the Defense
Advanced Research Project Agency: the Evolutionary Design of Complex Systems
and Model-based Integration of Embedded Systems, by the National Science
Foundation‟s ITR program, by Boeing and General Motors through the ESCHER
initiative, and NASA‟s Robust Software Engineering program.

References

1. van der Aalst, W. M. P., ter Hofstede, A. H. M.: YAWL: Yet Another Workflow
Language. Information Systems, Vol. 30, No. 4, 245–275. (2003)

2. Agrawal, A., Karsai, G., Neema, S., Shi, F., Vizhanyo, A.: The Design of a
Language for Model Transformations. Journal on Software and System Modeling,
Vol. 5, No. 3, 261–288. (2006)

3. Álvarez, J. M., Evans, A., Sammut, P.: Mapping between Levels in the
Metamodel Architecture. In: Gogolla, M., Kobryn, C. (eds.): The Unified Modeling
Language. Modeling Languages, Concepts, and Tools, Lecture Notes in
Computer Science, Vol. 2185. Springer-Verlag, New York, 34-46. (2001)

4. Baudry, B., Ghosh, S., Fleury, M., France, R., La Traon, Y., Mottu, J.-M.: Barriers
to Systematic Model Transformation Testing. Communications of the ACM, Vol.
53, No. 6, 139-143. (2010)

5. von der Beeck, M.: A Comparison of Statecharts Variants. In: Langmaack, H., de
Roever, W.-P., Vytopil, J. (eds.): Formal Techniques in Real-Time and Fault-
Tolerant Systems. Lecture Notes in Computer Science, Vol. 863. Springer-
Verlag, Berlin, 128–148. (1994)

6. Blair, G., Bencomo, N., and France, R. R.: Models @ run.time. Computer, Vol.
42. No. 10, 22–27. (2009).

7. Börger, E.: The Origins and Development of the ASM Method for High-Level
System Design and Analysis. Journal of Universal Computer Science, Vol. 8, No.
1, 2-74. (2002)

8. Burke, R. P., White, J. A.: Internet Rounds: A Congenital Heart Surgeon‟s Web
Log. Seminars in Thoracic and Cardiovascular Surgery, Vol. 16, No. 3, 283–292.
(2004)

9. Chen, K., Sztipanovits, J., Abdelwalhed, S., Jackson, E.: Semantic Anchoring
with Model Transformations. In: Hartman, A., Kreische, D. (eds.): Model Driven
Architecture - Foundations and Applications. Lecture Notes in Computer Science,
Vol. 3748. Springer-Verlag, Berlin, 115-129. (2005)

10. Chen, K., Sztipanovits, J., Neema, S.: Compositional Specification of Behavioral
Semantics. In Proceedings of DATE ‟07, Design, Automation and Test in Europe,
IEEE, Nice, France, 906-911. (2007)

11. Chiorean, D., Pasca, M., Cârcu, A., Botiza, C., Moldovan, S.: Ensuring UML
Models Consistency Using the OCL Environment. Electronic Notes in Theoretical
Computer Science, Vol. 102, 99 – 110. (2004)

12. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: A New Symbolic
Model Checker. International Journal on Software Tools for Technology Transfer,
Vol. 2, 2000. (2000)

13. Demirezen, Z., Mernik, M., Gray, J., Bryant, B. R.: Verification of DSMLs Using
Graph Transformation: A Case Study with Alloy. In Proceedings of the 6th

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 250

International Workshop on Model-Driven Engineering, Verification and Validation,
ACM, Denver, Colorado. (2009)

14. Deng, Y., Sadjadi, S.M., Clarke, P. J., Hristidis, V., Rangaswamy, R., Wang, Y.:
CVM - A Communication Virtual Machine. Journal of Systems Software, Vol. 81,
No. 10, 1640–1662. (2008)

15. Dinh-Trong, T T., Ghosh, S., France, R. B.: A Systematic Approach to Generate
Inputs to Test UML Design Models. In Proceedings of ISSRE ‟06, the 17th
International Symposium on Software Reliability Engineering, IEEE, Raleigh,
North Carolina, 95–104. (2006)

16. Di Ruscio, D., Jouault, F., Kurtev, I., Bezivin, J., Pierantonio, A.: Extending
AMMA for Supporting Dynamic Semantics Specifications of DSLs. Technical
Report, INRIA/LINA, http://hal.archives-ouvertes.fr/ccsd-00023008/en. (2006)

17. Ducasse, S., Girba, T., Kuhn, A., Renggli, L.: Meta-Environment and Executable
Meta-Language using Smalltalk: An Experience Report. Software and Systems
Modeling, Vol. 8, No. 1, 5-19. (2009)

18. Eker, J., Janneck, J. W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming Heterogeneity - The Ptolemy Approach,
Proceedings of the IEEE, Vol. 91, No. 1, 127-144. (2003)

19. Engels, G., Hausmann, J., Heckel, R., Sauer, S.: Dynamic Meta Modeling: A
Graphical Approach to the Operational Semantics of Behavioral Diagrams in
UML. In: Evans, A., Kent, S., Selic, B. (eds.): The Unified Modeling Language.
Modeling Languages, Concepts, and Tools, Lecture Notes in Computer Science,
Vol. 1939. Springer-Verlag, New York, 323-337. (2000)

20. Ermel, C., Holscher, K., Kuske, S., Ziemann, P.: Animated Simulation of
Integrated UML Behavioral Models Based on Graph Transformation. In
Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-
Centric Computing, IEEE Computer Society, Dallas, Texas, 125-133. (2005)

21. Esser, R., Janneck, J.W.: Moses - A Tool Suite for Visual Modeling of Discrete-
Event Systems. In Proceedings of the IEEE 2001 Symposia on Human Centric
Computing Languages and Environments (HCC'01), IEEE Computer Society,
Stresa, Italy, 272-279. (2001)

22. Gargantini, A., Riccobene, E., Scandurra, P.: A Semantic Framework for
Metamodel-Based Languages. Automated Software Engineering, Vol. 16, No. 3,
415-454. (2009)

23. Gogolla, M., Bohling, J., Richters, M.: Validating UML and OCL Models in USE
by Automatic Snapshot Generation. Journal on Software and System Modeling,
Vol. 4, No. 4, 386-398. (2005)

24. Gray, J., Tolvanen, J.P., Kelly, S., Gokhale, A., Neema, S., Sprinkle, J.: Domain-
Specific Modeling. In Fishwick, P. A. (ed.): Handbook of Dynamic System
Modeling, CRC Press, Boca Raton, Florida. (2007)

25. Hahn, C.: A Domain Specific Modeling Language for Multiagent Systems. In
Proceedings of the 7th International Joint Conference on Autonomous Agents
and Multiagent Systems, International Foundation for Autonomous Agents and
Multiagent Systems, Estoril, Portugal, 233-240. (2008)

26. Harel, D., Rumpe, B.: Meaningful Modeling: What's the Semantics of
"Semantics"?, Computer, Vol. 37, No. 10, 64-72. (2004)

27. Henriques, P. R., Pereira, M. J. V., Mernik, M., Lenič, M., Gray, J., Wu, H.:
Automatic Generation of Language-Based Tools using the LISA System. IEE
Proceedings Software, Vol. 152, No. 2, 54-69. (2005)

28. Jackson, D.: Alloy: A Lightweight Object Modelling Notation. ACM Transactions
on Software Engineering and Methodology, Vol. 11, No. 2, 256-290. (2002)

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 251

29. Kelly, S., Tolvanen, J-P.: Domain-Specific Modeling: Enabling Full-Code
Generation, John Wiley and Sons. (2008)

30. Knapp. A.: A Formal Semantics for UML Interactions. In: France, R. B., Rumpe,
B. (eds.): The Unified Modeling Language. Modeling Languages, Concepts, and
Tools, Lecture Notes in Computer Science, Vol. 1723. Springer-Verlag, New
York, 116–130. (1999)

31. Kosar, T., Oliveira, N., Mernik, M., Varanda Pereira, M. J., Črepinšek, M., da
Cruz, D., Henriques, P. R.: Comparing General-Purpose and Domain-Specific
Languages: An Empirical Study. Computer Science and Information Systems,
Vol. 7, No. 2, 247-264. (2010)

32. de Lara, J., Vangheluwe, H., Alfonseca, M.: Metamodelling and Graph Grammars
for Multi-Paradigm Modelling in AToM 3. Software and Systems Modeling, Vol. 3,
No. 3, 194-209. (2004)

33. Lédeczi, Á., Bakay, Á., Maróti, M., Völgyesi, P., Nordstrom, G., Sprinkle, J.,
Karsai, G.: Composing Domain-Specific Design Environments, Computer, Vol.
34, No. 11, 44-51. (2001)

34. Lilius, J. and Porres Paltor, I. Formalising UML State Machines for Model
Checking. In: France, R. B., Rumpe, B. (eds.): The Unified Modeling Language.
Modeling Languages, Concepts, and Tools, Lecture Notes in Computer Science,
Vol. 1723. Springer-Verlag, New York, 430–445. (1999)

35. Lin, Y., Zhang, J., Gray, J.: A Testing Framework for Model Transformations. In
Beydeda, S., Book, M., Gruhn, V. (eds.), Model-driven Software Development,
Springer, Heidelberg, Germany, 219-236. (2005)

36. Mathworks: Matlab Simulink/Stateflow Tools, http://www.mathworks.com (2010)
37. Mernik, M., Heering, J., Sloane, A. M.: When and How to Develop Domain-

Specific Languages. ACM Computing Surveys, Vol. 37, No. 4, 316-344. (2005)
38. Microsoft Corporation: The Abstract State Machine Language,

http://research.microsoft.com/en-us/projects/asml. (2010)
39. Microsoft Corporation: Windows Workflow Foundation,

http://msdn.microsoft.com/en-us/vbasic/cc506054 (2010)
40. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving Executability into Object-

Oriented Meta-Languages. In: Briand, L. C., Williams, C. (eds.): Model Driven
Engineering Languages and Systems, Lecture Notes in Computer Science, Vol.
3713. Springer-Verlag, Heidelberg, Germany, 264-278. (2005)

41. Object Management Group. Unified Modeling Language: Superstructure, Version
2, http://www.omg.org/spec/UML/2.3. (2010)

42. Porubän, J., Forgáč, M., Sabo, M., Běhálek, M.: Annotation Based Parser
Generator. Computer Science and Information Systems, Vol. 7, No. 2, 291-307.
(2010)

43. Romero, J.R., Rivera, J.E., Durán, F., Vallecillo, A.: Formal and Tool Support for
Model Driven Engineering with Maude, Journal of Object Technology, Vol. 6, No.
9, 187-207. (2007)

44. Sadilek, D. A., Wachsmuth, G.: Using Grammarware Languages to Define
Operational Semantics of Modelled Languages. In: Oriol, M., Meyer, B. (eds.):
Objects, Components, Models and Patterns, Lecture Notes in Business
Information Processing, Vol. 33. Springer-Verlag, Heidelberg, Germany, 348-356.
(2009)

45. Scheidgen, M., Fischer, J.: Human Comprehensible and Machine Processable
Specifications of Operational Semantics. In: Akehurst, D. H., Vogel, R., Paige, R.
F. (eds.): Model Driven Architecture - Foundations and Applications, Lecture
Notes in Computer Science, Vol. 4530. Springer-Verlag, Heidelberg, Germany,
157-171. (2007)

Barrett R. Bryant et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 252

46. Schmidt, D. C.: Guest Editor's Introduction: Model-Driven Engineering.
Computer, Vol. 39, No. 2, 25-31. (2006)

47. Shah, S., Anastasakis, K., Bordbar, B.: From UML to Alloy and Back Again. In
Proceedings of MoDeVVa ‟09, the 6th International Workshop on Model-Driven
Engineering, Verification and Validation, ACM, Denver, Colorado, USA, 1–10. (
2009)

48. Smith, G.: The Object-Z Specification Language, Kluwer Academic Publishers.
(2000)

49. Soden, M., Eichler, H.: Towards a Model Execution Framework for Eclipse. In
Proceedings of the 1st Workshop on Behaviour Modelling in Model-Driven
Architecture, ACM, Enschede, Netherlands, 1-7. (2009)

50. Sprinkle, J., Mernik, M., Tolvanen, J.-P., Spinellis, D.: Guest Editors' Introduction:
What Kinds of Nails Need a Domain-Specific Hammer? IEEE Software, Vol. 26,
No. 4, 15-18. (2009)

51. Sunyé, G., Pennaneac‟h, F., Ho, W.-M., Le Guennec, A. and Jézéquel, J.-M.:
Using UML Action Semantics for Executable Modeling and Beyond. In: Dittrich,
K. R., Geppert, A., Norrie, M. C. (eds.): Advanced Information Systems
Engineering, Lecture Notes in Computer Science, Vol. 2068. Springer-Verlag,
Heidelberg, Germany, 433-447. (2001)

52. Sztipanovits, J., Karsai, G.: Model-Integrated Computing. Computer, Vol. 30, No.
4, 110-111. (1997)

53. Varró, D.: A Formal Semantics of UML Statecharts by Model Transition Systems.
In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.): Graph
Transformation, Lecture Notes in Computer Science, Vol. 2505. Springer-Verlag,
Heidelberg, Germany, 378-392. (2002)

54. Wang, Y., Wu, Y., Allen, A., Espinoza, B., Clarke, P.J., Deng, Y.: Towards the
Operational Semantics of User-Centric Communication Models. In Proceedings
of the 33rd Annual IEEE International Computer Software and Applications
Conference, vol.1, pp.254-262. (2009)

55. Wu, H., Gray, J., Mernik, M.: Grammar-Driven Generation of Domain-Specific
Language Debuggers. Software: Practice and Experience, Vol. 38, No. 10, 1073-
1103. (2008)

56. Yu, L., France, R. B., Ray, I.: Scenario-Based Static Analysis of UML Class
Models. Model-Driven Engineering Languages and Systems. Lecture Notes in
Computer Science, Vol. 5301. Springer-Verlag, New York, 234–248. (2008)

Barrett R. Bryant is Professor and Associate Chair of Computer and
Information Sciences at the University of Alabama at Birmingham (UAB). He
received his B. S. in computer science from the University of Arkansas at
Little Rock in 1979 and his Ph. D. in computer science from Northwestern
University in 1983, after which he joined UAB. His research interests include
theory and implementation of programming languages, formal specification of
software systems, and component-based software engineering. He is a
member of EAPLS, and a senior member of ACM and IEEE.

Jeff Gray received the BSc and MSc degrees in Computer Science from
West Virginia University in 1991 and 1993, and the Ph.D. in Computer
Science from Vanderbilt University in 2002. He is currently Associate
Professor of Computer Science at the University of Alabama. Jeff's research

Challenges and Directions in Formalizing the Semantics of Modeling Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 253

interests are in the general areas of software engineering and programming
languages, and in the specific areas of model-driven engineering, aspect
orientation, and software evolution. He is a member of the IEEE and ACM.

Marjan Mernik received the M.Sc. and Ph.D. degrees in computer science
from the University of Maribor in 1994 and 1998, respectively. He is currently
Professor of Computer Science at the University of Maribor. He is also Visiting
Professor of Computer and Information Sciences at the University of Alabama
at Birmingham, and at the University of Novi Sad, Faculty of Technical
Sciences. His research interests include programming languages, compilers,
domain-specific (modeling) languages, grammar-based systems, grammatical
inference, and evolutionary computations. He is a member of the IEEE, ACM
and EAPLS.

Peter J. Clarke received his BSc. degree in Computer Science and
Mathematics from the University of the West Indies (Cave Hill) in 1987, MS
degree from SUNY Binghamton University in 1996 and PhD in Computer
Science from Clemson University in 2003. His research interests are in the
areas of software testing, software metrics, model-based testing, model-
driven software development and domain-specific modeling languages. He is
currently Associate Professor of Computing and Information Sciences at
Florida International University. He is a member of the ACM (SIGSOFT,
SIGCSE, and SIGAPP); IEEE Computer Society; and a member of the
Association for Software Testing (AST).

Robert France is Professor of Computer Science at Colorado State
University. His research interests are in the area of Software Engineering, in
particular formal specification techniques, software modeling techniques,
design patterns, and domain-specific modeling languages. He is an editor-in-
chief of the Springer journal on Software and System Modeling (SoSyM), a
Software Area Editor for IEEE Computer, and is a past Steering Committee
Chair of the MoDELS/UML conference series. He was also a member of the
revision task forces for the UML 1.x standards. He was awarded the Ten Year
Most Influential Paper award at MODELS in 2008.

Gabor Karsai is Professor of Electrical Engineering and Computer Science at
Vanderbilt University and a senior research scientist in the Institute for
Software-Integrated Systems at Vanderbilt. He conducts research in model-
integrated computing. Karsai received a Technical Doctorate degree in
Electrical Engineering from the Technical University of Budapest, Hungary,
and a PhD in Electrical Engineering from Vanderbilt University. He is a
member of the IEEE Computer Society.

Received: January 14, 2011; Accepted: March 11, 2011.

DOI:10.2298/CSIS110214013B

Software Agents: Languages, Tools, Platforms

Costin Bădică1, Zoran Budimac2, Hans-Dieter Burkhard3,
and Mirjana Ivanović2

1Software Engineering Department, Faculty of Automatics, Computers and
Electronics,

Bvd.Decebal, Nr.107, Craiova, RO-200440, Romania
badica_costin@software.ucv.ro

2 Faculty of Sciences, Department of Mathematics and Informatics
Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia

{zjb, mira}@dmi.uns.ac.rs
3Humboldt University, Institute of Informatics,

Rudower Chaussee 25, D-12489 Berlin, Germany
hdb@informatik.hu-berlin.de

Abstract: The main goal of this paper is to provide an overview of the
rapidly developing area of software agents serving as a reference point
to a large body of literature and to present the key concepts of software
agent technology, especially agent languages, tools and platforms.
Special attention is paid to significant languages designed and
developed in order to support implementation of agent-based systems
and their applications in different domains. Afterwards, a number of
useful and practically used tools and platforms available are presented,
as well as support activities or phases of the process of agent-oriented
software development.

Keywords: agent technologies, agent programming languages, agent
platforms.

1. Introduction

The metaphor of “intelligent software agents” as basic building blocks for the
development of new generation intelligent software systems triggered both
theoretical and experimental computer science research aiming to develop
new programming languages for agent systems. Fifteen years ago [64]
software agent technology has been recognized as a rapidly developing area
of research and one of the fastest growing areas of information technology.

In our opinion, the main achievement of this trend of research was the
development of new programming models that address both the basic
features of agenthood (autonomy, reactivity, proactivity and social abilities) as
well as more advanced, human-like features usually collectively coined in the
agent literature as “mental attitudes” (beliefs, desires, intentions,
commitments), following the model of “intentional systems” introduced by the
philosopher Daniel Dennett in 1971 to explain behavior of rational agents.

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 256

Agent oriented technologies, engineering of agent systems, agent
languages, development tools and methodologies are an active and emergent
research area and agent development is getting more and more interesting.
There are many approaches, theories, languages, toolkits, and platforms of
different quality and maturity which could be applied in different domains.

Our motivation and the main goal of the paper are to bring a survey in the
field of agent technology and to cover different aspects of agents. Agents,
agent-oriented programming (AOP), and multi-agent systems (MAS) introduce
new and unconventional concepts and ideas. Still, there is a number of
definitions of the term ‘agent’ that include a property common to all agents:
agent acts on behalf of its user, as well as a lot of additional properties: agent
communicates with other agents in a multi-agent system; acts autonomously;
is intelligent; learns from experience; acts proactively as well as reactively; is
modeled and/or programmed using human-like features (beliefs, intentions,
goals, actions, etc.); is mobile, and so on.

After more than two decades of scientific work in the field, the challenge is
to include agents in real software environments and widely use the agent
paradigm in mainstream programming. One way to facilitate this is to provide
agent-oriented programming languages, tools and platforms.

Pioneering work is done by the Foundation for Intelligent Physical Agents
(FIPA). “FIPA was originally formed as a Swiss based organization in 1996.
Since its foundations, FIPA has played a crucial role in the development of
agents standards and has promoted a number of initiatives and events that
contributed to the development and uptake of agent technology. Furthermore,
many of the ideas originated and developed in FIPA are now coming into
sharp focus in new generations of Web/Internet technology and related
specifications." (cf. [116]). Since 2005, FIPA is the standards organization for
agents and multi-agent systems of the IEEE Computer Society standards
organization.

Our recent overview of the agent programming literature revealed a
number of trends in the development of agent programming languages. These
trends follow the main achievements of computer science disciplines that are
traditionally directly connected to multi-agent systems, i.e. formal methods,
object-oriented programming, concurrent programming, distributed systems,
discrete simulation, and artificial intelligence. Adding on top of that the
metaphor of “humanized agents” with roots in psychology research, by
regarding them as intentional systems that are endowed with mental states,
we can get a panoramic view of the current status of the world of agent
programming languages, tools and platforms. The whole paper or some
sections of it could be extremely useful and give more insights into the domain
for a wide range of readers. PhD students and young researchers can find
plenty of useful information and state-of-the-art in the domain of available
languages and platforms for programming software agents. Professionals in
different companies who are willing to apply this new, promising technology in
everyday programming and implementation of real world applications based
on agent technology, could find the paper very helpful. Undergraduate
students who like to widen their traditional knowledge and be introduced to

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 257

modern trends in programming can use it as an additional reading material.
Moreover, all of them can find a valuable source of references and
suggestions for further reading.

The rest of the paper is organized as follows. The second section attempts
to give an overview of all essential notions, issues and concepts related to
agents and agent technology which are used in other chapters of the paper.
Thereinafter, it makes the distinction between single agent and multi-agent
systems, goes through the broad spectrum of agent properties, discusses the
most acknowledged classifications of software agents, presents the most well-
known agent architectures, and explores the two most important agent
communication approaches. Section three lists and discusses standard
languages and several prototype languages that have been proposed for
constructing and implementing agent-based systems. Afterwards, section four
presents a number of tools and platforms that are available to support
activities or phases of the process of agent-oriented software development.
The last chapter gives some concluding remarks.

2. What is a software agent?

2.1. Introduction

Over the last years, many researchers in different fields have proposed a
large variety of definitions for the term “agent”. The common understanding is
that it is an entity which “acts autonomously on behalf of others”. Even if we
restrict ourselves to computer science, there are a lot of different definitions
and a lot of different fields where agents are used. It started 30 or more years
ago in (Distributed) Artificial Intelligence. With the arrival of the Internet and
with the dissemination of computer games, the notion of agents has become
broadly used even by non-experts, e.g. for electronic marketing, assistance
systems, search engines, chatter bots etc, or as constituents of larger
software projects. For the latter ones, it is useful to distribute the overall tasks
to autonomous entities and to organize a framework of cooperation and
interaction in a multi-agent system. Agents are typical inhabitants of open
systems like the Internet. Open systems have been characterized by Hewitt
[58] already in the 80’s as systems with continuous availability, extensibility,
modularity, arm-length relationships, concurrency, asynchronous work,
decentralized control, and inconsistent information.

Michael Coen [126] puts very small restrictions on a program to be
considered as an agent: "... programs that engage in dialogs and negotiate
and coordinate transfer of information." In the IBM [127], intelligent agents are
defined as: "...software entities that carry out some set of operations on behalf
of a user or another program with some degree of independence or
autonomy, and in so doing, employ some knowledge or representation of the
user's goals or desires.". The Software Agents Group at MIT [128] compares

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 258

software agents to conventional software and emphasizes the following
differences: "Software agents differ from conventional software in that they
are long-lived, semi-autonomous, proactive, and adaptive.". More detailed is
the so-called “weak notion of agency” by Wooldridge and Jennings [104],
[105]. They define an agent as "... a hardware or (more usually) software
based computer system that enjoys the properties:
− autonomy: agents operate without the direct intervention of humans or

others, and have some kind of control over their actions and internal state;
− social ability: agents interact with other agents (and possibly humans) via

some kind of agent-communication language;
− reactivity: agents perceive their environment (which may be the physical

world, a user via a graphical user interface, a collection of other agents, the
Internet, or perhaps all of these combined), and respond in a timely fashion
to changes that occur in it;

− proactiveness: agents do not simply act in response to their environment,
they are able to exhibit goal-directed behavior by taking the initiative.
A definition in the sense of “strong notion of agency” is [105]: "An agent is a

computer system that, in addition to having the properties identified in the
definition of weak agent, is either conceptualized or implemented using
concepts that are more usually applied to humans (knowledge, obligations,
beliefs, desires, intentions, emotions, human-like visual representation, etc.)."

The “strong notion of agency” corresponds to the usage in the field of
artificial intelligence (AI). These systems are often specified using human
mental categories: beliefs, plans, goals, intentions, desires, commitments, etc.
Shoham [90] claims that the use of mental categories in agent specification is
justified only under the following conditions:
− mental categories are precisely defined using some formal theory,
− agent has to obey that theory,
− every mental category used in an agent specification has to give some

benefit.
A collection of various agent definitions, based on the weak notion of

agency, can be found in [52]. It is not the aim of this paper to give a unique
definition of an agent. Instead, the reader will find that the different tools
presented in the rest of the paper correspond to different notions. Some more
relevant concepts are introduced in the following sections.

2.2. Agent Classification and Architectures

General classifications in the agent community [105] distinguish between
reactive architectures and deliberative architectures. Reactive architectures
are considered as simple controls, while deliberative architectures implement
complex behavior including mental attitudes (goals etc.) and planning, based
on symbolic representations and models. Hybrid architectures are
combinations of both reactive control on the “lower level” for fast responses
and deliberative control on the “higher level” for long-term planning.

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 259

 A technologically better classification addresses the possible “states” of an
agent, similar to the approach given in [86]. A state is a snapshot of the
system (e.g. the content of the memory) at a certain time point on a discrete
time scale. Transitions describe the state changes between two time points.
For agents, the time scale is usually chosen according to the sense-think-act-
cycle. This cycle consists of
− processing incoming information (“sense”, e.g. parsing messages from

other agents, analyzing human requests, possibly in natural language etc.)
− more or less complex decision procedures (“think”, e.g. by simple decision

or rules, or by deliberation, planning etc.)
− sending outgoing information (“act”, sending messages to other agents,

preparing answers in a human-like style etc.).
An internet agent may in one cycle get a customer request, update its

database and send an answer. The state is the content of the database at the
end of this cycle. An agent may have different cycles at different time scales:
A search engine may answer search requests more frequently than its index
machine gets updated. “This creates a need for synchronization efforts which
can be facilitated e.g. by different layers.”

A behavior (architecture) is called stimulus-response behavior if there are
no different states at all. The response of the agent to an input is always the
same (if there is some probabilistic component, then the distribution is the
same). It can be produced e.g. by a fixed set of rules, by an input-output table
or by a neural network. It doesn’t matter if the response routine is a simple or
a complex one. A search engine may perform extensive search over large
databases and a lot of effort to rank the results. If nothing is stored after
answering, then the same calculations yielding an identical answer will be
performed every time for the same request.

If the responses of an agent to identical requests are different, then they
depend on the state of the agent. The search engine may maintain profiles of
its users such that the answers depend on the stored profiles. The profile is
updated every time the user makes a request, i.e. the state of the agent is
changed. It is useful to distinguish between different kinds of states according
to their contents:

The so-called belief or world model stores internal representations about
the situation in the environment for later usage. It is updated according to the
sensor inputs. It is called belief because it needs not to be true knowledge
(e.g. the profile of a user calculated only by the available user inputs needs
not represent her or his true preferences).

Future directed states are created by “mental attitudes” related with
decision processes. They are named as goals, plans etc., and they guide the
future deliberation and actions (towards a formerly chosen goal). A trading
agent may have the goal of an optimal transaction. For that, it may develop a
plan for searching appropriate offers from databases and for negotiation with
other agents.

As introduced above, agents are called “stimulus-response” if they do not
have states. Nevertheless, their decision procedures might be very complex,
e.g. in complex information systems. Agents with states may have a world

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 260

model (belief) and/or future-directed state components like goals and plans.
Their deliberation process considers updates of the world model and
commitment procedures for selecting goals and constructing plans. Actually, it
is up to the programmer to decide if mental notions are used for data
constructs. Sometimes, very simple agents come with mental attitudes. There
is nothing wrong with it if it helps for better understanding.

The popular BDI architecture is inspired by the work of the philosopher [16].
BDI stands for belief, desire and intention. Belief describes the world model as
above, while desires and intentions are future-directed mental notions.
Bratman argues that the mental notion of goals is not sufficient to express
complex future-directed behavior. A rational agent should adopt only goals
which it believes to be achievable, i.e. not in conflict with the belief and not in
conflict with each other. However, before committing to a goal, the agent may
have different desires, which may be in conflict. A human may at the same
time have conflicting desires, e.g. go to home, to be at the beach, to ride a
bicycle, and to drive a car. Then he has to make a commitment, to choose
which desires to adopt as intentions. Rational behavior demands to select
only non conflicting options, e.g. to go by bicycle to the beach.

In BDI architectures, desires are used as preliminary stages of possible
intentions: first the agent collects desirable options, and then it selects some
of them as intentions e.g. through ranking, while avoiding conflicts between
intentions. Then it performs appropriate actions to achieve the intentions.

Not all the so-called BDI-architectures really implement Bratman’s ideas. In
some cases, the agent simply selects a single desire and calculates an
appropriate action sequence (called intention) which fulfills this desire. In such
a case, a desire is in fact a goal, and the intention is the related plan to
achieve the goal.

A lot of theoretical work using multimodal temporal logics has been
performed for the foundation of deliberative agent controls and some of them
resulted in executable formalisms like MetateM ([48]).

2.3. Robots and Software Agents

Robots are often considered as hardware controlled by a software agent
acting as the brain. The sensors and actuators of the robot provide the input
and output for the agent. This works well in simple settings, but it poses
problems for more complex robots in real environments. Control of such
robots is more than information processing: parts of such robots coordinate
not only by messages, but by physical interactions too. It is very difficult or
even impossible to model the physical dependencies in terms of information
processing. However, those relations can be used directly by clever design.
Modern robotic approaches are inspired by biology and use local sensor-actor
loops, etc. “The key observation is that the world is its own best model. It is
always exactly up to date. It always contains every detail there is to be known.
The trick is to sense it appropriately and often enough.” [109] This paradigm is
known as behavioral robotics, biologically inspired robotics etc.

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 261

Related robot controls are able to perform surprisingly complex tasks. Their
behavior emerges from the physical situatedness of an embodied entity. An
approach that exploits situated automata is described in [66]. Pattie Maes [72]
has developed an agent architecture that is composed of modules organized
into a network. The Subsumption Architecture, based on behaviors, is the
best-known architecture of this kind. Brooks built many robots (based on four
principles) using an AI approach [25], [26]:
− Situatedness - The robots are situated in the world.
− Embodiment - The robots have bodies and experience the world directly -

their actions are part of a dynamics with the world and have immediate
feedback on their own sensations.

− Intelligence - They are observed to be intelligent - but the source of
intelligence includes: computational engine, situation in the world, the
signal transformations within the sensors, and the physical coupling of the
robot with the world.

− Emergence - The intelligence of the system emerges from the system's
interactions with the world and from sometimes indirect interactions
between its components.
A behavior is implemented as a simple state machine with few states (not

representations of the outside world). Behaviors can overwrite each other
(subsumption). Brooks' robots built from connected behaviors are capable of
performing some complex tasks with relatively simple programming [24].
Maes has shown that the same ideas can also be exploited in the design of
software agents [73]. The behavioral agent architectures are sometimes
considered as prototypes of reactive architectures [105]). While single
behaviors are simple, their hierarchical combination into a more complex
behavior becomes more and more complicated. Because of that, the hybrid
architectures combine low-level approaches with classical reasoning
approaches in hierarchical architectures. Such architectures may consist of
several levels, where low levels can use behavioral (and possibly
subsymbolic) architectures, and higher levels are usually deliberative
(symbolic) ones. Symbolic modeling becomes necessary when sensing does
not give enough information, or when planning is really needed.

Because of the “physics in the loop”, the assumptions usually connected
with software agents are not fulfilled: Physical components do not behave like
objects (or agents). This difference is recently stressed by the investigation of
so-called Cyber Physical Systems [110], which are considered as distributed
systems where the components perform information processes as well as
physical processes. The interaction between the components is of physical
and computational nature, as well.

2.4. More Features of Agents

Depending on different usages of agents, they can have a lot of different
features. Such features are often used for classification as well. We have
already discussed different basic architectures. Next we describe mobility,

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 262

size intelligence and ability to adapt and to learn. Relations to other agents
are described later in the section on Multi-Agent Systems. A collection of
agent features will be given in table 1.

Mobility - Agents can be static or mobile. Static agents are permanently
located at one place, while mobile agents can change their location. When a
static agent wants some action to be executed at a remote site, it will send a
message to an agent at that location with the request for the action. In a
similar situation, a mobile agent would transmit itself to the remote site and
invoke the action execution. There are a lot of benefits from usage of mobile
agents [27] but if we wanted to get all of these benefits without a mobile
agent, we would need a large amount of work and it would be practically
almost impossible [1]. The advocated utility of mobile agents is to support
optimization of sophisticated operations that may require strong interactivity
between components or special computing facilities as encountered e.g. in
negotiation, network management and monitoring, and load balancing for
scientific computing. Mobility of software agents is closely related to the
problem of code mobility in distributed programming with applications in
operating systems and computer networks. Some problems related with
mobile agents concern security and safety. A good overview of code mobility
paradigms can be found in the reference paper [53].

Size and Intelligence - Agents can be of various sizes and can possess
various amounts of intelligence. Generally, intelligence of a software agent is
proportional to its size, so we can distinguish: big-sized, middle-sized and
micro agents. It is difficult to make clear boundaries among these categories.
1. A big-sized agent occupies and controls one or more computers. It

possesses enough competence to be useful even if it acts alone, without
the other agents in a MAS. A big-sized agent can be as big and as
intelligent as an expert system [63] with competences for expert problem
solving, e.g. distributed medical care or plane ticket reservation.

2. A middle-sized agent is the one that is not useful without the other agents
in a MAS or without additional software [6], [7], [8]. However, it is able to
perform some non-trivial task(s). A user-interface agent that acts without
other agents and performs some simple actions can also be classified as a
middle-sized agent. Mobile agents are usually middle-sized agents.

3. Micro agents (also called the Society of Mind agents) [77] do not possess
any intelligence. Minsky followed the idea that the intelligence emerges as
a global effect of the overall activity of many simple and unintelligent
agents.
Adaptation – Adaptive agents can adapt their behavior to different

situations and changes in the environment. For example, a navigation system
can adapt to changes in traffic (e.g. a traffic jam) and propose alternative
routes. This makes adaptive agents more robust to non-predicted changes in
a dynamic environment.

Learning - Agents can use learning capabilities for better performance.
Learning can be done online, e.g. by data mining from data which are
constantly collected through interaction with users (e.g. for profiles). Offline

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 263

learning refers to training processes (e.g. for pattern recognition) prior to
productive agent usage.

Agents may possess many features in various combinations. The following
table is a slightly modified collection from [54]:

Table 1. Agent’s features

Adaptivity Agents can adapt to unpredicted changes.
Autonomy An agent can act without direct intervention by humans

or other agents and that it has control over its own
actions and internal state

Benevolence It is the assumption that agents do not have conflicting
goals and that every agent will therefore always try to
do what is asked of it.

Character
(personality)

An agent has a well-defined, believable "personality"
and emotional state.

Competitiveness An agent is able to coordinate with other agents
except that the success of one agent may imply the
failure of others.

Cooperation or
collaboration

An agent is able to coordinate with other agents to
achieve a common purpose; non-antagonistic agents
that succeed or fail together.

Coordination An agent is able to perform some activity in a shared
environment with other agents. Activities are often
coordinated via plans, workflows, or some other
process management mechanism.

Credibility An agent has a believable personality and emotional
state.

Deliberation A deliberative agent decides for its actions by
reasoning processes which may involve mental
categories like goals, plans etc.

Embodiment An embodied agent can interact with its environment
by physical processes. This allows for emergent
controls guided by sensor data without internal
representations.

Emergent behavior More complex behavior emerges by interaction of
(simple) agents with each other (swarm intelligence) or
with the environment (embodied agents, situated
agents).

Flexibility The system is responsive (the agents should perceive
their environment and respond in a timely fashion to
changes that occur in it), pro-active and social.

Goal directed Agent behavior is guided by mental qualities like goals,
which are results of deliberation. Then the agent tries
to achieve the goal by appropriate actions.

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 264

Hybrid
architecture

Combination of different architectures. Often with
simple (reactive, stimulus response) control for low
level behavior and deliberative control for high level
behavior.

Inferential
capability

An agent can act on abstract task specification using
prior knowledge of general goals and preferred
methods to achieve flexibility; goes beyond the
information given, and may have explicit models of
self, user, situation, and/or other agents.

Intelligence An agent’s state is formalized by knowledge and the
agent interacts with other agents using symbolic
language.

Interpretation
ability

An agent is interpretive if it can correctly interpret its
sensor readings.

“Knowledge-level”
communication
ability

The ability to communicate with persons and other
agents with language more resembling human-like
“speech acts” than typical symbol-level program-to-
program protocols.

Learning An agent is capable of learning from its own
experience, its environment, and interactions with
others.

Mobility an agent is able to transport itself from one machine to
another and across different system architectures and
platforms.

Prediction ability An agent is predictive if its model of how the world
works is sufficiently accurate to allow it to correctly
predict how it can achieve the task.

Proxy ability An agent can act on behalf of someone or something
acting in the interest of, as a representative of, or for
the benefit of, some entity.

 Personality
(character)

An agent has a well-defined, believable "personality"
and emotional state.

Proactiveness An agent does not simply act in response to its
environment; it is able to exhibit goal-directed behavior
by taking the initiative.

Rationality It is the assumption that an agent will act in order to
achieve its goals, and will not act in such a way as to
prevent its goals being achieved — at least insofar as
its beliefs permit.

Reactivity An agent receives some form of (sensory) input from
its environment, and it performs some action that
changes its environment in some way.

Resource limitation An agent can only act as long as it has resources at its
disposal. These resources are changed by its acting
and possibly also by delegating.

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 265

Reusability Processes or subsequent instances can require
keeping instances of the class ‘agent’ for an
information handover or to check and to analyze them
according to their results.

Ruggedization An agent is able to deal with errors and incomplete
data robustly.

Sensor-actor
coupling

Agents act by (direct) connections between sensors
and actors. This can be used for reactive controls.

Situatedness An agent (robot) is situated in its environment. Its
behavior can be guided by physical interactions (e.g.
sensor-actor coupling). This can be an efficient
alternative to control using internal representations.

Social ability An agent interacts and this interaction is marked by
friendliness or pleasant social relations; that is, the
agent is affable, companionable or friendly.

Sound An agent is sound if it is predictive, interpretive and
rational.

Stimulus
response

A stimulus response agent has no internal state. It
means that its responses are equal for equal inputs.

Temporal
continuity

An agent is a continuously running process, not a
"one-shot" computation that maps a single input to a
single output, then terminates.

Transparency
and accountability

An agent must be transparent when required, but must
provide a log of its activities upon demand.

Trustworthiness An agent adheres to laws of robotics and is truthful.
Unpredictability An agent is able to act in ways that are not fully

predictable, even if all the initial conditions are known.
It is capable of nondeterministic behavior.

Veracity It is the assumption that an agent will not knowingly
communicate false information.

2.5. Multi-Agent Systems and Agent Communication

“Distributed Problem Solving” is performed by agents working together
towards a solution of a common problem (e.g. for expert systems) [12]. Multi-
Agent Systems (MAS) take a more general view of agents which have contact
with each other in an environment (e.g. the Internet) [13]. The rules of the
environment as well as the agent controls determine the form of coordination.
The agents may be cooperative or competitive. Relations between local and
global behavior in such MAS have been studied using game theory and social
theories (cf. [101]).

Communication via exchange of messages is the usual prerequisite for
coordination. Nevertheless, cooperation is possible even without
communication, by observing the environment. The two most important
approaches to communication are using protocols and using an evolving

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 266

language [28]. Both have their advantages and disadvantages. For industrial
applications, communication protocols are the best practice, but in systems
where homogeneous agents can work together, language evolution is the
more acceptable option [28]. Agent Communication Languages (ACLs)
provide important features like technical declarations (sender, receiver,
broadcasting, peer-to-peer, …), speech act (query, inform, request,
acknowledge,…) and content language (e.g. predicate logic). Together with
these features, related protocols are defined to determine the expected
reactions to messages (e.g. an inform message as an answer to query
message). A number of languages for coordination and communication
between agents was enumerated in [102]. The most prominent examples
[102] are given in Table 2.

Table 2. Languages for coordination and communication between agents.

Agent communication
language

Description

KQML (“Knowledge
Query and Manipulation
Language”)

It is perhaps the most widely used agent
communication language [102], [45]. KQML uses
speech-act performatives such as reply, tell, deny,
untell, etc. Every KQML message consists of a
performative and additional data written in several
slots. Some slots are :content, :in-reply-to,
:sender, :receiver, :ontology, etc. The set of
performatives in KQML and their slots should be
general enough to enable agent communication in
every agent application. There are claims that
there might be some problems with the semantics
of performatives. Various agents may interpret the
same performative in various ways.

FIPA-ACL (“FIPA Agent
Communication
Language”)

It is an agent communication language that is
largely influenced by ARCOL [102]. FIPA ACL has
been defined by FIPA - Foundation for Intelligent
Physical Agents. Together FIPA-ACL [47],
ARCOL, and KQML establish a quasi standard for
agent communication languages [102]. Syntax
and semantics of FIPA ACL are very similar to the
syntax and semantics of KQML. Time will show
which one of these two standards will prevail.

ARCOL (“ARTIMIS
COmmunication
Language”)

ARCOL has a smaller set of communication
primitives than KQML, but these can be
composed. This communication language is used
in the ARTIMIS system [102].

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 267

KIF (“Knowledge
Interchange Format”)

This logic-based comprehensive language with
declarative semantics has been designed to
express different kinds of knowledge and meta-
knowledge [102]. KIF is a language for content
communication, whereas languages like KQML,
ARCOL, and FIPA-ACL are for intention
communication.

COOL (“Domain
independent
COOrdination
Language”)

COOL relies on speech-act based
communication, aims at explicitly representing
and applying coordination knowledge for multi-
agent systems and focuses on rule-based
conversation management (conversation rules,
error rules, continuation rules, …) [102].
Languages like COOL can be considered as
supporting a coordination/communication (or
“protocol-sensitive”) layer above intention
communication.

Contract Net Protocols and Blackboard Systems are well understood

mechanisms for organizing MAS. Contract Net Protocols organize the
distribution of tasks to other agents by announcing tasks, receiving bids from
other agents and choosing one of the bidding agents for execution.
Blackboard systems provide a common active database (the blackboard) for
information exchange.

MAS with many agents are often used for simulations to study Swarm
Intelligence and for social simulations in the field of Socionics. Social
simulations include simulations of financial markets, traffic scenarios, and
social relationships. Swarm intelligence can lead to complex “intelligent”
behavior which emerges from the interaction of very simple agents, e.g. in ant
colonies or in trade simulations. Complex problems, e.g. the well-known
travelling salesman problem can be solved with swarm techniques.

3. Languages for constructing Agent-based systems

An essential component of agent-based technology and implementation of
agent-based systems is a programming language. Such a language, called an
agent-oriented programming language, should provide developers with high-
level abstractions and constructs that allow direct implementation and usage
of agent-related concepts: beliefs, goals, actions, plans, communication etc.

Most agent systems are still probably written in Java and C/C++ [102].
Although traditional languages are not well-suited for agent systems, it is
achievable to implement them in Pascal, C, Lisp, or Prolog languages [79].
Typically, object-oriented languages (Smalltalk, Java, or C++) are easier to
use for realization of agent systems as agents share some properties with
objects such as encapsulation, inheritance and message passing but also

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 268

differ definitely from objects vis-à-vis polymorphism [79]. Apart from these
standard languages, several prototype languages for implementing agent-
based systems have been proposed to support better realization of agent-
specific concepts.

Devising a sound classification and analysis methodology for agent
programming languages is a very difficult task because of the highly-
dimensional and sometimes interdependent heterogeneous criteria that can
be taken into account, e.g. computational model, programming paradigm,
formal semantics, usage of mental attitudes, architectural design choices,
tools availability, platform integration, application areas, etc. Therefore, here
we take a more pragmatic approach by firstly proposing a light top-level
classification that takes into account those aspects that we consider most
relevant for agent systems, i.e. the usage of mental attitudes. According to
this classification we find: agent-oriented programming (AOP) languages;
belief-desire-intention (BDI) languages, hybrid languages (that combine AOP
and BDI within a single model), and other (prevalently declarative) languages.
Understanding the current state of affairs is an essential step for future
research efforts in the area of developing agent-oriented programming
languages.

Table 3 (at the end of the paper) brings summary and specific information
for all agent languages presented in the paper that we managed to collect
from different sources: Web Page, IDE, Implementation language, Agent
platform integration, Applications, Paradigm, and Textbook.

3.1. Agent-oriented programming model

The term Agent-oriented Programming (AOP) was coined in [90] to define a
novel programming paradigm. It represents a computational framework whose
central compositional notion is an agent, viewed as a software component
with mental qualities, communicative skills and a notion of time. AOP is
considered to be a specialization of object-oriented programming (OOP), but
there are some important differences between these concepts ([107], [90]).
Objects and agents differ in their degree of autonomy. Unlike objects, which
directly invoke actions of other objects, agents express their desire for an
action to be executed. In other words, in OOP the decision lies within the
requesting entity, while in AOP the receiving entity has the control over its
own behavior, by deciding whether an action is executed or not. Also, agents
can often have conflicting interests, so it might be harmful for an agent to
execute an action request from another agent. An additional difference is
flexibility. Agents often exhibit pro-active and adaptive behavior and use
learning to improve their performance over time. The thread of control is the
final major difference. While multi-agent systems are multi-threaded by
default, there is usually a single thread of control in OOP.

An important part of the AOP framework, as described in [90], is a
programming language. Agent-orient Programming Language (APL) is a tool
that provides a high-level of abstraction directed towards developing agents

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 269

and incorporates constructs for representing all the features defined by the
framework. Most of all, it should allow developers to define agents and bind
them to specific behaviors [87]; represent an agent’s knowledge base,
containing its mental state; and allow agents to communicate with each other.

The AOP paradigm was very influential for the further development of
agent programming languages, resulting in a number of languages.

AGENT0

AGENT0 (see Table 3) [90], [107] and [9], was the first agent-oriented
programming language that has been developed, providing a direct
implementation of the agent-oriented paradigm. Although being more of a
prototype than a “real” programming language, it gives a feel of how a large-
scale system could be built using the AOP concept.

In AGENT0, an agent definition consists of four parts: a set of capabilities
(describing what the agent can do), a set of beliefs, a set of commitments or
intentions, and a set of commitment rules containing a message condition, a
mental condition and an action [107]. Agents communicate with each other
through an exchange of messages which can be one of three different types:
(1) a request for performing an action, (2) an “unrequest”, for refraining from
an action, and (3) an informative message, used for passing information.
Usually, requests and unrequests result in agent’s commitments being
modified, while an inform message results in a change in agent’s beliefs.
Furthermore, a message can be private, corresponding to an internally
executed subroutine, or public, for communication with other agents in the
environment. These messages can alter agent’s beliefs and commitments, i.e.
its mental state. A crucial task is, therefore, to maintain the agent’s mental
state in a consistent form. As proposed in [90], there are three different ways
of achieving this: 1) Using formal methods and mathematical logic; 2)
Heuristic methods; 3) Making the language for mental space description as
simple as possible, thus enabling trivial verification (the solution applied in
AGENT0). Shoham [90] proposes the model for agent execution using a
simple loop, which every agent regularly iterates: 1) Read the current
messages, and, if needed, update set of beliefs and commitments; 2) Execute
all commitments for the current cycle. This can result in further modifications
of beliefs.

PLACA

Planning Communicating Agents - PLACA (see Table 3) is an improvement of
the AGENT0 language, extending it with planning facilities, which significantly
reduce the intensity of communication ([95], [9]). In PLACA, an agent doesn’t
need to send a separate message each time it requests another agent to
perform some action. Instead, it can provide another agent with a description
of the desired final state. After checking the rule conditions are satisfied, as

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 270

well as by using its planning abilities, the receiving agent presents to the
sender a plan of actions to execute in order to reach the desired state. This
means that the agents communicate requests for actions via high-level goals.

The logical component of PLACA is similar to that of AGENT0, but it
includes operators for planning. Due to introduction of plans, mental
categories and syntax in PLACA are a bit different than those in AGENT0. If a
received message satisfies the message condition and if the current mental
state of the receiving agent satisfies the mental condition, then the agent’s
mental state will be changed and the agent will send appropriate messages.

PLACA, as AGENT0, is an experimental language, not designed for
practical use.

Agent-K

Agent-K (see Table 3) is another extension of the AGENT0 [35]. It replaces
custom communication messages (i.e. request, unrequest and inform) with
the standardized KQML. This improves the general interoperability of agents
and enables them to communicate with different types of agents (that employ
KQML as well). It doesn’t, however, include the improvements brought by
PLACA. Merging of the two concepts is achieved by modifying the AGENT0
interpreter to handle KQML messages. Since the interpreter is implemented in
Prolog, an intermediate level was introduced to convert the Lisp-style format
of KQML messages into an unordered Prolog list of unary predicates. In
addition, this layer transforms textual parts of a KQML message into tokens
that can be handled by the interpreter. The interpreter has been modified to
include these changes and to allow multiple actions to occur at the same time,
i.e. when there is a match between an incoming message and multiple
commitment rules. Because of that, each Agent-K agent is a separate process
with its own instance of the interpreter.

As an addition, Agent-K uses the KAPI1 library for agent communication,
which can transport KQML messages over TCP/IP and e-mail to remote
systems. Although the integration with KQML should improve the
interoperability of agents, this was not fully achieved [35] because Agent-K
uses Prolog to encode agents’ beliefs and commitments (thus restricting the
communication to other Prolog-based agents only). Authors of the language
propose another language for knowledge representation, (e.g. KIF), to be
used.

MetateM

The Concurrent MetateM, currently called simply MetateM (see Table 3), [14],
[15] is probably one of the oldest programming languages for multi-agent
systems. It was based on the direct execution of logical formulae [49], [106].

1 The KAPI library is provided by Jay Weber, EIT

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 271

MetateM has its roots in formal specification using temporal logic by bringing
in the idea of executable temporal specifications. Therefore, it can be equally
well described as a temporal logic programming language that is based on
temporal rather than on first-order logic.

A MetateM agent program consists of a set of temporal rules that are built
according to the paradigm: declarative past and imperative future. Intuitively
this means that: (i) the conditional part of the rules is interpreted declaratively
by matching it with the history of the agent execution, i.e. what is true in the
current state of the agent and what was true in the past states of the agent,
and (ii) the execution part of the rules represents the choices that the agent is
facing in the next state, as well as in future states. So, intuitively, the
execution of a MetateM program is in fact the process of building a concrete
model of the program specification using a forward chaining algorithm.

The current implementation of MetateM [123] is based on Java and it
supports asynchronous and concurrent execution of multiple agents that are
able to exchange messages such that each message sent is guaranteed to
arrive at a future moment in time. Moreover, MetateM supports a dynamic
structuring of agents based on two sets of agents that are associated with
each agent in the system: (i) the content set representing those agents that
the current agent can control, and (ii) the context set representing those
agents that can influence the current agent. This style of grouping allows
efficient agent communication using multicast messages [50].

April and MAIL

Agent PRocess Interaction Language - April (see Table 3) [74] is a process-
oriented symbolic language that was not designed specifically for agent-
oriented programming, but rather as a general-purpose multi-process
development tool. Nevertheless, it provides the necessary infrastructure for
developing and employing simple agents. The main entity in an April system
is a process, which represents an agent in the multi-agent paradigm. An agent
is identified by its private or public handle. Private handles are accessible
within the system only, while the public handles are available to agents in
other systems as well. Public handles are registered in the system’s name
server and as such can be found from other systems connected to it. These
inter-connected name servers allow one to build a global April application.

April has a simple communication infrastructure that uses TCP/IP and
permits access to non-April based applications. Agents communicate by
exchanging messages identified by their handles. If two agents send a
message to a third agent, the April system cannot guarantee that they will
arrive in the order of transmission, since there is no global synchronization
clock. What can be assured is that if one agent sends n messages to another,
they will arrive in the order they were sent, but it is not always possible to
determine how much time an operation will take to execute. Therefore, “April
is not particularly suitable for time-critical real-time applications” [74].

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 272

A powerful feature offered by April is macro, which gives developers the
ability to define new language constructs, based on the existing ones. One of
the main purposes of macros was to serve as tools for developing new, richer
and more agent-oriented languages on top of April. Concepts as messages
based on a particular speech-act, agent mobility, knowledge handling etc. can
also be simulated [74]. Authors of April intended to include these extensions
in a more developer-friendly manner and to create a new agent-oriented
programming language called MAIL. MAIL as a high level language was
intended for realization of many common MAS. First version of April and MAIL
specification was the subject of an ESPRIT project and April had to serve as
implementation language for MAIL, in fact as the intermediary between C and
MAIL. MAIL was prototyped using IC-Prolog II (distributed logic programming
system). Funding for the project was cancelled before it was implemented.

VIVA

VIVA (see Table 3) [98], an agent-oriented declarative programming
language, was based on theory of VIVid agents introduced by same author. A
VIVid agent is a software-controlled system with state expressed in a form of
beliefs and intentions (as mental categories) and with behavior represented
by action and reaction rules. Its basic functionality covered possibility to
represent and perform actions in order to generate and execute plans. VIVA
was in accordance with agent-oriented programming paradigm, but it was
slightly conservative as it adopted as many concepts as possible from Prolog
and SQL. The basic design principles of VIVA apart from conservativeness
were scalability and versatility [98].

An agent specified in VIVA could run on a number of hosts with the same
or different hardware/software architectures. The composition of MAS and the
locations of participating agents had to be specified before a VIVA application
could run.

The language was intended for general-purpose software agent
programming, embedded systems and robots but has not fulfilled
expectations of the authors to be widely used in MAS.

GO!

Multi-paradigm programming language GO! (see Table 3) [32] is conceptually
similar to April. It combines OOP, concurrent, logic and functional paradigms
into a single framework. Based on April, GO! brings following extensions:
knowledge representation features of logic programming, yielding a multi-
threaded, strongly typed and higher order language (in the functional-
programming aspect) [21]. In inheritance from April, threads primarily
communicate through asynchronous message passing. Threads, as executing
action rules, react to received messages using pattern matching and pattern-
based message reaction rules. A communication daemon enables threads in

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 273

different GO! processes to communicate transparently over a network. Each
agent usually can encompass several threads directly communicating with
threads in other agents. Threads within a single GO! process can also
communicate by manipulating a shared cell or dynamic relation objects.

As a strongly typed language it can improve code safety as well as reduce
the programmer’s burden. New types and new data constructors can be easily
added. The designers of the language have had in mind critical issues like
security, transparency and integrity, in regards to adoption of the logic
programming essence. Features of Prolog like the cut (‘!’) have been left out
for obvious reasons. In Prolog, the same clause syntax is used for defining
relations (declarative semantics), and for defining procedures (operational
semantics). In GO!, however, behavior is described using action rules
expressed in a specialized syntax.

3.2. BDI based languages

A significant and influential trend in designing agent programming languages
stemmed from the success of the practical reasoning agent architectures,
among which the most notable is probably the PRS – Procedural Reasoning
System [55]. PRS became the first system embodying a belief, desire, and
intention (BDI) architecture. Based on that, approximately around the same
time with Shoham, Rao proposed the AgentSpeak(L) language [83].
AgentSpeak(L) employs the metaphors of belief, desire, and intention of the
BDI architecture to shape the design of an innovative agent programming
language. However, AgentSpeak(L) was only a proposal, while Jason
programming language became in 2004 the first implementation of an
interpreter for an extended version of AgentSpeak(L) [22], [121].
AgentSpeak(L) is often described as a BDI agent programming language, as
it is assumed to convey the most important ideas of BDI agent architectures
(including the PRS).

In this section we will present several important agent programming
languages which support BDI architecture and belong to the hybrid paradigm.

AgentSpeak

The language was originally called AgentSpeak(L) (see Table 3), but became
more popular as AgentSpeak. This term is also used to refer to the variants of
the original language. The primary goal of the authors of AgentSpeak [100]
was to join BDI architectures for agents and for object-based concurrent
programming and to develop a language that would capture the essential
features of both. They identified the primary characteristics of agents:
complex internal mental state, proactive or goal-directed behavior,
communication through structured messages or speech acts, distribution over
a wide-area network, adequate reaction to changes in the environment,

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 274

concurrent execution of plans and reflective or meta-level reasoning
capabilities.

The basic construct in AgentSpeak is an agent family and its purpose is
analogous to a class in object-oriented languages. Each agent (an instance of
an agent family) contains a public and a private area which are, respectively,
offered to other agents or used for agent’s internal purposes. An agent’s
behavior is described using three different concepts: database relations,
services and plans. Agents execute actions in order to meet their own, or
desires of other agents. For fulfilling its own desires, an agent uses a set of
private services (inner goals), while other agents can invoke its public
services (corresponding to messages from other agents). In AgentSpeak
there are three distinct types of services for different purposes:
− Achieve-service: used to achieve a certain state of the world
− Query-service: used to check whether something is true, considering the

associated database
− Told-service: used to share some information with another agent.

Once a service has been invoked, an agent proceeds to execute it by the
means of plans. Once a plan has been activated, its goal statements are
executed. Upon successful execution of all goal statements, the reached state
is assessed in order to make sure that the desired state of affairs has been
achieved.

Agents communicate in AgentSpeak by exchanging messages, either
asynchronously (default) or synchronously. A message can be sent to a
specific agent or to an agent family, in which case it is forwarded to all
instances of that family. If a message sent to another agent contains some
information, but puts no obligation upon the receiving agent, it is called an
inform speech-act. Otherwise, it’s a request. In addition, a message can have
a priority assigned to it, thus giving it an overall importance.

In recent times, a work on Coo-AgentSpeak has been published in [2]. It
incorporates ideas presented in Coo-BDI [3] into AgentSpeak. Coo-BDI
extends the standard BDI model with cooperation, allowing agents to
exchange their plans for satisfying intentions.

Jason

Jason (see Table 3) is probably the first implementation of AgentSpeak(L)
using the Java programming language and belongs to the hybrid agent
paradigm [22]. The syntax of Jason exhibits some similarities with Prolog.
However, the semantics of the Jason language is different and it is based on
AgentSpeak(L). One strength of Jason is that it is tightly integrated with Java
with the following immediate consequences: (i) the behavior of the Jason
interpreter can be tailored using Java; (ii) Jason can be used to build situated
agents by providing a Java API for integration with an environment model that
is developed with Java; (iii) Jason has been integrated with some existing
agent frameworks, including JADE [18], AgentScape [97], and Agent Factory
[113].

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 275

AF-APL

Agent Factory Agent Programming Language - AF-APL (see Table 3) is the
core of Agent Factory agent development environment. AF-APL is originally
based on Agent-Oriented Programming [90], but was revised and extended
with BDI concepts (hybrid paradigm). AF-APL is described as a “practical rule-
based language” based on commitment rules. A commitment rule joins
together three types of mental attitudes: beliefs, plans, and commitments. The
syntax and semantics of the AF-APL language have been derived from a
logical model of how an agent commits itself to a course of action [33], [85].
The semantics of AF-APL was formalized in Rem Collier’s Ph.D. thesis using
multi-modal first-order branching-time logic [33].

An AF-APL programmer can declare explicitly, for each agent, a set of
sensors (situated agents) referred to as perceptors and a set of effectors
(actuators). Perceptors are in fact instances of Java classes which define how
to convert raw sensor data into beliefs. An actuator is realized as an instance
of a Java class with responsibilities: 1) to define the action identifier that
should be used when referring to the action (realized by the actuator); 2) to
contain code that implements the action. These declarations, specified within
the agent program, are termed the embodiment configuration of the agent.

The AF-APL programming language is strongly related to the Agent
Factory framework for the development and deployment of agent systems
(see [76] for a recent overview and applications of Agent Factory framework).

3APL

3APL (see Table 3) [60] is not explicitly declared a descendant of either
AgentSpeak(L), or Agent0. However, in our opinion it was clearly influenced
by both AOP and BDI families of languages, and more important, both
families of languages were clearly influenced by the general settings of the
intentional stance towards understanding and development of a software
system [38]. It is interesting to note that 3APL was theoretically shown to be at
least as expressive as AgentSpeak(L) [59]. However, although it’s Web page
is still alive [111], we have noticed that 3APL language and supporting tools
do not seem to be further developed. Rather, one of its authors, Koen V.
Hindriks switched to the development of a new language GOAL.
Nevertheless, 3APL is still relevant as it has opened the new direction of goal-
oriented agent-programming languages and in some sense it has unified
ideas from AOP, BDI and logic within a single programming model with
declarative goals (hybrid paradigm). Moreover, there is an explicitly declared
successor of 3APL called 2APL that is currently being developed [133]. 3APL
has been applied to robot control using an API called ARIA (provided by
ActivMedia Robotics2).

2 http://www.activmedia.com/

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 276

2APL

2APL (see Table 3) is the successor of 3APL, enhancing it in many aspects.
Probably the most important aspect is the clear separation of multi-agent and
individual agent concerns. The multi-agent part is addressing the specification
of a set of agents, a set of external environments and the relations between
them, i.e. agent – agent and agent – external environment relations. The
individual agent concepts in 2APL cover beliefs, goals, plans, events,
messages, and rules, so it has many similarities with the programming notions
that are available in other BDI and AOP languages. 2APL amalgamates
declarative and imperative programming styles, so it can be described as
hybrid (in the sense of the classification from [21]). Probably this is the most
notable difference between 2APL and GOAL, as GOAL is clearly a declarative
programming language, while 2APL is described by its authors as a “practical
agent programming language”. 2APL has been designed to work with JADE
and, in comparison with 3APL, it provides practical extensions that allow
better testing and debugging [34].

JACK Agent Language

JACKTM Intelligent Agents, or simply JACK (see Table 3), is a commercial
agent platform provided by Autonomous Decision Making Software – AOS
[130]. The main JACK components are: JACK Agent Language (also known
as JAL), JACK compiler, JACK kernel, and JACK Development Environment.
JAL is a superset of Java that incorporates the full Java language and
provides the necessary constructs for building agent-oriented programs
according to the BDI model. JAL is translated into JAVA source code using
the JACK compiler, and the resulting Java code can be run on top of the
JACK runtime engine, also known as JACK kernel. JACK Development
Environment is an integrated graphical environment for the development of
JACK multi-agent applications.

JACK supports the development of distributed agent applications by
allowing agents to be deployed in separate processes, possibly running on
different networked machines. JACK agents are able to exchange messages
in a peer-to-peer fashion, as well as they are able to find each other using
name servers. JACK and supporting tools are reviewed in [103].

JADEX

JADEX (see Table 3) is a Java-based agent platform that tries to respond to
three categories of requirements: openness, middleware, and reasoning, thus
bridging the gap between middleware-centered and reasoning-centered
systems [82], [120]. The architecture of a JADEX agent follows the Procedural
Reasoning System (PRS, [55]) computational model of practical reasoning.
Agents in JADEX communicate by exchanging messages. Internally, an agent

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 277

reacts to events in its execution cycle that combines reaction and deliberation
processes.

A JADEX agent uses the concepts of BDI agents: beliefs, desires (goals in
JADEX), and intentions (plans in JADEX). JADEX employs an object-oriented
representation of beliefs. Additionally, beliefs have an active role, i.e. their
update can trigger generation of events or adoption/dismissing of goals.
JADEX uses four types of goals: (i) perform goal designating action execution;
(ii) achieve goal designating a point-wise condition in the lifecycle of an agent
that must be reached; (iii) query goal that is an introspection mechanism by
which an agent is inspecting its own internal state; (iv) maintain goal
designating a process-wise condition that must be maintained during the
agent’s execution. JADEX plans represent the behavioral aspect of an agent
and they have a procedural flavor. A plan consists of a head and a body,
similarly to a procedure in a procedural language.

The JADEX language combines the declarative specification of an agent
containing its set of beliefs, goals and plans using an Agent Definition File
(ADF) and the procedural specification of the plan bodies using the Java
programming language. The plan body accesses the internals of an agent
through a specialized API. JADEX agents are able to run on the JADE
middleware platform, thus enabling the development of distributed intelligent
systems using the BDI metaphor.

3.3. Other Agent Languages

Within the generic class of “other languages” we include all those agent
programming languages that do not explicitly employ mental attitudes for
shaping the language, but rather use other constructs that are very useful for
building intelligent software agents by supporting reasoning tasks based on
formal logic, methods and calculi set on top of the main characteristics
attributed to agents. Compared to AOP and BDI, this category can be
characterized as a more traditional to agent programming from the point of
view of computer science practices.

During the period of developing different agent-oriented programming
languages, some authors and research groups proposed and implemented
languages essentially based on and characterized as the declarative
paradigm. In this section we will present several important agent programming
languages which support the declarative paradigm.

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 278

GOAL3

The main motivation behind the development of Goal-Oriented Agent
Language, i.e. GOAL (see Table 3) was to bridge the gap between agent
logics and agent programming models (BDI and AOP) [61]. This new
language introduces a declarative perspective of goals in agent programming
languages by unifying the concepts of commitments from Agent0, intentions
from AgentSpeak(L) and goals from 3APL. An interesting feature of GOAL is
that it sets on a clean and unified theoretical basis the concepts of reasoning
and knowledge representation from AI with the mentalist notions that are
more specific to agent programming. The GOAL agent programming
language was recently overviewed in [62]. According to this reference, GOAL
has been tested on top of JADE. However, we were not able to find any
references to such an experiment. The current implementation of GOAL [132]
is just a prototype that is currently mainly used for educational purposes.
However, it can be also useful in planning applications, for example in the
transportation and logistics domain.

Golog

”alGOl in LOGic” – GOLOG (see Table 3), is a family of logic languages
(declarative paradigm) based on the formalism of situation calculus that was
developed in AI by John McCarthy for the specification of dynamic systems
[75]. Situation calculus is a first-order logic language with some second-order
extensions that utilizes the following concepts: (i) action; (ii) situation; and (iii)
fluent. Changes in the world are modeled using the action concept. Histories
of the world are modeled using the situation concept; a situation is in fact a
sequence of actions. Fluents represent relations and functions that depend on
the situation, thus we have relational fluents and functional fluents.

According to [118], the GOLOG family comprises the following languages:
(i) GOLOG, the core language, initially introduced in [84]; (ii) ConGOLOG, i.e.
Concurrent GOLOG, an extension of GOLOG for handling concurrency [37];
(iii) IndiGOLOG: Incremental deterministic GOLOG [37].

Recently, it was shown that the BDI-style of agent programming can be
achieved with GOLOG [88], thus bridging the gap between BDI and action
logic styles of agent programming.

In our literature review we have found that GOLOG was quite influential in
the area of programming physical robots endowed with cognitive capabilities.
This trend spawned a number of extensions of GOLOG. ICPGOLOG is an

3 Note that the GOAL agent programming language developed by Koen V. Hindriks is

not the same thing as the GOAL agent programming language proposed by (Byrne
and Edwards, 1996) in Byrne, C. ; Edwards, P.: Refinement in Agent Groups. In:
Weiß, G. ; Sen, S. (Eds.): Proceedings of the IJCAI’95 Workshop on Adaption and
Learning in Multi-Agent Systems, Lecture Notes in Computer Science 1042,
Springer, 1996, pp. 22–39. Byrne’s GOAL is a direct descendant of Agent-0 and it
was proposed earlier than Hindriks’s GOAL.

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 279

extension of GOLOG with actions to describe continuous change, support for
noisy sensors and effectors, and probabilistic actions [39]. Implementation of
ICPGOLOG was based on the existing implementation of IndiGOLOG in
Prolog. READYLOG is a robot programming and planning language that adds
to GOLOG the logic specification of MDP theories for decision-theoretic
planning [43]. A novel prototype implementation of the GOLOG interpreter
using the Lua scripting language for the bi-ped robot platform Nao was
recently reported in [44].

Although one can notice that the main focus of GOLOG was to model
single robotic agents, there were also works that propose GOLOG extensions
for multi-agent systems in a game-theoretic setting, namely GTGOLOG [46].

FLUX

Fluent executor – FLUX (see Table 3) is a logic programming language
(declarative paradigm) based on fluent calculus [93]. Fluent calculus is an
axiomatic theory of actions that represents an improvement of situation
calculus [75], since in fluent calculus situations represent state descriptions,
while in situation calculus they represent histories of action occurrences.
Thus, FLUX has a declarative semantics. The language is extensively
described in the textbook [94]. An important difference between FLUX and
many other agent programming languages is that the main focus of FLUX is
on programming single agents that act logically in a dynamic environment,
rather than developing complex multi-agent systems. In this respect, FLUX is
similar to GOLOG. There are works, however, that describe a practical multi-
agent system that contains a set of agents, each one equipped with a FLUX
interpreter, that cooperate to solve a complex problem [89]. The current
implementation of FLUX is based on constraint logic programming systems
(Eclipse Prolog and Sicstus Prolog) for efficient handling of the axioms of
fluent calculus.

CLAIM

Computational Language for Autonomous, Intelligent and Mobile agents –
CLAIM (see Table 3) is a high-level agent programming language that
combines the basic functionalities required for the agent model with higher-
level support specific to intelligent and cognitive abilities (belongs to the hybrid
paradigm). An important characteristic of CLAIM is its built-in support for
agent mobility that is based on the abstract computation model of ambient
calculus [30]. CLAIM agents are hierarchically structured (according to the
formal model of ambients), goal-directed, knowledge-based, able to
communicate at knowledge level, and mobile. CLAIM agents are not entirely
declarative, as they mix declarative characteristics required for the
specification of the knowledge component with imperative capabilities,
required for the specification of the capabilities component. CLAIM is part of

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 280

Hymalaya unified framework and it is supported by SyMPA distributed multi-
agent platform. Unfortunately, there is not much information about any of
them, excepting the research papers [91] and [41].

4. Tools and Platforms

Multi-agent systems are deployed and run over specialized software
infrastructures that provide the set of functionalities vital for the existence of a
realistic multi-agent application. Seen from the perspective of distributed
systems technologies, such infrastructures are placed at the middleware level
and they include a collection of software functionalities and services that
assure: agent lifetime management, agent communication and message
transport, agent naming and discovery, mobility, security, etc. An agent
framework is a software infrastructure available as a software library, a
language environment, or both, which provides the core software artifacts
needed for creating the skeleton of a multi-agent system. A software package
that provides the core functionalities for deploying and running multi-agent
applications is traditionally known as an agent platform [96]. An agent toolkit is
a more complex software infrastructure that allows both the development and
deployment of a multi-agent system [69]. It is sometimes known as an agent
development environment [96], because of its expected support for all
engineering stages of a multi-agent application from requirements to
deployment, maintenance and evolution.

Most often, a multi-agent system is deployed and runs on top of an agent
platform. If an agent platform is not available, at least an agent framework is
usually utilized to create the multi-agent system which is then run on a
general purpose middleware platform. Agent code can be programmed either
using a general-purpose programming language linking with software libraries
available in the agent framework via the framework API, or using one of the
agent programming languages (see the previous section).

Agent platforms can be extremely useful because they considerably
simplify the development and deployment of a multi-agent system. There is
the option to choose between standardized or not-standardized agent
platforms. A standard agent platform is compliant with available standards for
software agents. Compliance to standards is important for open systems, i.e.
systems that might need to interoperate in the future with other systems that
are either not available at the moment when the open systems are being
developed or that, even if they are available at the moment, still might change
in the future.

According to our literature review, more than 100 agent platforms and
toolkits were developed (or started to be developed) [69] of different quality
and maturity. Most of them are built on top of and are integrated with Java
[102]. Despite this fact that clearly shows that software agent technologies
triggered a significant initial interest and hope, only few of them are still
currently available, while the rest either became obsolete or are not being

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 281

developed anymore. In the rest of the section, we provide a brief review of
some of them. Although our selection might look quite subjective, we have
done our best to consider those agent platforms and toolkits that we think are
most influential, currently active and also well supported by the open source
and/or business communities. Note that some of the platforms considered in
this paper are also overviewed in more detail by [96].

4.1. ZEUS

ZEUS [129], [4], [81], [80] developed by British Telecommunications Labs, is a
collaborative agent building environment that has excellent GUI and
debugging, provides library of predefined coordination strategies, general
purpose planning and scheduling mechanism, self-executing behavior scripts,
etc. ZEUS is one of the most complete and the most powerful agent tools
which are used to design, to develop and to organize agent systems. The aim
of ZEUS project was to facilitate the rapid development of multi-agent
applications by abstracting into a toolkit the common principles and
components underlying some existing multi-agent systems [78]. It enables
applications with additional assistant tools, e.g. reports and statistics tools,
agents and society viewer, etc. ZEUS documentation is very weak, which
leads to difficulties in creating new applications. The three main functional
components of ZEUS are (adapted from [129]): The Agent Component
Library; The Agent Building Tools; The Visualization Tools.

Some characteristics of ZEUS are: it implements FIPA standards, supports
KQML and ACL communication and security policy supports ASCII-encoded,
Safe-Tcl scripts or MIME-compatible e-mail messages for transportation; it
uses public-key and private-key digital signature technology for
authentication, cash and secrecy.

4.2. JADE

Java Agent DEvelopment Framework - JADE is probably one of the most
popular agent platforms that are currently available to the open source
community. JADE is FIPA-compliant and it is well supported by
documentation [119], a textbook [18] and an enthusiastic community of users.

A JADE agent platform can be distributed on multiple machines that run the
Java virtual machine, while multiple platforms can interoperate via FIPA
standards. A platform consists of multiple containers, while each container
can contain zero or more JADE agents. There is exactly one Main container
and, optionally, zero or more ordinary containers, linked to the Main container.
The JADE containers can be distributed onto the nodes of a local area
network. Each node can host several containers. Each JADE agent contains
its own execution thread. Unfortunately, this design choice is one of the main
limitations for the number of agents that can be created and executed on a

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 282

single machine. JADE agents use a specialized execution model based on
non-preemptive scheduling of dynamically loadable JAVA plugins called
behaviors. The agent execution model combined with JADE’s intuitive
programming interface allows the programmer to relatively easily develop
software agents that are capable of flexible reactive and/or proactive
behaviors. JADE agents can interact by asynchronously exchanging FIPA
ACL messages, optionally following FIPA interaction protocols [116]. Telecom
Italia is currently used JADE as reference framework for Network Neutral
Element Manager – NNEM project [19].

4.3. agenTool

agenTool is a Java-based graphical development environment/tool that
supports the Multi-agent Systems Engineering (MaSE) methodology [39]
originally developed at the Artificial Intelligence Lab of the Air Force Institute
of Technology, Ohio. It implements all MaSE steps including conversation
verification and code generation. One of its most interesting abilities is the
possibility to work on different pieces of the system and at various levels of
abstraction interchangeably, which mirrors the ability of MaSE to
incrementally add detail [39]. During each step of system development it is
possible to use various analysis and design diagrams. . Moreover, it is
possible to transform a set of analysis models into appropriate design models
using semi-automatic transformations. Some efforts have been done in order
to support modeling of mobile agents.

4.4. RETSINA

Reusable Environment for Task-Structured Intelligent Networked Agents –
RETSINA is a multi-agent system toolkit that has been developed since 1995
at the Intelligent Software Agents laboratory of Carnegie Mellon University’s
Robotic Institute [125].

RETSINA is probably one of the earliest, most influential software
infrastructures for developing multi-agent systems. It supports the
development of communities of heterogeneous agents that can engage in
peer-to-peer relations without imposing any centralized control for agent
management. A RETSINA-based multi-agent system is platform independent,
being able to run on various operating systems, while its agents can be
implemented using different general-purpose programming languages.
RETSINA is using a multi-agent software infrastructure based on Agent
Foundation Classes – AFC. A very good overview of the distributed software
infrastructure of RETSINA is provided by [92].

RETSINA was utilized for developing an impressive number of applications
in various areas: military operations, critical decision making, supply chain
management, financial portfolio management, text mining, etc [125], [92].

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 283

4.5. JATLite

‘Java Agent Template, Lite’ - JATLite [65] has been developed at the Stanford
Center for Design. The intention was to allow creating software typed-
message agents communicating over the Internet. Agents communicated
using typed messages in an agent communication language like KQML, in
which some semantics are defined before runtime. Two additional
requirements had to be fulfilled: Reliable message delivery and Migrating
agent communication.

JATLite added basic infrastructure functionality that earlier systems missed,
supporting buffered-message exchanges and file transfers with other agents
on the Internet, as well as connection, disconnection, and reconnection in the
joint computation [65]. Security aspects of JATLite message relied on current
open standards for encryption and authentication. The one simple feature that
JATLite added was a password associated with the agent name.

JATLite featured modular construction consisting of increasingly
specialized layers: protocol, Router, KOMC, Base and Abstract layer.
Developers could select the appropriate layer to start building their systems.
Each layer could be exchanged with other technologies without affecting the
operation of the rest of the package.

4.6. FIPA-OS

FIPA-OS [117] is a component-based toolkit enabling rapid development of
FIPA compliant agents. It was first released in August 1999 supporting the
majority of the FIPA specifications. It has been continuously improved until
2003 and was publicly available as an ideal choice for FIPA compliant agent
development. There have been two versions of FIPA-OS:
− Standard FIPA-OS - Two alternative distributions were provided: Java 2

(JDK1.2) compatible version (containing code developed directly from the
FIPA-OS codebase) and Java 1.1 compatible version (containing code,
which has undergone automated code-refactoring to enable the JDK1.2
compatible code of FIPA-OS to be used with JDK1.1).

− MicroFIPA-OS - This is an extension to the JDK 1.1 version of FIPA-OS
and has been designed to execute on PDAs (that can execute a
PersonalJava compatible virtual machine).
Both FIPA-OS versions use tasks and conversations as the basis for

support to agents’ functionalities. Developers using FIPA-OS have been
encouraged to provide extensions, bug fixes and feedback to help improve
different releases.

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 284

4.7. MADKIT

Multi-agent development kit - MadKit [122] [56] is an open source modular
and scalable multi-agent platform which has been developed at LIRMM
(France), built upon the AGR (Agent/Group/Role) organizational model
(Aalaadin [42]). MadKit is written in Java and MadKit agents play roles in
groups and thus create artificial societies. In addition to AGR concepts, the
platform adds three design principles: Micro-kernel architecture; Agentification
of services; Graphic component model.

The last version was released in November 2010. MadKit is a set of
packages of Java classes that implements the agent kernel, various libraries
of messages, probes and agents. This platform is not a classical agent
platform as any service, besides those assured by micro-kernel, is handled by
agents. Micro-kernel and existence of a range of modular services managed
by agents enable a range of multiple and scalable platforms. Communication
is achieved through asynchronous message passing: 1) by primitives used to
send a message directly to another agent represented by its AgentAddress, or
2) by higher-level functions that send or broadcast to one or all agents having
a given role in a specific group. MadKit uses agents to achieve distributed
message passing, migration control, dynamic security, and other aspect of
system management.

MadKit has been used in various projects covering a wide range of
applications [67], from simulation of hybrid architectures for control of
submarine robots to evaluation of social networks or study of multi-agent
control in a production line.

4.8. JAFMAS

Java-based Agent Framework for Multi-Agent Systems - JAFMAS [36], is a
framework for representing and developing cooperation knowledge and
protocols in a multi-agent system (coordinating their knowledge, plans, and
goals so that they can take actions which result in coherent joint problem
solution). This framework provides a generic methodology for developing
speech-act based multi-agent systems and follows several stages: agent
identification, definition of each agent’s conversations, determining the rules
governing each agent’s conversations, analyzing the coherency between all
the conversations in the system, and implementation. JAFMAS provides
communication (directed and subject-based broadcast), linguistics for speech-
acts (e.g. KQML) and coordination support. Such functionality is based on
COOL (coordination Lisp-based language for explicitly representing, applying
and capturing cooperation knowledge for multi-agent systems). In COOL and
JAFMAS, an agent is a programmable entity that can exchange messages
within structured “conversations” with other agents, change state and perform
actions. JAFMAS agents support conversation based on message exchange
according to mutually agreed conventions, change state and perform local

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 285

actions. Different researchers still use JAFMAS framework for developing
multi-agent systems [108] [99].

4.9. Agent Building Shell

Agent Building Shell - ABS was developed at University of Toronto [10]. ABS
provides several reusable layers of languages and services for building agent
systems. The layers of the architecture achieve a range of functionalities
[112]. The shell supports KQML/KIF based communication. COOL is provided
and built on top of the agent communication language. The language supports
definition, execution and validation of complex speech-act based cooperation
protocols. Multiple, parallel conversations are possible and their management
can be programmed through specific control mechanisms. Interaction
between users (using web browsers) and agents is conversation based, using
the same conversational infrastructure that supports interactions among
agents. Agents negotiate by exchanging constraints about the performance of
activities. In the negotiation process, agents send their requests to other
agents and receive either confirmations or explanations why their requests
cannot be satisfied. Agents employ a unified behavior description language
that specifies behaviors as consisting of sequential, parallel and choice
compositions of actions. Specific constraint propagation mechanisms are
used to determine which actions will be executed. At the organization level,
agents acquire authority to make requests and impose violation costs from the
roles they play in the organization. Concerning knowledge management, there
is a representational substrate that provides services for carrying out the
various reasoning tasks outlined.

According to several authors [51], [11], [71], ABS has been considered
appropriate for developing agents in supply chain management systems.

4.10. OAA

Open Agent Architecture – OAA [124] was developed in Artificial Intelligence
Center, California and its last version was released in 2007. It is a framework
for integrating a community of heterogeneous software agents in a distributed
environment. OAA facilitates flexible, adaptable interactions among distributed
components through delegation of tasks, data requests and triggers; and
enables natural, mobile, multimodal user interfaces to distributed services.
OAA is structured to minimize the effort in creating agents and "wrapping"
legacy applications, written in various languages and platforms; to encourage
the reuse of existing agents; and to allow for dynamism and flexibility in the
makeup of agent communities. Unique features of OAA include great flexibility
in using facilitator-based delegation of complex goals, triggers, and data
management requests; agent-based provision of multimodal user interfaces;
and built-in support for including the user as a privileged member of the agent

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 286

community. The system has been used in different applications and some of
them are:
− framework of transformer condition assessment system employing data

warehouse, data mining, and Open Agent Architecture [68].
− multi-agent architecture with distributed coordination for an autonomous

robot [5].

4.11. Cougaar

Cognitive Agent Architecture – Cougaar [115] is an open-source Java-based
agent platform developed as result of a multi-year project of DARPA research.
Cougaar is not FIPA-compliant, and more important, it was not designed for
standards compliance. Cougaar agents are composed of plugins that
communicate sharing common and distributed data space - blackboard
architecture. Agents can subscribe for automatically receiving blackboard
updates. The plugins communicate by publishing (adding) new objects to the
blackboard, making changes to objects already published or removing objects
from the blackboard. When special objects called relays are published onto
the blackboard they are automatically forwarded by the blackboard system to
other agents, thus achieving the communication between agents.

The main focus of its development was scalability [57] and as a
consequence it was mostly utilized for the development of applications in
military logistics [31].

4.12. AgentScape

AgentScape was developed at Delft University of Technology as a
middleware platform that provides a minimal set of concepts and
functionalities for the development of large-scale distributed multi-agent
systems. The focus in AgentScape was set on: (i) scalability; (ii) heterogeneity
through multiple code bases, programming languages and operating systems;
(iii) interoperability [114]. Although AgentScape is a very interesting platform,
it currently suffers from the problem that the documentation is not mature
enough and is rather incomplete. Nevertheless, AgentScape has been applied
in a number of interesting research and commercial projects related to the
electricity market [17] and e-commerce [40].

4.13. Cybele

CybeleTM is a commercial agent platform provided by Intelligent Automation
Inc. for the development and deployment of large-scale distributed intelligent
systems [131]. CybeleTM is built on top of Java platform. Agents are
programmed in Java using a standard style of programming called Activity

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 287

Centric Programming (ACP). This means that the basic building blocks of an
agent are activities, while accesses to the basic functionalities of CybeleTM are
provided via an Activity Oriented Programming Interface (AOPI). CybeleTM
allows the development of distributed applications by installing it on several
(at least 2) network nodes that together define a CybeleTM community. Exactly
one node is designated as a master node, while the rest of them are slave
nodes. A CybeleTM node can host several specialized Java applications
known as CybeleTM containers. A container provides the runtime environment
for a set of CybeleTM agents. It is not difficult to observe that an activity in
CybeleTM has similarities with behavior in JADE, as well as with a plugin in
Cougaar. Moreover, the method of structuring a distributed agent application
into nodes, containers, agents and activities / plugins / behaviors is also used
by JADE and Cougaar.

CybeleTM can be utilized as a platform for distributed robotics. The
Distributed Control Framework (DCF) is a framework for building robotics
applications for robot team coordination and management. CybeleTM is used
as a core for DCF which supports two types of robotic agents: (i) Robot Agent
that embodies a real or a simulated robot; (ii) Remote Control Agent that
provides the control interface for a human operator with a robot team.
Additionally, DCF includes a suite of components for sensing, estimation and
control of several commercial robotic platforms.

5. Conclusion

Software agents are an emergent and rapidly developing field of research. In
the last decade, a number of essential advances have been made in the
design and development of software agent languages and the implementation
of multi-agent systems. In this brief survey, we have tried to bring some of the
key concepts, languages, tools and platforms and make a reference point to a
large body of literature. Our intention was to enumerate and present essential
features and functionalities of selected languages, tools and platforms,
instead of judging them.

We consider an orthogonal classification by looking at the way agent
programming languages are used during the systems development process.
On one side, we can find agent languages useful for building software agents
that can be used as building blocks for the development and deployment of
complex distributed applications, usually based on agent or other suitable
middleware platforms. On the other hand, we can find agent programming
languages used for designing and running complex simulation models that
employ the agent metaphor for modeling and simulation of complex systems.
However, these languages are not immediately useful for developing real
systems, but are rather mostly employed for research in understanding
complex systems using agent-based modeling and simulation tools, as agent
simulation languages. Note that this class of languages is very often forgotten
by the existing works that overview advances in agent programming.

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 288

Nevertheless, between the two extremes we can find agent languages that
are useful for both systems simulation, as well as for systems development
and deployment.

In Table 3 we give a brief summary of agent programming languages. It
can be noted that almost all of them, particularly the recently developed ones,
have appropriate web-sites and IDEs. Despite the fact that there are
representatives of different programming paradigms (imperative, declarative,
BDI, hybrid), almost all of them are implemented in Java and a significant
number of them are implemented in Prolog. Most of the recently developed
languages find their place in real environments and have been used in
developing different kinds of applications. Unfortunately, for majority of them
there are no appropriate textbooks.

Note that we were able to find in the literature other overview works that
provide classifications and comparisons of agent programming languages.
Authors of [21] propose a classification of agent programming languages
based on a lightweight interpretation of the programming paradigm as
imperative, declarative, and hybrid (i.e. between declarative and imperative).

For the development and deployment of a multi-agent system in real
environments it is necessary that appropriate software infrastructures
(frameworks, tools, platforms) exist.

According to our literature survey, more than 100 agent infrastructures
have been developed in the previous two decades. For portability and
usability reasons most of them are built on top of and are integrated with Java
[102]. Unfortunately, only few of them are still currently available, others either
becoming obsolete or not being developed anymore.

Futhermore, this prominent technology inspired some authors to go a step
further. In [70] authors extrapolated future trends in multi-agent systems and
presented a thorough and outstanding approach to the future of multi-agent
systems. Finally, it is important to mention that in order to be accepted by the
industrial community, MAS applications need to be successfully demonstrated
in complex real world pilot systems [29].

Acknowledgment. Research was partially supported by the Ministry of Education and
Science, Republic of Serbia, through project no. OI-174023 'Intelligent techniques and
their integration into wide-spectrum decision support'.

References

1. Agents mailing list, agents@cs.umbc.edu.
2. Ancona, D., Mascardi, V., Hübner, J.F., Bordini, R.H.: Coo-AgentSpeak:

Cooperation in AgentSpeak through Plan Exchange, In Third International Joint
Conference on Autonomous Agents and Multiagent Systems, Vol. 2, pp. 696 –
705 (2004)

3. Ancona, D., Mascardi, V.: Coo-BDI: Extending the BDI Model with Cooperativity,
In Declarative Agent Languages and Technologies, Vol. 2990, pp.109-134 (2004)

4. Azarmi, N., Thompson, S.: "ZEUS: A Toolkit for Building Multi-Agent Systems",
Proceedings of fifth annual Embracing Complexity Conference, Paris, (2000)

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 289

5. Badano B.M.I., A multi-agent architecture with distributed coordination for an
autonomous robot, PhD theses, University of Girona, (October 2008)

6. Badjonski, M., Ivanović, M.: "Multi-agent System for Determination of Optimal
Hybrid for Seeding", Proceedings of EFITA '97 - First European Conference for
Information Technology in Agriculture, Copenhagen, Denmark, June 15-18, pp.
401-404. (1997)

7. Badjonski, M., Ivanović, M., Budimac, Z.: "Possibility of using Multi-Agent System
in Education", Proceedings of IEEE International Conference on Systems, Man,
and Cybernetics, Orlando, Florida, USA, October 12-15, pp. 588-593. (1997)

8. Badjonski, M., Ivanović, M., Budimac, Z.: "Software Specification Using LASS",
Proceedings of Asian'97, Lecture Notes in Computer Science Vol 1345, Springer-
Verlag, Kathmandu, Nepal, pp. 375-376. (1997)

9. Badjonski, M.: Adaptable Java Agents – a Tool for Programming of Multi-Agent
Systems, PhD thesis, Department of Mathematics and Informatics, Faculty of
Natural Science, University of Novi Sad (2003)

10. Barbuceanu, M., Fox, M.S., The architecture of an agent building shell. Intelligent
Agents II, LNAI 1037, Spinger-Verlag, pp. 235-250 (1996)

11. Fox M.S., Barbuceanu M., Teigen R.: Agent-Oriented Supply Chain Management,
International Journal of Flexible Manufacturing System, vol 12, pp. 165-188.
(2000)

12. Bădică, C., Manufacturing and Control: Putting Agents to Work, IEEE Distributed
Systems Online, vol. 8, no. 6, pp. 5, (2007)

13. Bădică, C., Ganzha, M., Paprzycki, M.: Developing a Model Agent-based E-
Commerce System. In: Jie Lu, Guangquan Zhang, and Da Ruan (eds.): E-service
Intelligence, Studies in Computational Intelligence, Volume 37, Springer, 555-578
(2007)

14. Barringer, H., Fisher, M., Gabbay, D., Gough, G., Owens, R.: METATEM: A
Framework for Programming in Temporal Logic, In: Proceedings on Stepwise
refinement of distributed systems: models, formalisms, correctness, REX
workshop, LNCS Volume 430, pp. 94-129 (1990)

15. Barringer, H., Fisher, M., Gabbay, D., Gough, G., Owens, R.: METATEM: An
introduction. Formal Aspects of Computing 7(5), pp. 533–549 (1995)

16. Bratman, M.E.: Intention, Plans and Practical Reason. Harvard University Press,
1987.

17. Brazier, F., Cornelissen, F., Gustavsson, R., Jonker, C.M., Lindeberg, O., Polak,
B., Treur, J.: A Multi-Agent System Performing One-to-Many Negotiation for Load
Balancing of Electricity Use. In: Electronic Commerce Research and Applications
Journal, vol.1, no.2, pp. 208-224, Elsevier, (2002)

18. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE, John Wiley & Sons (2007)

19. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE: A software framework for
developing multi-agent applications. Lessons learned, Information and Software
Technology, Volume 50, Issues 1-2, Elsevier, pp. 10-21. (2008)

20. Bordini, R.H., Dix, J., Dastani, M., Seghrouchni, A.E.F.: Multi-Agent Programming
Languages, Platforms and Applications, Springer, (2005)

21. Bordini, R.H., Braubach, L., Dastani, M., Seghrouchni, A.E.F., Gomez-Sanz, J.J.,
Leite, J., O’Hare, G., Pokahr, A., Ricci, A.: A Survey of Programming Languages
and Platforms for Multi-Agent Systems, Informatica, no.30, pp. 33-44 (2006)

22. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in
AgentSpeak using Jason, John Wiley & Sons, (2007)

23. Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (Eds.): Multi-Agent
Programming: Languages, Tools and Applications, Springer (2009)

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 290

24. Brooks, R.A.: "A Robust Layered Control System for a Mobile Robot", IEEE
Journal of Robotics and Automation, 2(1), pp. 14-23. (1986)

25. Brooks, R.A.: "Intelligence without Reason", Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence (IJCAI-91), Sydney,
Australia, pp. 569-595. (1991)

26. Brooks, R.A.: "Intelligence without Representation", Artificial Intelligence, 47, pp
139-159. (1991)

27. Budimac, Z., Ivanović, M., Popović, A.: "Workflow Management System Using
Mobile Agents", Proceedings of ADBIS ‘99, Lecture Notes in Computer Science,
Maribor, Slovenia, pp. 169-178. (1999)

28. Bussink, D.: A Comparison of Language Evolution and Communication Protocols
in Multi-agent Systems. 1st Twente Student Conference on IT, Track C -
Intelligent_Interaction, http://referaat.ewi.utwente.nl/ (2004)

29. Camarinha-Matos, L. M.: Multi-agent systems in virtual enterprises. Proceedings
of AIS’2002 – International Conference on AI, Simulation and Planning in High
Autonomy Systems, SCS publication, Lisbon, Portugal, pp. 27-36. (2002)

30. Cardelli, L., Gordon, A.D.: Mobile ambients. Foundations of Software Science and
Computational Structures, Lecture Notes in Artificial Intelligence 1378, Springer,
pp. 140-155. (1998)

31. Carrico, T., Greaves, M.: Agent Applications in Defense Logistics. In: Defence
Industry Applications of Autonomous Agents and Multi-Agent Systems, Whitestein
Series in Software Agent Technologies and Autonomic Computing, Birkhäuser
Basel, pp. 51-72. (2008)

32. Clark, K. L., McCabe, F. G.: Go! – A Multi-paradigm Programming Language for
Implementing Multi-threaded Agents, In Annals of Mathematics and Artificial
Intelligence, Vol. 41, Issue 2 – 4, pp. 171 – 206, (2004)

33. Collier, R.W.: Agent Factory: A Framework for the Engineering of Agent-Oriented
Applications, Doctoral Thesis, University College Dublin, Ireland, (2001)

34. Dastani, M.: 2APL: a practical agent programming language, International Journal
of Autonomous Agents and Multi-Agent Systems (JAAMAS), 16(3), pp. 214-248
(2008)

35. Davies, W.H.E., Edwards, P.: Agent-K: An Integration of AOP and KQML, In
Proceedings of the Third International Conference on Information and Knowledge
Management, ACM Press, (1994)

36. Chauhan, D., Baker, A.D.: JAFMAS: a multiagent application development
system. In Proceedings of the second international conference on Autonomous
agents (AGENTS '98), http://doi.acm.org/10.1145/280765.280782 (1998)

37. De Giacomo, G., Lespérance, Y., Levesque, H.J., Sardina, S.: IndiGolog: A High-
Level Programming Language for Embedded Reasoning Agents, In [23], Springer,
pp. 31-72. (2009)

38. Dennett, D.: Intentional Systems. In: Journal of Philosophy No. 68, pp. 87–106.
(1971)

39. Dylla, F., Ferrein, A., Lakemeyer, G.: Specifying multirobot coordination in
ICPGolog - from simulation towards real robots. In Proc. of the Workshop on
Issues in Designing Physical Agents for Dynamic Real-Time Environments: World
modeling, planning, learning, and communicating (IJCAI 03), (2003)

40. El-Akehal, E.E., Padget, J.: Pan-supplier stock control in a virtual warehouse. In:
Proceedings of the 7th international joint conference on Autonomous agents and
multiagent systems AAMAS '08, pp. 11-18 (2008)

41. Seghrouchni, A.E.F., Suna, A.: CLAIM and SyMPA: A Programming Environment
for Intelligent and Mobile Agents. In: [20], pp. 95-122, Springer, (2005)

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 291

42. Ferber, J., O. Gutknecht: Aalaadin: a meta-model for the analysis and design of

organizations in multi-agent systems, In Proceedings of the Third International
Conference on Multi-Agent Systems, ICMAS'98 pp. 128-135. (1998)

43. Ferrein, A., Lakemeyer, G.: Logic-based robot control in highly dynamic domains,
Robotics and Autonomous Systems, volume 56, issue 11, North-Holland
Publishing Co., 980-991, (2008)

44. Ferrein, A.: golog.lua: Towards a Non-Prolog Implementation of Golog for
Embedded Systems. In: Cognitive Robotics, Dagstuhl Seminar Proceedings,
no.10081, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, Also in
Proceedings of AAAI Spring Symposium 2010 on Embedded Reasoning, Stanford
University, (2010)

45. Finin, T., Weber, J., et. al.: "Draft Specification of the KQML Agent-Communication
Language", The Darpa Knowledge Sharing Initiative External Interfaces Working
Group, available as http://www.cs.umbc.edu/kqml/kqmlspec.ps. (1993)

46. Finzi, A., Lukasiewicz, T.: Game-Theoretic Agent Programming in Golog, In:
Proceedings of the 16th European Conference on Artificial Intelligence,
ECAI'2004, pp. 23-27, IOS Press, (2004)

47. Foundation for Intelligent Physical Agents, "FIPA ACL Message Structure
Specification", available at http://www.fipa.org/specs/fipa00061/

48. Fisher M.: "Representing and Executing Agent-Based Systems", Intelligent
Agents, Lecture Notes in Artificial Intelligence, Vol. 890, Springer-Verlag, pp. 307-
323. (1994)

49. Fisher, M.: A Survey of Concurrent MetateM – The Language and its Applications,
In Proceedings of the First International Conference on Temporal Logic, LNCS,
Vol. 827, pp. 480 – 505, (1994)

50. Fisher, M., Hepple, A.: Executing Logical Agent Specifications. In [23], pp. 3-29,
(2009)

51. Forget P., D’Amours S., Frayret J.M.: Multi-Behavior Agent Model for Planning in
Supply Chains: An Application to the Lumber Industry, Universite Laval, Quebec,
Canada, Working paper DT-2006-SD-03,
https://www.cirrelt.ca/DocumentsTravail/2006/DT-2006-SD-03.pdf (2006)

52. Franklin, S., Graesser, A.: "Is it an Agent, or just a Program?: A Taxonomy for
Autonomous Agents", Working Notes of the Third International Workshop on
Agent Theories, Architectures and Languages, ECAI '96, Budapest, Hungary, pp.
193-206. (1996)

53. Fuggeta, A., Picco, G.P.: Understanding Code Mobility, IEEE Transactions on
Software Engineering, vol.24, no.5, pp.342-361, (1998)

54. Georgakarakou, C. E., Economides, A. A.: Software agent technology: An
overview. In: Software Applications: Concepts, Methodologies, Tools, and
Applications, P. F. Tiako (ed.), IGI-Global ISBN: 978-1-60566-060-8 (2007)

55. Georgeff, M., Lansky, A.: Reactive reasoning and planning. In: Proceedings of the
6th National Conference on Artificial Intelligence (AAAI-87), pp. 677-682, (1987)

56. Gutknecht, O., Ferber, J.: The MADKIT Agent Platform Architecture. Agents
Workshop on Infrastructure for Multi-Agent Systems, (2000)

57. Helsinger, A., Thome, M., Wright, T.: Cougaar: A Scalable, Distributed Multi-Agent
Architecture, Proceedings of the IEEE International Conference on Systems, Man
and Cybernetics, 1910 – 1917, vol.2, IEEE Computer Society Press, (2004)

58. Hewitt, C.: The Challenge of Open Systems. Byte Magazine 10, 4, pp. 223-242,
(April 1985)

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 292

59. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J-J.C.: A formal
embedding of AgentSpeak(L) in 3APL, Advanced Topics in Artificial Intelligence,
LNCS 1502, pp. 155-166, (1998)

60. Hindriks, K.V., De Boer, F.S., van der Hoek, W., Meyer, J-J.C.: Agent

Programming in 3APL, Autonomous Agents and Multi-Agent Systems Volume 2,
Number 4, pp. 357-401, (1999)

61. Hindriks, K.V., De Boer, F.S., van der Hoek, W., Meyer, J-J.C.: "Agent
Programming with Declarative Goals", Intelligent Agents VII. Agent Theories
Architectures and Languages, LNCS 1986, pp. 248-257, Springer, (2001)

62. Hindriks, K.V.: Programming Rational Agents in GOAL. In [23], 119-157, Springer,
(2009)

63. Huang, J., Jennings, N., Fox, J.: "An Agent Architecture for Distributed Medical
Care", Intelligent Agents, Lecture Notes in Artificial Intelligence, Vol 890, Springer-
Verlag, pp. 219-232. (1994)

64. Jennings, N.R., Wooldridge, M.: "Software Agents", IEE Review, January, pp. 17-
20. (1996)

65. Jeon, H., Petrie, C., Cutkosky, M.R.: JATLite: A Java Agent Infrastructure with
Message Routing, IEEE Internet Computing, pp. 2-11. (2000)

66. Kaelbling, L.P.: "A Situated Automata Approach to the Design of Embedded
Agents", SIGART Bulletin, 2(4), pp. 85-88, (1991)

67. Kallel I., Chatty A., Allimi A.M.: Self-Organizing Multirobot Exploration through
Counter-Ant Algorithm, Proceedings Self-Organizing Systems: Third International
Workshop, Iwsos 2008, Vienna, Austria, December 10-12, 2008, Springer. (2008)

68. Wu, L., Yongli, Z., Yuan, J., Li, X.: "Application of Open Agent Architecture and
Data Mining Techniques to Transformer Condition Assessment System,"
International Journal of Emerging Electric Power Systems: Vol. 2 : Iss. 1, Article
1034. (2005)

69. Luck, M., Ashri, R., d’Inverno, M.: Agent-Based Software Development, Artech
House, 2004

70. Luck, M., McBurney, P., Gonzalez-Palacios, J: Agent-Based Computing and
Programming of Agent Systems. LNCS, Agent-Based Computing and
Programming of Agent Systems, 3862, pp. 23-37, Springer. (2006)

71. Madejski, J.: Survey of the agent-based approach to intelligent manufacturing,
Journal of of Achievements in Materials and Manufacturing Engineering, VOLUME
21, ISSUE 1, pp. 67-70. (2007)

72. Maes, P.: "The Agent Network Architecture (ANA)", SIGART Bulletin, 2(4), pp.
115-120, (1991)

73. Maes, P.: "Modelling Adaptive Autonomous Agents", Artificial Life Journal, Ed. C.
Langton, Vol 1, No. 1&2, MIT Press, pp. 135-162. (1994)

74. McCabe, F. G., Clark, K. L.: April – Agent PRocess Interaction Language, In
Proceedings of the workshop on agent theories, architectures, and languages on
Intelligent agents, pp. 324 – 340 (1995)

75. McCarthy, J.: Situations, actions and causal laws. Technical report, Stanford
University, 1963. Reprinted in Semantic Information Processing (M. Minsky ed.),
MIT Press, Cambridge, Mass., pp. 410-417 (1968)

76. Muldoon, C., O’Hare, G.M.P., Collier, R.W., O’Grady, M.J.: Towards Pervasive
Intelligence: Reflections on the Evolution of the Agent Factory Framework. In: [23],
pp. 147-212 (2009)

77. Minsky, M.: "The Society of Mind", Simon and Schuster, New York (1986)

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 293

78. Nguyen G., Dang T.T, Hluchy L., Laclavik M., Balogh Z., Budinska I.: AGENT
PLATFORM EVALUATION AND COMPARISON, Institute of Informatics, Slovak
Akademy of Sciences (2002)

79. Nwana, H., & Wooldridge, M., Software Agent Technologies. BT Technology
Journal 14(4), pp. 68-78. (1996)

80. Nwana, H.S.: "ZEUS: An Advanced Tool-Kit for Engineering Distributed Multi-
Agent Systems", Proceedings of PAAM'98, London pp. 377-392. (1998)

81. Nwana, H.S., Ndumu, D.T., Lee, L.C., Collis, J.C.: " A Toolkit and Approach for
Building Distributed Multi-Agent Systems ", Proceedings of the Third International
Conference on Autonomous Agents (Agents'99), Seattle, WA, USA, pp. 360-361.
(1999)

82. Pokahr, A., Brauhach, L., Lamersdorf, W.: Jadex: A BDI Reasoning Engine. In
[20], pp. 149-174, Springer (2005)

83. Rao, A.: AgentSpeak(L): BDI Agents Speak Out in a Logical Computable
Language, Proceedings of the 7th European workshop on Modelling autonomous
agents in a multi-agent world, Einhoven, Netherlands, pp. 42-55 (1996)

84. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems, MIT Press (2001)

85. Ross, R., Collier, R., O’Hare, G.: AF-APL: Bridging principles and practices in
agent oriented languages. In Programming Multi-Agent Systems, Second Int.
Workshop (ProMAS’04), volume 3346 of LNCS, Springer Verlag, pp. 66–88,
(2005)

86. Russell, S., and Norvig, P.: Artifical Intelligence: A Modern Approach. Prentice-
Hall, 2nd edition, 2002.

87. Santoro, C.: Towards an Agent Programming Language, In 10th national
workshop Towards the Future of Agent-based software systems, Parma, Italy
(2009)

88. Sardina, S., Lespérance, Y.: Golog Speaks the BDI Language. In: 7th International
Workshop on Programming Multi-Agent Systems, ProMAS 2009, LNCS 5919, pp.
82-99, Springer (2010)

89. Schiffel, S., Thielscher, M., Trang, D.T.: An Agent Team Based on FLUX for the
ProMAS Contest 2007, Proceedings of the 5th international conference on
Programming multi-agent systems, ProMAS'07, LNCS 4908, pp. 261-265,
Springer-Verlag (2008)

90. Shoham, Y.: "Agent-Oriented Programming", Artificial Intelligence, 60(1), pp. 51-
92 (1993)

91. Suna, A., Seghrouchni, A.E.F.: Programming mobile intelligent agents: An
operational semantics, Web Intelligence and Agent Systems, vol.5, no.1, pp. 47-
67, IOS Press (2007)

92. Sycara, K.P., Paolucci, M., Velsen, M.V., Giampapa, J.A.: The RETSINA MAS
Infrastructure, Autonomous Agents and Multi-Agent Systems, Springer, no.1-2, pp.
29-48 (2003)

93. Thielscher, M.: Introduction to the fluent calculus. Electronic Transactions on
Artificial Intelligence, 2(3–4), pp. 179–192 (1998)

94. Thielscher, M.: Reasoning Robots. The Art and Science of Programming Robotic
Agents, Applied Logic Series, Vol.33, Springer (2005)

95. Thomas, R.S.: "PLACA, an Agent Oriented Programming Language", PhD thesis,
Computer Science Department, Stanford University, Stanford, CA 94305, (1993)

96. Unland, R., Klusch, M., Calisti, M.: Software Agent-Based Applications, Platforms
and Development Kits, Birkhauser Verlag AG (2005)

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 294

97. Schip, R.C.v.h., Warnier, M., Brazier, F.M.: Deploying BDI agents in open,
insecure environments, in: Proceedings of the 7th European Workshop on Multi-
Agent Systems (EUMAS'09) (2009)

98. Wagner, G.: VIVA knowledge-based agent programming. Preprint, Institut fur
Informatik, Universitat Leipzig, Germany, (1996)

99. Wang, J.B., Pang, J., Jiang, B.C.: The Modeling and Implementation of Virtual

Enterprise Based on Multi-Agent System, Applied Mechanics and Materials
(Volume 33) pp. 280-284. (2010)

100.Weerasooriya, D., Rao, A. S., Ramamohanarao, K.: Design of a Concurrent
Agent-Oriented Language, LNAI, Vol 890, Springer-Verlag, (1994)

101.Weiss, G. (ed.): Multiagent Systems. A Modern Approach to Distributed Artificial
Intelligence. MIT Press 2000.

102.Weiss, G.: Agent orientation in software engineering. Knowledge Engineering
Review, 16(4), pp. 349–373. (2002)

103.Winikoff, M.: JACKTM Intelligent Agents: An Industrial Strength Platform, In: [20],
Springer, pp. 175-193, (2005)

104.Wooldridge, M., Jennings, N.R.: "Agent Theories, Architectures, and Languages:
A Survey", Intelligent Agents, LNAI, Vol 890, Springer- Verlag, pp. 1-39. (1994)

105.Wooldridge, M., Jennings, N.R.: "Intelligent Agents: Theory and Practice",
available as http://www.doc.mmu.ac.uk:80/STAFF/mike/ker95/ker95-html.html,
(1994)

106.Wooldridge, M.: A Knowledge-Theoretic Semantics for Concurrent MetateM, In
Proceedings of the Workshop on Intelligent Agents III, Agent Theories,
Architectures, and Languages, LNCS, Vol. 1193, pp. 357 – 374, (1996)

107.Wooldridge, M.: Intelligent Agents, chapter 1 of Multiagent systems: a modern
approach to distributed artificial intelligence, Massachusetts Institute of
Technology, 2000, pp. 27 – 77 (2000)

108.Jinkai, X., Weihong, Y.: Study of comparison between JAFMA and JADE,
Circuits, Communications and System (PACCS), 2010 Second Pacific-Asia
Conference on, pp. 105 – 108 (2010)

109.Brooks, R.A.: Elephants don't play chess, In Robotics and Autonomous Systems,
vol 6., pp 3-15, (1990)

110.Lee, E.A.: Cyber Physical Systems: Design Challenges, EECS Department,
University of California, (2008)

111.http://www.cs.uu.nl/3apl/, accessed in January 2011
112.http://www.eil.utoronto.ca/aac/abs/, accessed in January 2011
113.http://www.agentfactory.com/index.php/AF-AgentSpeak, accessed in Jan. 2011
114.http://www.agentscape.org/, accessed in January 2011
115.http://www.cougaar.org/, accessed in January 2011
116.http://fipa.org/, accessed April 2011
117.FIPA-OS (http://fipa-os.sourceforge.net/index.htm) accessed in January 2011
118.http://www.cs.toronto.edu/cogrobo/main/systems/index.html, accessed in January

2011
119.http://jade.tilab.com/, accessed in January 2011
120.http://jadex-agents.informatik.uni-hamburg.de/, accessed in January 2011
121.http://jason.sourceforge.net, accessed in January 2011
122.http://www.madkit.org/, accessed in January 2011
123.http://www.csc.liv.ac.uk/~anthony/metatem.html, accessed in January 2011
124.[http://www.ai.sri.com/~oaa/], accessed in January 2011
125.http://www-2.cs.cmu.edu/~softagents/, accessed in January 2011

Software Agents: Languages, Tools, Platforms

ComSIS Vol. 8, No. 2, Special Issue, May 2011 295

126.http://www.ai.mit.edu/people/sodabot/slideshow/total/p001.html, accessed in
January 2011

127.http://activist.gpl.ibm.com:81/WhitePaper/ptc2.htm, accessed in January 2011
128.http://agents.media.mit.edu/, accessed in January 2011
129.http://193.113.209.147/projects/agents/zeus/index.htm, accessed in January 2011
130.http://www.aosgrp.com, accessed in January 2011
131.http://www.i-a-i.com/, accessed in January 2011
132.http://mmi.tudelft.nl/~koen/goal.php, accessed in January 2011
133.http://apapl.sourceforge.net/, accessed in January 2011

Costin Bădică received in 2006 the title of Professor of Computer Science
from University of Craiova, Romania. He is currently with the Department of
Software Engineering, Faculty of Automatics, Computers and Electronics of
the University of Craiova, Romania. His research interests are at the
intersection of Artificial Intelligence, Distributed Systems and Software
Engineering. He authored and coauthored more than 100 publications related
to these topics as journal articles, book chapters and conference papers. He
prepared special journal issues and coedited 4 books in Springer's Studies in
Computational Intelligence series. He coinitiated the Intelligent Distributed
Computing -- IDC series of international conferences that is being held yearly.
He is member of the editorial board of 4 international journals. He also served
as programme committee member of many international conferences.

Zoran Budimac holds position of full professor since 2004 at Faculty of
Sciences, University of Novi Sad, Serbia. Currently, he is head of Computing
laboratory. His fields of research interests involve: Educational Technologies,
Agents and WFMS, Case-Based Reasoning, Programming Languages. He
was principal investigator of more then 20 projects and is author of 13
textbooks and more then 220 research papers most of which are published in
international journals and international conferences. He is/was a member of
Program Committees of more then 60 international Conferences and is
member of Editorial Board of Computer Science and Information Systems
Journal.

Hans-Dieter Burkhard is Senior professor at the Institute of Informatics at
Humboldt University of Berlin. He founded the Artificial Intelligence group at
Humboldt University. He has studied Mathematics in Jena and Berlin, and he
has worked on Automata Theory, Petri Nets, Distributed Systems, VLSI
Diagnosis and Knowledge Based Systems. Current interests include
Cognitive Robotics, Distributed AI, Agent Oriented Techniques, Machine
Learning, Socionics, and AI applications in Medicine. He is a fellow of the
ECCAI, and he was Vice President of the International RoboCup Federation.
His publication activities include numerous papers and book articles, invited
talks and memberships in program committees. His soccer robot teams have
won several first places in the RoboCup world championships.

Costin Bădică, Zoran Budimac, Hans-Dieter Burkhard, and Mirjana Ivanović

ComSIS Vol. 8, No. 2, Special Issue, May 2011 296

Mirjana Ivanović holds position of full professor since 2002 at Faculty of
Sciences, University of Novi Sad, Serbia. She is head of Chair of Computer
Science. She is author or co-author of 13 textbooks and of more then 230
research papers on multi-agent systems, e-learning and web-based learning,
software engineering education, intelligent techniques (CBR, data and web
mining), most of which are published in international journals and international
conferences. She is/was a member of Program Committees of more then 80
international Conferences and is Editor-in-Chief of Computer Science and
Information Systems Journal.

Received: February 14, 2011; Accepted: April 12, 2011.

 Ta
bl

e
3.

 S
um

m
ar

y
of

 a
ge

nt
 la

ng
ua

ge
s

N
am

e
W

eb
 p

ag
e

ID
E

Im
pl

em
en

ta
tio

n
la

ng
ua

ge

A
ge

nt
 p

la
tfo

rm

in
te

gr
at

io
n

A
pp

lic
at

io
ns

Pa

ra
di

gm

Te
xt

bo

ok

A
G

EN
T0

 N
o

N
o

In
te

rp
re

te
rs

 w
rit

te
n

in

Pr
ol

og
 a

nd
 C

om
m

on
Li

sp
N

/A

N
/A

D

ec
la

ra
tiv

e
N

o

PL
AC

A
N

o
N

o
N

on
e

(e
xp

er
im

en
ta

l)
N

/A

N
/A

D

ec
la

ra
tiv

e,

pr
ot

ot
yp

e

N
o

Ag
en

t-K

N
o

N
o

Pr
ol

og

N
/A

N

/A

D
ec

la
ra

tiv
e

N
o

M
et

at
eM

N

o
N

o
In

te
rp

re
te

rs
 w

rit
te

n
in

Pr

ol
og

 a
nd

 S
ch

em
e

N
/A

Ac

co
rd

in
g

to
 [F

is
he

r 1
99

4]
, c

an

be
 u

se
d

in
 p

ro
ce

ss
 c

on
tro

l,
fa

ul
t-t

ol
er

an
ce

, b
id

di
ng

, e
tc

.

D
ec

la
ra

tiv
e,

 b
as

ed

on
 d

is
cr

et
e,

 li
ne

ar

te
m

po
ra

l l
og

ic

N
o

A
PR

IL

ht
tp

://
so

ur
ce

fo
rg

e.
ne

t/p
ro

je
ct

s/
ne

tw
or

ka
ge

nt
/

Ye
s

C
, J

av
a,

 P
ro

lo
g

N
o,

 a
lth

ou
gh

 it
s

ex
ec

ut
io

n
re

lie
s

on

ex
te

rn
al

 s
of

tw
ar

e
(e

.g
.

Ap
ril

 M
ac

hi
ne

, I
nt

er
Ag

en
t

C
om

m
un

ic
at

io
n

se
rv

er
)

N
et

w
or

ke
d

in
te

lli
ge

nt
 a

ge
nt

s
(k

ac
co

rd
in

g
to

 [M
cC

ab
e

19
94

])

Pr
oc

es
s-

or
ie

nt
ed

sy

m
bo

lic
 la

ng
ua

ge
,

no
t d

es
ig

ne
d

sp
ec

ifi
ca

lly
 fo

r m
ul

ti-
ag

en
t p

ro
gr

am
m

in
g

N
o

M
AI

L
N

o
N

o
A

PR
IL

N

/A

N
/A

 (d
ev

el
op

m
en

t o
f t

he

la
ng

ua
ge

 w
as

 d
is

co
nt

in
ue

d)

H
yb

rid

N
o

VI
VA

N

o
N

o
P

VM
-P

ro
lo

g
N

/A

N
/A

D

ec
la

ra
tiv

e,

co
m

bi
ni

ng
 c

on
ce

pt
s

of
 P

ro
lo

g
an

d
S

Q
L

N
o

G
O

!
ht

tp
://

so
ur

ce
fo

rg
e.

ne
t/p

ro
je

ct
s/

ne
tw

or
ka

ge
nt

/
Ye

s
C

, J
av

a,
 P

ro
lo

g
N

/A

N
et

w
or

ke
d

in
te

lli
ge

nt
 a

ge
nt

s
H

yb
rid

 (a
cc

or
di

ng
 to

[B

or
di

ni
 2

00
6]

)
N

o

Ag
en

t
Sp

ea
k

N
o

Ye
s,

(in

di
re

ct
ly

(e

.g
. f

or

Ja
so

n)

Se
ve

ra
l i

nt
er

pr
et

er
s

fo
r

th
e

la
ng

ua
ge

 e
xi

st
, s

uc
h

as
 J

as
on

, S
IM

_T
al

k,
 a

nd

Ag
en

tT
al

k

N
/A

N

/A

D
ec

la
ra

tiv
e,

th

eo
re

tic
al

 la
ng

ua
ge

Ye
s

[2
2]

Ja
so

n
ht

tp
://

ja
so

n.
sf

.n
et

Ye

s
Ja

va
 in

te
rp

re
te

r f
or

Ag

en
tS

pe
ak

(L
)

Ye
s,

 b
as

ed
 o

n
JA

D
E

an
d

Sa
ci

; w
as

 a
ls

o
in

te
gr

at
ed

in

 A
ge

nt
Sc

ap
e

[9
7]

 a
nd

Ag

en
t F

ac
to

ry
 [1

13
]

N
/A

H

yb
rid

 (a
cc

or
di

ng
 to

[2

1]
)

Ye
s

[2
2]

AF
-A

PL

ht
tp

://
w

w
w

.a
ge

nt
fa

ct
or

y.
co

m
/in

de
x.

ph
p/

M
ai

n_
Pa

ge

Ye
s,

 v
ia

Ag

en
t

Fa
ct

or
y

Ja
va

Ag

en
t F

ac
to

ry

R
ob

ot
ic

s,
 v

irt
ua

l a
nd

 m
ix

ed

re
al

ity
 e

nv
iro

nm
en

ts
, a

nd
 m

ob
ile

co

m
pu

tin
g

[C
ol

lie
r,

20
09

]

Ac
co

rd
in

g
to

 [2
1]

 is

hy
br

id

N
o

N
am

e
W

eb
 p

ag
e

ID
E

Im
pl

em
en

ta
tio

n
la

ng
ua

ge

A
ge

nt
 p

la
tfo

rm

in
te

gr
at

io
n

A
pp

lic
at

io
ns

Pa

ra
di

gm

Te
xt

bo

ok

3A
PL

ht

tp
://

w
w

w
.c

s.
uu

.n
l/3

ap
l/

Ye
s

A
Ja

va
 im

pl
em

en
ta

tio
n

an
d

a
H

as
ke

ll
im

pl
em

en
ta

tio
n

N
/A

R
ob

ot
 c

on
tro

l u
si

ng
 a

n
A

PI

ca
lle

d
AR

IA
 (p

ro
vi

de
d

by

ht
tp

://
w

w
w

.a
ct

iv
m

ed
ia

.c
om

),
lo

ok
 a

t
ht

tp
://

w
w

w
.c

s.
uu

.n
l/3

ap
l/t

he
si

s/
v

er
be

ek
/v

er
be

ek
im

pl
.h

tm
l

Ac
co

rd
in

g
to

cl

as
si

fic
at

io
n

of
 [2

1]

is
 h

yb
rid

N

o

2A
PL

ht

tp
://

ap
ap

l.s
ou

rc
ef

or
g

e.
ne

t/
Ye

s
Ja

va
 o

n
to

p
of

 J
AD

E
JA

D
E

N
/A

H

yb
rid

N

o.
 T

he
re

is

 a
 tu

to
ria

l

JA
C

K
ht

tp
://

ao
sg

rp
.c

om
/p

ro
d

uc
ts

/ja
ck

/in
de

x.
ht

m
l

Ye
s

Ja
va

N

o,
 e

xe
cu

tio
n

re
lie

s
on

th

e
JA

C
K

ag
en

t k
er

ne
l

ru
nt

im
e

U
nm

an
ne

d
Ae

ria
l V

eh
ic

le
s,

su

rv
ei

lla
nc

e,
 a

ir
tra

ffi
c

m
an

ag
em

en
t

Im
pe

ra
tiv

e
A

nu
m

be
r

of
 m

an
ua

ls

an
d

tu
to

ria
l.

JA
D

E
X

ht
tp

://
ja

de
x-

ag
en

ts
.in

fo
rm

at
ik

.u
ni

-
ha

m
bu

rg
.d

e/
xw

ik
i/b

in
/v

i
ew

/A
bo

ut
/O

ve
rv

ie
w

Ye
s

Ja
va

JA

D
E

W
or

kf
lo

w
 e

xe
cu

tio
n,

 s
el

f-
or

ga
ni

zi
ng

 s
ys

te
m

s,
 tr

ea
tm

en
t

sc
he

du
lin

g
fo

r p
at

ie
nt

s
in

ho

sp
ita

ls

H
yb

rid

A
nu

m
be

r
of

 u
se

r
gu

id
es

 a
nd

tu

to
ria

ls

G
O

AL

ht
tp

://
m

m
i.t

ud
el

ft.
nl

/tr
ac

/g
oa

l
Ye

s
Ja

va
 b

as
ed

 o
n

S
W

I-
Pr

ol
og

Ac
co

rd
in

g
to

 [6
2]

, G
O

A
L

ha
s

be
en

 te
st

ed
 o

n
to

p
of

JA

D
E.

 H
ow

ev
er

, w
e

co
ul

d
no

t f
in

d
an

y
re

fe
re

nc
e

to
 s

uc
h

an

ex
pe

rim
en

t

It
is

 ju
st

 a
 p

ro
to

ty
pe

 th
at

 is

cu
rr

en
tly

 u
se

d
fo

r e
du

ca
tio

na
l

pu
rp

os
es

. I
t c

an
 b

e
us

ef
ul

 in

pl
an

ni
ng

 a
pp

lic
at

io
ns

, e
.g

. i
n

th
e

tra
ns

po
rta

tio
n

do
m

ai
n

D
ec

la
ra

tiv
e

N
o.

 T
he

re

is
 a

 tu
to

ria
l

on
 it

s
W

eb

si
te

G
ol

og

ht
tp

://
w

w
w

.c
s.

to
ro

nt
o.

e
du

/c
og

ro
bo

/m
ai

n/

N
o

Pr
ol

og
 (E

cl
ip

se
 P

ro
lo

g,

SW
I-P

ro
lo

g)

N
/A

C

og
ni

tiv
e

ro
bo

tic
s,

 e
m

be
dd

ed

sy
st

em
s

D
ec

la
ra

tiv
e

Ye
s

[8
4]

FL
U

X
ht

tp
://

w
w

w
.fl

ux
ag

en
t.o

r
g/

ho
m

e.
ht

m

N
o

Tw
o

im
pl

em
en

ta
tio

ns

av
ai

la
bl

e:
 1

. E
cl

ip
se

Pr

ol
og

 (c
on

st
ra

in
t l

og
ic

pr

og
ra

m
m

in
g

sy
st

em
),

an
d

2.
 S

ic
st

us
 P

ro
lo

g

N
/A

C

og
ni

tiv
e

ro
bo

tic
s

D
ec

la
ra

tiv
e

(a
ls

o
ac

co
rd

in
g

to
 [2

1]
)

Ye
s

[T
hi

el
sc

he
r,

20
05

a]

C
LA

IM

?
?

Ja
va

Sy

M
P

A
N

/A

Al
th

ou
gh

 in
 [4

1]
 it

 is

sa
id

 th
at

 C
LA

IM
 is

de

cl
ar

at
iv

e
ou

r
im

pr
es

si
on

 is
 th

at
 it

is

 h
yb

rid

N
o

DOI:10.2298/CSIS101230011L

SPEM Ontology as the Semantic Notation for

Method and Process Definition in the Context of

SWEBOK

Miroslav Líška1 and Pavol Navrat1

1Faculty of Informatics and Information Technologies,
Slovak University of Technology,

Ilkovičova 3, 842 16 Bratislava, Slovakia
liska@semantickyweb.sk, navrat@fiit.stuba.sk

Abstract. The Guide to the Software Engineering Body of Knowledge
(SWEBOK) provides a consensually validated characterization of the
bounds of the software engineering discipline and to provide a topical
access to the Body of Knowledge supporting that discipline. The topic
“Notation for Process Definition” references selected notations
appropriate for software process definition. However all of them have
weakly defined semantics, thus is not possible to use formal techniques
for process model creation, validation etc. In this work we present
created Software and Systems Process Engineering Meta-Model
(SPEM) Ontology that improves the lack of mentioned process
notations. The SPEM Ontology constitutes a semantic notation that
provides concepts for knowledge based software process engineering.
The work also discusses utilization of such semantic notation in other
selected SWEBOK topics, the Software Project Planning, the Software
Project Enactment, and the Verification and Validation.

Keywords: software and systems process engineering meta-model,
web ontology language, model driven architecture, semantic web,
SPEM, OWL, MDA, SWEBOK.

1. Introduction

There are a number of notations that are used to define software processes
[1]. A key difference between them is in the type of information they define,
capture, and use. The approaches encompass for example: natural language
[2], Data Flow diagrams [3], Statecharts [4], ETVX [5], Actor-Dependency
modeling [6], SADT notation and many others [7]. Unfortunately, semantics of
the mentioned notations are defined weakly, thus it is not possible to make
and to verify created language statements with formal techniques such as the
consistency or satisfiability verification. Although standard software
development process frameworks provide much useful information, typically in
the form of navigable websites, this information contains only human-readable

Miroslav Líška and Pavol Navrat

ComSIS Vol. 8, No. 2, Special Issue, May 2011 300

descriptions. Therefore, these kinds of frameworks cannot be used to
represent machine interpretable content [8]. Moreover, these process
frameworks are used in the technical spaces [9] that have model based
architecture, such as MDA or Eclipse Modeling Framework (EMF) [10]. These
kinds of technical spaces also limit knowledge based processing, owing to
their weakly defined semantics [11]. However, at present the emerging field of
Semantic Web technologies promises new stimulus for Software Engineering
research [12]. The acquired opportunity to work with semantics opens door for
original contributions to many problems in the field, e.g web service
composition aided by semantics [51-53]. The Semantic Web is a vision for the
future of the Web, in which information is given explicit meaning, making it
easier for machines to automatically process and integrate information
available on the Web [13]. The today’s key Semantic Web technology is Web
Ontology Language (OWL). OWL is intended to be used when the information
contained in documents needs to be processed by applications, as opposed
to situations where the content only needs to be presented to humans [14].

Aforementioned problems in software engineering and facts about the
Semantic Web implies an opportunity to support software process definition
with OWL, and thus to support software process engineering with knowledge
based techniques. In this work we address such an opportunity and propose
an ontology based software process definition that could empower software
process engineering with knowledge engineering techniques. To achieve it we
need to move software process engineering to the Semantic Web technical
space. We have chosen Software and Systems Engineering Meta-Model and
transformed it to the OWL DL representation, so having created SPEM
Ontology.

1.1. Related works

SPEM is MDA standard used to define software and systems development
processes and their components [15]. A SPEM process can be systematically
mapped to a project plan by instantiating the different process’ breakdown
structure views. Therefore a SPEM model can represent a knowledge base
that can be used for verification, whether a project plan conforms to this
knowledge. However, the SPEM metamodel has the semiformal architecture,
thus it is not possible to make and to verify created SPEM language
statements with formal techniques such as the consistency or satisfiability
verification [16]. But if we transform SPEM to the Semantic Web technical
space, we can use the mentioned formal techniques due to facilities of OWL.
Because SPEM is based on MDA, we can utilize the research results of
transforming other MDA’s standards to the Semantic Web technical space.

SPEM is specified in the Meta Object Facility (MOF) language that is the
key language of MDA. MOF is a language for metamodel specification and it
is used for specification of all model-based MDA standards [17]. It provides
metadata management framework, and a set of metadata services to enable
the development and interoperability of model and metadata driven systems

SPEM Ontology as the Semantic Notation for Method and Process Definition in the
Context of SWEBOK

ComSIS Vol. 8, No. 2, Special Issue, May 2011 301

[18]. On the Semantic Web side, OWL is intended to provide a language that
can be used to describe the classes and relations between them that are
inherent in Web documents and applications. OWL is based on Resource
Description Framework Schema (RDFS) [19]. Both MOF and RDFS provide
language elements, which can be used for metamodeling. Although they have

similar language concepts such as mof:ModelElement with rdf:Resource, or

mof:Class with rdf:Class, the languages are not equivalent. RDFS, as a
schema layer language, has a non-standard and non-fixed-layer
metamodeling architecture, which makes some elements in model to have
dual roles in the RDFS specification [20]. MOF is also used for specification of
the Unified Modeling Language (UML) that is a language for specification,
realization and documentation of software systems [21]. Even if UML and
RDFS are similar in the domain of system specification, they are also
substantially different. One issue that has been addressed was the problem
that RDF properties are first class entities and they are not defined relative to
a class. Therefore a given property cannot be defined to have a particular
range when applied to objects of one class and another range when applied
to objects of a different class [22]. This difference has also been propagated
between OWL and UML [23]. It should be noted that efforts to transfer explicit
knowledge into machine processable form encompass a much wider
spectrum of works, e.g. [24, 25]. Still others attempt to develop domain
specific languages, incorporating knowledge on the domain, that would be
adaptable [26] improving in such a way the process of software evolution [27].
At present the main bridge that connects the Semantic Web with MDA is
stated in the Ontology Definition Meta-Model (ODM) [28]. ODM defines the
OWL Meta-Model specified in MOF (MOF – OWL mapping) and also the UML
Profile for Ontology modeling (UML – OWL mapping). This architecture can
be extended with additional mappings between the UML Profile for OWL and
other UML Profiles for custom domains [29, 30]. We have already utilized this
principle in our previous works where we created an approach to SPEM
model validation with ontology [31], an approach to project planning
employing software and systems engineering meta-model represented by an
ontology [32], and ontology driven approach to software project enactment
with a supplier [33]. However, our works are not the only one that concern
with using of SPEM in the Semantic Web technical space. In the following
paragraph we reference to the three other related works.

The first work proposes to represent SPEM in Description Logic (DL) [34].
The work creates mapping from MOF to DL and mapping from OCL [35]
constraints of SPEM to DL. The reason for the former mapping is to represent
the SPEM MOF based metamodel with DL and the latter is to represent
additional OCL constraints that supplement the SPEM metamodel with
additional semantics. The second work presents a competency framework for
software process understanding [36]. The motive is to create assessments for
a correct understanding of a process that can be used in a software
development company. The paper introduces creation of SPEM software
process ontology for the Scrum software process [37] with EPF Composer.
However, the third work is the closest to our approach, since it proposes

Miroslav Líška and Pavol Navrat

ComSIS Vol. 8, No. 2, Special Issue, May 2011 302

project plan verification with ontology. The work intends to use SPEM process
constraint definitions with the semantic rules with Semantic Web Rule
Language (SWRL) [38], where SWRL is W3C language that combines OWL
and RuleML [39].

1.2. Aims and objectives

We aimed in our research to devise a method that uses ontology based
software process notation which could be used for ontology based software
process engineering. To be more precise, we propose an extension of the
SWEBOK topic “Notation for Process Definition” of the Software Engineering
Process Knowledge Area with additional process notation SPEM Ontology.
Consequently we present utilizations of such semantic notation in the context
of SWEBOK. The SPEM Ontology is first applied to the Software Project
Planning topic and then to the Software Project Enactment topics, bought
belong to the Software Engineering Management Knowledge Area. Third the
SPEM Ontology is discussed in the context of the SWEBOK topic “Validation
and Verification“ from the Software Quality Management Process Knowledge
Area. For the sake of clarity the utilizations are presented with several usage
scenarios defined with description logic.

The rest of the paper is structured as follows. Section 2 presents a method
of developing SPEM Ontology based on a transformation from MDA to the
Semantic Web technical space. Section 3 presents relationship between
SPEM Ontology and SWEBOK. Finally, Section 4 provides conclusion and
future research direction.

2. Developing SPEM Ontology

SPEM is MDA standard used to define software and systems development
processes and their components [15]. SPEM metamodel is based on MOF
and reuses UML 2 Infrastructure Library [40]. Its own extended elements are
structured into seven main meta-model packages. SPEM defines three
compliance points (CP) above these packages, i.e.: the SPEM Complete CP,
the SPEM Process with Behavior and Content CP and the SPEM Method
Content CP. The scope of our solution is covered with Compliance Point
"SPEM Process with Behavior and Content". The reason of focusing at this
compliance point is because we need to work with separated reusable core
method content from its application in processes, since a software method
content can be used with arbitrary software process, such as iterative, agile
etc...

SPEM Ontology as the Semantic Notation for Method and Process Definition in the
Context of SWEBOK

ComSIS Vol. 8, No. 2, Special Issue, May 2011 303

2.1. SPEM conceptual framework

The Software and Systems Process Engineering Meta-model (SPEM) is a
process engineering meta-model as well as conceptual framework, which can
provide the necessary concepts for modeling, documenting, presenting,
managing, interchanging, and enacting development methods and processes
[15].

Fig. 1. SPEM 2.0's conceptual usage framework

Technically, the separation is represented by SPEM metamodel packages,
i.e. the Method Content and the Process with Method metamodel packages.
The former provides concepts for SPEM users and organizations to build up a
development knowledge base that is independent of any specific processes
and development projects. These concepts are the core elements of every
method such as Roles, Tasks, and Work Product Definitions etc. The latter
necessary metamodel package defines the structured work definitions that
need to be performed to develop a system, e.g., by performing a project that
follows the process. Such structured work definitions delineate the work to be
performed along a timeline or lifecycle and organize it in so called breakdown
structures. The most important elements of the Process with Method
metamodel package are the Method Content Use elements. These elements
are the key concept for realizing the separation of processes from method
content and are great capabilities of SPEM. A Method Content Use can be
characterized as a reference object for one particular Method Content
Element, which has its own relationships and properties. When a Method
Content Use is created, it shall be provided with congruent copies of the
relationships defined for the referenced content element [15].

The last important metamodel package from the SPEM conceptual
framework point of view is the Method Plugin metamodel package. The
Method Plugin allows extensibility and variability mechanisms for Method
Content and Process specification. It provides more flexibility in defining
different variants of method content and processes by allowing content and
process fragments to be plugged-in on demand, thus creating tailored or
specialized content only when it is required and such that it can be maintained

Miroslav Líška and Pavol Navrat

ComSIS Vol. 8, No. 2, Special Issue, May 2011 304

as separate units worked on by distributed teams [15]. Since the scope of
SPEM is purposely limited to the minimal elements necessary to define any
software and systems development process, the SPEM metamodel does not
include elements such as Iteration, Phase etc. The reason is because for
example not every software development process needs to have iterations.
Therefore we had to include even the built-in SPEM Base Plugin to our
method. It provides commonly used concepts for the domain of software
engineering such as Phase, Iteration, Checklist etc.

2.2. Moving SPEM into the Semantic Web

In order to enable use of SPEM in the Semantic Web technical space, we
make use of the fact that OWL, ODM and SPEM are serialized in XML format
[41]. The OWL Metamodel is a MOF2 compliant metamodel that allows a user
to specify ontologies using the terminology and underlying model theoretic
semantics of OWL. The mapping between OWL and ODM is expressed in
ODM that contains OWL Metamodel [42]. Thus only a mapping between
SPEM and OWL is to be created. Since the hallmark work [11] proposes the
transformation of a MDA standard to the Semantic Web technical space with
a mapping between UML Ontology Profile and an arbitrary UML Profile, we
have also used this principle. We have created a mapping between the
Ontology UML Profile and the SPEM UML Profile. However, the mapping was
not sufficient to create the SPEM Ontology. The main problem was that the
SPEM UML Profile does not contain SPEM semantics, and moreover, it was
not possible to derive a domain and range of a relationship, etc. Therefore we
had decided to create semiautomatic transformation that is based on the
merged SPEM metamodel to the SPEM UML Profile, where the result is the
SPEM OWL DL Ontology. We have used OWL-DL, because this dialect of
OWL retains computational completeness (all conclusions are guaranteed to
be computable) and decidability (all computations will finish in finite time) [13].
To be conformed to this dialect, we have to adhere that an individual cannot
be also a class, what is not violated in MDA technical space because of its 4
meta-layer architecture. For example, an analyst “Slávko Líška” is an instance
of a Software Analyst SPEM class that is an instance of the Role Definition
SPEM metaclass at the same time, thus the Software Analyst class is an
individual and also a class. To avoid this problem in the Semantic Web
technical space we have stated that a method content owl class is subclass of
a SPEM owl class, and concrete individual is its instance. For example, the
individual “Slávko Líška” is the instance of the Software Analyst owl class that
is subclass of the Role Definition owl class from the SPEM Ontology. For
more detailed and comprehensive description about the SPEM transformation
to the Semantic Web technical space and its utilizations, a reader may refer to
[43, 44].

SPEM Ontology as the Semantic Notation for Method and Process Definition in the
Context of SWEBOK

ComSIS Vol. 8, No. 2, Special Issue, May 2011 305

3. SPEM Ontology application in the context of SWEBOK

Once we have SPEM Ontology created, we can apply it in various software
process engineering cases. Since SWEBOK provides a consensually
validated characterization of the bounds of the software engineering discipline
and to provide a topical access to the defined software engineering
Knowledge Areas [7], we also present the SPEM Ontology utilizations in such
manner. The following subsections present SPEM Ontology application in
selected topics of the SWEBOK Knowledge Areas.

3.1. Notation for process definition

The first SWEBOK topic that is directly related to the SPEM Ontology is the
topic “Notations for Process Definition” of the Software Engineering Process
Knowledge Area. Since at present the topic refers to non semantic notations
only, the SPEM Ontology introduces new type of notation for process
definition that is ontology based. Moreover, SPEM provides concepts also for
a method definition that is another added value of such semantic notation.
Forasmuch it is necessary to create correct SPEM models (method and
process) it is efficient to use automated techniques for the models validation.
Seeing that an OWL DL ontology supports reasoning we can also utilize it in a
SPEM model verification. Two following scenarios present a SPEM model
validation for the SPEM semantics verification.

- Scenario 1- SPEM method model validation with ontology: As it was

already mentioned a method content model represents a model of
development knowledge base that is independent of any specific processes
and development projects. What the model does not define is how this
method will be used in the process, whether it will be iterative, agile etc.
Hence what a method content model validation can be good for? This
scenario is essential to ensure that a method content is defined with the
proper SPEM semantics. For example, whether a Task Definition has the
proper domain of the “performs” relation that should be a Role Definition
elements.

- Scenario 2- SPEM process model validation with ontology: The

Method Content Use elements are the key concept for realizing the separation
of processes from method content, thus a process model validation can be
used to ensure, whether a process conforms to a method content definition it
traces. Certainly, this validation scenario can be used similarly as the first
one, hence for the validation, whether a process conforms to the SPEM
semantics. For example, whether a Method Content Use element references
one Method Content element only.

Miroslav Líška and Pavol Navrat

ComSIS Vol. 8, No. 2, Special Issue, May 2011 306

To be more precise, we give formally defined conditions that cover both
validation scenarios. Formula 1 addresses the first validation scenario, which
is the SPEM method model validation with ontology. Formula 2 addresses the
second one, which is the SPEM process model validation with ontology. We
say that a SPEM method model is consistent with the SPEM ontology if it is
true that

SPEM Ontology SPEM method ontology . (1)

Similarly, we say that a SPEM process model is consistent with a SPEM
method ontology and the SPEM Ontology if it true that

SPEM Ontology SPEM method ontology SPEM process
ontology.

(2)

3.2. Software Project Planning

Software project management is the art of balancing competing objectives,
managing risk, and overcoming constraints to deliver a product that meets the
needs of the customers and the end users [45]. Project management is
accomplished through the use of processes such as: initiating, planning,
executing, controlling and closing [46]. How the project will be managed and
how the plan will be managed must also be planned. Reporting, monitoring,
and control of the project must fit the selected software engineering process
and the realities of the project, and must be reflected in the various artifacts
that will be used for managing it. But, in an environment where change is an
expectation rather than a shock, it is vital that plans are themselves managed.
This requires that adherence to plans be systematically directed, monitored,
reviewed, reported, and, where appropriate, revised [7]. To support these
general objectives, we present an ontology based approach to project
planning. We discuss two additional scenarios that could support the ontology
oriented software process engineering. So, the third scenario presented in this
work is Project plan creation with ontology scenario and the fourth one is
Project plan verification with ontology.

- Scenario 3. Project plan generation with ontology. When a project

manager want to create a project plan, he can create a SPEM method and
process models first and then use OWL DL consistency reasoning to ensure
that they are consistent. Then he can just simply transform his SPEM process
model to the SPEM process ontology.

- Scenario 4. Project plan verification with ontology. This scenario is

essential when a project manager wants to ensure that his already created
project plan is consistent with desired method content and process. However,
the scenario usually follows the previous one. A project manager obviously
makes many changes to his project plan; therefore it is necessary to ensure
that these changes do not violate the required consistency.

SPEM Ontology as the Semantic Notation for Method and Process Definition in the
Context of SWEBOK

ComSIS Vol. 8, No. 2, Special Issue, May 2011 307

Since the third scenario is included in the fourth, we focus only at the

Scenario 4. First we define the Project Plan Knowledge as a union of the
SPEM Ontology, SPEM Base Plugin Ontology, a SPEM method ontology and
a SPEM process ontology, as it is shown in Formula 3.

Project Planning Knowledge = SPEM Ontology  SPEM Base

Plugin Ontology  SPEM method content ontology  SPEM process
ontology .

(3)

Then we say, that the Project Planning Knowledge is satisfied in a project
plan if it is true that

Project Plan |= Project Planning Knowledge . (4)

From the First Order Logic point of view, the Project Plan Knowledge is the

theory and a project plan is its model. Since a theory can have a model only if
a theory is consistent [38], it is necessary, that the Formula 5 is either true

SPEM Ontology SPEM Base Plugin Ontology SPEM method
content ontology SPEM process ontology .

(5)

For more information that includes either example a reader may refer to

[32].

3.3. Software project enactment

The difficulty of software development is greatly enhanced when it is
inevitable to cooperate with a supplier. The general issue is to manage a lot of
differences such as different tasks, software work products, guidelines, roles
etc [7]. The ideal state is that a company and its supplier use the same
software framework and they use it in the same way. Otherwise risk of budget
and time overrun together with quality decrease is greatly increased.
Unfortunately, such an ideal state cannot exist. Either companies use different
software frameworks, or they use the same software framework - but highly
likely in different ways. It is natural that companies have different knowledge
acquired from their various projects, and also have different experts with
different experiences. Thus even if they use the same software framework,
e.g. RUP [45], project enactment with the supplier, due to mentioned
differences, is problematic.

Our approach to software process enactment with a supplier is based on
OWL DL verification with a set of different method plugins, which represent
different methods and processes of a company and its supplier. When OWL

Miroslav Líška and Pavol Navrat

ComSIS Vol. 8, No. 2, Special Issue, May 2011 308

DL verification results in inconsistency, it implies that the project cannot be
enacted with a supplier and the source of inconsistency should be removed.
Therefore the necessary condition to use this method is to have company’s
and supplier’s software process specified with SPEM models. Next, there are
presented several utilization scenarios of our approach, which extend the
overall set of utilization scenarios mentioned in this work.

- Scenario 5 - Verification of the set of SPEM methods with ontology:

This scenario can be used when it is necessary to verify whether at least two
different SPEM method contents are consistent. Therefore its use for the
software project enactment with supplier is appropriate. Since it is necessary
to manage a lot of differences such as different tasks, software work products,
guidelines, roles etc., this scenario can be used to reveal and to remove those
differences that are inconsistent. For example a company can state that the
Task Definitions “Create Requirements“ and “Create Test Cases“ should not
be performed by the same person, because the creation of the Test Cases
can reveal hidden inconsistencies that the author of requirements does not
need to be aware of. On the other hand, a supplier’s method can state that
the same person can perform both task definitions. Hence, this is
inconsistency and it should be removed.

- Scenario 6 – Verification of the set of SPEM processes with

ontology: This scenario is similar to the previous, but this time processes of a
software development are subject for verification. It is used to verify, whether
at least two different SPEM processes are consistent. For example, a
company’s method content requires that the Task Definition “Create
Requirements“ should be executed in at least two iterations to increase the
quality of requirements, but for the supplier,one iteration is also permissible.
Again, this is an inconsistency and it should be removed.

- Scenario 7 – Project plan generation with the set of method plugins

with ontology: This scenario can be executed when a project manager
wants to create a project plan that is based on at least two method plugins.
Even the ontology plays intermediate task of such scenario, its usability is
crucial. First it is necessary to select the desired method contents and a
process from the set of method plugins and transform them to ontologies.
Then the scenario 5 and 6 are executed to reveal inconsistencies. If the
ontologies are consistent, then the XSL based transformation to XML format
of the project plan can be executed. Then it is quaranted that the resulted
project plan is consistent with desired method plugins.

- Scenario 8 – Project plan verification of the set of method plugins

with ontology: This scenario can be executed when a project manager
wants to verify a project plan with a set of method plugins. The scenario has
the same architecture as the project plan verification with ontology scenario
(i.e., scenario #4). The only difference is in number of method contents and
processes, which create the knowledge about project planning. When the

SPEM Ontology as the Semantic Notation for Method and Process Definition in the
Context of SWEBOK

ComSIS Vol. 8, No. 2, Special Issue, May 2011 309

mapping between the set of method plugins are created and their consistency
is established, the project verification can be executed against these method
plugins.

To be more precise, we give formally defined conditions that cover the

mentioned utilization scenarios. Since the scenario 7 consists of the scenarios
5 and 6 we only present the formal specification of scenarios 5, 6 and 8..
Scenario 5 is covered with Formula 9, scenario 6 with Formula 10 and
scenario 8 with Formula 8 and 11. First we define the two method plugins and
the Project Planning Knowledge:

SPEM method plugin 1 ontology = SPEM method ontology 1 
SPEM process ontology 1

(6)

SPEM method plugin 2 ontology = SPEM method ontology 2 
SPEM process ontology 2

(7)

Project Planning Knowledge = SPEM Ontology  SPEM Base

Plugin Ontology  SPEM method plugin 1 ontology  SPEM
method plugin 2 ontology

(8)

Then we say that two SPEM method contents are consistent if:

SPEM method ontology SPEM Base Plugin Ontology SPEM
method ontology 1 SPEM method ontology 2

(9)

and two SPEM processes are consistent if:

SPEM method ontology SPEM Base Plugin Ontology SPEM
method ontology 1 SPEM method ontology 2 SPEM process

ontology 1 SPEM process ontology 2

 (10)

The Project Planning Knowledge is satisfied in a project plan if:

Project Plan |= Project Planning Knowledge (11)

Again, since a theory can have a model only if the theory is consistent, the
necessary condition that enables Formula 11 to be true is that also Formula
10 must be true. For more informations which include also examples a reader
may refer to [32].

3.4. Verification and Validation

The SPEM ontology can also be used in the context of Verification and
Validation topic of the Software Quality Management Process Knowledge
Area. Verification is an attempt to ensure that the product is built correctly, in
the sense that the output products of an activity meet the specifications

Miroslav Líška and Pavol Navrat

ComSIS Vol. 8, No. 2, Special Issue, May 2011 310

imposed on them in previous activities. Validation is an attempt to ensure that
the right product is built, that is, the product fulfills its specific intended
purpose [7]. Since SPEM does not concern with the content of work products
(e.g. business processes, use cases), is it not possible to verify traceability
between these inner elements. Therefore SPEM ontology alone is not
sufficient for validation a work product. On the other hand, since the SPEM
ontology consists of method and process models, it is possible to use it for
evaluating whether a product is build correctly, i.e. with proper method and
process. Therefore the SPEM Ontology can provide concepts for a work
product verification. Usage scenarios for the Verification and Validation topic
are the same as were mentioned in previous subsections.

4. Implementation

Ontologies rely on well-defined and semantically powerful concepts in artificial
intelligence [47], such as description logics, reasoning, and rule-based
systems [48]. Since we use OWL DL form of ontology, the implementation has
a goal to present the proposed utilization scenarios with a Knowledge
Representation System that supports description logics. Developing a
knowledge base using a description logic language means setting up a
terminology (the vocabulary of the application domain) in a part of the
knowledge base called the TBox, and assertions about named individuals
(using the vocabulary from the TBox) in a part of the knowledge base called
the ABox [49]. In other words, the ABox describes a specific state of affairs in
the world in terms of the concepts and roles defined in the TBox [11]. As we
have it discussed in Subsection 2.2, our approach is conformed to the OWL
DL dialect that disallows an individual to be simultaneously a class. Therefore
all classes of the ontologies used in our approach constitute TBOX, whereas
only individuals obtained from a project plan create ABOX as it is depicted in
Table 1.

Table 1. Mapping between components of a knowledge based representation system
to our approach’s ontologies

Ontology type KBRS
component

SPEM Ontology TBox
SPEM Base Method Plugin TBox
SPEM method content ontology TBox
SPEM process ontology TBox
SPEM method plugin ontology TBox
Individuals of a SPEM process ontology ABox

For the sake of usability we have created OWL4SPEM: a semantic

framework for software process engineering. It contain the SPEM Ontology,
SPEM Method Plugin ontology, all mentioned XSL transformations that allows

SPEM Ontology as the Semantic Notation for Method and Process Definition in the
Context of SWEBOK

ComSIS Vol. 8, No. 2, Special Issue, May 2011 311

generating desired ontologies and lot of examples. For more information a
reader may refer to [50].

5. Conclusion

We presented an approach to software process definition with the SPEM
Ontology. For the sake of adoptability we presented applications of such
semantic notation in the context of selected SWEBOK topics. First we
discussed extension of the topic “Notations for Process Definition” with the
SPEM Ontology and consequently we presented the ontology in the context of
“Software Project Planning”, “Software Project Enactment”, and “Validation
and Verification” SWEBOK topics. Since the relationship between the SPEM
Ontology and the SWEBOK topics is more comprehensive than we described,
it is necessary that the research will continue. However when we compare our
approach with work that is perhaps closest to ours [38] it should be noted that
we created not only wider method specification, but we also presented its
implementation. It supports key property of SPEM, i.e. the Method Content
separation from a Process and also the separation from the SPEM Base
Plugin. Additionally, since a Method Plugin consists of a Method Content and
a Process, our approach can be easily extended with any Method Plugin, for
example, with the Rational Unified Process Plugin. However, we are aware
that our research must continue in order to be applied successfully in real
commercial projects. It is very difficult to imagine that for the purpose of
project plan verification a project manager will use a knowledge based
framework directly, without appropriate user interfaces. Therefore, we have
started implementation of a macro for the MS Project that will remotely access
OWL API for OWL-DL reasoning purposes and it will print verification results
back into MS Project Plan. Additionally, we started to implement a semantic
enterprise server with Jena, where the SPEM Ontology will stand as a facility
plugin into the architecture. Finally, similarily to other related works, we have
to include also SWRL to our approach to extend the expressiveness of
description logic with the rule based expressions. The mentioned
enhancements to our method are to be viewed as objectives of future
research.

Acknowledgments. "This work was supported by the Scientific Grant Agency of
Slovakia, grant No. VG1/0508/09, and it is a partial result of the Research &
Development Operational Program for the project Support of Center of Excellence for
Smart Technologies, Systems and Services II, ITMS 25240120029, co-funded by
ERDF."

Miroslav Líška and Pavol Navrat

ComSIS Vol. 8, No. 2, Special Issue, May 2011 312

References

1. Software Productivity Consortium, "Process Definition and Modeling Guidebook,"
Software Productivity Consortium, SPC-92041-CMC, (1992)

2. IEEE/EIA 12207.0-1996//ISO/IEC12207:1995, Industry Implementation of Int. Std.
ISO/IEC 12207:95, Standard for Information Technology-/Software Life Cycle
Processes, vol. IEEE, (1996)

3. ISO/IEC TR 15504:1998, Information Technology - Software Process Assessment
(parts 1-9): ISO and IEC, (1998)

4. D. Harel and M. Politi, Modeling Reactive Systems with Statecharts: The
Statemate Approach: McGraw-Hill, (1998)

5. R. Radice, N. Roth, A. O. H. Jr. and W. Ciarfella, "A Programming Process
Architecture," IBM Systems Journal, vol. 24, iss. 2, 79-90, (1985)

6. E. Yu and J. Mylopolous, "Understanding 'Why' in Software Process Modeling,
Analysis, and Design," presented at Proceedings of the 16th International
Conference on Software Engineering, (1994)

7. IEEE Computer Society. Software Engineering Body of Knowledge (SWEBOK).
Angela Burgess, EUA, (2004)

8. Fujita, H., Zualkernan, I. A. (ed.): An Ontology-Driven Approach for Generating
Assessments for the Scrum Software Process. In Proceedings of the seventh
SoMeT_08. IOS Press, The Netherlands, 190-205, (2008)

9. Kurtev, I., Bézivin, J., Aksit, M.:Technological spaces: An initial appraisal. In
Proceedings of the Confederated International Conferences, CoopIS, DOA, and
ODBASE, Industrial Track, Irvine, CA, USA, (2002)

10. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.:EMF: Eclipse Modeling
Framework (2nd Edition). Addison-Wesley Longman, Amsterdam, (2009)

11. Gašević, D., Djurić, D., Devedžić, V.: Model Driven Engineering and Ontology
Development, 2nd ed., Springer, Berlin, (2009)

12. Happel, H.J., Seedorf, S.: Applications of ontologies in software engineering. In:
International Workshop on Semantic Web Enabled Software Engineering
(SWESE'06), Athens, USA, (2006)

13. Mcguinness, D. L., Harmelen, F.: OWL Web Ontology Language Overview, W3C
Recommendation, (2004). [Online]. Available: http://www.w3.org/TR/owl-features/
(current December 2010)

14. Smith, M.K., Welty, Ch., McGuinness, D.L.: OWL Web Ontology Language Guide,
W3C Recommendation, (2004). [Online]. Available: http://www.w3.org/TR/owl-
guide/ (current December 2010)

15. Object Management Group: Software and Systems Process Engineering Meta-
Model 2.0, formal/2008-04-01. Object Management Group, USA, (2008). [Online].
Available: http://www.omg.org/technology/documents/formal/spem.htm (current
December 2010)

16. Krdžavac, N., Gašević, D., Devedžić, V.: Model Driven Engineering of a Tableau
Algorithm for Description Logics. Computer Science and Information Systems, Vol.
6, No. 1, (2009)

17. Frankel, D.S.: Model Driven Architecture. Applying MDA to Enterprise Computing.
Willey, USA, (2003)

18. Object Management Group: Meta Object Facility (MOF) 2.0 Core Specification,
formal/2006-01-01. Object Management Group, USA, (2008). [Online]. Available:
http://www.omg.org/spec/MOF/2.0/ (current December 2010)

19. Brickley, D., Guha, R. V., McBride, B.: RDF Vocabulary Description Language 1.0:
RDF Schema. W3C Recommendation, (2004). [Online]. Available:
http://www.w3.org/TR/rdf-schema/ (current December 2010)

SPEM Ontology as the Semantic Notation for Method and Process Definition in the
Context of SWEBOK

ComSIS Vol. 8, No. 2, Special Issue, May 2011 313

20. Pan, J., Horrocks, I.: Metamodeling Architecture of Web Ontology Languages, In
Proceedings of the First Semantic Web Working Symposium, Stanford, 131-149,
(2001)

21. Object Management Group: UML 2.2 Superstructure Specification, formal/09-02-
03. Object Management Group, USA, (2009). [Online]. Available:
http://www.omg.org/technology/documents/formal/uml.htm (current December
2010)

22. Cranefield, S.: Networked Knowledge Representation and Exchange using UML
and RDF. Journal of Digital Information, Volume 1 Issue 8, (2001)

23. Hart, L., Emery, P., Colomb, B., Raymond, K., Taraporewalla, S., Chang, D., Ye,
Y., Kendall, E., Dutra, M.: OWL Full and UML 2.0 Compared. OMG TFC Report,
(2004)

24. Polášek, I., Kelemen, J.: Ontologies in Knowledge Office Systems. In: KEOD
2009, 1st International Conference on Knowledge Engineering and Ontology
Development, Funchal - Madeira, Portugal. INSTICC PRESS, 400-413, (2009)

25. Polášek, I., Chudá, D., Kristová, G.: Modelling System Dynamics in a Newer
Version of UML (in Slovak). In: Proc. Systémová integrácia 2006. Žilina University,
Žilina,311-317, (2006)

26. Hrnčič, D., Mernik, M., Forgáč, M., Kollár, J.: Evolution and Adaptation of Domain
Specific Languages. In: Proc. of the Tenth International Conference on Informatics
2009, Technical University of Kosice, Kosice, 154-159, (2009)

27. Kollár, J., Porubän, J., Václavík, P., Bandáková, J., Forgáč, M.: Adaptive
Language Approach to Software Systems Evolution. In: Proc. International
Multiconference on Computer Science and Information Technology: 1st Workshop
on Advances in Programming Languages (WAPL'07), Polish Information
Processing Society, 1081-1091, (2007)

28. Object Management Group: Ontology Definition Meta-Model 1.0. formal/2009-05-
01. Object Management Group, USA, (2009). [Online]. Available:
http://www.omg.org/spec/ODM/1.0/ (current December 2010)

29. Gašević, D., Djurić, D., Devedžić, V.: MDA and Ontology Development. Springer,
Berlin, Heidelberg, (2006)

30. Gašević, D., Djurić, D., Devedžić, V.: Bridging MDA and OWL Ontologies. Journal
of Web Engineering, Vol. 4, no. 2, pp. 119–134, (2005)

31. Líška, M.: An Approach of Ontology Oriented SPEM Models Validation. In
Proceedings of the First International Workshop on Future Trends of Model-Driven
Development (FTMDD) in the context of the 11th International Conference on
Enterprise Information Systems. Milan, Italy, 40-43, (2009)

32. Líška, M., Návrat, P.: An Approach to Project Planning Employing Software and
Systems Engineering Meta-Model Represented by an Ontology. Computer
Science and Information Systems Journal (COMSIS), Volume 7, Number 4, 2010,
721-736.

33. Líška, M., Návrat, P.: An Ontology Based Approach to Software Project
Enactment with a Supplier. In 14th East-European Conference on Advances in
Databases and Information Systems (ADBIS2010), Lecture Notes in Computer
Science 6295, Novi Sad, Serbia, Springer, pp. 378-391, (2010)

34. Wang, S., Jin, L. J. CH. Represent Software Process Engineering Metamodel in
Description Logic. In Proceedings of World Academy of Science, Engineering and
Technology, vol. 11, (2006)

35. Object Management Group: Object Constraint Language 2.2. formal/2010-02-01.
Object Management Group, USA, (2010). [Online]. Available:

 http://www.omg.org/spec/OCL/2.2/ (current December 2010)

Miroslav Líška and Pavol Navrat

ComSIS Vol. 8, No. 2, Special Issue, May 2011 314

36. Zualkernan, I. A. An Ontology-Driven Approach for Generating Assessments for
the SCRUM Process. New Trends in Software Methodologies, Tools and
Techniques. IOS Press, (2008)

37. Schwaber, K., Beedle, M. Agile Software Development with SCRUM. Prentice
Hall, (2002)

38. Rodríguez, D., Sicilia, M., A.: Defining SPEM 2 Process Constraints with Semantic
Rules Using SWRL. In Proceedings of the Third International Workshop on
Ontology, Conceptualization and Epistemology for Information Systems, Software
Engineering and Service Science held in conjunction with CAiSE'09 Conference.
Amsterdam, The Netherlands, pp. 95-104, (2009)

39. Horrocks, I., Patel-Schneider, P., F., Boley, H., Tabet, T., Grosof, B., Dean, M.:
SWRL: A Semantic Web Rule Language, Combining OWL and RuleML. W3C
Member Submission, (2004). [Online]. Available:
http://www.w3.org/Submission/SWRL/ (current December 2010)

40. Object Management Group: UML 2.2 Infrastructure Specification, formal/2009-02-
04. Object Management Group, USA, (2009). [Online]. Available:
http://www.omg.org/spec/UML/2.2/ (current December 2010)

41. Object Management Group: MOF 2.0 / XMI Mapping Specification, v2.1.1,
formal/2007-12-01. Object Management Group, USA, (2007). [Online]. Available:
http://www.omg.org/spec/XMI/2.1.1/ (current December 2010)

42. Djurić, D.: MDA-based ontology infrastructure, Computer Science and Information
Systems, Vol. 1, no. 1, pp. 91–116, (2006)

43. Líška, M.: Extending and Utilizing the Software and Systems Process Engineering
Metamodel with Ontology. PhD Thesis, ID: FIIT-3094-4984. Slovak University of
Technology in Bratislava, (2010)

44. Líška, M. Extending and Utilizing the Software and Systems Process Engineering
Metamodel with Ontology. Information Sciences and Technologies, Bulletin of the
ACM Slovakia, Vol. 2, No. 2, pp. 8-15, (2010)

45. Kruchten, P.: The Rational Unified Process: An Introduction. (3rd edition).
Addison-Wesley, USA, (2003)

46. Project Management Institute: A Guide to the Project Management Body of
Knowledge (PMBOK– 4th edition). Project Management Institute, USA, (2008)

47. Návrat, P. et al.: Artificial Intelligence, 2002, Slovak University of Technology in
Bratislava. STU Press, (2002)

48. Kvasnička, V., Pospíchal, J.: Mathematical Logic. Slovak University of Technology
in Bratislava. STU Press, (2005)

49. Baader, F., Horrocks, I., Saatler, U.: Description Logics. In Steffen Staab and Rudi
Studer, editors, Handbook on Ontologies, International Handbooks on Information
Systems, Springer. 3-28, (2004)

50. Líška, M., Návrat, P.: OWL4SPEM – A semantic framework for software process
engineering, (2010). [Online]. Available: http://www.ontologia.sk/owl4spem/
(accessed February 22, 2011)

51. Habala O., Paralič M., Rozinajová V., and Bartalos P.: Semantically-Aided Data-
Aware Service Workflow Composition. In: M. Nielsen et al. (Eds.): SOFSEM 2009,
LNCS 5404, pp. 317–328, 2009, Springer-Verlag Berlin Heidelberg 2009

52. Bartalos, Peter - Bieliková, Mária: QoS Aware Semantic Web Service Composition
Approach Considering Pre/Postconditions. In: IEEE ICWS 2010, Eighth
International Conference on Web Services, Miami, Florida, 5-10 July 2010 :
Proceedings. - Los Alamitos : IEEE Computer Society, 2010. - ISBN 978-0-7695-
4128-0. - pp. 345-35254.

SPEM Ontology as the Semantic Notation for Method and Process Definition in the
Context of SWEBOK

ComSIS Vol. 8, No. 2, Special Issue, May 2011 315

53. Bartalos, P. Effective Automatic Dynamic Semantic Web Service Composition.
Information Sciences and Technologies, Bulletin of the ACM Slovakia, Vol. 3, No.
1, (2011)

Miroslav Líška received the M.S. degree in informatics from the Technical
University in Košice, Slovakia in 2002, and the PhD. degree in software and
information systems from the Institute of Informatics and Software
Engineering, Faculty of Informatics and Information Technologies, Slovak
University of Technology in Bratislava in 2010. His interests include semantic
web, ontologies, software process engineering and semantic enterprise
oriented architectures. He currently works as a semantic web architect in
Datalan, in Bratislava, Slovakia.

Pavol Navrat received his Ing. (Master) cum laude in 1975, and his PhD.
degree in computing machinery in 1984 both from Slovak University of
Technology in Bratislava. He is currently a professor of Informatics at the
Slovak University of Technology and serves as the director of the Institute of
Informatics and Software Engineering. During his career, he was also with
other universities abroad. His research interests include related areas from
software engineering, artificial intelligence, and information systems. He
published numerous research articles, several books and co-edited and co-
authored several monographs. Prof. Navrat is a Fellow of the IET and a
Senior Member of the IEEE and its Computer Society. He is a Senior Member
of the ACM and chair of the ACM Slovakia Chapter. He is also a member of
the Association for Advancement of Artificial Intelligence, Slovak Society for
Computer Science and Slovak Artificial Intelligence Society. He serves on the
Technical Committee 12 Artificial Intelligence of IFIP as the representative of
Slovakia.

Received: December 30, 2010; Accepted: March 02, 2011.

DOI: 10.2298/CSIS101231019C

Ontology Driven Development of Domain-Specific

Languages

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

Faculty of Electrical Engineering and Computer Science, Smetanova 17,
2000 Maribor, Slovenia

{ines.ceh, matej.crepinsek, tomaz.kosar, marjan.mernik}@uni-mb.si

Abstract. Domain-specific languages (DSLs) are computer
(programming, modeling, specification) languages devoted to solving
problems in a specific domain. The development of a DSL includes the
following phases: decision, analysis, design, implementation, testing,
deployment, and maintenance. The least-known and least examined
are analysis and design. Although various formal methodologies exist,
domain analysis is still done informally most of the time. A common
reason why formal methodologies are not used as often as they could
be is that they are very demanding. Instead of developing a new, less
complex methodology, we propose that domain analysis could be
replaced with a previously existing analysis in another form. A
particularly suitable form is the use of ontologies. This paper focuses
on ontology-based domain analysis and how it can be incorporated into
the DSL design phase. We will present the preliminary results of the
Ontology2DSL framework, which can be used to help transform
ontology to a DSL grammar incorporating concepts from a domain.

Keywords: domain-specific language, domain analysis, ontology.

1. Introduction

Programming languages are used for human-computer interaction.
Depending on the purpose of their use, programming language can be
divided into general-purpose languages (GPLs) and domain-specific
languages (DSLs) [1], [2], [3], [4]. GPLs, such as Java, C and C#, are
designed to solve problems from any problem area. In contrast to GPLs,
DSLs, such as Latex, SQL and BNF, are tailored to a specific application
domain.

When developing new software, a decision must be made as to which type
of programming language will be used: GPL or DSL. The issue is further
complicated if an appropriate DSL does not exist. Then, the decision
becomes whether to start to develop with a GPL language or to start with the
development of the required DSL and then develop the software system with
it. Reasons for using a DSL are as follows: easier programming, re-use of

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 318

semantics, and the easier verification and programmability for end-users [1],
[2]. However, using a DSL also has its disadvantages, such as high
development costs [1], [5]. The key is to answer the question: »When to
develop a DSL?« The simplest answer to this question is: a DSL should be
developed whenever it is necessary to solve a problem that belongs to a
problem family and when we expect that in the future more problems from
the same problem family will appear. A more detailed response can be found
in [1].

DSL development consists of the following phases: decision, analysis,
design, implementation, testing, deployment and maintenance [1], [6], which
are discussed in greater detail in Section 2. While the implementation phase
has attracted a lot of researchers [5], some of the DSL development phases
are less known and are not as closely examined (e.g. analysis, design).

The knowledge of the problem domain and its definition is achieved at the
domain analysis phase. Various methodologies for domain analysis have
been developed. Examples of such methodologies include: DSSA (Domain
Specific Software Architectures) [7], FODA (Feature-Oriented Domain
Analysis) [8], and ODM (Organization Domain Modeling) [9]. Often, formal
methodologies are not used due to complexity and the domain analysis is
done informally. This has the consequence of complicating future DSL
development. Even if the domain analysis is done with a formal
methodology, there are not any clear guidelines on how the output from
domain analysis can be used in a language design process. The outputs of
domain analysis consist of domain-specific terminology, concepts,
commonalities and variabilities. Variabilities would have been entries in the
design of DSL, while terminology and concepts should be reflected in the
DSL constructs, and commonalities could be incorporated into the DSL
execution environment. Although it is known where the outputs of the domain
analysis should be used, there is a need for clear instructions on how to make
good use of the information, which are retrieved during the analysis phase, in
the design stage of the DSL.

To partially solve the aforementioned problems, we propose that domain
analysis (hereinafter referred to as classic domain analysis (CDA)) be
performed with the use of existing techniques from other fields of computer
science. A particularly suitable one is the use of ontologies [10], [11], [12]. An
ontology provides the vocabulary of a specialized domain. This vocabulary
represents the domain objects, concepts and other entities. Some types of
domain knowledge can be obtained from the relationships of the entities, as
presented by the vocabulary. Ontologies in the CDA have already been used
in [13]. Whereas Tairas et al. apply ontologies in the early stages of domain
analysis to identify domain concepts; we propose that an ontology replace the
CDA. They also investigated how ontologies contribute to the design of the
language [13]. Ontologies in connection with DSL are also used by other
authors. Miksa et al. applied ontology-enabled software engineering in the
area of DSL engineering [14]. Guizzardi et al. proposed the use of an upper
ontology (top-level ontology) [15] to design and evaluate domain concepts
[16]. Walter et al. applied ontologies to describe DSL [17]. Bräuer and

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 319

Lochmann proposed an upper ontology to describe interoperability among
DSLs [18].

The proposed solution of the first problem, the use of ontologies, has a
significant effect on the second problem, related to CDA. It translates the
problem »How to make good use of the information, retrieved during the
analysis phase, in the design stage of the DSL?« into the problem »How to
make good use of the information contained in an ontology in the design
stage of a DSL?« This paper focuses on ontology-based domain analysis
(OBDA) and how it can be incorporated into the DSL design phase. We will
present the preliminary results of the Ontology2DSL framework, which can be
used to help transform an ontology to a DSL grammar.

The organization of this paper is as follows. Section 2 presents the
background information required for the understanding of this paper. Section
3 is intended to demonstrate the similarities and variabilities between the
CDA and OBDA. Section 4 presents the transformation rules used for the
development of a DSL from an ontology, as well as the example of an
ontology to a DSL transformation. Section 5 presents the framework
Ontology2DSL and its architecture. The conclusion and future work are
summarized in Section 6.

2. Background

2.1. DSL development phases

In [1], the authors have identified the following DSL development phases:
decision, analysis (CDA), design, implementation, and deployment. The
additional phases are testing and maintenance. The maintenance phase was
introduced in [6]. Fig. 1 presents these phases along with the input and output
of every phase and examples of patterns for the individual phases. The
decision phase provides the answer to the question of when to develop a
DSL. Other phases focus on the question of how to develop it. DSL and GPL
development processes have a few differences with respect to the phases of
development, since the phases are identical. The differences are in the
activities, approaches and techniques used in the individual phases. The
difference is expressed in the greater diversity of the activities, approaches
and techniques in DSL development. It should be taken into consideration
that DSL development is not a simple sequential process. Often, the phases
overlap one another. For instance, the design of the DSL is influenced by the
decision on the implementation approach. In the following section, the DSL
development phases are briefly discussed.

Decision. It is often far from evident that a DSL might be useful or that
developing a new one might be worthwhile. The concepts underlying a
suitable DSL may emerge only after a lot of GPL programming has been

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 320

done. Decision patterns [1] describe situations (e.g., task automation,
domain-specific Analysis, Verification, Optimization, Parallelization, and
Transformation (AVOPT)) for which, in the past, developing a new DSL was
fruitful.

Domain analysis (CDA). The precondition of the design and
implementation of a DSL is a detailed domain analysis. The goal of CDA is to
select and define the domain of focus and collect appropriate domain
information and integrate them into a coherent domain model; the result of
CDA [19]. A representation of the domain system properties and their
dependencies is the domain model. The properties are either common or
variable, which is represented in the model along with the dependencies
between the variable ones. Besides the development of the domain model,
CDA also includes domain planning, identification and scoping. The inputs to
the domain analysis are different sources of implicit and explicit domain
knowledge. The information sources for the analysis are: technical literature,
existing implementations, customer demands, expert advice, and current and
future requirements [4]. An important note is the fact that the domain analysis
process not only collects existing information. The systematic and organized
collection of existing information enables and encourages the extension of
information with new knowledge. In some cases, CDA can be informal, while
in others it incorporates different methodologies. Methodologies differ based
on the degree of formality, information extraction techniques or their
products. We have listed the most known methodologies in the introduction.
FODA has been proven as the most commonly used formal methodology in
DSL development. The domain analysis can result in different DSLs.
However, they all share essential information acquired in the domain analysis
phase.

Design. Language design includes the definition of constructs and
language semantics. The semantics formalize the meaning of every construct
in the language and the behavior not specified in the program. The
approaches to the design of a DSL can be classified into two orthogonal
dimensions: the relation between DSL and a computer language and the
formality degree of the DSL description [1]. The first dimension refers to the
exploitation of an existing language (GPL or DSL) or the invention of a new
language. The most basic method for DSL construction is if the DSL is based
on an existing language. The existing language can be: partially reused
(piggyback pattern), limited (language specialization pattern) or extended
(language extension pattern) [1]. The advantages of building a DSL on an
existing language are: easier implementation and the familiarity of the
development environment to users who are experienced with the existing
language. If the connection between the DSL and an existing language does
not exist, a new language must be developed from the beginning. The
second dimension refers to the informal and formal design of the language.
With informal design, the specification is usually in the natural language with
optional program examples. When the design is formal, the specification is
usually in the form of a well-known formal definition method (BNF for syntax

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 321

specification, attribute grammars, denotational semantics, or algebraic
specifications for semantic specification).

Decision

Domain analysis

Design

Implementation

Deployment

Maintenance

T
e

c
h

n
ic

a
l
lit

e
ra

tu
re

E
x
is

ti
n

g

im
p

le
m

e
n

ta
ti
o

n
s

C
u

s
to

m
 s

u
rv

e
y
s

E
x
p

e
rt

 a
d

v
ic

e

C
u

rr
e

n
t
a

n
d

 f
u

tu
re

re
q

u
ir
e

m
e

n
ts

Domain analysis

methodology

T
e

rm
in

o
lo

g
y

C
o

n
c
e

p
ts

C
o

m
m

o
n

a
lit

ie
s

V
a

ri
a

ti
o

n
s

Domain model

S
y
n

ta
x

S
e

m
a

n
ti
c
s

Implementation pattern

D
S

L
D

S
L

P
o

s
s
ib

le

e
x
is

ti
n

g

im
p

le
m

e
n

ta
ti
o

n
s

i.e. Interpreters,

Compilers/application

generators, Emdedding, ...

Informal, Formal (DSSA,

FODA, ODM), Extract from

code

Decission pattern

i.e. Notation, AVOPT,

Task automation, Product

line, ...

Design pattern

Language exploitation,

Language invention

DSL

R
e

q
u

ir
e

m
e

n
ts

Yes

No

Testing

D
S

L

DSL

Fig. 1. DSL development phases

Implementation. Different approaches for DSL development can be used,
such as: interpreter, compiler/application generator, embedding,

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 322

preprocessing, extensible compiler/interpreter, Commercial Off-The-Shelf
(COTS), and hybrid. The approaches are presented in greater detail in [1].
Cleary we want to select the approach that requires the least effort during
implementation and offers the greatest efficacy to the end user. The link
between the implementation approaches, the effort of implementation and
the efficacy to the end user is presented by the authors of [5].

Testing. In this phase, a DSL evaluation is performed. As shown in the
study [20], this phase is often skipped or relaxed by language developers.
The skipping or relaxing of this phase is not desirable because it may lead to
the development of inadequate languages.

Deployment. In this phase, DSLs and applications constructed with them
are used.

Maintenance. In this phase, the DSL is updated to reflect new
requirements.

The number of phases and their individual complexity result in the
discovery of high costs when developing a new DSL. DSL development
requires domain knowledge and language expertise [1], [5]. These are the
main reasons why DSLs are not so often used for solving software
engineering problems. The development cost is seen as the greatest
disadvantage of DSLs [5].

The main goal of the presented research is to investigate if the classic
domain analysis (CDA) phase can be adequately replaced with an already
existing domain knowledge and representation (e.g., ontology). In this
manner the DSL development cost could be minimized.

2.2. Ontology

There are many definitions of ontologies in existing literature and one of the
most commonly used definitions is that of Studer et al. They defined an
ontology as follows: »An ontology is a formal, explicit specification of a
shared conceptualization.« [12]. The meaning of the Studer et al. definition is
detailed in [21]. Formal refers to the fact that it is machine readable. The
specification is explicit because it summarizes the concepts, properties and
relations between concepts. Furthermore, the shared conceptualization
contains knowledge that a group of experts has agreed upon.
Conceptualization refers to the fact that it incorporates the target domain
completely.

Ontologies are commonly encoded using ontology languages. Ontology
languages allow for the acquisition of knowledge about specific domains and
often include rules that allow the processing of knowledge in existing
ontologies. Ontology languages can be divided into two major groups:
traditional (i.e. Flogic, Ontolingua) and web-based languages (i.e. RDF(S),
OWL) [22]. Recently, a new group of languages, rule-based (i.e. RuleML,
SWRL) [23], has emerged. These languages differ in their purpose and in
their expressive power. The main requirements for an ontology language are:

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 323

a well-defined syntax, well-defined semantics, efficient reasoning support,
sufficient expressive power and convenience of expression [21].

3. Comparison of CDA and OBDA

Subsection 3.1 presents the FODA methodology with which the domain
analysis is performed. Subsection 3.2 introduces the ontology language
OWL. The examples in both subsections are for the case of a home robot
[24]. Subsection 3.3. compares the information obtained through FODA and
through ontology domain analysis.

3.1. FODA

FODA is a CDA method that was developed by the Software Engineering
Institute [19]. It is known for its models and feature modeling. In FODA, a
feature is an end-user characteristic of a system. A FODA process consists of
two phases: context analysis and domain modeling. The goal of context
analysis is to determine the boundaries (scope) of the analyzed domain. The
purpose of domain modeling is to develop a domain model. The FODA
domain modeling phase is comprised of the following steps: information
analysis, features analysis, and operational analysis. The main goal of
information analysis is to capture domain knowledge in the form of domain
entities and the links between them. The result of information analysis is the
information model. The result of feature analysis is a feature model, which is
presented below. An operational analysis results in the operational model. It
represents how the application works and covers the links between objects in
the informational model and the features in the feature model. An important
product from the phase of domain modeling is the domain dictionary. It
defines the terminology used in the domain and it also includes textual
definitions of domain concepts and features.

A feature model consists of the following:
– The Feature diagram (FD) represents a hierarchical decomposition of

features and their kinds (mandatory, alternative, and optional feature).
Mandatory features are those that each system must have in the domain.
Alternative features are features that a system can only possess one at a
time. Optional features are features that a system may or may not have. A
system can also have more than one feature at a time. These features are
called or-features. Features are also classified as atomic or composite.
Whereas atomic features cannot be further subdivided into other features,
composite features are defined in terms of other features. The root node of
the diagram represents a concept and the remaining nodes represent
features. An example of a feature diagram is shown in Fig. 2.

– Feature definitions describe all features (semantics).

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 324

– Composition rules for features describe which combinations are valid or
invalid.

– Rationale for features represents the reasons for choosing a feature.

HomeRobot

Command

Task

Commodity

Mandatory

Optional

Or

Alternative

Location

Close Check BringSwitchOn

Food&Drink Appliance HauseholdEquipment

bedRoomlivingRoom kitchen

Characteristics

SensorPowerSourceLocomotionMechanism

camerapowerCableBattery

liIon niCd

wheeled walking

moveTo take moveBack

juice beer sweets door windowtv videoCamera
...

audio

Fig. 2. Feature Diagram for a concept of a HomeRobot

Fig. 2 represents a simple FD of a HomeRobot. The root node of the
diagram, HomeRobot, represents a concept; the remaining nodes represent
its features. Whereas mandatory features are indicated by a filled circle,
optional features are indicated by an empty circle. Alternative and or-features
are both indicated by a triangle, the former with an empty one and the latter
with a filled triangle. The names of atomic features are written in lower-case
while the composite features are written with their first letter in upper-case.
Every house robot has individual characteristics and executes some
commands. Every house robot has to have a PowerSource, uses some
sensors for its locomotion and moves in a particular manner. Every robot can
have multiple power sources but only one mechanism of motion. Every robot
performs tasks, which are comprised of subtasks. The robot executes one
order per location, every task is focused on an item, while some tasks focus
on multiple items at the same time.

Feature models are not only represented in the visual form of FDs but also
in textual form. Van Deursen and Klint have proposed the feature description
language (FDL) for the textual representation. The FDL definition constitutes
the feature definitions followed by a colon (“:”) and the features expression.
Possible feature expression forms are presented in [25]. FDL exceeds the
graphic feature diagram in terms of expressive power and is appropriate for
automatic processing. The FD for a home robot in FDL is shown in Fig. 3.

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 325

HomeRobot: all (Command, Characteristics)

Command: all (Task, Location, Commodity)

Characteristics : all (LocomotionMechanism,

PowerSource, Sensor)

Task: one-of (Close, SwitchOn, Check, Bring)

Bring: all (moveTo, take, moveBack)

Location: one-of (livingRoom, bedRoom, kitchen)

Commodity: one-of (Food&Drink, Appliance,

 HauseholdEquipment)

Food&Drink: more-of (juice, beer, sweets)

Appliance: one-of (tv, videoCamera)

HauseholdEquipment : one-of (door, window)

LocomotionMechanism: one-of (wheeled, walking)

PowerSource: more-of (Battery, powerCable)

Sensor : more-of (camera, audio)

Battery: one-of (liIon, niCd)

Fig. 3. FD for the home robot in FDL

An important role of the FDs is to describe the variability of the
programming system. The number of all possible configurations per system
can be calculated with the use of variability rules, as presented in [25].

Constraints, which are intended for variability reduction, are an optional
component of the FDs. The constraints are enforced with satisfaction rules
[25]. The constraints are of two types [25]: diagram constraints and user
constraints. The former include the “A1 requires A2” (if the feature A1 is
presented, then feature A2 should also be presented) and “A1 excludes A2”
(if feature A1 is presented, then feature A2 should not be presented)
constraints, while the latter include the “include A” (feature A should be
present) and “exclude A” (feature A should not be present) constraints.

3.2. OWL

OWL is the most commonly used ontology language. It was created on the
basis of RDFS [10], [11]. It has three sublanguages; OWL Full, OWL DL, and
OWL Lite [10], [11], [21]. These sublanguages have different levels of
expressiveness. Whereas OWL Full is the most expressive, OWL Lite is the
least expressive. Only OWL-DL allows automated reasoning.

The three components of OWL are: classes, properties, and individuals.
Classes are interpreted as sets that contain individuals. Classes may be

organized into a hierarchy. This means that a class can subsume other
classes or it can be subsumed by other classes. The consequence of the
subsumption relation is inheritance. Inheritance refers to the inheritance of
properties, which the children inherit from their parents. Whereas some
ontologies only allow single inheritance, most ontologies, like OWL, allow
multiple inheritance. OWL defines two special classes called „Thing“ and

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 326

„Nothing“. Class Thing is the most general class and it is the superclass of
every class that is included in the ontology. Class Nothing is empty and it is
the subclass of every included class. The class hierarchy of the Home robot
ontology (HRO) is represented by Fig. 4. HRO is based on [24]. The main
functionalities of the robot are comprised of common household tasks, such
as checking if the window is closed. HRO formalizes terms for three classes:
locations, items and tasks. The locations are physical places where tasks are
performed. Items are part of the tasks in the manner that the same action is
performed on them or with them. The tasks are the actions being performed.
Each task is comprised of subtasks. For the HRO annotation we used the
OWL-DL, a sublanguage of the Ontology Web Language (OWL). The tool
used for the creation of the ontology was Protégé [26], [27].

The second component, the properties, is a binary relation. OWL defines
two main kinds of properties: object properties and datatype properties.
Whereas object properties relate objects to other objects, datatype properties
relate an object to datatype values. OWL supports XML schema primitive
datatypes.

The third component, the individuals, is the basic component of an
ontology. They represent objects in the domain of discourse. They can be
concrete individuals (i.e. animals, airplanes, and people) as well as abstract
individuals (i.e. words and numbers).

3.3. Comparison

Both analysis incorporate a concept vocabulary, enable the display of
property and class hierarchies, and provide a constraint mechanism (see
Table 1). The CDA uses this mechanism for variability reduction while the
OBDA uses it for the description of class properties. Both types of analysis
describe semantics and are machine readable.

Table 1. Comparison of CDA and OBDA

Property FD + FDL OWL ontology
Concept vocabulary Features names Name Class or property
Hierarchy Feature diagram Class hierarchy
Constraints FDL constraints Restrictions
Rationale FD rationale properties No
Objects
Possible combinations
Reasoning support
Machine readable
Tools
Semantics
Query support

No
Variability rules (FDL)
No
Yes
Yes
Yes
No

Individuals
No
Reasoners (i.e. FaCT++)
Yes
Yes (i.e. Protege)
Yes
Yes (DL Query)

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 327

Fig. 4. Class hierarchy of a Home robot ontology

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 328

The CDA differs from OBDA in its capability to record the reasons for the
use of a particular property (rationale) and the calculation of all possibilities.
OBDA, on the other hand, provides the existence of objects, reasoning and
querying. Numerous tools are available for it and ontologies are created
across diverse research areas and are therefore available for use.

The comparison shows that OBDA is capable of most of what the CDA is
capable of doing. The advantages of an ontology are reasoning and querying,
because they enable the validation of an ontology. A valid ontology
significantly reduces or prevents errors in DSL development. Semantics,
which are inherently defined with the ontology, are also of great use when
developing language semantics. Existing tools provide easy access to the
ontology and enable efficient information extraction procedures. It is also a
very important fact that ontologies are present in different areas of research.
This provides the method for elimination of the domain analysis phase in DSL
development and might significantly reduce the time needed for language
development.

The comparison leads to the conclusion that the CDA can indeed be
replaced with OBDA, primarily because the ODBA provides everything
needed for DSL development and also adds new capabilities.

4. Designing the DSL grammar

While the previous chapter shows that OBDA is appropriate for DSL
development, this chapter demonstrates the process of grammar [28]
construction from an OWL ontology. Section 4.1 introduces the rules used in
the transformation from an ontology to its corresponding grammar. Section
4.2, however, is the application example which demonstrates the usage of
the rules presented in 4.1.

4.1. Transformation rules

The input in the transformation is a data structure named the ontology data
structure (ODS), which carries the data extracted from the OWL document.
The result of the transformation is again a custom data structure, in this case
the grammar data structure (GDS). GDS is a formal annotation of the
resulting grammar.

With regard to the effect the transformation has on the ODS, the rules can
be divided into the following two groups: (1) rules that do not affect the ODS
and (2) rules that do affect and alter it. The results of the former can only be
observed on the GSD, while the results of the latter are identifiable on both
ODS and GDS. The rules that affect ODS can be used to alter the ontology.

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 329

The rules that do not alter the primary data structure:

1. NN(C)R 11  (R - rule, C - class, 1N - nonterminal, N - set of

nonterminals). Rule 1R is used to convert class C into nonterminal 1N .

An application example for rule 1R can be seen in chapter 3.2, step 1.

2. TT(C)R 12  (1T - terminal, T - set of terminals). Rule 2R is used

to convert class C into terminal 1T . The user can, if necessary, change

the name of terminal 1T . Name changes must be recorded in the

dictionary.

3.  "C" :: CP(C)R N3  (NC - class name, P - set of productions,

G - grammar ( PS,N,T,G)). Rule 3R is used to add production

into the grammar G . An application example for the rule 3R can be

seen in chapter 3.2, step 2.

4.  21214 C :: CP)C ,(CR  . Rule 4R is used to add production into

the grammar G .

5.   Dn1n 21D5 CL...CC ,type|C | ... |C | C:: CP type),CL (C,R 

 TCL(CH)C if DD  (L - list, CH - class hierarchy, DCL - list

of disjoint classes [17], DC - disjoint class, type - string, integer, …).

The rule 5R accepts the following inputs: class C , list of disjoint classes

DCL and type. The inputs DCL and type are optional. In any case, at

least one of them must be present. If the inputs C and DCL exist we

are talking about the rule 5aR . If inputs C and type exist we are talking

about the rule 5bR . If all three inputs exist we are talking about the rule

5cR . Rule 5aR is used to add a production in the form

n 21 C | ... |C | C:: C  into grammar G . Rule 5cR is an extension of rule

5aR and is used to add productions in the form

type|C | ... |C | C:: C n 21 into grammar G . A precondition for the

successful transformation is that the children are disjointed; otherwise the

resulting grammar is not a context free grammar. Classes from DCL that

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 330

are also leafs of the class diagram, are transformed, with the use of rule

3R to the set of terminals T . Rule 5bR is used to add productions in the

form type:: C  into grammar G . The rule enables grammar

generalization, as described by class C , and the associated part of

ontology. Each rule is used according to the bottom up principle; first on

the lower of the class hierarchy levels, followed by the higher classes. An

application example for the rules 5aR and 5cR

can be seen in chapter

3.2, step 2.

6.     C :: SP LAC PL)C(| PL ifPL) (C,R6 

(PL - parent list, S - start symbol, LAC - list of anonymous classes).

Rule 6R is used to define grammar start symbols. Class C is a possible

grammar start symbol in the case that its parent list PL is empty or if all

classes from PL are anonymous classes. Grammars can have more

than one start symbol. An application example for the rule 6R can be

seen in chapter 3.2, step 5.

The rules that affect and alter the primary data structure:

7.    ? , *,O ,(NC) typeTrans:: CP NC) O, (C,R7  (O -

operator). Rule 7R is used to formalize the number of repetitions of

some classes. The rule accepts the following inputs: class C , operator

O , which defines the number of repetitions of some class and the new

class NC . The rule is carried out in three steps. In the first step, the

children of class C are assigned to class NC (Child(C) Child(NC) ).

In the second step, the children of class C are removed

(ds(C)RemoveChil). In the third step the production is formalized. An

application example for rule 7R can be seen in chapter 3.2, step 6.

8.  RLR8 T Nc T :: CP NC) ,T ,T (C,R
L

 (LT - left terminal, DT -

right terminal). Rule 8R is used to enrich the syntax. Either the left or the

right terminal can be omitted. The rule is carried out in three steps. In the

first step, the children of class C are assigned to the class NC

(Child(C) Child(NC) ). In the second step, the children of class C

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 331

are removed (ds(C)RemoveChil). In the third step, the production is

formalized. An application example for rule 8R can be seen in chapter

3.2, step 7.

9.  2M1M219some C T NC::CP NC),T,C,(CR  (MT - middle

terminal). Rule some9R is used to formalize productions which describe

restrictions (some). The rule accepts the following inputs: class 1C to

which the restriction refers, class 2C which determines the possible

values of class 1C , the middle terminal MT and the new class NC .

The rule is carried out in three steps. In the first step, the children of class

1C are assigned to class NC (Child(C) Child(NC) ). In the second

step the children of class 1C are removed ()ds(CRemoveChil 1). In the

third step the production is formalized.

10.   LofCs;...CC C ,...CC C:: CPLofCs) C, (R n21n 2 110 

 TCL(LofCs)C if ii  (LofCs - list of classes)

The rule 10R accepts the following inputs: class C and a list of classes

LofCs . Rule 10R is used to add a production in the form

n 21 C ... C C:: C  into the grammar G . Classes from LofCs that are

also leafs of the class diagram, are transformed, with the use of rule 3R

to the set of terminals T . The rule is used on the first level. The class

Thing is ignored in the transformation. An application example for rule

10R can be seen in chapter 3.2, step 4.

This chapter lists some of the rules necessary for the transformation of an
onotology into a DSL grammar.

4.2. Ontology to DSL transformation: Home robot example

The prerequisite of the Ontology to DSL transformation (Ontology2DSL) is a
proper understanding of the target ontology. The language designer must
understand what the ontology describes and why it was designed. Moreover,
the language designer needs to know what the DSL requirements are, and
what the purpose of the DSL is. In most cases, the DSL requirements and the
ontology do not overlap in all concepts. A single ontology, for instance the

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 332

HRO, can be used to develop many different DSLs. We continue with the
examination of the DSL used for the home robot. The robot is tasked with
performing various chores on different locations in the household.

The transformation requires a list of ontology classes and a collection of
individually disjoint classes. All the required data was obtained from the OWL
document. During the transformation, we also relied on the class hierarchy
presented in Fig. 4.

Classes. Commodity, Food&Drink, Juice, Sweets, Beer,
Appliance, TV, VideoCamera, HauseholdEquipment, Door,

Window, Task, Close, Bring, Check, SwitchOn, Robot,

Location, BedRoom, LivingRoom, Kitchen.

(Class Thing and other classes from Fig. 4, which are not mentioned in the
above list, are ignored in the transformation.)
Disjoint classes.
– Food&Drink, Appliance and HauseholdEquipment

– Juice, Sweets and Beer

– TV and VideoCamera

– Door and Window

– Close, Check, Bring and SwitchOn

– Robot, Commodity, Location and Task

– BedRoom, LivingRoom and Kitchen

Step 1. In the first step, all classes are converted into nonterminals.
R1(Robot)

N = {Robot}

Rule 1R in this step is used on all the classes and results in the following set

of nonterminals N .
N = {Commodity, Food&Drink, Juice, Sweets, Beer,

 Appliance, TV, VideoCamera, HauseholdEquipment,

 Door, Window, Task, Close, Bring, Check, SwitchOn,

 Robot, Location, BedRoom, LivingRoom, Kitchen}

Step 2. The transformation is continued on the lowest, third, level. It is

performed with the rules 3R , 5aR , and 5cR .

R5c(Food&Drink, {Juice, Sweets, Beer}, string)

R3(Juice)

R3(Sweets)

R3(Beer)

R5a(Appliance {TV, VideoCamera})

R3(TV)

R3(VideoCamera)

R5a(HauseholdEquipment {Door, Window})

R3(Door)

R3(Window)

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 333

T = {»juice«, »sweets«, »beer«, »TV«, »videoCamera«,

 »door«, »window«}

P = { Food&Drink ::= Juice | Sweets | Beer | string

Juice ::= »juice«

Sweets ::= »sweets«

Beer ::= »beer«

Appliance ::= TV | VideoCamera

TV ::= »TV«

VideoCamera ::= »videoCamera«

HauseholdEquipment ::= Door | Window

Door ::= »door«

Window ::= »window«}

Step 3. The transformation is continued on the second level. The rules used

are 3R and 5aR .

R5a(Commodity, {Food&Drink, Appliance,

 HouseholdEquipment})

R3(Food&Drink)

R3(Appliance)

R3(HouseholdEquipment)

R5a(Location, {BedRoom, LivingRoom, Kitchen})

R3(BedRoom)

R3(LivingRoom)

R3(Kitchen)

R5a(Task, {Close, Check, Bring, SwitchOn})

R3(Close)

R3(Check)

R3(Bring)

R3(SwitchOn)

T = {…, »food&Drink«, »appliance«, »householdEquipment«,

 »bedRoom«, »livingRoom«, »kitchen«, »close«,

 »check«, »bring«, »switchOn«}

P = { …, Commodity ::= Food&Drink | Appliance |

 HouseholdEquipment

Food&Drink ::= »food&Drink«

Appliance ::= »appliance«

HouseholdEquipment ::= »householdEquipment«

Location ::= BedRoom | LivingRoom | Kitchen

BedRoom ::= »bedRoom«

LivingRoom ::= »livingRoom«

Kitchen ::= »kitchen«

Task ::= Close | Bring | Check | SwitchOn

Close ::= »close«

Check ::= »check«

Bring ::= »bring«

SwitchOn ::= »switchOn«}

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 334

Step 4. The first level is transformed with the 10R rule.

R10(Robot, {Task, Commodity, Location})

T = {…, »Task«, »Commodity«, »Location«}

P = {…, Robot ::= Task Commodity Location}

Step 5. In the next step, all possible grammar start symbols are extracted.
R6(Commodity, {})

R6(Task, {})

R6(Robot, {})

R6(Location, {})

R5a(S, {Commodity, Task, Robot, Location})

S = {Commodity, Task, Robot, Location }

P = {…, S ::= Commodity | Task | Robot | Location}

Step 6. In the next step, rule 7R is used. Strikethrough production is

eliminated from the set of production.
R7(Commodity, +, Commodities)

P = { …, Commodity :: = Food&Drink | Appliance |

 HauseholdEquipment

 Commodity::= Commodities
+

 Commodities ::= Food&Drink | Appliance |

 HouseholdEquipment}

Step 7. In the last step the syntax is enriched. Strikethrough productions are
eliminated from the set of production.
R8(Location, {»from«| »in«}, {}, LocationE)

LocationE:: = {»from«| »in«} Location

P = { …, S ::= Robot | Commodity | Location | Task

Robot ::= Task Commodity Location

S ::= Robot | Commodity | LocationE | Task

Robot ::= Task Commodity LocationE}

Obtained grammar:
P = { Robot ::= Task Commodity LocationE

Task ::= Close | Check | Bring | SwitchOn

Close ::= »close«

Check ::= »check«

Bring ::= »bring«

SwitchOn ::= »switchOn«

Commodity::= Commodities
+

Commodities ::= Food&Drink | Appliance |

 HouseholdEquipment

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 335

Food&Drink ::= Juice | Sweets | Beer | string

Food&Drink ::= »food&Drink«

Juice ::= »juice«

Sweets ::= »sweets«

Beer ::= »beer«

Appliance ::= TV | VideoCamera

Appliance ::= »appliance«

TV ::= »TV«

VideoCamera ::= »videoCamera«

HouseholdEquipment ::= Door| Window

HouseholdEquipment ::= »householdEquipment«

Door ::= »door«

Window ::= »window«

Location ::= BedRoom | LivingRoom | Kitchen

BedRoom ::= »bedRoom«

LivingRoom ::= »livingRoom«

Kitchen ::= »kitchen«

LocationE :: = {»from«| »in«} Location}

Program examples:

close door in bedRoom

check window in kitchen

switchOn TV in livingRoom

bring beer chips from kitchen

5. Ontology2DSL

The Ontology2DSL framework enables automated grammar construction as
well as one or more programs from a target ontology. The framework accepts
an OWL document as an input, parses it and uses the information retrieved
to create and fill internal data structures. Then a transformation pattern,
annotated with the proper rule execution order, is applied over the data
structures and the corresponding grammar and programs are constructed.
The resulting grammar, acquired fully automatically, is then inspected by a
DSL engineer in order to verify it and find any irregularities. If any
irregularities are found, they are tasked with their resolution with regard to the
source and type. The engineer can either correct the constructed grammar,
programs or the transformation pattern (i.e. change the order in which the
rules are applied or construct new rules and include them in the pattern). The
framework then rebuilds the grammar and programs as required. The rebuild
process can utilize a new transformation pattern on an old ontology, an old
pattern on a new ontology, or a new pattern on a new ontology. The process
is repeated until the DSL engineer can no longer find any irregularities. The
framework also has the option of constructing in sequential steps instead of
the fully automated method. In that case, the engineer can execute each rule

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 336

individually and can, at any time, return to a previous step if the result proves
to be unsatisfactory. This method allows for complete control over the
grammar and the resulting program’s construction process. The final (correct)
grammar can later be used by the DSL engineer for the development of DSL
tools. The latter are developed with the use of language development tools,
such as LISA [29] or VisualLISA [30]. The development of DSL tools from an
ontology is a process demonstrated in the workflow of Fig. 5.

Fig. 5. Ontology2DSL workflow

5.1. Architecture of the framework

The architecture of the Ontology2DSL framework, shown in Fig. 6 is
comprised of the following:

– OWL parser. The parser is tasked with the parsing of OWL documents

and the filling of the data structure with the retrieved data. The data
structure is composed of the following individual data structure types: a
class tree, an object properties tree, a datatype properties tree, a list of
anonymous classes, a list of disjoint classes, a list of instances and a list of
ID's of all the ontology building blocks in the aforementioned lists. Part of
the data structure for the HRO is presented in Fig. 7. The building of
hierarchy objects (trees) and lists is done with a sequential scan of the
OWL document. Each retrieved element is added to an appropriate list and
is assigned all the necessary information. A check is also performed to
determine if the new element possesses any new information that should
be assigned to other elements. In instances where the new element has
some information that is important for the elements that have not yet been
added to any of the trees or lists, that information is cached until the
required elements are not added to the data structure.

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 337

– Rule reader. The reader is tasked with the sequential read operations on
the rules list. The reader forwards each rule to the rule execution and
transaction logger components.

– Rule execution component (REC) is used for the execution of individual
rules. The necessary data for the execution is retrieved automatically by
REC from the data structure. After a rule is executed, REC refreshes the
data structure if the rule execution result requires it. Also, the set of
grammar elements are refreshed and parts of the code are written out. The
element set of the grammar in the final result becomes the final grammar
and the code parts become the programs that represent the final output of
the Ontology2DSL framework.

– Transaction logger. After the execution of every rule, the system’s
current state is logged by the transaction logger. The logger stores the
entire content of the data structure, the last executed rule, the output of the
rule execution component and the current grammar and program parts.

Fig. 6. Architecture of the framework

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 338

Fig. 7. An excerpt of the data structure for HRO

6. Conclusion and future work

In this paper, we focused on the presentation of a new design methodology
that enables the development of a language grammar based on the OBDA.
The limitations of the CDA have been examined and a replacement in the
form of an OBDA has been proposed. Both analyses have been presented
and compared for similarities and differences. Grammar development, based
on the OBDA, and the Ontology2DSL framework were also briefly presented.

The results of the comparison between both analyses show that the OBDA
is comparable to the CDA and also provides some additional information that
can be used to specify language behavior. As such, it is also suitable as an
alternative to CDA for grammar development. The framework Ontology2DSL
is still under development. The current version is composed of all of the basic
components: an OWL parser, a rule reader, REC and a transaction logger. As

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 339

opposed to other components that are fully developed, REC is not fully
developed, as it does not yet construct code fragments. The framework in the
current development phase can only be used to construct grammar.
Additionally, in the current version, a DSL engineer cannot add custom rules
and create custom transformation patterns. In the future, we intend to fully
develop the Ontology2DSL framework. We will also focus on validating the
developed grammar and the use of previously unused information (i.e. for
semantics development) that was acquired with an OBDA. The results of our
research work will also include the transformation of the developed DSL to a
form that is compatible with compiler generators, such as LISA [29] or
VisualLISA [30]. Our future work also encompasses empirical studies to
evaluate the success of our methodology and to compare it with the existing
methodologies. One of our future activities, to complete the methodology
Ontology2DSL, will be an evaluation of DSLs. As shown in study [20], this
activity is often underestimated by language developers. There is a plan to
support this activity with a tool based on a questionnaire similar to [31] which
will further improve the language.

References

1. Mernik, M., Heering, J., Sloane, A. M.: When and how to develop domain-specific
languages. ACM Computing Surveys, Vol. 37, No. 4, 316-344. (2005)

2. Kosar, T., Oliveira, N., Mernik, M., Veranda Pereira, M. J., Črepinšek, M., da
Cruz, D., Henriques, P. R.: Comparing General-Purpose and Domain-Specific
Languages: An Empirical Study. Computer Science and Information Systems,
Vol. 7, No. 2, 247-264. (2010)

3. Thibault, S., Marlet, R., Consel, C.: Domain-Specific Languages: From Design to
Omplementation Application to Video Device Drivers Generation. Conception,
Implementation and Application. IEEE Transactions on Software Engineering,
Vol. 25, No. 3, 363-377. (1999)

4. Thibault, S.: Domain-Specific Languages: Conception, Implementation and
Application. Phd thesis. Université de Rennes, France. (1998)

5. Kosar T., Martínez López P.E., Barrientos P.A., Mernik M.: A preliminary study
on various implementation approaches of domain-specific language. Information
and Software Technology, Vol. 50, No. 5, 390-405. (2008)

6. Mernik, M., Hrnčič, D., Bryant, B. R., Javed, F.: Applications of grammatical
inference in software engineering : domain specific language development. In:
Martin-Vide, C. (ed.): Scientific applications of language methods, Vol. 2.
Imperial College Press, London, 421-457. (2011)

7. Taylor, R. N., Tracz, W., Coglianese, L.: Software development using domain-
specific software architectures. ACM SIGSOFT Software Engineering Notes, Vol.
20, No. 5, 27-38. (1995)

8. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented
Domain Analysis (FODA). Technical report. (1990)

9. Simons, M., Anthony, J.: Weaving the Model Web: A Multi-Modeling Approach to
Concepts and Features in Domain Engineering. In Proceedings of the 5th
International Conference on Software Reuse. IEEE Computer Society, Victoria,
BC, Canada, 94-102. (1998)

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 340

10. Lacy, L.: Representing Information Using the Web Ontology Language. Trafford
Publishing. (2005)

11. Hebeler, J., Fisher, M., Blace, R., Perez-Lopez, A.: A Semantic Web
Programming. Wiley Publishing. (2009)

12. Studer, R., Benjamins, R., Fensel, D.: Knowledge engineering: Principles and
methods. Data & Knowledge engineering, Vol. 25, No. 1-2, 161-198. (1998)

13. Tairas, R., Mernik, M., Gray, J.: Using Ontologies in the Domain Analysis of
Domain-Specific Languages. In: Chaudron, M. R. V (ed.): Models in Software
Engineering. Lecture Notes in Computer Science, Vol. 5421. Springer-Verlag,
Berlin Heidelberg New York, 332-342. (2009)

14. Miksa. K., Sabina, P., Kasztelnik, M.: Combining Ontologies with Domain
Specific Languages: A Case Study from Network Configuration Software. In:
Assmann, U., Bartho, A., Wende, C. (eds.): Reasoning Web. Semantics
technologies for software engineering, Vol. 6325. Springer-Verlag, Berlin
Heidelberg New York, 99-118. (2010)

15. Guarino, N.: Semantic Matching: Formal ontological distinctions for information
organization, extraction, and integration. In: Pazienza, M. T.: Information
Extraction: A Multidisciplinary Approach to an Emerging Information Technology.
Lecture Notes in Computer Science, Vol. 1299. Springer-Verlag, Berlin
Heidelberg New York, 139-170. (1997)

16. Ontology-Based Evaluation and design of domain-specific visual modeling
languages, http://www.loa-cnr.it/Guizzardi/ISD2005.pdf.

17. Walter, T., Parreiras, F. S., Staab, S.: OntoDSL: An Ontology-Based Framework
for Domain-Specific Languages. In: Schürr, A., Selic, B. (eds.): Model Driven
Engineering Languages and Systems. Lecture Notes in Computer Science, Vol.
5795. Springer-Verlag, Berlin Heidelberg New York, 408-422. (2009)

18. Bräuer, M., Lochmann, H.: An Ontology for Software Models and Its Practical
Implications for Semantic Web Reasoning. In: Beckhofer, S., Hauswirth, M.,
Hoffmann, J., Koubarakis, M. (eds.): The Semantic Web: Research and
Applications. Lecture Notes in Computer Science, Vol. 5021. Springer-Verlag,
Berlin Heidelberg New York, 34-48. (2008)

19. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools and
Applications. ACM Press/Addison-Wesley Publishing Co. (2000)

20. Gabriel, P., Goulão, M., Amaral, V.: Do Software Languages Engineers Evaluate
their Languages? In Proceedings of the XIII Congreso Iberoamericano en
"Software Engineering" (CIbSE'2010). Cuenca, Ecuador, 149-162. (2010)

21. Stabb, S., Studer, R., editors. Handbook on Ontologies. Springer Verlag Berlin
Heidelberg. (2009)

22. Corcho, Ó., Gómez-Pérez, A.: A Roadmap to Ontology Specification Languages.
In: Dieng, R., Corby, O.: Knowledge Engineering and Knowledge Management.
Lecture Notes in Computer Science, Vol. 1937. Springer-Verlag, Berlin
Heidelberg New York, 80-96. (2000)

23. Milanović, M., Gašević, D., Giurca, A., Wagner, G., Lukichev, S., Devedžić, V.:
Model Transformations to Bridge Concrete and Abstract Syntax of Web Rule
Languages. Computer Science and Information Systems, Vol. 6, No. 2, 47-85.
(2009)

24. Cho, K., Kawamura, T.: Blogalpha: Home automation robot using ontology in
home environment. In Proceedings of the 25

th
 International Multi-Conference

Artificial Intelligence and Applications. ACTA Press Anaheim, CA, USA, 197-203.
(2007)

http://www.springerlink.com/content/rv201xh6tp19/?p=b794268ac86e4039bf4a5da5f07367fd&pi=0
http://www.springerlink.com/content/rv201xh6tp19/?p=b794268ac86e4039bf4a5da5f07367fd&pi=0
http://www.springerlink.com/content/rv201xh6tp19/?p=b794268ac86e4039bf4a5da5f07367fd&pi=0
http://www.springerlink.com/content/t4343n5736k6/?p=e90a2dbc6a2443e9afcea50348de2164&pi=0
http://www.springerlink.com/content/t4343n5736k6/?p=e90a2dbc6a2443e9afcea50348de2164&pi=0
http://www.loa-cnr.it/Guizzardi/ISD2005.pdf
http://www.springerlink.com/content/rtt685366016/?p=59eddd8dbf7e4feeadc45f5102055bd5&pi=0
http://www.springerlink.com/content/rtt685366016/?p=59eddd8dbf7e4feeadc45f5102055bd5&pi=0
http://www.springerlink.com/content/rtt685366016/?p=59eddd8dbf7e4feeadc45f5102055bd5&pi=0
http://www.springerlink.com/content/r5p601w63k72/?p=e7eddc8a1e654605a99147f61fd90337&pi=0
http://www.springerlink.com/content/r5p601w63k72/?p=e7eddc8a1e654605a99147f61fd90337&pi=0
http://www.springerlink.com/content/r5p601w63k72/?p=e7eddc8a1e654605a99147f61fd90337&pi=0
http://www.uazuay.edu.ec/cibse/1_motivation.php
http://www.springerlink.com/content/6lu5q80bx8j7/?p=a53c2216113b4e3a87558a6efe3a1487&pi=0

Ontology Driven Development of Domain-Specific Languages

ComSIS Vol. 8, No. 2, Special Issue, May 2011 341

25. Van Deursen, A., Klint, P.: Domain-specific Language Design Requires Feature
Descriptions. Journal of Computing and Information Technology, Vol. 10, No. 1,
1-17. (2002)

26. Welcome to Protégé. [Online]. Available: http://protege.stanford.edu/ (current
April 2011)

27. Jung, H., Park, S.: A Grammar-based Model for the Semantic Web. Computer
Science and Information Systems, Vol. 8, No. 1, 73-100. (2011)

28. Aho, A. V., Lam, M. S., Sethi, R., Ullman, J. D.: Compilers: Principles,
Techniques, and Tools. Addison Wesley, USA. (2007)

29. Mernik, M., Lenič, M., Avdičauševič, E., Žumer, V.: LISA: An Interactive
Environment for Programming Language Development. In: Horspool, R. N. (ed.):
Compiler Construction. Lecture Notes in Computer Science, Vol. 2304. Springer-
Verlag, Berlin Heidelberg New York, 1-4. (2002)

30. Oliveira, N., Veranda Pereira, M. J., Henriques, P. R., da Cruz, D., Cramer, B.:
VisualLISA: A Visual Environment to Develop Attribute Grammars. Computer
Science and Information Systems, Vol. 7, No. 2, 247-264. (2010)

31. Haugen, O., Mohagheghi, P.: A Multi-dimensional Framework for Characterizing
Domain Specific Languages. In Proceedings of the 7th OOPSLA Workshop on
Domain-Specific Modeling (DSM’07). Montréal, Canada. (2007)

Ines Čeh received the B.Sc. degree in computer science at the University of
Maribor, Slovenia in 2008. Her research interests include domain-specific
languages and ontologies. She is currently a Ph.D student, employed as a
researcher at the University of Maribor, Faculty of Electrical Engineering and
Computer Science.

Matej Črepinšek received the Ph.D. degree in computer science at the
University of Maribor, Slovenia in 2007. His research interests include
grammatical inference, evolutionary computations, object-oriented
programming, compilers, grammar-based systems and Android application
development. He is currently a teaching assistant at the University of
Maribor, Faculty of Electrical Engineering and Computer Science.

Tomaž Kosar received the Ph.D. degree in computer science at the
University of Maribor, Slovenia in 2007. His research is mainly concerned
with design and implementation of domain-specific languages. Other
research interest in computer science include also domain-specific modelling
languages, empirical software engineering, software security, generative
programming, compiler construction, object oriented programming, object-
oriented design, refactoring, and unit testing. He is currently a teaching
assistant at the University of Maribor, Faculty of Electrical Engineering and
Computer Science.

http://protege.stanford.edu/

Ines Čeh, Matej Črepinšek, Tomaž Kosar, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 342

Marjan Mernik received the M.Sc. and Ph.D. degrees in computer science
from the University of Maribor in 1994 and 1998, respectively. He is currently
Professor of Computer Science at the University of Maribor. He is also
Visiting Professor of Computer and Information Sciences at the University of
Alabama at Birmingham, and at the University of Novi Sad, Faculty of
Technical Sciences. His research interests include programming languages,
compilers, domain-specific (modeling) languages, grammar-based systems,
grammatical inference, and evolutionary computations. He is a member of
the IEEE, ACM and EAPLS.

Received: December 31, 2010; Accepted: May 13, 2011.

DOI: 10.2298/CSIS101228017O

Domain-Specific Language for Coordination
Patterns

Nuno Oliveira1, Nuno Rodrigues1,2, and Pedro Rangel Henriques1

1 University of Minho - Department of Computer Science,
Campus de Gualtar, 4715-057, Braga, Portugal

{nunooliveira,prh}@di.uminho.pt
2 IPCA – Polytechnic Institute of Cavado and Ave

Campus do IPCA, Barcelos, Portugal
nfr@ipca.pt

Abstract. The integration and composition of software systems requires
a good architectural design phase to speed up communications between
(remote) components. However, during implementation phase, the code
to coordinate such components often ends up mixed in the main business
code. This leads to maintenance problems, raising the need for, on the
one hand, separating the coordination code from the business code, and
on the other hand, providing mechanisms for analysis and comprehension
of the architectural decisions once made.
In this context our aim is at developing a domain-specific language, CoordL,
to describe typical coordination patterns. From our point of view, coordi-
nation patterns are abstractions, in a graph form, over the composition
of coordination statements from the system code. These patterns would
allow us to identify, by means of pattern-based graph search strategies,
the code responsible for the coordination of the several components in a
system. The recovering and separation of the architectural decisions for a
better comprehension of the software is the main purpose of this pattern
language.

Keywords: coordination patterns, software architectures, domain-specific
languages, CoordInspector.

1. Introduction

Software Architecture [17] is a discipline within Software Development [16] con-
cerned with the design of a system. It embodies the definition of the structure
and the organisation of components which will be part of the software system.
The architecture design also concerns the way these components interact with
each other as well as the constraints in their interactions. In their turn, software
components [12] may be seen as objects in the object-oriented paradigm, how-
ever, besides data and behaviour, they may embody whatever one prefers as
a software abstraction. Although they may have their own functionality (some-
times a component is a remote system), most of the times they are developed
to be composed with other components within a software system and to be

Nuno Oliveira, Nuno Rodrigues, and Pedro Rangel Henriques

reused from one system to another, giving birth to component-based software
engineering methodology [14].

The definition of the interaction between the components of a system may
be seen from two perspectives: (i) integration and (ii) coordination. The dif-
ferences between these two perspectives is slightly none. The former is related
with the integration of some functionalities of a system into a second one, which
needs to borrow such a computation; the latter is concerned with the low level
definition of the communication and its constraints between the components of
a system. Such interaction definition between the components can be either
endogeneous or exogeneous. In the latter, the coordination of components is
made from the outside of a component, not needing to change its internals to
make possible the communication with other components [4], the former is the
dual methodology.

This rule of separating computational code from coordination code is not
always adopted by software developers. The code is often weaved in a single
layer where there is no space for separation of these kind of concerns. This
behaviour could raise problems in the future of the software system, namely in
maintenance phase. These problems are mainly concerned with the compre-
hension of both the code and the architectural decisions, which hampers their
analysis.

Reverse engineering [28] of legacy systems for coordination layer recovery
would play an important role on maintenance phases, diminishing the difficul-
ties on analysing the architectural decisions. But, extracting code dedicated to
the coordination of the system components from the entire intricate code is not
an easy task. There is not a standard (nor unique) way of programming the in-
teractions between the components. However, and fortunately, there is a great
number of code patterns, which the majority of the developers use to write coor-
dination operations. Once the code of a system can be represented as a graph
of dependencies between the statements and procedures, the so-called Sys-
tem Dependence Graph (SDG) [15], one is also able to represent code patterns
as graphs, allowing the search for these patterns in the SDG.

In this context, we define the notion of coordination patterns as follows:

Given a dependence graph G, as in [26], a coordination pattern is an
equivalence class, a shape or a sub-graph of G, corresponding to a
trace of coordination policies left in the system code.

In this paper we show how we developed a Domain-Specific Language (DSL)
[8, 21] named CoordL, to write coordination patterns. The main objective of this
language is to translate CoordL specifications into a suitable graph represen-
tation. Such representation would feed a graph-based search algorithm, to be
applied to a dependence graph, in order to find the coordination code weaved in
the system code. In Section 2 we address related work; in Section 3 we present
and describe the syntax of CoordL; in Section 4 we address its semantics; in
Section 5 we show how we used the AnTLR system to define the syntax and
the semantics of CoordL; in Section 6 we expatiate upon actual and future ap-

344 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Domain-Specific Language for Coordination Patterns

plications of the language and the patterns. Finally, Section 7 presents some
conclusions about the presented research.

2. Related Work

CoordL is a DSL to write coordination patterns with the purpose of extracting
and separating the coordination layer from the source code of a component-
based software system. The main domain of this work is the reverse engineer-
ing (of legacy software systems architecture) and the idea of the code sepa-
ration between concern-oriented layers aims to recover architectural decisions
and ease the comprehension of the entire system and its architecture which
is one of the most important parts within the maintenance phase of software
engineering.

The recovery of the system architecture for software comprehension is not
a novelty. Tools like Alborz [27] or Bauhaus [24] recover the blueprints of an
object-oriented system. Bauhaus recovers architectures as a graph where the
nodes may be types, routines, files or components of the system, and the edges
model the relations between these nodes. Such architectural details are pre-
sented in different views for an easy understanding of the global architecture.
Alborz presents the architecture as a graph of components and keeps a relation
between this graph and the source code of the software system. Our main aim
is not at visualising the blueprints of a system, but to provide mechanisms for
understanding the rationale behind the architectural decisions once made. This
embodies the recovering of the coordination code. Although visualization is re-
ally important for architectural analysis, the tools mentioned before, and even
more recent and focused tools like [19] do not support the mentioned feature
and do not take advantage of code patterns to do the job.

Although we may reference Architectural Patterns [6] or Design Patterns [9]
as related work, because of the common methodology of patterns and the bor-
rowed notions and description topics, there is a huge difference between their
application. While coordination patterns are used to lead a reverse engineering
to recover architectural decisions, and are focused on low-level compositions of
code, the architectural/design patterns work at a higher level, being used to de-
fine the architecture of a system in earlier phases of the software development
process [16]. Patterns and patterns finding are a very interesting matter on data
mining discipline [5], and are being applied on several areas, with focus on so-
cial networks [18, 13]. Although the work reported in this paper is far from the
area of data mining and social networks, the purpose of CoordL is to extract
useful information based on patterns that are a result of previous knowledge on
how coordination of components is made. The recovering algorithms that we
may use may be based on those used to mine data on social networks since
they also rely on graph-based search. The applications of the recovering strate-
gies on data mining is specially concerned with optimization and adaptability to
new contexts. By recovering the architectural decisions, also optimizations and
adaptability (on a different perspective than that of data mining) may be also

ComSIS Vol. 8, No. 2, Special Issue, May 2011 345

Nuno Oliveira, Nuno Rodrigues, and Pedro Rangel Henriques

a valuable application of the subject in this paper. In fact there is, somehow, a
parallel between data mining and our work that we may follow, but the essence
of both kind of works is very different. The same does not happen with process
mining [7], which, in fact, is very close to our work. The search for business pro-
cess workflows [1] makes heavy use of process mining techniques. Although
process mining is typically based on event logs, a dependence graph may also
uncover traces of a workflow. A workflow between components or modules is
what, at the end, we want to obtain for the coordination code separation.

Architecture Description Language’s (ADL), are languages used to formally
describe a system components’ and the interactions between them. Although
CoordL is not to be considered an ADL, we must acknowledge that there are
some similarities in the concepts embodied in these languages and those en-
capsulated in our. Some well-known examples of these languages are ACME [11],
ArchJava [2], Wright [3], and Rapide [20]. The great majority of these lan-
guages has tool support for analysing the described architecture. Such anal-
ysis, made at high level, allows one to reason about the correctness of the
system, and may provide important information about future improvements that
can, or can not, be done according to the actual state of the architecture.

According to our knowledge, there is no other language with the same spe-
cific purpose as CoordL.

3. CoordL - Design and Syntax

The design of a DSL is always a task embodying some well defined steps. As a
first step, one needs to collect all the information about the domain in which the
language will actuate. Afterwards, this information must be properly organised
using, for instance, ontologies [29]. Once the main concepts of the domain are
identified, one needs to choose those that are really needed to be encapsulated
in the syntax of the language; this leads to the last step which concerns the
choice of a suitable syntax for the language.

Figure 1 presents an ontology to organise the domain knowledge of the area
where we want to actuate. The main concept of this domain is the coordination
pattern. The majority of the concepts incorporated in this domain description
are wider than what we show, however, to keep the description limited to the
domain, we narrowed the possible relations between each concept, as well as
the examples they may have.

Note that in this ontology we use operational relations (marked as dashed
arrows) besides the normal compositional ones. This provides a deeper com-
prehension of how the concepts interact between each other in the domain.

The core of the knowledge base represented in Figure 1, describes that a
coordination pattern is a part of a coordination dependence graph (CDG) [26],
abstracting code which is seen as a composition of statements concerned with
coordination aspects, and are used to analyse architectures. As a novelty, the
web of knowledge shows that coordination patterns communicate with each
other through ports.

346 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Domain-Specific Language for Coordination Patterns

Fig. 1. Ontology Describing the Coordination Pattern Domain Knowledge

ComSIS Vol. 8, No. 2, Special Issue, May 2011 347

Nuno Oliveira, Nuno Rodrigues, and Pedro Rangel Henriques

From this description, and knowing that the main objective of CoordL is
to define a graph over the composition of statements in the source code of a
system, one needs some kind of graph representation to be embodied in the
language. An obvious reference for representing graphs in a textual form is the
DOT language [10], so, CoordL borrows some aspects from that language. The
notion of communication ports (in and out) came from the ACME language [11],
although the notion of ports is very different in these two contexts. To know
which ports exist in a pattern, the notion of arguments – taken from any general-
purpose programming language (GPL) – was adopted . The description of what
are these ports led to the introduction of declarations and initialisations in the
language. Declarations describe the types of statements represented as nodes
in the graph, while initialisations describes the service call which is performed
by the node.

From this textual description we defined a syntax by means of a context free
grammar (partially) shown in Listing 1.1.

Listing 1.1. Partial grammar for CoordL
1 lang → pa t te rn +
2 pa t t e rn → ID ‘ (’ po r t s ‘ | ’ po r t s ‘) ’ ‘{ ’ dec ls roo t graph ‘} ’
3 por t s → l s t I D
4 decls → (dec l ‘ ; ’) +
5 dec l → ‘ node ’ l s t I D ‘= ’ nodeRules | ‘ f o rk ’ l s t I D | ‘ j o i n ’ l s t I D |
6 ‘ t t r i g g e r ’ l s t I D | ID ins tances
7 i ns tances → i ns tance (‘ , ’ i ns tance)∗
8 i ns tance → ID ‘ (’ po r t s ‘ | ’ po r t s ‘) ’
9 . . .

10 r oo t → ‘ root ’ ID ‘ ; ’
11 graph → aggregat ion | connect ions
12 aggregat ion → p a t t r e f (‘ + ’ p a t t r e f)∗
13 p a t t r e f → cnode | ‘ (’ aggregat ionn ‘) ’ connect ion
14 . . .
15 cnode → node | ID ‘ . ’ propTT
16 . . .
17 connect ion → ‘{ ’ opera t ions ‘} ’ ‘@’ ‘ [’ p o r t s a l i v e ‘ | ’ p o r t s a l i v e ‘] ’
18 . . .
19 opera t ion → cnode l i n k cnode | f o r k | j o i n | t t r i g g e r
20 . . .
21 f o r k → node s p l i n k ‘{ ’ cnode ‘ , ’ cnode ‘} ’
22 . . .
23 l i n k → ‘− ’ ID ‘− ’ ‘> ’ | ‘− ’ ‘ (’ ID ‘ , ’ ID ‘) ’ ‘− ’ ‘> ’
24 . . .

Figure 2 presents two examples of patterns written with CoordL. Pattern a),
known as the Asynchronous Sequential Pattern, is a pattern often used when
the system has to invoke a series of services but the order of the answer is not
important. Pattern b), known as the Joined Asynchronous Sequential Pattern,
is a transformation of the first pattern to impose order in the responses.

Both of these patterns address different aspects of the syntax, but the main
structure of the patterns is the same. Moreover, they address the composition
and reuse of patterns.

Regard, for instance, the pattern in Figure 2.a). It has a unique identifier
(pattern 1) and declares in and out ports, identified by p0 and p1, p2 and p3
respectively. The in ports go on the left side of the ‘|’ (bar) symbol, and the
out ports on the right. Then, a space is reserved for node declarations and

348 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Domain-Specific Language for Coordination Patterns

initialisations. There are 5 types of nodes in CoordL, namely node, fork, join,
ttrigger and pattern instance. In Figure 2.a) we use the node and fork types,
and in Figure 2.b) we use node, join and pattern instance types. The ttrigger
type is similar to fork and join.

Nodes of type node require an initialisation, describing a list of rules ad-
dressing the corresponding coordination code fragment, the type of interaction
and the calling discipline. These rules are composed using the && (and) and/or
|| (or) logical operators, and the list must, at least, embody one of the following:
(i) Statement (st), presents the code fragment of the statement responsible by
the coordination request. This statement may be described by a regular ex-
pression or may be a complete sentence; (ii) Call Type (ct), defines the type
of service requested. The options are not limited, but some of the most used
are web services, RMI or .Net Remoting; (iii) Call Method (cm), defines the
method in which the request is made. It can be either synchronous or asyn-
chronous, and (iv) Call Role (cr), describes the role of the component that is
requesting the service. It can be either consumer or producer.

1 pa t t e rn 1 (p0 | p1 , p2 , p3){
2 node p0 , p3 { s t == ”∗ ” }
3 node p1 , p2 {
4 s t == ” c a l l i n g (∗) ” &&
5 c t == webservice &&
6 cm == sync &&
7 cr == consumer
8 } ;
9 f o r k f1 , f2 ;

10 r oo t p0 ;
11

12 { f2 − (x ,w)−> (p3 , p2)}
13 { f1 − (x , y)−> (f2 , p1)}
14 {p0 −x−> f1}
15 }

(a)

1pa t t e rn 2 (p1 | p2){
2node p1 , p2 , pa = {s t == ”∗ ”} ;
3pa t t e rn 1 p a t t (i 1 | o1 , o2 , o3) ;
4j o i n j1 , j 2 ;
5r oo t p1 ;
6

7(p1 + p a t t + p2)
8{p1 −x−> p a t t (i 1) ,
9(p a t t (o1) , p a t t (o3)) − (x , y)−> j 1}
10{(j1 , p a t t (o2)) − (x ,w)−> j 2}
11{ j 2 −x−> p2}
12}

(b)

Fig. 2. Definition of Two Coordination Patterns with CoordL

Pattern instance nodes have the type of an existent pattern. In Figure 2.b),
line 3, it is declared an instance of pattern pattern 1. Each instance of a
pattern must be initialised with unique identifiers referring to all the in and out
ports of the pattern typing it.

In CoordL, we define patterns by giving them a name, defining the ports
and their body. However, nodes and other anonymous structures used (within
the body) to define a pattern are also seen as patterns (or pseudo-patterns
for disambiguation purposes). The main operations over patterns (including
pseudo-patterns) are the aggregation and the connection. Aggregation3 is the

3 Aggregation may be used alone in a pattern body definition, but will never define a
usable pattern.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 349

Nuno Oliveira, Nuno Rodrigues, and Pedro Rangel Henriques

combination of two or more patterns by putting them side-by-side, this is, not
making any connection between their ports. The syntax for the aggregation op-
eration is presented at line 7 of Figure 2.b). Connection is the combination of
two nodes by means of an edge with the identification of, at least, a running
thread. Examples may be seen in lines 12, 13 and 14, of pattern 1 and 8, 9,
10 and 11 of pattern 2.

These two operations are used to build the pattern graph, which comes
after all node declarations and identification of the root node4. There are two
ways of defining the graph: (i) the implicit composition, where there are only
connection operations and (ii) the explicit composition, where aggregation and
connection operations are used simultaneously. The graph of pattern 1 uses
implicit composition, while pattern 2 uses explicit composition.

The connection operation uses one or more out nodes and one or more
in nodes (depending on the type of in and out nodes). When the connection
uses these nodes, their implicit in or out ports are closed, meaning that no
newer connection can use these nodes as in or out ports again. Sometimes
one needs to reuse a node as an in or an out port of a connection. This leads
to the re-opening of a port to be used in the sequent connections. In order to
facilitate this, we introduce the ‘@’ (alive) operator.

We acknowledge that with all the operators and the associated syntax, the
pattern code is not easily readable. This way, we define a visual notation with a
suitable “translation” from the textual notation of CoordL. In Figure 3 we present
the components of the visual notation, corresponding to the textual elements
that define the graph.

In Figure 4 we present how the patterns in Figure 2 look like in this notation.

Node Fork Join

T trigger Instance Edges

Fig. 3. Components of the Visual Notation for CoordL

4 The root node identifies the start node of the pattern and is only useful for graph-
based search of these patterns in a CDG. It must be one of the in ports of the pattern,
chosen nondeterministically, by the pattern definer.

350 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Domain-Specific Language for Coordination Patterns

pattern 1 pattern 2

Fig. 4. Visual Representation of Two Coordination Patterns

4. CoordL - The Semantics

The constructs presented in Section 3 have a precise meaning in CoordL. In
some cases it is possible to draw a mapping between the meaning of a con-
struct and the dependence graph, which is extracted from the source code of
the system being analysed. The following paragraphs provide an informal se-
mantics of each construct in the language.
Bar: |
This construct separates a list of identifiers into two. The identifiers on the left
side list are called in ports and those on the list at the right side are called out
ports. It may appear in the signature of a pattern, or in the graph of a pattern,
whenever it is needed to keep ports opened for further use.
Aggregation: pp1 + pp2
This construct sets two patterns side by side, but it doesn’t connect them. This
is used to reinforce the existence of the patterns in the graph, before connect-
ing their ports. The aggregation operation (meaning collecting patterns, in our
standpoint) is not required to build a graph, however, for completeness of the
language and for a calculus of CoordL language (as envisaged as future work),
this would be an important operation.
Connection: n1 –x–> n2

This construct creates a link between two nodes in the graph of the pattern. It
means that in the dependence graph G, where the pattern will be applied, there
is a path of one or more edges going from n1 to n2 through one or more edges
in a thread identified by x.
Fork Connection: f –(x, y)–> (n1, n2)
This construct creates a link between three nodes in the graph of the pattern,
where the start node is a fork. It means that in the dependence graph G, where
the pattern will be applied, there are two parallel paths (p1 and p2) going from f
to n1 through one or more edges in a thread identified by x, and from f to n2 in a
freshly spawned thread identified by y, respectively. A necessary pre-condition

ComSIS Vol. 8, No. 2, Special Issue, May 2011 351

Nuno Oliveira, Nuno Rodrigues, and Pedro Rangel Henriques

is that in the dependence graph, there is some path p0 from any node to f in a
thread identified by x.
Join Connection: (n1, n2) –(x, y)–> j
This construct creates a link between three nodes in the graph of the pattern,
where the end node is a join. It means that in the dependence graph G, where
the pattern will be applied, there are two parallel paths (p1 and p2) going from
n1 to j through one or more edges in a thread identified by x, and from n2 to j
in a thread identified by y, respectively. A necessary pre-condition is that in the
dependence graph, there are two paths (p0 and p′0) from a fork node to n1 in a
thread identified by x and from the same fork node to n2 in a thread identified
by y, respectively.
Thread Trigger Connection: (n1, n2) –(x, y)–> tt.sync, (n1, n2) –(x, y)–> tt.fail
This construct creates a link between three o nodes in the graph of the pattern,
where the end node is a ttrigger. It means that in the dependence graph G,
where the pattern will be applied, there are two parallel paths (p1 and p2) going
from n1 to tt through one or more edges in a thread identified by x, and from n2

to tt in a thread identified by y, respectively. This meaning aims at expressing
what happens when the threads synchronise (tt.sync), or when the threads syn-
chronisation fails (tt.fail). A necessary pre-condition is that in the dependence
graph there are two paths (p0 and p′0) from a fork node to n1 in a thread identified
by x and from the same fork node to n2 in a thread identified by y, respectively.
List of Connections: { connection, . . . }
This construct creates a list of independent connections. That is, a connection
inside this list does not depend on any node, node property or even on other
connections that are used and defined in the list. This independence resorts to
the fact that there is no order between the connections inside a list of connec-
tions. Subsequent lists of connections may, but are not obliged to, depend on
previous lists.

Along with this construct comes the notion of fresh nodes. A fresh node is
a control node (like a fork, join or ttrigger) that is firstly used in a connection,
and cannot be reused in the same list because of the dependence order. For
instance, a fork node must be used as an out port in a connection before being
used as a in node.
Alive: @
This construct instructs that a list of identifiers is kept alive as in and out ports.
Ports need to be reopened because once a connection uses a node, the implicit
port of such node is killed. The ‘@’ construct is followed by a list of identifiers
divided into two by the bar construct.

5. CoordL - Compiling & Transforming

We used AnTLR system [23] to produce an attribute-grammar-based parser
for CoordL. Taking advantage of AnTLR features we adopted a separation of
concerns method to generate the full-featured compiler. Figure 5 shows the
architecture of the compiler system. The main piece of the compiler system is

352 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Domain-Specific Language for Coordination Patterns

the syntax module where we specify both the concrete and abstract syntax for
CoordL, using the context free grammar presented in Listing 1.1. Based on
the abstract syntax, AnTLR produces an intermediate structure of that grammar
known as a tree-grammar.

Fig. 5. CoordL Compiler Architecture

From the tree-grammar (using attribute grammars methodology) we were
able to define new modules that do not care about the concrete syntax. These
modules embody the semantics checker, the graph drawer and the unimagin-
able number of possible transformations applied to that tree-grammar.

The following hierarchical dependence on these modules is observed: the
semantics module depends on the syntax module; the graph drawer and the
transformation modules depend on the semantics module, so, by transitivity,
they also depend on the syntax module. This holds the requirement that some
modules may only be used if the syntax and the semantics of the CoordL sen-
tence are correct.

We recognise that the separation of concerns in the modules and the de-
pendence between them may be seen as a problem in maintaining the com-
piler. For instance, if something in the abstract syntax of the language changes,
these changes must be performed in every dependent module. Nevertheless,
this method also brings positive aspects: (i) the number of code lines in each
file decreases, easing the comprehension of the module for maintenance; (ii)
since each module defines an operation over the coordination patterns’ code,

ComSIS Vol. 8, No. 2, Special Issue, May 2011 353

Nuno Oliveira, Nuno Rodrigues, and Pedro Rangel Henriques

the compiler may be integrated in a software system providing independent
features to manipulate the patterns and (iii) the separation of concerns into
modules eases the maintenance of each feature.

The transformation modules have, as main objective, to provide perspec-
tives about the coordination patterns, namely, their transformation into Orc [22]
or REO [4] specifications. The transformation of the patterns in Orc is more or
less simple since it may be used an algorithm similar to that presented in [26]
adapted to CoordL (since it is originally adapted to the CDG). Concerning REO,
adequacy of transforming these patterns into REO circuits cares for deep re-
search, since the paradigms are, somehow, different.

An important module to be considered is the transformation of the pattern
code into a suitable input to search for these patterns in the dependence graph
of a system’s code. As for the syntax and the semantic modules, their main out-
put is the syntactic and semantic errors, respectively. The graph drawer module
outputs the visual representation of the coordination patterns.

The transformation of the patterns in their visual notation is the most direct
and easy transformation from the mentioned ones. Technically, it was defined
a new module using the tree-grammar for CoordL that is created by AnTLR.
The main idea of the transformation is to define visual representation of all
(complete) patterns sent as input of that module. This way, the module receives
a string with CoordL patterns and outputs a list of visual representations. Then,
on the interesting parts of the CoordL abstract grammar, we introduce blocks
of code that define the visual representation of each single pattern. To be more
precise, the graph of a pattern is constructed, in several productions of the
grammar, using C# objects that are synthesized as attributes of the grammar.
Later, these objects are encapsulated in a Graph object and set into a slot of the
output list. Each of these Graph objects will be processed (by the GLEE/MSAGL
library mechanisms) in order to produce the visual representation of the pattern.
An example of a visual representation can be viewed on Figure 6. Although with
different objectives, the main process for all the other modules is similar to this
one. In fact, this one is imposed by the attribute grammar methodology, and is
very efficient and intuitive and with good support on AnTLR.

6. Applications and Further Work

Being a DSL, the range of possible applications of CoordL is very narrow. Its
precise objective of matching coordination traces in a dependence graph re-
duces its applicability to other areas. Nevertheless, the area of architectural
analysis and comprehension allows a deep application of this language.

CoordInspector [25] is a tool to extract the coordination layer of a system
and to represent it in suitable visual ways. In a fast overview, CoordInspector
processes common intermediate language (CIL), meaning that systems writ-
ten in more than 40 .NET compliant languages can be processed by the tool.
The tool works by transforming CIL code into an SDG which is sliced to produce
a CDG. The tool then uses ad-hoc graph notations and rules to perform a blind

354 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Domain-Specific Language for Coordination Patterns

search for non-formalised patterns in the CDG. Here is where CoordL has its
relevance. Due to its systematisation and robust formal semantics, the process
of matching patterns in the code can be more reliable than using the ad-hoc
rules. The integration of CoordL in CoordInspector led to the development
of an editor to deal with the language. Figure 6 presents an overview of the edi-
tor integrated in CoordInspector. The editor makes heavy use of the CoordL
compiler system, namely the syntax and semantics modules in order to check
whether there are or there are not errors in the patterns’ specification, and also
performs transformations of the patterns into their visual representation.

Fig. 6. CoordInspector with CoordL editor

CoordInspector is used for integration of complex information systems,
resorting to the recovering of coordination patterns. The use of CoordL in this
task is crucial for a faster and systematised search for such parts of code. Al-
though the graph-based search is not finished yet, there is a contract to follow,
as close as possible, the algorithm defined in [26], that is the same used to
perform the searching for those ad-hoc patterns mentioned before.

In order to avoid the repetition of writing recurrent patterns, we decided to
create a repository of coordination patterns. The repository may be accessed
by means of web services from the editor in CoordInspector. The repository
main objective is to give developers and analysts the possibility of expressing

ComSIS Vol. 8, No. 2, Special Issue, May 2011 355

Nuno Oliveira, Nuno Rodrigues, and Pedro Rangel Henriques

recurrent coordination problems in a CoordL pattern and documenting them
with valuable information5. The existence of the repository of coordination pat-
terns and the fact of being possible the definition of a calculus over the lan-
guage, allows the creation of relations between the patterns, defining an order
of patterns.

In what concerns to further work, we believe that the development of a cal-
culus over the language would allow the development of a model checker for
analysing the properties of these patterns. Also, the application of these pat-
terns to pursuit the work of van der Aalst [1] in workflow mining, but applied on
a low-level dependence-graph-based search is an interesting perspective for
later work. The completion of the graph-based search algorithm and the extrac-
tion of code to a newly separated layer is the most important and urgent work
to do, in order to finish our approach and start to work in other perspectives.

7. Conclusion

In this paper we introduced a domain-specific language named CoordL. This
language is used to describe coordination patterns for posterior use in finding
and extracting recurrent coordination code compositions in the tangled source
code of a software system.

We explained how the language was designed resorting to (i) the applica-
tion domain description, by means of an ontology, and (ii) existing program-
ming language and associated knowledge. We proceed showing how we took
advantage of AnTLR to define a full-featured and concern-separated compiler
for the language. The adoption of this systematic development of modules for
the compiler and the dependencies between them may raise some discussions
about the flexibility at maintenance phase. We are aware of such problems,
nevertheless we argue that the separation of concerns by modules allows for a
better use of the compiler when integrated in other tools, and the problems of
maintenance are not that numerous, since the comprehension of the modules
is easier due to having a small number of lines of code, and the issue solved in
these lines is known a priori.

Finally, we argue for the applicability of CoordL along with CoordInspec-
tor6, a tool to aid in architectural analysis and systems reengineering, and the
creation of a pattern repository for (i) cataloguing of valuable information about
these coordination patterns and (ii) allowing their adoption reuse by developers
and analysts.

References

1. van der Aalst, W., van Dongen, B., Herbst, J., Maruster, L., Schimm, G., Wei-
jters, A.: Workflow mining: A survey of issues and approaches. Data & Knowl-

5 http://gamaepl.di.uminho.pt/coordinspector/patternlist.aspx
6 http://gamaepl.di.uminho.pt/coordinspector/

356 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Domain-Specific Language for Coordination Patterns

edge Engineering 47(2), 237–267 (Nov 2003), http://dx.doi.org/10.1016/
S0169-023X(03)00066-1

2. Aldrich, J., Chambers, C., Notkin, D.: Archjava: connecting software architecture
to implementation. In: ICSE ’02: Proceedings of the 24th International Conference
on Software Engineering. pp. 187–197. ACM, New York, NY, USA (2002), http:
//dx.doi.org/10.1145/581339.581365

3. Allen, R.: A Formal Approach to Software Architecture. Ph.D. thesis, Carnegie Mel-
lon, School of Computer Science (January 1997)

4. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical. Structures in Comp. Sci. 14(3), 329–366 (June 2004), http://dx.
doi.org/10.1017/S0960129504004153

5. Bishop, C.: Pattern Recognition and Machine Learning. Springer, Berlin, 1st edn.
(2006)

6. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented
Software Architecture, Volume 1: A System of Patterns. Wiley, Chichester, UK
(1996)

7. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based
data. ACM Trans. Softw. Eng. Methodol. 7(3), 215–249 (Jul 1998), http://dx.
doi.org/10.1145/287000.287001

8. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated bib-
liography. ACM SIGPLAN Notices 35, 26–36 (2000), http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.33.8207

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Professional (1995)

10. Gansner, E.R., North, S.C.: An open graph visualization system and its applications
to software engineering. Softw. Pract. Exper. 30(11), 1203–1233 (2000)

11. Garlan, D., Monroe, R.T., Wile, D.: Acme: Architectural description of component-
based systems. In: Leavens, G.T., Sitaraman, M. (eds.) Foundations of Component-
Based Systems, pp. 47–68. Cambridge University Press (2000)

12. Goguen, A.J.: Reusing and interconnecting software components. Computer 19(2),
16–28 (1986), http://dx.doi.org/10.1109/MC.1986.1663146

13. Goldberg, M., Hayvanovych, M., Hoonlor, A., Kelley, S., Magdon-Ismail, M., Mert-
salov, K., Szymanski, B., Wallace, W.: Discovery, analysis and monitoring of hidden
social networks and their evolution. In: IEEE Conference on Technologies for Home-
land Security (2008). pp. 1–6 (Oct 2008), http://dx.doi.org/10.1109/THS.
2008.4637294

14. Heineman, G.T., Councill, W.T. (eds.): Component-based software engineering:
putting the pieces together. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA (2001)

15. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
In: PLDI ’88: Proceedings of the ACM SIGPLAN 1988 conference on Programming
Language design and Implementation. vol. 23, pp. 35–46. ACM, New York, NY, USA
(July 1988), http://dx.doi.org/10.1145/53990.53994

16. Jacobson, I., Booch, G., Rumbaugh, J.: The unified software development process.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1999), http:
//portal.acm.org/citation.cfm?id=309683

17. Jen, L.r., Lee, Y.j.: IEEE Recommended Practice for Architectural Description of
Software-intensive Systems. IEEE Architecture pp. 1471–2000 (2000), http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.9904

ComSIS Vol. 8, No. 2, Special Issue, May 2011 357

Nuno Oliveira, Nuno Rodrigues, and Pedro Rangel Henriques

18. Lauw, H., Lim, E.P., Pang, H., Tan, T.T.: Social network discovery by mining Spatio-
Temporal events. Computational & Mathematical Organization Theory 11(2),
97–118 (Jul 2005), http://dx.doi.org/10.1007/s10588-005-3939-9

19. Lee, L., Kruchten, P.: A Tool to Visualize Architectural Design Decisions. In: Becker,
S., Plasil, F., Reussner, R. (eds.) Quality of Software Architectures. Models and
Architectures, Lecture Notes in Computer Science, vol. 5281, chap. 3, pp. 43–54.
Springer Berlin / Heidelberg, Berlin, Heidelberg (2008), http://dx.doi.org/
10.1007/978-3-540-87879-7_3

20. Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J., Bryan, D., Mann, W.: Speci-
fication and analysis of system architecture using rapide. IEEE Trans. Softw. Eng.
21(4), 336–355 (1995), http://dx.doi.org/10.1109/32.385971

21. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (December 2005), http://dx.
doi.org/10.1145/1118890.1118892

22. Misra, Jayadev, Cook, William: Computation orchestration: A basis for wide-area
computing. Software and Systems Modeling (SoSyM) 6(1), 83–110 (March 2007),
http://dx.doi.org/10.1007/s10270-006-0012-1

23. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Lan-
guages. The Pragmatic Bookshelf, Raleigh (2007), http://www.amazon.de/
Complete-ANTLR-Reference-Guide-Domain-specific/dp/0978739256

24. Raza, A., Vogel, G., Plödereder, E.: Bauhaus - a tool suite for program analysis and
reverse engineering. In: Reliable Software Technologies - Ada-Europe 2006, pp. 71–
82. LNCS (4006) (June 2006), http://dx.doi.org/10.1007/11767077_6

25. Rodrigues, N.: Slicing Techniques Applied to Architectural Analysis of Legacy Soft-
ware. Ph.D. thesis, Engineering School, University of Minho (October 2008)

26. Rodrigues, N.F., Barbosa, L.S.: Slicing for architectural analysis. Science of Com-
puter Programming (March 2010), http://dx.doi.org/10.1016/j.scico.
2010.02.002

27. Sartipi, K., Ye, L., Safyallah, H.: Alborz: An interactive toolkit to extract static and
dynamic views of a software system. In: ICPC ’06: Proceedings of the 14th IEEE In-
ternational Conference on Program Comprehension. pp. 256–259. IEEE Computer
Society, Washington, DC, USA (2006), http://dx.doi.org/10.1109/ICPC.
2006.8

28. Storey, M.A.: Theories, tools and research methods in program comprehension:
past, present and future. Software Quality Journal 14(3), 187–208 (September
2006), http://dx.doi.org/10.1007/s11219-006-9216-4

29. Tairas, R., Mernik, M., Gray, J.: Using ontologies in the domain analysis of domain-
specific languages. Models in Software Engineering pp. 332–342 (2009), http:
//dx.doi.org/10.1007/978-3-642-01648-6_35

358 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Domain-Specific Language for Coordination Patterns

Nuno Oliveira received, from University of Minho, a degree in Computer Sci-
ence (2007) and a M.Sc. in Informatics (2009), for his thesis “Improving Pro-
gram Comprehension Tools for Domain Specific Languages”. He is a member
of the Language Processing group at CCTC (Computer Science and Technol-
ogy Center) , University of Minho. He participated in several projects with focus
on Visual Languages and Program Comprehension. Currently, he is starting his
PhD studies on Architectural Reconfiguration of Interacting Services, under a
research grant funded by FCT.

Nuno F. Rodrigues got a degree in “Mathematics and Computer Science”, at
University of Minho, and finished a Ph.D. thesis in “Software Architectures” also
at University of Minho. Currently he is an Assistant Professor at the Polytechnic
Institute of Cavado and Ave, where he is also the director of the Digital Games
Development Degree and head of the Digital Games Research Centre.

Pedro Rangel Henriques got a degree in “Electrotechnical/Electronics Engi-
neering”, at FEUP (Porto University), and finished a Ph.D. thesis in “Formal Lan-
guages and Attribute Grammars” at University of Minho. In 1981 he joined the
Computer Science Department of University of Minho, where he is a teacher/re-
searcher. Since 1995 he is the coordinator of the “Language Processing group”
at CCTC (Computer Science and Technologies Center). He teaches many dif-
ferent courses under the broader area of programming: Programming Lan-
guages and Paradigms; Compilers, Grammar Engineering and Software Anal-
ysis and Transformation; etc. Pedro Rangel Henriques has supervised Ph.D.
(11), and M.Sc. (13) thesis, and more than 50 graduating trainingships/pro-
jects, in the areas of: language processing (textual and visual), and structured
document processing; code analysis, program visulaization/animation and pro-
gram comprehension; knowledge discovery from databases, data-mining, and
data-cleaning. He is co-author of the “XML & XSL: da teoria a prática” book,
published by FCA in 2002; and has published 3 chapters in books, and 20 jour-
nal papers.

Received: December 28, 2010; Accepted: May 10, 2011.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 359

DOI:10.2298/CSIS101231009K

From DCOM Interfaces to Domain-Specific

Modeling Language: A Case Study on the

Sequencer

Tomaž Kos
1
, Tomaž Kosar

2
, Jure Knez

1
, and Marjan Mernik

2

1 DEWESoft d.o.o., Gabrsko 11a, 1420 Trbovlje, Slovenia
{tomaz.kos, jure.knez}@dewesoft.si

2 University of Maribor, Faculty of Electrical Engineering and Computer Sciences,
Smetanova ulica 17, 2000 Maribor, Slovenia

{tomaz.kosar, marjan.mernik}@uni-mb.si

Abstract. Software development is a demanding process, since it
involves different parties to perform a desired task. The same case
applies to the development of measurement systems – measurement
system producers often provide interfaces to their products, after which
the customers’ programming engineers use them to build software
according to the instructions and requirements of domain experts from
the field of data acquisition. Until recently, the customers of the
measurement system DEWESoft were building measuring applications,
using prefabricated DCOM objects. However, a significant amount of
interaction between customers’ programming engineers and
measurement system producers is necessary to use DCOM objects.
Therefore, a domain-specific modeling language has been developed to
enable domain experts to program or model their own measurement
procedures without interacting with programming engineers. In this
paper, experiences gained during the shift from using the DEWESoft
product as a programming library to domain-specific modeling language
are provided together with the details of a Sequencer, a domain-specific
modeling language for the construction of measurement procedures.

Keywords: domain-specific modeling languages, data acquisition,
measurement systems.

1. Introduction

Data acquisition is the process of capturing and measuring physical data and
the conversion of these results into digital form that is further manipulated by
a computer program. Data acquisition systems, also called measurement
systems, are used in various fields, ranging from the automotive industry to
the aircraft industry, the space industry and electrical engineering. For
instance, Fig.1 shows data acquisition during a flight test with the DEWESoft
product. The measurements were made on a military helicopter to analyze the
vibrations on the human body. The measurements in this industry, as well as

Tomaž Kos, Tomaž Kosar, Jure Knez, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 362

others, are quite demanding, with many repetitions on different settings. Most
of the measurement procedures can be done automatically using the
prepared measurement programs; however some needed to be designed
manually at the time of measurement.

Fig. 1. Measurement system DEWESoft during helicopter vibration test

Many measurement system producers provide application programming
interfaces (APIs) to use their products. Those APIs are further used by the
customer’s programming engineers to build software according to their
specific needs. However, a customer’s programming engineers do not
necessarily posses knowledge about the problem domain; therefore they have
to work with domain experts to prepare the desired product. In this way,
prepared measurement procedures can be defined by programming
engineers and further used by domain experts. As stated before, sometimes
prepared measurement procedures are unsuitable and need to be repeated
with slightly different settings. In that case, domain experts need to work with
programming engineers to prepare another measurement procedure. Such
development is time-consuming. An ideal measurement system would be, if
domain experts could prepare the measuring procedures alone without the
interference of programming engineers.

To support domain experts in programming their own measurement
procedures and to be able to fine tune them during measurement, DEWESoft
developed a domain-specific modeling language (DSML) called Sequencer.
Our concrete motivation for this product was to enable domain experts to

From DCOM Interfaces to Domain-Specific Modeling Language: A Case Study on the
Sequencer

ComSIS Vol. 8, No. 2, Special Issue, May 2011 363

program/model their own data acquisitions and tune them during
measurements without any help from programming engineers. Domain-
specific languages (DSLs) provide notations and constructs tailored toward a
particular application domain [1] and therefore are suitable for domain experts
that have minor programming experience and expertise in the target problem
domain [2]. Compared to general-purpose languages (GPLs), like C, C++,
Java, etc, DSLs are much more expressive and easy of use [3] for the domain
in question. However, DSL development is often accused of having
disadvantages, since it requires both domain knowledge and, in particular,
language development expertise, which is rare in the programming
engineering community. Therefore, it is important to present practical
evidence of developing DSLs in the industry [4] and provide results regarding
the end-users’ satisfaction. Also, the experiences gained through the
development of the Sequencer are reported in this paper.

The line between DSLs and DSMLs is often blurred and it is hard to
distinguish DSLs from DSMLs. The classification often depends on personal
viewpoint. Up to now, DSLs are usually textual [5, 6, 7, 8], while DSMLs
further raise abstraction level, expressiveness and ease of use, since models
are specified in a visual manner and coding phase is moved to specification
and design phase [9, 10]. With the Sequencer, measurement procedures are
possible to specify in both text and visual form. Both options are alternatives
to the previous one – to construct measurement procedures with an API,
which is a standard development method when using GPLs. From that
prospective, in this paper some of the experience are reported regarding
which notation is more popular among DEWESoft customers, as well as their
feedback.

The organization of the paper is as follows. In Section 2 related work on
DSMLs is presented. The design details and characteristics of the Sequencer
are described in Section 3. In Section 4, development and deployment
together with our experiences are presented. Finally, contributions and
concluding remarks with an outline for future work are summarized in Section
5.

2. Related work

Currently, scientists and engineers in diverse areas of work, as well as end-
users with specific domain expertise, require computational processes to
complete a task. However, such users are typically unfamiliar with
programming languages and completing their task becomes a challenge.
Model-driven engineering (MDE) is an approach that provides higher levels of
abstraction to allow such users to focus on the problem, rather than the
specific solution on particular technology platforms. An important part of MDE
is a domain-specific (modeling) language DS(M)L that fit the domain of an
end-user by offering intentions, abstractions, and visualizations for domain

Tomaž Kos, Tomaž Kosar, Jure Knez, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 364

concepts. Many papers have been published recently on this topic and some
of the most relevant ones are discussed in this section.

Jimenez, et al, show that combining a DSML with an MDE approach can
enhance the quality and portability of home automation systems [11]. Most
home automation systems are currently developed using proprietary low-level
procedures that are platform dependent. To enhance productivity, flexibility,
interoperability and end-user programming, a visual modeling language called
Habitation has been designed and developed which enables the description
of home automation systems using only domain concepts. The Eclipse
Graphical Modeling Framework (GMF) has been used to automatically
generate a graphic editor, while transformations are defined using the graph
grammar approach (EMT - Eclipse Model Transformation). The main
difference with our work is domains (home automation systems vs.
measurement systems) and how both DSMLs have been developed. While
Habitation has been developed using already existing metamodeling tools, we
were not able to use them due to strong dependency on DEWESoft software.

Mathe, et al, present a Clinical Process Management Language (CPML) for
capturing health treatment protocols [12]. The CPML is a formally specified
visual modeling language developed using the metamodeling tool GME. The
semantics have been specified using operational behavioral semantics. The
semantics of the Sequencer is currently given by attribute grammars, which is
used in the implementation phase, but do not enable a high level verification
and analysis. In the future, our aim is to define Sequencer semantics using
graph grammars.

Venigalla, et al, present a domain specific modeling language BASSML
targeting spacecraft designers [13]. The BASSSML is a part of BASS, a
prototype modeling tool for spacecraft systems. BASS consists of a model
interpreter, which translates the captured spacecraft design models into
machine-readable CSP (Communication Sequential Processes) that can be
formally verified using a model checker. Using BASS, the authors show that
spacecraft subsystem interfaces and interactions can be rigorously specified
and analyzed. Hence, obscure subtle ambiguities and inconsistencies can be
detected much earlier, thereby reducing developing costs.

Merilinna presents an end-user driven development of navigation
applications for mobile phones [14]. For this purpose, a DSML was developed
using the modeling environment MetaEdit+. The authors provide yet another
piece of evidence that end-users, who are non-programmers, can actively
participate in the development of navigation applications or develop
applications completely by themselves using DSMLs within a narrow domain.

Živanov, et al, present KAG (Kiosk Application Generator), a DSL that can
generate applications to be deployed on kiosks with touch-screen monitors.
KAG is a nice example of DSL that upon textual specifications generates
graphical-user interfaces using standard compiler generator tools (lex/yacc).
Authors debate that comparing development of applications with KAG (and
previous way, with general-programming languages), reduced number of
programming errors and made kiosk applications development significantly
faster.

From DCOM Interfaces to Domain-Specific Modeling Language: A Case Study on the
Sequencer

ComSIS Vol. 8, No. 2, Special Issue, May 2011 365

A DOMMLite is the next example of DSMLs [16]. DOMMLite is used for
definition of state structures of database applications. It was developed using
generator framework openArchitectureWare. The domain-specific notation is
defined with a metamodel supplemented by validation rules based on Check
language and extensions based on Extend language that are parts of the
openArchitectureWare framework. Semantics can be defined with
specifications through source code generation for the supported target
platforms. DOMMLite is supported with textual Eclipse editor.

DSMLs are prone to change much more often comparing to GPLs [17].
This is an emergent research area in MDE where models and modeling
languages are subject to change [18]. However, in some environments, like
DEWESoft, even dynamic language evolution might be necessary. In that
case a system requires run-time adaptation without stopping an application.
Possible solutions for adaptive DSML evolution are presented in [19, 20, 21].

3. Domain-specific modeling language Sequencer

Various implementation techniques to implement a DSL exist, such as:
preprocessing, embedding, compiler/interpreter, compiler generator,
extensible compiler/interpreter, and commercial off-the-shelf [1]. Of course,
the language designer has to choose the most suitable implementation
approach, according to the project influences [22]. In our case, the
development was influenced by the fact that DS(M)L has to be included in the
already-existing data acquisition software DEWESoft and that this product is
developed in Object Pascal, more specifically in Delphi [23]. These limitations
lead us to decide for compiler/interpreter implementation approach, where
some of the compiler generator tools were used.

3.1. Construction of a textual concrete syntax

The development of DSML with the compiler/interpreter implementation
approach gave us more freedom and flexibility than using other
implementation approaches mentioned in [1]. In this approach, the standard
compiler/interpreter techniques are used to implement a DSML. In the case of
the compiler, a complete static analysis is done on the DSML
program/specification. The most important advantage of this implementation
approach is that the syntax is closer to the notation used by domain experts,
and good error reporting. The compiler generator approach is similar to the
previous one, except that some of the compiler/interpreter phases (lexical,
syntax, and semantic analysis) are implemented using language development
systems or so-called compiler writing tools (compiler-compilers) (e.g.
Lex/Yacc [24], ANTLR [25], LISA [17], YAJCo [26]). In this manner, the
implementation effort is minimized when compared to the previous approach.

Tomaž Kos, Tomaž Kosar, Jure Knez, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 366

Generally, the idea of a lexical analyzer is relatively simple. However, the
construction and implementation of a lexical analyzer is time-consuming.
Therefore, in the construction of a lexical analyzer, a compiler generator
implementation approach can be used to speed up this process. In the case
of the Sequencer, the help of DLex was used during the lexical analysis that
generated a lexical analyzer in the programming language Delphi. With
regular expressions, the formal description of the lexical analyzer was
provided. Part of the DLex formal description of the Sequencer is presented in
Fig. 2.

INTEGER [+-]?[0-9]+

FLOAT [+-]?[0-9]+(\.[0-9]+)?

BOOL "True"|"False"

STRING ['][a-zA-Z0-9.,

;:%!?{|}#$&()<>=+@[\\\]/_-]*[']

COMMENT [/]{2,2}.*

IGNORE \n|\r|\r\n|" "|\t|\b

SEPARATOR "("|")"|","

FUNC "Action" |"LoadSetup" |"If"

|"Loop" |"WaitFor" |"Delay"

|"AvdioVideo |"Formula"|"CustomBlock"

|"LaunchApplication" |"Macro"

SPECWORDS "Begin" |"End"

CONDTYPE "ctUser" |"ctValue" |"ctTrigger"

OPERATOR ">" | "<" | "=" | "!="

BOPERATOR "or" | "and"

LSTYPE "Static" | "Dynamic"

%%

{STRING} begin

TokenList.Add(TToken.Create(yytext, tString,

yycolNo, yyLineNo));

end;

...

Fig. 2. Lexical specification of Sequencer using DLex

The syntax and semantic analyzer has been developed independently of
existing compiler generator tools. The syntax of the Sequencer was described
using standard BNF notation. Part of the Sequencer’s BNF is presented in
Fig. 3. From the starting non-terminal NT_START, it can be seen that the
reserved words (Begin, End) embody DSL statements that represent
functionalities (non-terminal NT_LINE) to be performed from the
measurement system DEWESoft. There are various non-terminals derived
from the non-terminal NT_LINE: Action, LoadSetup, If, Loop, WaitFor, etc. For
example, Action represents the basic functionality of the Sequencers’ program
(load project, export data, print, etc). If the load project is specified with an
Action, then the hardware setup for a measurement procedure is performed.
The non-terminal NT_ACTION is defined with non-terminals NT_B_ITEM
(beginning parenthesis “(“), NT_PACTION (action properties), and
NT_E_ITEM (ending parenthesis “)“ with reference to the following

From DCOM Interfaces to Domain-Specific Modeling Language: A Case Study on the
Sequencer

ComSIS Vol. 8, No. 2, Special Issue, May 2011 367

functionality: non-terminal NT_LINE). The non-terminal NT_PACTION
contains specific properties for the current functionality, while the non-terminal
NT_PROP contains generic properties. In non-terminal NT_PROP, first
terminal (#integer) presents the ID of a construct, then #string represents the
text info that will be presented to the Sequencer's user interface, #boolean
terminal carries information if the Sequencer will notify the end-user with text-
to-speech functionality, etc.

NT_START ::= "Begin" NT_LINE "End"

NT_LINE ::= "Action" NT_ACTION

 | "LoadSetup" NT_LOADSETUP

 | "If" NT_IF

 | "Loop" NT_LOOP

 | "WaitFor" NT_WAITFOR

 | "Delay" NT_DELAY

 | "AvdioVideo" NT_AVDIOVIDEO

 | "Formula" NT_FORMULA

 | "CustomBlock" NT_CUSTOM_BLOCK

 | "LaunchApplication" NT_LAUNCHAPP

 | "Macro" NT_MACRO

 | epsilon

NT_ACTION ::= NT_B_ITEM NT_PACTION NT_E_ITEM

NT_B_ITEM := "(" NT_PROP

NT_E_ITEM ::= ")" NT_LINE

NT_PROP ::= #integer "," #string "," #boolean "," #integer ","

 #integer "," #integer

...

Fig. 3. Syntax specification of Sequencer

function TSeqParser.NT_LINE(Lexer : TLexer; Group :

TSeqGroup) : Boolean;

var

 Item : TSeqItem;

 I : Integer;

begin

 Result := False;

 Item := nil;

 if (Lexer.CurrentToken.AType = tFunc) then

 begin

 if (Lexer.CurrentToken.Lexem = 'Action') then

 begin

 Lexer.NextToken;

 Item := Group.SeqItems.AddNewItem(it_Action);

 Result := NT_ACTION(Lexer, Group, Item);

 end

 else if (Lexer.CurrentToken.Lexem = 'LoadSetup') then

 begin

...

Fig. 4. Semantic of the Sequencer’s non-terminal NT_LINE

The semantics of the Sequencer is described using attribute grammars
from which a compiler is automatically generated. In the semantic part,

Tomaž Kos, Tomaž Kosar, Jure Knez, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 368

attributes carry the values of actions defined in a DSL program and are
responsible for calling functionalities from DEWESoft environment. Fig. 4
presents the part of the Pascal code for production NT_LINE. First, the token
has to be checked which should be “tFunc” and the lexem should be “Action”.
After that the lexical analyzer goes to the next token and to the next
production which is in our case NT_ACTION.

The language processing effort is usually divided into syntax and semantic
parts. In the syntax, the lexical analyzer and syntax analyzer size has been
checked and 2,787 lines of code (LOC) have been generated or written. The
semantic part of a code that contains all library calls to the DEWESoft
framework contains 5,102 LOC. All together, the Sequencer DSL contains
7,889 LOC, which was developed in six engineer months. Since the
Sequencer’s first release, new features and updates were occasionally
introduced over the following six months, which were not counted as
development time.

3.2. Transformations in the Sequencer

Fig. 5. Sequencer’s code in XML

Transformations in the Sequencer are an important part of the tool. Their
purpose is to transform programs into execution code that is further executed
in the Sequencer’s framework. In the case of the Sequencer, the

From DCOM Interfaces to Domain-Specific Modeling Language: A Case Study on the
Sequencer

ComSIS Vol. 8, No. 2, Special Issue, May 2011 369

transformation occurs when a program is transformed into another
presentation, execution model or vice versa. The transformation is carried out
according to the selected initial and final model.

All transformations are in the group of exogenous transformations [27],
because a model could never be transformed in the same model.
Transformations enable one to change programs from XML to text or visual
notation without any loss.

XML is also used in the Sequencer as an export and saving format (Fig. 5).
Execution code in transformed into XML and with that feature, the portability
and ability to exchange sequences between end-users and customers is
supported.

3.3. Construction of visual concrete syntax

Beside textual notation, also visual notation has been developed for the
Sequencer. For this purpose metamodels are often used. Usually, the
metamodel is constructed using a standalone metamodeling tool [28, 29], a
specialized software for the construction of DSMLs. However, DSML can
have an implicit metamodel and in the case of the Sequencer, it was decided
to prepare a fixed metamodel where the models were transferred to the
execution model. In the Sequencer's metamodel the following domain
concepts have been defined:

 a set of classes,

 associated attributes for each class,

 the relationship between classes, and

 constraints between classes.
Regarding the constraints in the Sequencer: there are no constraints on

relations in the modeling language – each class can be connected to the
others.

For each class a building block (concrete syntax) has been defined. In
general, building blocks are separated into shapes and links. Each shape has
a unique presentation in the form of a color, size and shape type (rectangle,
diamond, ellipse, etc.). In the Sequencer, links have a unified form (line with
arrow). Each shape belongs to exactly one building block and the link
corresponds to a relationship. Each building block represents an action from a
measurement system. Actions start their execution in the initial building block
(marked with a circle) and continue to the next building block that is
connected with the link.

Building blocks also contain local and global variables (that represent
channels in DEWESoft). Their purpose is to store specific values in
measurements. History is available for those variables and this is further used
to plot graphs after the measurement is finished.

Regarding the Sequencer’s visual notation, a custom block has been
introduced, that embodies several building blocks in a single one. When there
are a lot of building blocks in a measurement procedure, a model can become

Tomaž Kos, Tomaž Kosar, Jure Knez, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 370

unmanageable. With custom blocks, larger sequences can become more
readable.

Nowadays, most measurement software is designed for capturing, storing
and analyzing the measured data and do not allow the manual construction of
the measuring process. They provide customizations, where you can tune the
measurement procedure with only a few options. With the Sequencer,
DEWESoft has decided to step forward and has developed a powerful DSML
for the purpose of measurement procedures.

4. Results

In this section, the experience of using the Sequencer is discussed. Firstly,
the Sequencer DSML is compared to other selected DSLs to observe its size
and complexity. Then, Sequencer programs are compared to previous
applications developed with DCOM objects. In the end, some experiences are
reported from the end-users and numbers are given about how many
customers are already using the Sequencer; the new feature of a DEWESoft
product.

4.1. Sequencer complexity

From the language developer’s point of view, it is worthwhile to observe the
size of a language. The easiest way to do this is to compare it to other
languages. It has been decided to compare just the Sequencers’ textual
notation and the following DSLs were chosen for comparison with Sequencer:

 Production Grammars (PG) for software testing [6],

 A DSL that allows experimentation for the different regulation of traffic
lights (RoTL) and supports the domain-specific analysis of junctions
[7],

 Context-Free Design Grammar (CFDG)1, designed for generating
pictures from specifications,

 GAL, a well-known DSL used to describe video device drivers [8].
One can get grammar examples with various compiler tools; however these

are unsuitable for a comparison with the ones used in practice, since they are
usually small owing to the fact that their value is in learning a specific tool
notation. Our aim was to compare the Sequencer’s grammar with the ones
already applied in practice. In existing literature, those grammars are often
partially presented, since they are usually too long to fit in the paper.
Therefore, the above grammars were selected for comparison since they are
used in practice and a full grammar was available to the authors of this paper.

1 Context-Free Design Grammar, available at

http://www.chriscoyne.com/cfdg/index.php

From DCOM Interfaces to Domain-Specific Modeling Language: A Case Study on the
Sequencer

ComSIS Vol. 8, No. 2, Special Issue, May 2011 371

The size of a DSL can be compared to others using grammar metrics [30,
31]. In [30] grammar metrics are divided into size and structural metrics. For
the purpose of our comparison we took the following size metrics:

 term – number of terminals,

 var – number of non-terminals,

 avs – average of right hand side size,

 mcc – McCabe cyclomatic complexity, and

 hal – Halstead effort.
Let us briefly discuss the above-mentioned metrics. A greater maintenance

is expected if a grammar has a large number of non-terminals (var). The
metrics mcc measure the number of alternatives for grammars' non-terminals.
A high value indicates a potentially larger effort for grammar testing and a
greater potential for parsing conflicts. A big avs value usually means that
grammar is less readable. The Halstead effort metric (hal) estimates the effort
required to understand the grammar. Grammar metric comparisons between
the Sequencer and selected DSLs were obtained by the tool gMetrics [31]
(Table 1). From the results of the size metrics, it can be concluded that the
Sequencer is comparable to many of the selected DSLs. Of course, DSL
complexity depends on the domain and can be much larger than other DSLs
(observe GAL results on grammar metrics in Table 1).

Table 1. Comparison of Sequencer with other DSLs

DSL TERM VAR AVS MCC HAL

Sequencer 24 31 4.61 0.52 16.21
PG 10 5 3.80 1 0.89
RoTL 23 12 4.83 0.5 3.89
CFDG 24 13 6 2.38 6.57
GAL 71 74 3.88 1.20 33.36

4.2. Comparison of DCOM applications with the Sequencer’s

programs

The advantage of Sequencer over application development with DCOM
objects can be observed when comparing a program from Fig. 6 with the
DCOM application in Fig. 7. The advantages compared to APIs are obvious in
respect to the clarity and understandability of the code.

Both programs (Fig. 6 and 7) describe the procedure (sequence) which is
prepared to guide one through the entire car acceleration test maneuver.
Besides the acceleration test, in the automotive industry, different
measurements are applied to cars, like brakes, tires, a fuel consumption test,
etc. The sequence in programs (Fig. 6 and 7) starts with the project and setup
file load and the setup screen is shown. The start and stop speed can be set
here. The next step is file details. Here the end-user has to set the file name
and some test details (car type, driver, place, road surface, etc.). After this,
the end-user starts driving. When reaching certain conditions (speed,

Tomaž Kos, Tomaž Kosar, Jure Knez, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 372

temperature, pressure, distance) that are necessary to perform the
acceleration test, the system advises the user to accelerate to the target
speed. During the measurement process, the end-user can observe vehicle
speed, vehicle acceleration, acceleration distance, temperature, etc. When
the measurement is finished the end-user has the option of repeating the test
or continuing to analyze and then printing out the stored data.

Fig. 6. Sequencer program in textual notation

unit Unit2;

interface

uses

 Windows, Messages, SysUtils, Variants, Classes, Graphics,

Controls,

Forms, Dialogs, AdvGlowButton, AdvToolBar, StdCtrls,

AdvCaptionPanelUnit, DEWEsoft_TLB, ExtCtrls;

const

 bt_Yes = 1;

 bt_No = 2;

 bt_Continue = 4;

 SVSFlgAsync = $00000001;

type

 TForm2 = class(TForm)

 SequencerControlPanel: TAdvCaptionPanel;

 SequenceInfoLabel: TLabel;

 SequenceSeparator: TAdvToolBarSeparator;

 SequencePlayButton: TAdvGlowButton;

From DCOM Interfaces to Domain-Specific Modeling Language: A Case Study on the
Sequencer

ComSIS Vol. 8, No. 2, Special Issue, May 2011 373

 ...

 procedure FormCreate(Sender: TObject);

 procedure FormDestroy(Sender: TObject);

 procedure Panel1Resize(Sender: TObject);

 ...

 private

 DeweApp : App;

 CurrState : Integer;

 oVoice : OLEVariant;//TTS

 procedure KillProcess(const ProcName : string);

 procedure SetHeader(Caption : string; Buttons : Integer);

 public

 end;

var

 Form2: TForm2;

implementation

uses

 Registry, TlHelp32, ComObj;

{$R *.dfm}

procedure TForm2.Panel1Resize(Sender: TObject);

begin

 if Assigned(DeweApp) then

 begin

 DeweApp.Left := 0;

 DeweApp.Top := 0;

 DeweApp.Width := panel1.Width;

 DeweApp.Height := panel1.Height;

 end;

end;

...

Fig. 7. DCOM application

Table 2. Comparison of Sequencer applications with DCOM applications in LOC

DSL DCOM
application

Sequencer Ratio

Application 1 308 22 14
Application 2 298 15 19,86
Application 3 301 23 13,09
Application 4 280 20 14
Application 5 325 15 21,66

Another advantage can be observed if the Sequencer programs are
compared with the DCOM application with the number of lines of code. In
Table 2, the size of code (LOC) is presented for five different applications
developed with Sequencer and DCOM objects. All Sequencer programs and
DCOM applications have the same functionality. Table 2 confirms the
advantage of Sequencer compared to the API solution (observe the ratio
column in Table 2), since the Sequencer programs were at least 13 times
shorter than the same DCOM applications. Similar productivity increase has

Tomaž Kos, Tomaž Kosar, Jure Knez, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 374

been reported also elsewhere (e.g., [28]). Note, that applications in Table 2
are case study problems.

4.3. Customers’ experiences

The DEWESoft product has already been successfully applied to the car
industry. For example, the DEWESoft product is used by TÜV, an
independent German consultant organization that validates the safety of
products, like motor vehicles. Also, DEWESoft’s measurement units (together
with its software solution) are used in aviation, construction, electric and even
aerospace industry. NASA awarded the DEWESoft product as “Product of the
year” in 2009. From Table 3, it can be observed that DEWESoft has over 500
end-users who are using measurement systems for their specific
measurements. Also, there are over 40 programming engineers who are
using our DCOM objects to develop measurement procedures for their end-
users.

Since January 2010, when Sequencer was released with DEWESoft ver. 7,
over 150 end-users have already used the measurement procedures with the
Sequencer. More than 30 domain experts are already developing sequences
with the new feature of DEWESoft.

The real value of the Sequencer can be found in the last column of Table 3,
which shows how many new domain experts have started using DEWESoft
since the product became easier to use.

Table 3. DEWESoft customers

DCOM
application
end-users

DCOM
programmers

Sequencer
end-users

Sequencer
domain
experts

New domain
experts on
Sequencer

500 40 150 30 20

4.4. Sequencers’ textual vs. visual notation

Both textual as well as visual concrete syntaxes have implemented the exact
same functionalities and can therefore be transformed from one notation to
another, as described in subsection 3.3. From the Sequencer developers’
point of view, both notations are available to customers of the measurement
system DEWESoft and they were not encouraged to use either of them.

Fig. 8 presents the Sequencers' modeling environment. The building blocks
are on the left side of the environment. On the right side of the environment
there are variables that can be selected for each individual building block. In
the middle of the environment, the end-user can construct the measuring
sequence with visual notation. Visual building blocks are used with "drag and
drop" functionality. The Sequencer leads the end-user through a

From DCOM Interfaces to Domain-Specific Modeling Language: A Case Study on the
Sequencer

ComSIS Vol. 8, No. 2, Special Issue, May 2011 375

measurement procedure using static analysis, thereby reducing the possibility
of human error and increasing the efficiency of the test itself.

Fig. 8. Sequencer's modeling environment

Studying the Sequencers’ domain experts revealed that most of them are
using this visual notation rather than the text version of the Sequencer. The
most probable explanation for this lies in the abstraction level of both
notations. Also, there appears to be a general opinion that in order to use
textual notation, the end-user needs a certain degree of programming
experience. Both reasons, probably influenced end-users to prefer using the
visual version of the Sequencer.

5. Conclusion and future work

The purpose of the Sequencer was to enable the easier construction of
measurement procedures inside the measurement system DEWESoft. The
main goal of the Sequencer is to push the development of the application from
using DCOM objects to a specialized tool that enables domain experts to
develop measurement sequences efficiently in a simple manner, without the
need of support from programming engineers. Sequences can be developed
in a textual or visual mode, which are customized for application development

Building blocks DSML program Variables

Tomaž Kos, Tomaž Kosar, Jure Knez, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 376

in the measurement domain. In this paper, the experiences in the
development of Sequencer as well as experience with end-users were
presented. According to the opinion of domain experts, the construction of the
Sequencer has been a good step in simplifying complicated measurement
development in many different fields.

From a usability point of view, the Sequencer’s next feature is to record a
sequence execution and save it in text format. In this manner, sequences can
be analyzed in time to see more details. Currently, the system enables users
to study the final results of the measurement test. From a DSML point of view,
the next development effort will be to support domain experts with domain-
specific debugging facilities similar to one presented by Wu, et al [32].

DS(M)Ls are promising for the future development of software, since
current software development, centered on GPLs, is becoming more and
more complex and software customization usually involves a larger effort on
the part of programming engineers. On the other hand, DSLs enable domain
experts to program and make changes in software and with that they can
quicken development and reduce maintenance costs.

References

1. Mernik M., Heering J., Sloane A.M.: When and how to develop domain-specific
languages. ACM Computing Surveys, Vol. 37, No. 4, 316–344. (2005)

2. Sprinkle J., Mernik M., Tolvanen J.-P., Spinellis D.: Guest Editors' Introduction:
What Kinds of Nails Need a Domain-Specific Hammer? IEEE Software, Vol. 26,
No. 4, 15-18. (2009)

3. Kosar T., Oliveira N., Mernik M., Varanda Pereira M.J., Črepinšek M., da Cruz D.,
Henriques P.R.: Comparing General-Purpose and Domain-Specific Languages:
An Empirical Study. Computer Science and Information Systems, Vol. 7, No. 2,
247-264. (2010)

4. Ferreira E., Paulo R., da Cruz D., Henriques P.R.: Integration of the ST Language
in a Model-Based Engineering Environment for Control Systems – An Approach
for Compiler Implementation. Computer Science and Information Systems, Vol. 5,
No. 2, 87-101. (2008)

5. Arora R., Bangalore P., Mernik M.: Raising the level of abstraction for developing
message passing applications, The Journal of Supercomputing, (2010). Accepted
for publication, doi: 10.1007/s11227-010-0490-3

6. Sirer E. G., Bershad B.N.: Using production grammars in software testing. In:
Proceedings of the 2nd Conference on Domain-Specific Languages, pages 1-14.
USENIX Association (1999)

7. Mauw S., Wiersma W.T., Willemse T.A.C.: Language-driven system design.
International Journal of Software Engineering and Knowledge Engineering, Vol. 6,
No. 14, 625-664. (2004)

8. Thibault S., Marlet R., Consel C.: Domain-specific languages: from design to
implementation - application to video device drivers generation. IEEE Transactions
on Software Engineering, Vol. 25, No. 3, 363-377. (1999)

9. Schmidt C.: Guest Editor's Introduction: Model-Driven Engineering. IEEE
Computer, Vol. 39, No. 2, 25-31. (2006)

From DCOM Interfaces to Domain-Specific Modeling Language: A Case Study on the
Sequencer

ComSIS Vol. 8, No. 2, Special Issue, May 2011 377

10. Gray J., Tolvanen J.-P., Kelly S., Gokhale A., Neema S., Sprinkle J.: Domain-
Specific Modeling. Handbook of Dynamic System Modeling. Boca Raton, Florida:
CRC Press (2007)

11. Jimenez M., Rosique F., Sanchez P., Alvarez B., Iborra A.: Habitation: A Domain-
Specific Language for Home Automation. IEEE Software, Vol. 26, No. 4, 30-38.
(2009)

12. Mathe J., Ledeczi A., Nadas A., Sztipanovits J., Martin J., Weavind l., Miller A.,
Miller P., Maron D.: A Model-Integrated, Guideline-Driven, Clinical Decision
Support System. IEEE Software, Vol. 26, No. 4, 54-61. (2009)

13. Venigalla S., Eames B., McInnes A.: A Domain Specific Design Tool for
Spacecraft System Behavior. In DSM, Nashvile, TN (2008)

14. Merilinna J.: Domain-Specific Modelling Language for Navigation Applications on
S60 Mobile Phones. In DSM Nashvile, TN (2008)

15. Živanov Ž., Rakić P., Hajduković M.: Using Code Generation Approach in
Developing Kiosk Applications. Computer Science and Information Systems, Vol.
5, No. 1, 41-59. (2008)

16. Dejanović I., Milosavljević G., Perišić B., Tumbas M.: A Domain-Specific
Language for Defining Static Structure of Database Applications. Computer
Science and Information Systems, Vol. 7, No. 3, 409-440. (2010)

17. Mernik M., Žumer V.: Incremental programming language development. Computer
Languages, Systems & Structures, Vol. 31, No. 1, 1-16. (2005)

18. Meyers B., Vangheluwe H.: A framework for evolution of modeling languages,
Science of Computer Programming, doi:10.1016/j.scico.2011.01.002. (2011)

19. Kollár J., Václavík P., Wassermann Ľ.: Data driven Executable Language Model.
In: Proceedings of the International Multiconference on Computer Science and
Information Technology, pages 667-675, Polish Information Processing Society
(2009)

20. Forgáč M., Kollár J.: Adaptive Approach for Language Modification. Journal of
Computer Science and Control Systems, Vol. 2, No. 1, 9-12. (2009)

21. Kollár J., Forgáč M.: Combined Approach to Program an Language Evolution.
Computing and Informatics, Vol.29, 1103-1116. (2010)

22. Kosar T., Martínez López P.E., Barrientos P.A., Mernik M.: A preliminary study on
various implementation approaches of domain-specific language. Information and
Software Technology, Vol. 50, No. 5, 390-405. (2008)

23. Cantù M.: Mastering Delphi 7. Sybex Inc. Alameda, CA. 2003
24. Levine J. R., Mason T., Brown D.: Lex & Yacc. O'Reilly, Cambridge, MA. 1992
25. Parr T.: The Definitive ANTLR Reference: Building Domain-Specific Languages.

Pragmatic Bookshelf. 2007
26. Porubän J., Forgáč M., Sabo M., Běhálek M.: Annotation Based Parser Generator.

Computer Science and Information Systems, Vol. 7, No. 2, 291-307. (2010)
27. Bézivin J.: From Object-Composition to Model-Transformation with the MDA. In:

TOOLS-USA’2001, Santa Barbara, USA. (2001)
28. Kelly S., Tolvanen J.-P.: Domain-Specific Modeling Enabling Full Code

Generation. John Wiley & Sons, Inc. (2008)
29. Buchwalder O.: MEtaGile: An Agile Domain-Specific Modeling Environment.

(2008)
30. Power, J. F. and Malloy, B. A.: A metrics suite for grammar-based software.

Journal of Software Maintenance and Evolution: Research and Practice, Vol. 16,
No. 6, 405–426. (2004)

31. Črepinšek M., Kosar T., Mernik M., Cervelle J., Forax R., Roussel G.: On
Automata and Language Based Grammar Metrics. Journal on Computer Science
and Information Systems, Vol. 7, No. 2, 310-329. (2010)

Tomaž Kos, Tomaž Kosar, Jure Knez, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 378

32. Wu H., Gray J. G., Mernik M.: Grammar-driven generation of domain-specific
language debuggers. Software practice and experience, Vol. 38, No. 10, 1073-
1103. (2008)

Tomaž Kos has graduated at the Faculty of Electrical Engineering and
Computer Science, University of Maribor, in 2009. Currently, he is a PhD
student and he works for DEWESoft company as a researcher. His main
research interests include programming languages, domain-specific
(modeling) languages, testing, data acquisition, and measurement systems.

Tomaž Kosar received the Ph.D. degree in computer science at the
University of Maribor, Slovenia in 2007. His research is mainly concerned with
design and implementation of domain-specific languages. Other research
interest in computer science include also domain-specific modelling
languages, empirical software engineering, software security, generative
programming, compiler construction, object oriented programming, object-
oriented design, refactoring, and unit testing. He is currently a teaching
assistant at the University of Maribor, Faculty of Electrical Engineering and
Computer Science.

Jure Knez received the M.Sc. adn Ph.D degrees in mechanical engineering
from the University of Ljubljana in 1999 and 2002 respectively. He is currently
employed as CTO of Dewesoft d.o.o. in Trbovlje, Slovenia. The company is
developing the software and measurement instrument widely used in
automotive, aerospace, industrial, power distribution and civil engineering
applications.

Marjan Mernik received the M.Sc. and Ph.D. degrees in computer science
from the University of Maribor in 1994 and 1998 respectively. He is currently a
professor at the University of Maribor, Faculty of Electrical Engineering and
Computer Science. He is also a visiting professor at the University of Alabama
at Birmingham, Department of Computer and Information Sciences, and at the
University of Novi Sad, Faculty of Technical Sciences. His research interests
include programming languages, compilers, domain-specific (modelling)
languages, grammar-based systems, grammatical inference, and evolutionary
computations. He is a member of the IEEE, ACM and EAPLS.

Received: December 31, 2010; Accepted: March 24, 2011.

DOI: 10.2298/CSIS101229018L

A DSL for PIM Specifications: Design and

Attribute Grammar based Implementation

Ivan Luković
1
, Maria João Varanda Pereira

2
, Nuno Oliveira

3
,

Daniela da Cruz
3
, and Pedro Rangel Henriques

3

1 University of Novi Sad, Faculty of Technical Sciences,
Trg D. Obradovića 6, 21000 Novi Sad, Serbia,

ivan@uns.ac.rs
2 Polytechnic Institute of Bragança, Escola Superior de Tecnologia e

Gestão, Campus de Santa Apolónia - Apartado 1134
5301-857 Bragança, Portugal

mjoao@ipb.pt
3 Universisty of Minho, Department of Computer Science,

Campus de Gualtar - 4710-057 Braga, Portugal
{nunooliveira, danieladacruz, prh}@di.uminho.pt

Abstract. IIS*Case is a model driven software tool that provides
information system modeling and prototype generation. It comprises
visual and repository based tools for creating various platform
independent model (PIM) specifications that are latter transformed into
the other, platform specific specifications, and finally to executable
programs. Apart from having PIMs stored as repository definitions, we
need to have their equivalent representation in the form of a domain
specific language. One of the main reasons for this is to allow for
checking the formal correctness of PIMs being created. In the paper, we
present such a meta-language, named IIS*CDesLang. IIS*CDesLang is
specified by an attribute grammar (AG), created under a visual
programming environment for AG specifications, named VisualLISA.

Keywords: information system modeling, model-driven approaches,
domain specific languages, domain specific modelling, attribute
grammars.

1. Introduction

In this paper we present a textual language aimed at modeling platform
independent model (PIM) specifications of an information system (IS). Our
research goals are to create such a language and couple it with Integrated
Information Systems CASE Tool (IIS*Case). IIS*Case is a model driven
software tool that provides IS modeling and prototype generation. At the level
of PIM specifications, IIS*Case provides conceptual modeling of database
schemas and business applications. Starting from such PIM models as a
source, a chain of model-to-model and model-to-code transformations is

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 380

performed in IIS*Case to obtain executable program code of software
applications and database scripts for a selected target platform. One of the
main motives for developing IIS*Case is in the following. For many years, the
most favorable conceptual data model is widely-used Entity-Relationship (ER)
data model. A typical scenario of a database schema design process provided
by majority of existing CASE tools is to create an ER database schema first
and then transform it into the relational database schema. Such a scenario
has many advantages, but also there are serious disadvantages. One of
them, presented in [11] is named "lack of semantic" problem. Actually, there
are many examples in which the same structure of ER database schema
should not be transformed into the same relational database schema
structure, due to the different semantics assigned to the ER structure. In other
words, the transformation process depends not only on the formal mapping
rules, but also on the problem domain semantics. We overcome these
disadvantages by creating an alternative approach and related techniques
that are mainly based on the usage of model driven software development
(MDSD) [3] and Domain Specific Language (DSL) [4, 10] paradigms. The
main idea was to provide the necessary PIM meta-level concepts to IS
designers, so that they can easily model semantics in an application domain.
After that, they may utilize a number of formal methods and complex
algorithms to produce database schema specifications and IS executable
code, without any expert knowledge.

In order to provide design of various PIM models by IIS*Case, we created a
number of modeling, meta-level concepts and formal rules that are used in the
design process. Besides, we also developed and embedded into IIS*Case
visual and repository based tools that apply such concepts and rules. They
assist designers in creating formally valid models and their storing as
repository definitions in a guided way.

Apart from having created PIM models stored as repository definitions,
there is a strong need to have their equivalent representation given in a form
of a textual language, for the following reasons. (i) Firstly, despite that we may
expect that average users prefer to use visually oriented tools for creating PIM
specifications, we should provide more experienced users with a textual
language and a tool for creating PIM specifications more efficiently. (ii)
Secondly, we need to have PIM meta-level concepts specified formally in a
platform independent way, i.e. to be fully independent of repository based
specifications that typically may include some implementation details. (iii) The
third, but not less important, by this we create a basis for the development of
various algorithms for checking the formal correctness of the models being
created, as well as for the implementation of some semantic analysis.
Therefore, we need a grammatical specification to define the structure and
semantics of our meta-level concepts and rules, i.e. we need an attribute
grammar (AG) specification. By such a grammar, we specify a DSL [4, 15]
that recognizes problem domain concepts and rules that are applied in the
conceptual IS design provided by IIS*Case. In the paper, we present a
specification of such meta-language, named IIS*CDesLang. IIS*CDesLang is

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 381

used to create PIM project specifications that may be latter transformed into
the other specifications, and finally to programs.

There are a number of meta-modeling approaches and tools suitable for
the purpose of creating IIS*CDesLang. To create IIS*CDesLang, a visual
programming environment (VPE) for AG specifications, named VisualLISA
[19, 21] is selected. In the paper, we focus on the following application PIM
concepts: project, application system, form type, component type, application,
call type, and basilar concepts as attribute and domain. We applied
VisualLISA Syntactic and Semantic Validators to check the correctness of the
specified grammar.

A benefit of introducing IIS*CDesLang is to enable the creation of a parser
aimed at checking the formal correctness of project models under
development. In this way, we may help designers in raising the quality of new
IS specifications. A possibility to build two translators, IIS*Case repository-to-
IIS*CDesLang specifications and IIS*CDesLang-to-IIS*Case repository
definitions, is another value added by this approach. The benefit of the first
one is to allow the correctness checking of PIM visual models without
explicitly writing IIS*CDesLang specifications; and the benefit of the second
one is a possibility of generating correct PIM repository specifications from
IIS*CDesLang textual specifications. Currently, we developed, using
VisualLISA, an AG specifications of IIS*CDesLang. Apart from having the AG
specification of IIS*CDesLang, we also need the appropriate checkers. They
are still under development. Therefore, we were not able so far to test the
efficiency of the concept as a whole. It remains to be one of our next research
tasks. The main goal of this paper is to present a part of such VisualLISA
specification and address main future research directions.

Apart from Introduction and Conclusion, the paper is organized in four
sections. In Section 2 we present a related work, while in Section 3 we give a
short presentation of IIS*Case. Selected IIS*CDesLang PIM concepts are
briefly described in Section 4. In Section 5 we present preliminaries about
VisualLISA programming environment and an AG specification of
IIS*CDesLang, created by VisualLISA.

2. Related Work

Domain Specific Languages are tailored to specific application domain and
offer to users more appropriate notations and abstractions. Usually DSLs are
more expressive and are easier to use than GPLs for the domain in question,
with gains in productivity and maintenance costs.

The design of a new DSL is usually made when it is needed to make
programming more accessible to end-users, to improve correctness of the
written programs, to improve the program developing time and to make
maintenance easier.

There are various meta-modeling approaches and supporting tools suitable
for the purpose of creating DSLs. One of them is the Meta-Object Facility

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 382

(MOF) [17] proposed by the OMG, where the meta-model is created by
means of UML class diagrams and Object Constraint Language (OCL). The
Generic Modeling Environment (GME) [23] is a configurable toolkit for
domain-specific modeling and program synthesis. In MetaEdit+ [18] models
are created through a graphical editor and a proprietary Report Definition
Language is used to create code from models. The Eclipse Modeling
framework (EMF) [5] is also a commonly used meta-modeling framework,
where meta-meta-model named Ecore is used to create meta-models, or to
import them from UML tools or textual notations like one presented in [6].

We may find a considerable number of references presenting the
applications of such approaches and tools in various problem domains, as it
is, for example, [8]. The same approaches can also be used for the design of
IIS*CDesLang, too.

In general, our current research goals are to apply two closely related
approaches to formally describe our IIS*Case environment. One of them is
based on MOF and the appropriate Domain Specific Modeling (DSM) tools
comprising specification language generators. The other one is applied in this
paper. It is based on creating textual DSLs by means of the appropriate
visually oriented tools with compiler generators. Although there is huge
number of references covering many applications of both approaches in
various problem domains, unfortunately, we still could not find references
communicating ideas how to formally specify a CASE / MDSD tool by means
of DSM and DSL approaches.

3. IIS*Case and Conceptual Modeling

IIS*Case, as a software tool assisting in IS design and generating executable
application prototypes, currently provides:

 Conceptual modeling of database schemas, transaction programs, and
business applications of an IS;

 Automated design of relational database subschemas in the 3rd normal
form (3NF);

 Automated integration of subschemas into a unified database schema in
the 3NF;

 Automated generation of SQL/DDL code for various database management
systems (DBMSs);

 Conceptual design of common user-interface (UI) models; and

 Automated generation of executable prototypes of business applications.
Apart from the tool, we also define a methodological approach to the

application of IIS*Case in the software development process [12, 14]. By this
approach, the software development process provided by IIS*Case is, in
general, evolutive and incremental. It enables an efficient and continuous
development of a software system, as well as an early delivery of software
prototypes that can be easily upgraded or amended according to the new or
changed users' requirements. In our approach we strictly differentiate

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 383

between the specification of a system and its implementation on a particular
platform. Therefore, modeling is performed at the high abstraction level,
because a designer creates an IS model without specifying any
implementation details. Besides, IIS*Case provides some model-to-model
transformations from PIM to Platform-Specific Models (PSM) and model-to-
code transformations from PSMs to the executable program code.

Detailed information about IIS*Case may be found in several authors'
references and we do not intend to repeat them here. A case study illustrating
main features of IIS*Case and the methodological aspects of its usage is
given in [12]. The methodological approach to the application of IIS*Case is
presented in more details in [14]. At the abstraction level of PIMs, IIS*Case
provides conceptual modeling of database schemas that include specifi-
cations of various database constraints, such as domain, not null, key and
unique constraints, as well as various kinds of inclusion dependencies. Such
a model is automatically transformed into a model of relational database
schema, which is still technology independent specification. It is an example
of model-to-model transformations provided by IIS*Case [13].

In [1] we present basic features of SQL Generator that are already im-
plemented into IIS*Case, and aspects of its application. We also present
methods for implementation of a selected database constraint, using
mechanisms provided by a relational DBMS. It is an example of model-to-
code transformations provided by IIS*Case.

At the abstraction level of PIMs, IIS*Case also provides conceptual
modeling of business applications that include specifications of: (i) UI, (ii)
structures of transaction programs aimed to execute over a database, and (iii)
basic application functionality that includes the following "standard" data
operations: read, insert, update, and delete. Also, a PIM model of business
applications is automatically transformed into the program code. In this way,
fully executable application prototypes are generated. Such a generator is
also an example of model-to-code transformations provided by IIS*Case [2].

4. PIM Concepts and IIS*CDesLang

IIS*CDesLang is a meta-language aimed at formal specification of all the
concepts embedded into IIS*Case repository definitions. In this paper, we
focus on the PIM concepts only. Hereby, we give a brief overview of the
following concepts covered by IIS*CDesLang: project, application system,
form type, component type, application, call type, as well as fundamental
concepts: attribute and domain. In this section we present the PIM concepts
only from the technical point of view. Additional and detailed information may
be found in several authors' references, as well as in [12, 14].

A work in IIS*Case is organized through projects. Everything that exists in
the IIS*Case repository is always stored in the context of a project. A designer
may create as many projects as he or she likes. One project is one IS
specification and has a structure represented by the project tree. Each project

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 384

has its (i) name, (ii) fundamental concepts or fundamentals for short, and (iii)
application systems. A designer may also define various types of application
systems – application types for short, and introduce a classification of
application systems by associating each application system to a selected
application type. At the level of a project there is a possibility to generate
various reports that present the current state of the IIS*Case repository.
IIS*Case provides various types of repository reports.

Application systems are organizational parts, i.e. segments of a project. We
suppose that each application system is designed by one, or possibly more
than one designer. Fundamental concepts are formally independent of any
application system. They are created at the level of a project and may be
used in various application systems latter on. Fundamental concepts are:
domains, attributes, inclusion dependencies and program units. In the paper,
we focus on domains, attributes, and functions as a category of program
units.

In the following text, we use a notion of domain with a meaning that is
common in the area of databases. It denotes a specification of allowed values
of some database attributes. We classify domains as (i) primitive and (ii) user
defined. Primitive domains exist "per se", like primitive data types in various
formal languages. We have a small set of primitive domains already defined,
but we allow a designer to create his or her own primitive domains, according
to the project needs. User defined domains are created by referencing
primitive or previously created user defined domains. Domains are referenced
latter from attribute specifications. A list of all project attributes created in
IIS*Case belongs to fundamentals. Attributes are used in various form type
specifications of an application system.

A concept of a function is used to specify any complex functionality that
may be used in other project specifications. Each function has its name as a
unique identifier, a description, a list of formal parameters and a return value
type. Besides, it encompasses a formal specification of function body that is
created by the Function Editor tool of IIS*Case.

4.1. Domains and Attributes

A specification of a primitive domain includes: name, description, default
value, and a "length required" item specifying if a numeric length: a) not to be,
b) may be or c) must be given. User defined domains are to be associated
with attributes. A user defined domain specification includes: a domain name,
description (like all other objects in IIS*Case repository), default value, domain
type, and check condition.

We distinguish the following domain types: (i) domains created by the
inheritance rule and (ii) complex domains that may be created by the: a) tuple
rule, b) choice rule or c) set rule. Inheritance rule means that a domain is
created by inheriting a specification of a primitive domain or a previously
defined user defined domain. It inherits all the rules of a superordinated
domain and may be "stronger" than the original one.

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 385

 A domain created by the tuple rule is called a tuple domain. It represents a
tuple (record) of values. For such a complex domain, we need to select some
attributes as items of a tuple domain. Therefore, we may have a recursive
usage of attributes and domains, because we need some already created
attributes to use in a tuple domain specification. A domain created by the
choice rule – choice domain is technically specified in the same way as tuple
domain. Choice domain is the same as choice type of XML Schema
Language. Each value of such a domain must correspond to exactly one
attribute which is an item in the choice domain. A set domain represents sets
(collections) of values over a selected domain. To create it, we only need to
reference an existing domain as a set member domain. Each value of this
domain will be a set of values, each of them from a set member domain.

Check condition, or the domain check expression is a regular expression
that further constrains possible values of a domain. We have a formal syntax
developed and the Expression Editor tool that assists in creating such
expressions. We also have a parser for checking syntax correctness.

Currently we do not have a possibility to define allowed operators over a
domain in IIS*Case repository. It is a matter of our future work.

Each attribute in an IIS*Case project is identified only by its name.
Therefore, we obey to the Universal Relation Scheme Assumption (URSA)
[11], well known in the relational data model for many years. The same
assumption is also applicable in many other data models. Apart from the
name and description, we specify if an attribute is included into database
schema, derived, or renamed.

Most of the project attributes are to be included into the future database
schema. However, we may have attributes that will present some calculated
values in reports or screen forms that are not included into database schema.
They derive their values on the basis of other attributes by some function,
representing a calculation. Therefore, we classify attributes in IIS*Case as a)
included or b) non-included in database schema. Also we introduce another
classification of attributes, by which we may have: a) elementary or non-
derived and b) derived attributes. If an attribute is specified as non-derived, it
obtains its values directly by the end users. Otherwise, values are dervied by
a function that may represent a calculation formula or any algorithm. Any
attribute specified as non-included in database schema must be declared as
derived one.

A derived attribute may reference an IIS*Case repository function as a
query function. Query function is used to calculate attribute values on
queries. Only a derived attribute may additionally reference three IIS*Case
repository functions specifying how to calculate the attribute values on the
following database operations: insert, update and delete.

In IIS*Case we have a notion of renamed attribute. A renamed attribute
references a previously defined attribute and has to be included in the
database schema. It has its origin in the referenced attribute, but with a
slightly different semantics. Renaming is a concept that is analogous to the
renaming that is applied in mapping Entity-Relationship (ER) database
schemas into relational data model. If a designer specifies that an attribute A1

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 386

is renamed from A, actually he or she introduces an inclusion dependency of

the form [A1]  [A] at the level of a universal relation scheme.
Each attribute specification also includes: a reference to a user defined

domain, default value and check condition. Check condition, or the attribute
check expression is a regular expression that further constrains possible
values of the attribute. It is defined and used in a similar way as it is for
domain check expressions. If the attribute check expression and domain
check expression are both defined, they will be connected by the logical AND.

Both user defined domain and attribute specifications also provide for
specifying a number of display properties of screen items that correspond to
the attributes and their domains. Such display properties are used by the
IIS*Case Application Generator aimed at generating executable application
prototypes. Display properties of an attribute may inherit display properties of
the associated domain or may override them. To keep closed to the main
goals of the paper, a detail technical description of display properties is
omitted here. An interested reader may find it in [2, 24].

4.2. Application Systems, Form Types and Applications

Apart from name, type and description, each application system may have
many child application systems. In this way, a designer may create application
system hierarchies in an IIS*Case project. An application system may
comprise various kinds of IIS*Case repository objects. For PIM specifications,
only two kinds of objects are important: a) form types and b) business
applications, or applications, for short.

A form type is the main modeling concept in IIS*Case. It generalizes
document types, i.e. screen forms or reports by means of users communicate
with an IS. It is a structure defined at the abstraction level of schema. Using
the form type concept, a designer specifies a set of screen or report forms of
transaction programs and, indirectly, specifies database schema attributes
and constraints. Each particular business document is an instance of a form
type.

Form types may be (i) owned, if they are created just in the application
system observed, or (ii) referenced, if they are "borrowed" from another
application system, regardless if it is referenced as a child application system.
If a form type is referenced it is a read-only object in the application system.

Business applications are structures of form types. Each application has its
name, description, and a reference to exactly one form type that is the entry
form type of the application. To exist, each application must contain at least
the entry form type. The execution of a generated application always starts
from the entry form type. Form types in an application are related by form type
calls. A form type call always relates two form types: a calling form type and a
called form type. By a form type call, a designer may formally specify how
values are passed between the forms during the call execution. There are
also other properties specifying details of a call execution. Business

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 387

Application Designer is a visually oriented tool for modeling business
applications in IIS*Case.

Each form type has the following properties: name, title, frequency of
usage, response time and usage type or usage for short. By the usage
property form types are classified as menus or programs. Menu form types
are used to generate just menus without any data items. Program form types
specify transaction programs with the UI. They have a complex structure and
may be designated as (i) considered or (ii) not considered in database
schema design. The first option is used for all form types aimed at updating
database, as well as for some report form types. Only the form types that are
"considered in database schema design" participate latter on in generating
database schema. The former option is used for report form types only.

Each program form type is a tree structure of component types. It must
have at least one component type. A component type has a name, reference
to the parent component type (always empty for the root component type
only), title, number of occurrences, and operations allowed. Number of
occurrences may be specified as (i) 0-N or (ii) 1-N. 0-N means that for each
instance of the parent component type, zero or more instances of the
subordinated component type are allowed. 1-N means that for each instance
of the parent component type, we require the existence of at least one
instance of the subordinated component type. By operations allowed a
designer may specify the following "standard" database operations over the
component types: read, insert, delete, and update instances of the component
type.

Each component type has a set of attributes included from IIS*Case
repository. An attribute may be included in a form type at most once.
Consequently, if a designer includes an attribute into a component type, it
cannot be included in any other component type of the same form type. Each
attribute included in a component type may be declared as: (i) mandatory or
optional, and (ii) modifiable, query only or display only. Also, a set of allowed
operations over an attribute in a component type is specified. It is a subset of
the set of operations {query, insert, nullify, update}. A designer may also
specify "List of Values" (LOV) functionality of a component type attribute by
referencing a LOV form type and specifying various LOV properties. More
information about LOV functionality and LOV properties may be found in [2,
24].

Each component type must have at least one key. A component type key
consists of at least one component type attribute. Each component type key
provides identification of each component instance, but only in the scope of its
superordinated component instance. Also, a component type may have
uniqueness constraints, each of them consisting of at least one component
type attribute. A uniqueness constraint provides an identification of each
component instance, but only if it has a non-null value. On the contrary to
keys, attributes in a uniqueness constraint may be optional. Finally, a
component type may have a check constraint defined. It is a logical
expression constraining values of each component type instance. Like domain
check expressions, they are specified and parsed by Expression Editor.

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 388

Both component type and form type attribute specifications provide for
specifying a vast number of display properties of generated screen forms,
windows, components, groups, tabs, context and overflow areas, and items
that correspond to the form type attributes. There is also the Layout Manager
tool that assists designers in specifying component type display properties,
and a tool UI*Modeler that is aimed at designing templates of various
common UI models. All of these display properties combined with a selected
common UI model are used by the IIS*Case Application Generator. More
information about display properties, Layout Manager and UI*Modeler may be
found in [2, 24].

Our intention is not to present here the formal syntax rules of
IIS*CDesLang in Backus-Naur (BNF) or an equivalent form, but just to
illustrate them by means of a fragment of IIS*CDesLang program. A BNF
specification of IIS*CDesLang is too complex and we believe that it would not
contribute so much while communicate our main idea. However, apart from
the selection of our references given here [1, 2, 11, 12, 13, 14, 24] there are
many other references covering not only PIM concepts of IIS*Case, but also
all the existing concepts of this environment, in detail. In some of them, we
presented the IIS*Case concepts in a quite formal way, by means of the first
order logic formulas, while in the others we presented our repository based
and visually oriented tools for creating formal specifications in IIS*Case. All of
such references are accessible upon request.

In the following example, we illustrate a form type created in an IIS*Case
project named FacultyIS, and the corresponding IIS*CDesLang program.
Figure 1 presents a form type defined in the child application system Student
Service of a parent application system Faculty Organization. It refers to
information about student's grades (STG). It has two component types:
STUDENT representing instances of students, and GRADES, representing
instances of grades for each student.

APPLICATION SYSTEM PARENT APPLICATION

SYSTEM

Student Service Faculty Organization

Fig. 1. A form type in the application system Student Service

STUDENT

GRADES

StudentId, StudentName, Year

CourseShortName, Date, Grade

STG - STUDENT GRADES

r

r, i, u, d

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 389

By the form type STG, we allow having students with zero or more grades.
Component type attributes are presented in italic letters. StudentId is the key
of the component type STUDENT, while CourseShortName is the key of
GRADES. By this, each grade is uniquely identified by CourseShortName
within the scope of a given student. Allowed database operation for
STUDENT is only read (shown in a small rectangle on the top of the rectangle
representing the component type), while the allowed database operations for
GRADES are read, insert, update and delete.

Figure 2 presents a fragment of IIS*CDesLang program that corresponds to
the form type specification from Figure 1. Despite that it is just a fragment we
present the program in a way to cover the specification as a whole. Just
repeating segments of the specification, as well as a number of display and
LOV properties are omitted. To better explain various segments of the
program, we have included in-line comments tagged with the symbol //. In the
following text, we give a textual explanation of the program from Figure 2.

Firstly, the project FacultyIS with its two application systems is specified.
The first one is a specification of the Faculty Organization application system
and then a specification of its child application system Student Service. After
specifying the application system properties Description and Type, a list of
form type specifications included in Student Service is given. In Figure 2 it is
presented a specification of the form type STG – Student Grades only. Each
form type specification includes properties Title, UsageType that may be
program or menu, UsageFrequency and ResponseTime, and a list of
component type specifications. A parent component type STUDENT and its
child component type GRADES are specified in the form type STG – Student
Grades.

The first, Title and Allowed Operations properties are specified for a
component type. By this, read is the only allowed database operation for the
component type STUDENT. After that, a list of display and other UI properties
is specified. When generates UI of a transaction program of the form type
STG – Student Grades, the component type STUDENT is to be positioned in
a new window (Position property) and presented in a field layout style
(DataLayout property). A window is to be centred to its parent window
(Window Position property). Search functionality for student records is allowed
(Search Functionality property), while multiple deletions (Massive Delete
Functionality property) and retaining last inserted record in the screen form
(Retain Last Inserted Record property) functionalities for student records are
disabled. After the specifications of display and UI properties, it follows a list
of specifications of component type attributes.

For each component type attribute we specify its name (Name property),
title (CTA_Title property), if it is mandatory or optional for entering values on
the screen form (CTA_Mandatory property), behavior (CTA_Behavior
property) and allowed operations on the screen form (CTA_AllowedOpera-
tions property). A set of display and LOV properties (preceded by
CTA_DisplayType and CTA_LOV_FormType properties) may also be given.

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 390

Project: Faculty IS

 Application System: Faculty Organization

 Description: "A unit of a Faculty IS"

 Type: ProjectSubsystem

 ... // Specification of the appl. system continues...

 ...

 Application System: Student Service

is-child-of <<Faculty Organization>>

 Description: "A unit of Faculty Organization subsys."

 Type: ProjectSubsystem

 ...

 ... // A list of form types is specified here

 ...

 // A specification of the form type STG begins

 FormType: "STG - Student Grades"

 Title: "Catalogue of student grades"

 UsageType: Program Considered-in-db-design: Yes

 UsageFrequency: 1 Unit: seconds

 ResponseTime: 1 Unit: seconds

 // A specification of the component type begins

 ComponentType: STUDENT

 Title: "Student Records"

 Allowed Operations: read

 Position: newWindow

 DataLayout: FieldLayout

 Window Position: Center

 Search Functionality: Yes

 Massive Delete Functionality: No

 Retain Last Inserted Record: No

 Component Type Attributes:

 Name: StudentID

 CTA_Title: "Student Id."

 CTA_Mandatory: Yes

 CTA_Behavior: queryOnly

 CTA_AllowedOperations: query

 CTA_DisplayType: textbox Height: 20 ...

 // More display properties are omitted ...

 CTA_LOV_FormType: <<STD - Student>> ...

 // More LOV properties are omitted ...

 Name: StudentName

 ...

 Name: Year

 ...

 Component Type KEY: StudentID

 // A specification of the component type ends

 // A specification of the component type begins

 ComponentType: GRADES is-child-of <<Student>>

 NoOfOccurrences: (0:N)

 Allowed Operations: read, insert, update, delete

 Position: sameWindow

 Layout Relative Position: Bottom-to-parent

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 391

 DataLayout: TableLayout

 Window Position: Center

 Search Functionality: Yes

 Massive Delete Functionality: No

 Retain Last Inserted Record: Yes

 Component Type Attributes:

 Name: CourseShortName

 CTA_Title: "Course Short Name"

 CTA_Mandatory: Yes

 CTA_Behavior: modifiable

 CTA_AllowedOperations: query, insert

 CTA_DisplayType: textbox Height: 20 ...

 CTA_LOV_FormType: <<CRS - Courses>> ...

 Name: Date

 ...

 Name: Grade

 ...

 Component Type KEY: CourseShortName

 // A specification of the component type ends

 // A specification of the form type STG ends

 ...

 ... // Specification of form types continues...

 ... // Specification of the project continues...

 ...

Fig. 2. A fragment of IIS*CDesLang program that correspond to the form type in Fig. 1

After the list of component type attributes, the list of component type
constraints is given. It may include the specifications of key, uniqueness and
check constraints. In the example shown in Figure 2, only component type
keys are specified for STUDENT and GRADES by the property Component
Type KEY.

5. The Attribute Grammar Specification of IIS*CDesLang

In this section, an AG specification of IIS*CDesLang, created by VisualLISA
will be described. The IIS*Case concepts, introduced along the previous
section, will now be mapped into IIS*CDesLang symbols establishing a
correspondence between domain concepts and non-terminal or terminal
grammar symbols in the systematic way described in [9].

To provide an easier following of the rest of the paper, we firstly introduce a
brief overview of the notion of AG [7]. An AG is a fvie-tuple AG = <CFG, A, R,
CC, TR> where: CFG is a Context-free Grammar, also given as a four-tuple
CFG = <T, N, S, P>; A is the set of attributes for all symbols in N or T; R is the
set of all the attribute evaluation rules associated with each production p in P;
CC is the set of contextual conditions (or predicates constraining the attribute
values) associated with each production p in P; and TR is the set of all
translation rules (that output attribute values) associated with each production

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 392

p in P. Notice that attributes a in A(t), associated with terminal symbols, are
evaluated outside the grammar rules. Their values are called "intrinsic" and
are provided by the lexical analyzer. However attributes associated with an
non-terminal symbol X (denoted by A(X) can be: synthesized (AS(X)), if their
value is evaluated when X appears in the left-hand side of a grammar rule; or
can be inherited (AI(X)), if their value is evaluated when X appears in the
right-hand side of a grammar rule, using the values of parent or sibling

symbols. So we can state that for each X in N, A(X) = AI(X)  AS(X).
Although the same term "attribute" is used in this paper as a well known

concept in two different contexts: (i) in Section 4, in the domain of databases
and information systems and (ii) in Section 5, as a concept of AGs, it is
important to notice that it is generally speaking the same concept. It is used in
the sequel (associated with symbols) in the context of grammars, in the same
way as it is in the context of object-oriented models/programs, or databases;
in all of these contexts, the notion of attribute denotes a characteristic that

gives semantic to the thing we are formally describing  a grammar symbol, a
class, or even a relation scheme/entity type.

As it can be inferred from AG definition above, to write a complete attribute
grammar for a real size programming language is a systematic and disciplined
work. However it is time consuming and repetitive task.

Although not a complex task, in a case of real size grammar it tends to be
time consuming process requiring a careful work. This inconvenience
discourages language designers to use AGs. Such an attitude prevents them
of resorting to systematic ways to implement the languages and their
supporting tools [22].

To overcome this drawback, for modeling the new DSL we use a Visual
Language (VL) and its respective VPE called VisualLISA, as it is proposed in
[21], and conceived in [19]. The idea of introducing VL is not only about
having a nice visual depiction that will be translated into a target notation latter
on, but also having a possibility of checking syntactic and semantic
consistency.

VisualLISA environment offers a visually oriented and non-errorprone way
for AG modeling and an easy translation of AG models into a target language.
Three main features of VisualLISA are: (i) syntax validation, (ii) semantics
verification and (iii) code generation. The syntax validation restricts some
spatial combinations among the icons of the language. In order to avoid
syntactic mistakes, the model edition is syntax-directed. The semantics
verification copes with the static and dynamic semantics of the AG meta-
language. Finally, the code generation produces code from the drawings
sketched up. The target code would be LISA specification language (LISAsl),
the meta-language for AG description under LISA generator [19]. LISAsl
specification is passed to the LISA system [16, 20] in a straightforward step.

In this section, we discuss how VisualLISA is used to create IIS*CDesLang.
We only present a small set of productions and semantic calculations, to show
how we use the visual editor to model the language. Before that we present a
short description of VisualLISA look and feel, and main usage.

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 393

Figures 3-6 show the editor look and feel; it exhibits its main screen with
four sub-windows. To specify an AG a user starts by declaring the productions
in rootView – sub-window presented in Figure 3, and rigging them up by
dragging the symbols from the dock to the editing area in prodsView – sub-
window presented in Figure 4, as commonly done in VPEs. The composition
of the symbols is almost automatic, since the editing is syntax-directed. When
the production is specified, and the attributes are attached to the symbols, the
next step is to define the attribute evaluation rules. Once again, the user
drags the symbols from the dock, in rulesView – sub-window presented in
Figure 5, to the editing area. To draw the computations links should connect
some of the (input) attributes to an (output) attribute using functions.
Functions can be pre-defined, but sometimes it is necessary to resort to user-
defined functions that should be described in defsView – sub-window
presented in Figure 6. In this sub-window it is also possible to import
packages, define new data-types or define global lexemes.

Fig. 3. VisualLISA subwindow for declaring productions

In this example, presenting the development of the IIS*CDesLang formal
specification with VisualLISA, we will show how the following condition is
formalized and verified using the visual editor: “The application types
associated to application systems should be previously defined”.

For a thorough understanding of the upcoming example, here follows a
brief overview of the visual symbols semantics. The cloud-shaped symbol is
the left-hand side (LHS) of a production; the squares and ellipses are the
terminals and the non-terminals at the right-hand side (RHS) of a production,
respectively. The triangles represent the attributes: inherited attributes are
inverted triangles, while the other triangles are synthesized attributes. The
explosion-shaped symbol represents a function to compute the attributes
value. Concerning the lines and the arrows: the simple lines represent the
connection between the LHS and the RHS symbols; the dashed lines
represent the connections between the symbols and the synthesized and the
inherited attributes; the full arrow means the copy of a value from an attribute
to another; the dashed arrow with a number over it represents an ordered

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 394

argument of a function and, finally, the full arrow from an explosion-shaped
symbol stands for the output of the function.

Fig. 4. VisualLISA subwindow for selecting symbols

Fig. 5. VisualLISA editing area subwindow

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 395

Fig. 6. VisualLISA subwindow for creating user defined functions, importing packages,
defining new data-types and global lexemes

Figure 7 shows the first production of IIS*CDesLang – the one having the
grammar axiom as the tree root. The root Project (see Figure 7.a) derives in
three other non-terminal symbols (ApplicationTypes, ApplicationSystems, and
Fundamentals) and two terminals. Apart from that structural description, the
production shown in Figure 7.a states that the attribute verify of the root
symbol has the same value as the synthesized attribute verify (triangle) of the
non-terminal ApplicationSystems. In Figure 7.b it is presented a detail of the
same production, specifying that the inherited attribute setof_types (inverted-
triangle) of non-terminal ApplicationSystems, inherits the value of the attribute
setof_types of the non-terminal ApplicationTypes.

In Figure 8, we present how the attribute setof_types of the non-terminal
AplicationTypes, is computed. First notice that the production for this non-
terminal has two options: (i) a non-recursive one, where AplicationTypes
derives only one AplicationType (Figure 8.a) and (ii) a recursive case, where
the left-hand side non-terminal derives into an AplicationType and recursively
calls itself.

In this production, we are interested in collecting the application type
names that can be associated to the application systems, as explained
before. To describe this in VisualLISA we created a function that adds a string
to a list, and this function is used to collect the types that are synthesized from
each non-terminal ApplicationType. The explosion symbol denotes the
function, the dashed-arrows define the arguments of these functions, and the

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 396

straight arrows denote to which attribute the output of the function is assigned.
The numbers in the dashed-arrows indicate the order of the arguments in the
function, which are then used as „$i‟ in the function body, where $1 is the first
function argument and $2 the second; in general, $i represents the value of
the i-th argument.

(a)

(b)

Fig. 7. Production structure and computation rules for non-terminal Project. (a)
computation rule for attribute verify; (b) computation rule for inherited attribute
setof_types

Recall Figure 7.b, where an inherited attribute is assigned the value of the
attribute we just compute in Figure 8. The reason why we need to inherit this

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 397

attribute is in the fact that we must check whether the type of each application
system is in this list. Otherwise the language is not correct according to the
contextual condition that we try to verify in this example. Figure 9 presents the
recursive option of the production with the ApplicationSystems as LHS
symbol.

(a)

(b)

Fig. 8. Production structure and computation of attribute setof_types of the element
ApplicationTypes. (a) non-recursive case; (b) recursive case.

From each application system we synthesize its application type (attribute
app_type). Then, we use the inherited attribute setof_types and the value that
results from applying this computation to the rest of the application systems in
the language, to inject these three arguments in a function that tests if the
setof_types ($1 in the operation description of Figure 9) contains the value of
the synthesized attribute app_type ($2 in the operation description). As this
operation returns a boolean value, we check using the logic and operation, if
this value and the value of the attribute verify ($3 in the operation description)

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 398

are both true. The output of the function is also a Boolean and is assigned to
attribute verify of the LHS symbol.

The non-recursive option of this production is similar, but the computation
of the final attribute is only based on the list of types and the type that comes
from the ApplicationType symbol.

Fig. 9. Recursive case for production of the symbol ApplicationSystems and
computation of the attribute verify.

Although the drawings presented in Figures 7 to 9 have been formally
constructed, for those that read the visual grammar it is not necessary to
know if attributes are synthesized or inherited, neither the way evaluation
rules are built – it is enough to understand the way they are connected to
understand the new language semantics. The remaining parts of the
formalization follows the same structure as the one presented in this section.

To develop incrementally a DSL using VisualLISA is very easy. Just define
a new set of attributes (corresponding to the next semantic step) and the
respective evaluation rules and draw this new semantic specification over a
syntax tree (a production) previously created. VisualLISA environment will
automatically add this new component to the ones existing for the same
symbols. However VisualLISA does not include any operator for grammar
inheritance or symbol/production extension in LISA style.

With VisuaLISA we defined a model of IIS*CDesLang PIM concepts. The
IIS*CDesLang productions were visually modelled, checked and translated to
LISA specifications. This model can be turned into a valid AG, and in a
straightforward step, we have not only a new language, but also a compiler for
the language.

We list below the textual format for the most important IIS*CDesLang
productions of the AG outputted by VisualLISA environment. Those are the
productions that in general cover the concepts of: project, application system,

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 399

form type and component type. Notice that we transcribe them in a neutral
AG-format to avoid that the reader must learn LISA syntax.

The first production is:

Project  ProjectName ApplicationType+ ApplicationSystem+
 Fundamentals Reports

It defines a project specifying a name (ProjectName), a set of possible types
of application systems (ApplicationType), a set of application systems created
in the scope of a project (ApplicationSystem), fundamental concepts
(Fundamentals) and category of a repository report (Reports).

The production defining the application system is:

ApplicationSystem  AppSystemName AppSystemDescription
 ApplicationTypeName FormTypes
 BusinessApplication+ ChildAppSystem+
 RelationScheme+ JoinDependency+
 ClosureGraph Reports

It specifies a name (AppSystemName), a description (AppSystem
Description), a type of application system (ApplicationTypeName), a category
of a form type (FormTypes), a set of business applications
(BusinessApplication), a set of child application systems (ChildAppSystem), a
set of generated relation schemes (RelationScheme), a set of created join
dependencies (JoinDependency), a closure graph (ClosureGraph) and
category of application system specific reports (Reports).

At this point, it is needed to verify if the application system type specified
for an application system belongs to the set of possible types:

ApplicationSystem.ApplicationTypeName.value belong_to
{set_of(ApplicationType.ApplicationTypeName .value)}

Just as an illustration, we give here selected productions covering the form
type and component type concepts:

FormTypes  OwnedFormType+ ReferencedFormType+

OwnedFormType  FormTypeName FormTypeTitle FTFrequency
 FTResponseTime FTParameter+ CalledFormType+
 FTUsage

FTUsage  Menu | Program

Program  ComponentTypeTreeStructure ConsideredInDBSchDesign

ComponentTypeTreeStructure  ComponentType+

ComponentType  CTName CTParent NoOfOcurrences
 CTTitleAllowedOperations ComponentDisplay
 ItemGroup+ComponentTypeAttribute+
 ComponentTypeKey+ ComponentTypeUnique+
 ComponentTypeCheckConstraint

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 400

These productions also have a set of semantic conditions that must be
verified.

6. Conclusion

AGs are widely used to specify the syntax (by the underlying Context Free
Grammar) and the semantics (by the set of attributes and theirs computation
rules and contextual conditions) of computer languages. This formalism is well
defined and so its usage is completely disciplined; but, more than that, it has
the unique property of supporting the specification of syntax and semantics
under the same framework. Moreover, an AG can be automatically
transformed into a program to process the sentences of the language it
defines.

The research presented in this paper resulted from the collaborative
research project between Serbia and Portugal. To formally describe the
Integrated Information Systems CASE Tool (IIS*Case) – a model driven
software tool that provides IS modeling and prototype generation developed
at University of Novi Sad – we define a DSL, named IIS*CDesLang, that
encompasses problem domain concepts and rules that are applied in the
conceptual IS design provided by IIS*Case. In the paper, we present such a
meta-language resorting to a VPE for attribute grammar specifications, named
VisualLISA, developed at University of Minho. VisualLISA makes the process
of AG development easier and safer; it allows the drawing of the AG
productions (grammar rules) in the form of attributed trees decorated with
attribute evaluation rules. These visual productions are syntactically and
semantically checked for correctness.

Currently, we are completing the IIS*CDesLang AG specification to cover
all the IIS*Case. After that, we will resort to the compiler generator system
LISA to produce a compiler for IIS*CDesLang.

On the basis of the problem domain knowledge embedded in the AG, the
generated compiler will also provide semantic analyses of the designed
specifications and further assist designers in raising the quality of their work.
Two characteristic examples are domain compatibility analysis and check
constraint equivalence analysis. We plan to include a textual editor for
IIS*CDesLang into IIS*Case, and integrate into it the generated compiler to
couple IIS*Case repository with the formal IIS*CDesLang descriptions.

Moreover, as future work we plan to build a translator from IIS*Case Visual
PIM specifications into textual IIS*CDesLang descriptions. This will allow to
verify the specifications correctness without writing them manually in
IIS*CDesLang. Also, it will be possible and interesting to implement the
automatic generation of PIM specifications from IIS*CDesLang descriptions.

Acknowledgments. A part of the research presented in this paper was supported by
Ministry of Education and Science of Republic of Serbia, Grant III-44010 Title:
Intelligent Systems for Software Product Development and Business Support based on
Models.

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 401

References

1. Aleksić, S., Luković, I., Mogin, P., Govedarica, M.: A Generator of SQL Schema
Specifications. Computer Science and Information Systems (ComSIS),
Consortium of Faculties of Serbia and Montenegro, Novi Sad, Serbia, ISSN:1820-
0214, Vol.4, No. 2, 79--98. (2007)

2. Banović J.: An Approach to Generating Executable Software Specifications of an
Information System. Ph.D. Thesis. University of Novi Sad, Faculty of Technical
Sciences in Novi Sad. (2010)

3. Bézivin J., On the unification power of models, Software and Systems Modeling,
Vol. 4, No. 2, 171--188. (2005)

4. Deursen van, A., Klint, P. Visser, J.: Domain-Specific Languages: An Annotated
Bibliography. ACM SIGPLAN Notices, Association for Computing Machinery, USA,
Vol. 35, No. 6, 26--36. (2000)

5. Eclipse Modeling Framework [Online] Available:
 http://www.eclipse.org/modeling/emf/ (current April, 2011)

6. Jouault F., Bézivin J.: KM3: a DSL for Metamodel Specification, In: Proceedings of
8th IFIP International Conference on Formal Methods for Open Object-Based
Distributed Systems, Bologna, Italy, Springer LNCS 4037, 171--185. (2006)

7. Knuth, D. E.: Semantics of Context-free Languages. Theory of Computing
Systems, Vol 2, No. 2, 127--145. (1968)

8. Krahn H., Rumpe B., Völkel S.: Roles in Software Development using Domain
Specific Modelling Languages, In: Proceedings of 6th OOPSLA Workshop on
Domain-Specific Modeling, Portland, USA, 150--158. (2006)

9. Kosar T., Mernik M., Henriques P.R., Varanda Pereira M.J, Žumer V.: Software
development with grammatical approach. Informatica, ISSN: 1854-3871, Vol. 28,
No. 4, 39--404. (2004)

10. Kosar T., Oliveira N., Mernik M., Varanda Pereira M.J., Črepinšek M., da Cruz D.,
Henriques P.R.: Comparing General-Purpose and Domain-Specific Languages:
An Empirical Study. Computer Science and Information Systems (ComSIS),
Consortium of Faculties of Serbia and Montenegro, Novi Sad, Serbia, ISSN:1820-
0214, Vol. 7, No. 2, 247--264. (2010)

11. Luković I.: From the Synthesis Algorithm to the Model Driven Transformations in
Database Design, In: Proceedings of 10th International Scientific Conference on
Informatics (Informatics 2009), Herlany, Slovakia, ISBN 978-80-8086-126-1, 9--18.
(2009)

12. Luković, I., Mogin, P., Pavićević, J., Ristić, S.: An Approach to Developing
Complex Database Schemas Using Form Types. Software: Practice and
Experience, John Wiley & Sons Inc, Hoboken, USA, DOI: 10.1002/spe.820, Vol.
37, No. 15, 1621--1656. (2007)

13. Luković, I., Ristić, S., Aleksić, S., Popović, A.: An Application of the MDSE
Principles in IIS*Case. In: Proceedings of III Workshop on Model Driven Software
Engineering (MDSE 2008), Berlin, Germany, TFH, University of Applied Sciences
Berlin, 53--62. (2008)

14. Luković, I., Ristić, S., Mogin, P., Pavićević, J.: Database Schema Integration
Process – A Methodology and Aspects of Its Applying. Novi Sad Journal of
Mathematics, Serbia, ISSN: 1450-5444, Vol. 36, No. 1, 115--150. (2006)

15. Mernik, M., Heering, J., Sloane, M. A.: When and How to Develop Domain-
Specific Languages. ACM Computing Surveys (CSUR), Association for Computing
Machinery, USA, Vol. 37, No. 4, 316--344. (2005)

http://www.eclipse.org/modeling/emf/

Ivan Luković et al.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 402

16. Mernik, M., Lenič, M., Avdičaušević, E., Žumer, V.: LISA: An Interactive
Environment for Programming Language Development. In: Proceedings of
Compiler Contruction, LNCS Vol. 2304, 1--4. (2002)

17. Meta-Object Facilty [Online] Available: http://www.omg.org/mof/ (Current: April,
2011)

18. MetaCase Metaedit+ [Online] Available: http://www.metacase.com/ (Current: April,
2011)

19. Oliveira, N. Varanda Pereira, M.J., Henriques, P.R., Cruz, D., Cramer, B.:
VisualLISA: A Visual Environment to Develop Attribute Grammars. Computer
Science an Information Systems Journal, Special Issue on Compilers, Related
Technologies and Applications (ComSIS), Lukovic, I. and Leitão A, Slivnik B.
(Guest Eds.), ISSN:1820-0214, Vol. 7, No. 2, 265--289. (2010)

20. Varanda Pereira, M.J., Mernik, M., Cruz, D., Henriques, P.R.: Program
Comprehension for Domain-Specific Languages. Computer Science and
Information Systems (ComSIS), ISSN:1820-0214, Vol. 5, No. 2, 1--17. (2008)

21. Varanda Pereira, M.J., Mernik, M., Cruz, D., Henriques, P.R.: VisualLISA: a Visual
Interface for an Attribute Grammar based Compiler-Compiler, In: Proceedings of
2nd Conference on Compilers, Related Technologies and Applications
(CoRTA08), IPB, Bragança, Portugal, 265--289. (2008)

22. Henriques P.R., Pereira Varanda M.J., Mernik M., Lenič M., Gray J., Wu
H.: Automatic Generation of Language-based Tools using LISA. IEE Proceedings
– Software, Vol. 152, No. 2, pp. 54--69. (2005)

23. The Generic Modeling Environment [Online] Available:
http://www.isis.vanderbilt.edu/Projects/gme/ (Current April, 2011)

24. Popović A.: A Specification of Visual Attributes and Business Application
Structures in the IIS*Case Tool. Mr (M.Sc.) Thesis. University of Novi Sad, Faculty
of Technical Sciences in Novi Sad. (2008)

Ivan Luković received his M.Sc. (5 year, former Diploma) degree in
Informatics from the Faculty of Military and Technical Sciences in Zagreb in
1990. He completed his Mr (2 year) degree at the University of Belgrade,
Faculty of Electrical Engineering in 1993, and his Ph.D. at the University of
Novi Sad, Faculty of Technical Sciences in 1996. Currently, he works as a
Full Professor at the Faculty of Technical Sciences at the University of Novi
Sad, where he lectures in several Computer Science and Informatics courses.
His research interests are related to Database Systems and Software
Engineering. He is the author or coauthor of over 75 papers, 4 books, and 30
industry projects and software solutions in the area.

Maria João Varanda Pereira, received the M.Sc. and Ph.D. degrees in
computer science from the University of Minho in 1996 and 2003 respectively.
She is a member of the Language Processing group in the Computer Science
and Technology Center , at the University of Minho. She is currently an
adjunct professor at the Technology and Management School of the
Polytechnic Institute of Bragança,on the Informatics and Communications
Department and vice-president of the same school. She usually teaches
courses under the broader area of programming: programming languages,
algorithms and language processing. But also some courses about project
management. As a researcher of gEPL, she is working with the development

http://www.omg.org/mof/
http://www.metacase.com/
http://www.isis.vanderbilt.edu/Projects/gme/

A DSL for PIM Specifications: Design and Attribute Grammar based Implementation

ComSIS Vol. 8, No. 2, Special Issue, May 2011 403

of compilers based on attribute grammars, automatic generation tools, visual
languages, domain specific languages and program comprehension. She is
author or coauthor of 12 journal papers and over 36 international conference
papers. She was also responsible for PCVIA project (Program
Comprehension by Visual Inspection and Animation), a FCT funded national
research project; She was involved in several bilateral cooperation projects
with University of Maribor (Slovenia) since 2000. Now, the bilateral project
underdevelopment is about ``Program Comprehension for Domain Specific
Languages''.

Nuno Oliveira received, from University of Minho, a degree in Computer
Science (2007) and a M.Sc. in Informatics (2009), for his thesis “Improving
Program Comprehension Tools for Domain Specific Languages”. He is a
member of the Language Processing group at CCTC (Computer Science and
Technology Center) , University of Minho. He participated in several projects
with focus on Visual Languages and Program Comprehension. Currently, he
is starting his PhD studies on Architectural Reconfiguration of Interacting
Services, under a research grant funded by FCT.

Daniela da Cruz received a degree in “Mathematics and Computer Science”,
at University of Minho (UM), and now she is a Ph.D. student of ”Computer
Science” also at University of Minho, under the MAPi doctoral program. She
joined the research and teaching team of “gEPL, the Language Processing
group” in 2005. She is teaching assistant in different courses in the area of
Compilers and Formal Development of Language Processors; and
Programming Languages and Paradigms (Procedural, Logic, and OO). She
was also involved in several research projects (CROSS, DSLpc, PCVIA).

Pedro Rangel Henriques got a degree in “Electrotechnical/Electronics
Engineering”, at FEUP (Porto University), and finished a Ph.D. thesis in
“Formal Languages and Attribute Grammars” at University of Minho. In 1981
he joined the Computer Science Department of University of Minho, where he
is a teacher/researcher. Since 1995 he is the coordinator of the “Language
Processing group” at CCTC (Computer Science and Technologies Center).
He teaches many different courses under the broader area of programming:
Programming Languages and Paradigms; Compilers, Grammar Engineering
and Software Analysis and Transformation; etc. Pedro Rangel Henriques has
supervised Ph.D. (11), and M.Sc. (13) thesis, and more than 50 graduating
trainingships/projects, in the areas of: language processing (textual and
visual), and structured document processing; code analysis, program
visulaization/animation and program comprehension; knowledge discovery
from databases, data-mining, and data-cleaning. He is co-author of the “XML
& XSL: da teoria a pr´ atica” book, published by FCA in 2002; and has
published 3 chapters in books, and 20 journal papers.

Received: December 29, 2010; Accepted: May 19, 2011.

DOI: 10.2298/CSIS110112010P

UML Profile for Specifying User Interfaces of
Business Applications

Branko Perišić, Gordana Milosavljević, Igor Dejanović,
and Branko Milosavljević

University of Novi Sad
Faculty of Technical Sciences

{perisic,grist,igord,mbranko}@uns.ac.rs

Abstract. This paper presents an approach to automatic user interface
code generation that is based on our own HCI standard that defines layout
and behaviour of coarse-grained objects for enterprise business applica-
tions. A domain-specific language (in the form of a UML profile) based on
the concepts introduced by the HCI standard facilitates efficient modeling
and generation of fully-functional UIs. Being a regular UML extension, this
language can be used in any general-purpose UML modelling tool and
can easily be integrated with other UML-based models of the application.

Key words: user interface, code generation, MDA, UML profile

1. Introduction

Various aspects of model-based development of user interfaces (UIs) are the
subject of intensive research efforts. However, the majority of presented so-
lutions is hardly applicable to development of real-world information systems
because too much time and effort is spent on developing and synchronising
different types of user interface models (for example, presentation model, con-
tent model, navigation model, interaction model), the complexity of sharing the
knowledge embedded in different models, the lack of support in development
tools, and the lack of consensus over which types of models best describe UIs
[23].

Most tools for modelling user interfaces use its own set of notations, thus
impeding the integration with other application models [26]. This is especially
the problem in developing business applications that require tight integration of
UI models with models that specify business logic.

In order to overcome the problem of integration and to facilitate the exchange
of information among different tools, UML can be used to model all aspects of
an application, including the user interface [3]. Although very powerful, UML
without extensions is not suitable for modelling UIs [26, 3, 19].

This paper presents a UML extension in the form of a UML profile for specify-
ing UIs of business applications named EUIS (Enterprise User Interface Speci-
fication profile). EUIS is developed in order to enable rapid user interface mod-

B. Perišić et al.

elling at a high level of abstraction. EUIS is based on our own HCI (human-
computer interaction) standard of a business application that defines functional
and presentational features of coarse-grained building blocks thus enabling the
generation of a fully functional UI, without the need for defining a multitude of
models used for developing UIs in the general case.

It is important to note that the UI model is not a model of an application
(from the implementation standpoint); it defines the structure of the applica-
tion using building blocks at a high abstraction level (different types of screen
forms, reports, procedures) and their relationships. Depending on the develop-
ment platform, the intended application architecture, and the implementation
of a code generator, one class from the UI model may be mapped to one or
more classes or modules of an application, or may even be not mapped to the
program code at all but to application repository data instead, if a data-driven
application architecture is used (for example, see [13, 14]).

Generated

PSM

PIM

Application elements
meta-data

Problem domain model

Application repository

User interface model

Middleware

Middleware /
Business logic

model

Database scripts

Database model

User interface

«import»

Fig. 1. Model transformations

The development of a whole business application using the EUIS profile
comprises the following activities (see Figure 1):

– The development of PIM (platform independent model) of a problem domain
by means of class diagrams in a general-purpose UML modelling tool.

– The automatic transformation of a PIM to PSMs (platform-specific model):
database schema model, user interface model, and the middle-tier model
(in the case a three-tier architecture is chosen).

– Automatic generation of artifacts needed for implementation based on PSMs:
database schema creation or alteration scripts, middle-tier implementation
artifacts (such as EJBs), fully functional application UI (depending on the
target architecture of the client application), and atomic “CRUD” transac-
tions implementing creation, retrieval, update, and deletion for every entity
in the persistence layer.

406 ComSIS Vol. 8, No. 2, Special Issue, May 2011

UML Profile for Specifying User Interfaces of Business Applications

The rest of the paper is structured as follows. Section 2 describes the basics
of the HCI standard. Section 3 presents the EUIS profile. Section 4 reviews the
related work. The last section concludes the paper.

2. The HCI Standard

Our human-computer interaction (HCI) standard is aimed at defining functional
and visual features of course-grained application components. Its goals include
the following: simplicity of use, quick user training, and the automation of user
interface construction.

The papers [16, 17] define a number of types of screen forms. For this dis-
cussion, the following types are relevant:

– standard data management form,
– standard panel,
– parent-child form, and
– many-to-many form.

Standard form is designed to display data and all available operations so
the user can choose a data item and invoke an operation on it without memoris-
ing commands (the object-action approach [24]). Standard operations common
to all entities are represented by buttons/icons at the top of the form, while spe-
cific operations (if they exist) are represented by links/buttons at the right hand
side. The standard form layout is presented in Figure 2.

Form header

Data display area

Specific operations and next forms

Standard operations toolbar

…

Title

Fig. 2. Standard form layout

Operations common to all entities include search (query by form), display,
addition, update, removal, copying, data navigation and view mode toggle (grid
view or single record view). Specific operations include complex data process-
ing procedures associated with the given entity (transactions), invocation of re-
lated (next) screen forms, and invocation of reports. The standard mandates
that the specific operations always use the currently selected (viewed) record.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 407

B. Perišić et al.

Standard panel has the appearance and the behaviour of the standard form
but, instead being shown in its own window, it is used as an element of a com-
plex form. Standard panels are regularly used for parent-child and many-to-
many forms.

A parent-child form is used for data that have hierarchical structure, where
each element in the hierarchy is modelled as an entity in the persistence layer.
Each element in the hierarchy is represented by a standard panel, where a
panel at the n-th hierarchy level filters its content according to the selected data
item at the level n− 1.

The many-to-many form is used for intensive management of data belong-
ing to entities connected by “many-to-many” relationships, with or without asso-
ciate classes. Its layout is presented in Figure 3. This screen form is used as
follows:

– A number of desired records are selected in the upper panel. These records
are “dragged” to the lower panel by clicking the button with the downwards
arrow. If a record is dragged by mistake, it can be revoked back by clicking
the upwards arrow button.

– The values of non-key attributes of a record selected in the lower panel may
be changed.

Form header

Panel for choosing records

Title

Buttons for specific operations

Downwards arrow and
 upwards arrow buttons

Panel for chosen records

Fig. 3. Many-to-many form layout

Relationships among screen forms are represented by three mechanisms:
zoom, next, and activate. The zoom mechanism represents the invocation of
the form associated with the given entity where the user can choose a data
item and “drag” it (pick its values) to the fields of the previously viewed form.

The next mechanism, invoked from the form associated with the current
entity, displays the form associated with the child entity with its data filtered so
that only connected objects are displayed. The key or a representation of the
parent entity is displayed in the form header, so the user easily recognises the
current context. A next can be invoked by menu items, buttons, or links.

408 ComSIS Vol. 8, No. 2, Special Issue, May 2011

UML Profile for Specifying User Interfaces of Business Applications

The activate mechanism enables direct invocation of a form by another
form, without restrictions on the data displayed. The invoked form does not
need to be related to the current one.

3. The EUIS Profile

The EUIS profile extends the following metaclasses from the UML::Kernel pack-
age: Element, Class, Property, Operation, Parameter, Constraint, and Package.
It is complementary to the profile for modelling persistent data that is available
in a majority of modelling tools (see Figure 4). Therefore, EUIS is independent
on modelling tools, persistence layer and the database of choice. Profile that
models persistent data comprises only the stereotypes present in the majority
of modelling tools (possibly under a different name): persistent class, persistent
property, persistent data type, and persistent operations (methods implemented
in the persistence layer) – see Figure 5. When using the EUIS profile, these
stereotypes are replaced with concrete stereotypes of the chosen modelling
tool.

PersistenceProfile

EUISProfile

Kernel
«import»

«import»

Fig. 4. Profile structure

identifier : Boolean [0..1] = false
unique : Boolean [0..1] = false
identity : Boolean [0..1] = false
nullable : Boolean [0..1] = true

«stereotype»

PersistentProperty
«stereotype»

PersistentOperation

length : Integer [0..1]
precision : Integer [0..1]

«stereotype»

PersistentDataType

«stereotype»

PersistentClass

«metaclass»

Class

«metaclass»

DataType

«metaclass»

Property

«metaclass»

Operation

*

persistentDataType 1

Fig. 5. Persistence profile

In order to specify additional information needed for transforming a problem
domain model to a user interface model, another profile is developed (see Fig-

ComSIS Vol. 8, No. 2, Special Issue, May 2011 409

B. Perišić et al.

ure 6) that provides the following: defining a set of one or more properties as a
business key – the BusinessKey stereotype [4], designation of a method as a
complex business procedure – the Transaction stereotype, and the designation
of a method as a report – the Report stereotype.

«stereotype»

BusinessOperation
«stereotype»

BusinessKey

«stereotype»

Transaction

«stereotype»

Report

«metaclass»

Property

«metaclass»

Operation

Fig. 6. Profile used in the problem domain model

Stereotypes and enumerated types of the EUIS profile are organised in the
following categories:

– a visible element: extension of Element metaclass
– visible classes (panels): extensions of Class metaclass
– visible properties: extensions of Property metaclass
– visible methods: extensions of Operation metaclass
– visible parameter: extension of Parameter metaclass
– a group of elements: extension of Property metaclass
– visible association ends: extensions of Property metaclass
– validators: extension of Constraint metaclass
– a business subsystem: extension of Package metaclass

Due to space constraints, the rest of the section presents only the most
important stereotypes and tags. Formal OCL constraints are not presented.

3.1. Visible Elements

Stereotype VisibleElement (see Figure 7) represents a model element that is
mapped to a user interface element in the generated application. Since Element
metaclass is a common superclass of all UML metaclasses, this facilitates the
representation of all model elements with an UI component and a label, where
applicable.

The enumerated type ComponentType defines a set of available UI com-
ponent types. The set of components is designed to be platform-independent.
Mapping these values to particular UI components of the chosen development
platform is performed in the application generator.

410 ComSIS Vol. 8, No. 2, Special Issue, May 2011

UML Profile for Specifying User Interfaces of Business Applications

passwordField

selectionList

tabbedPane

radioButton

comboBox
checkBox

menuItem

textArea

textField

column

border

button

image

panel

menu

label

grid

«enumeration»

ComponentType

label : String [0..1]
visible : Boolean [1] = true
component : ComponentType [0..1]

«stereotype»

VisibleElement

«metaclass»

Element

Fig. 7. Visible element

3.2. Visible Classes

Stereotype VisibleClass (see Figure 8) represents a class that is mapped to a
panel (a regular or a tabulated panel) in the application UI. If a panel is associ-
ated to an empty window or a web page, it becomes a screen form that can be
independently activated (opened).

Stereotype VisibleClass is not abstract because of the possibility of mod-
elling specific panels that are not comprised by the HCI standard, but still occur
rarely enough that there is no need to extend the HCI standard with a new
element.

defaultOperationMode : OperationMode [1] = viewMode
defaultViewMode : ViewMode [1] = tableView
confirmDelete : Boolean = true
stayInAddMode : Boolean = true
goToLastAdded : Boolean = true

StdPanelSettings

add : Boolean [1] = true
update : Boolean [1] = true
copy : Boolean [1] = true
delete : Boolean [1] = true
search : Boolean [1] = true
changeMode : Boolean [1] = true
dataNavigation : Boolean [1] = true

StandardOperations

modal : Boolean [1] = true

«stereotype»

VisibleClass

dataFilter : String [0..1]

DataSettingsStandardOperations

searchMode

updateMode
copyMode

viewMode

addMode

«enumeration»

OperationMode

«stereotype»

ParameterPanel

StdPanelSettings

«stereotype»

ContainerPanel

«stereotype»

PersistentClass

«stereotype»

VisibleProperty

inputPanelView
tableView

«enumeration»

ViewMode

«stereotype»

VisibleElement

«stereotype»

StandardPanel

«stereotype»

MainPanel

«stereotype»

ParentChild

«stereotype»

PanelGroup

«stereotype»

ManyToMany

«metaclass»

Class

DataSettings

{incomplete, disjoint}

PanelType

{incomplete, disjoint}

ContainerKind

persistentClass 1

*

sortBy *

Fig. 8. Visible classes

ComSIS Vol. 8, No. 2, Special Issue, May 2011 411

B. Perišić et al.

The inherited tag label is used as a window title or a label that explains the
purpose of the panel if displayed within a complex panel.

Stereotype StandardPanel denotes that the given persistent class is asso-
ciated with a standard panel whose layout and behaviour are defined by the
HCI standard. The standard panel implements three interfaces: StandardOp-
erations – operations defined by the HCI standard: add, update, copy, delete,
search, change mode, navigate data; StdPanelSettings – settings that define
panel’s runtime behaviour; and DataSettings – defines data filtering and sort-
ing.

Stereotype ParameterPanel represents a class that is mapped to a panel
for entering parameters for a visible method (see VisibleOperation stereotype)
that is invoked by a button or a menu item. Since the majority of parameter
panels in an application is created implicitly, as a result of a visible method
and its parameters, classes with this stereotype rarely occur. It can be used
in situations where a user successively invokes a number of methods with the
same set of parameter values.

The ContainerPanel is an abstract stereotype that represents a complex
panel that can contain other panels (simple or complex), as well as a number
of properties and methods. It defines additional attributes, methods, and con-
straints for its descendants (ParentChild, ManyToMany, and PanelGroup). The
layout and behaviour of ParentChild and ManyToMany panels is defined by the
HCI standard, while their relationship to the contained panels is defined by hier-
archical relationships (associations with ends having the Hierarchy stereotype).
For details on associating panels, see section 3.7.

The layout and behaviour of a PanelGroup is not defined by the HCI stan-
dard. It is used for modelling special-purpose complex panels. The class with
a PanelGroup stereotype defines only the contained elements, while their rela-
tionship is implemented in application code.

Classes with the MainPanel stereotype are used for modelling the main form
of a business subsystem (see section 3.9).

3.3. Visible Properties

Stereotype VisibleProperty (see Figure 9) is a property of a “visible” class and
is mapped to a UI component contained in the panel associated to the class. Its
tags provide customisation of appearance and behaviour of the UI component,
or the table column in the case of tabular display of data (label, columnLabel,
dataFormat, disabled), default values in the UI component (default, defaultVal-
ueGetter), and automatic focus traversal (autoGo). Tag default contains an OCL
expression that defines the initial value, while defaultValueGetter contains the
reference to the method used for fetching the default value (in cases when OCL
expression cannot be used). Tag representative indicates that the given prop-
erty can be used to represent the whole class from the users’ point of view (for
example, company name, first name + ” ” + last name).

Aggregated represents an aggregated property, whose value is calculated
using one of the aggregation functions (min, max, sum, avg, count) over the

412 ComSIS Vol. 8, No. 2, Special Issue, May 2011

UML Profile for Specifying User Interfaces of Business Applications

columnLabel : String [0..1]
displayFormat : String [0..1]
representative : Boolean [1] = false
autoGo : Boolean [1] = false
disabled : Boolean [1] = false
default : String [0..1]

«stereotype»

VisibleProperty

function : AggregateFunction [1]
selection : String [0..1]

«stereotype»

Aggregated

incrementSpec : String [0..1]

«stereotype»

AutoIncrement

+modal : Boolean [1] = true

«stereotype»

VisibleClass

expression : String [0..1]

«stereotype»

Calculated

«stereotype»

PersistentProperty

«stereotype»

PersistentProperty

count

max
sum
avg

min

«enumeration»

AggregateFunction

«stereotype»

VisibleElement

«stereotype»

AutoDuplicate

«stereotype»

Editable

«stereotype»

Persistent

«stereotype»

ReadOnly
«stereotype»

Lookup

«metaclass»

Operation

«metaclass»

Operation

«metaclass»

Property

«metaclass»

Operation

{incomplete, disjoint}

PropertyType

{incomplete, disjoint}

PersistentType

defaultValueGetter

0..1*

performsCalculation

0..1

performsAggregation

0..1

aggregatingAttribute
1

persistentProperty 1

*

lookupClass 0..1

performsIncrement

0..1

Fig. 9. Visible properties

selected property (aggregatingAttribute). The set of values being aggregated is
specified by an OCL expression (selection) or by a method (performsSelection).

Stereotype Calculated represents a property whose value is calculated ac-
cording to the given formula over the values in objects of this or some other
class. Calculation method can be specified by an OCL expression (expression)
or by a method (performsCalculation).

Abstract stereotype Persistent represents a property that is mapped to a
persistent property in the problem domain model. Its descendants include Ed-
itable (enables editing the value of the persistent property in the UI component)
and ReadOnly (disables editing). Editing values is allowed if the user has ap-
propriate permissions.

Editable has an AutoDuplicate descendant that represents a persistent prop-
erty where the value entered in the UI component is kept as default when enter-
ing a new record. It is usually applied to properties whose values are repeated
across many records, so the user is spared some effort while entering data.

ReadOnly has an AutoIncrement descendant that denotes a persistent prop-
erty whose value is automatically incremented with each new record entered.
Contrary to identity columns or database sequences, this property allows the
counter value to be reset if a condition is met (using an OCL expression in
incrementSpec or a method in performsIncrement).

Stereotype Lookup describes a property whose value is formed from prop-
erty values of referenced objects, directly or indirectly. Direct reference means
that there is an association with the class that provides the data; indirect ref-

ComSIS Vol. 8, No. 2, Special Issue, May 2011 413

B. Perišić et al.

erence means that such class can be reached by traversing a series of asso-
ciations. Properties forming a lookup can be specified as an OCL expression
(expression) or by specifying the class that provides the data. In the latter case,
the representative property of that class is used.

3.4. Visible Parameters

displayFormat : String [0..1]
valueSpecification : String [0..1]
disabled : Boolean [1] = false

«stereotype»

VisibleParameter
«stereotype»

PersistentDataType

«stereotype»

VisibleElement

«metaclass»

Operation

«metaclass»

Parameter

persistentDataType 0..1

valueGetter

0..1

Fig. 10. Visible parameters

Stereotype VisibleParameter (see Figure 10) denotes a parameter of a visi-
ble method (having the VisibleOperation stereotype) that behaves as follows. If
it is an input or an input/output parameter, then

– it enables entering parameter values by means of a UI component con-
tained in the parameter panel associated with a visible method, or

– it defines the way of fetching the parameter values in the case when the
user is not supposed to enter its value (using tag valueSpec contains an
OCL expression that calculates the value, or tag valueGetter that specifies
the method for calculating the value).

If it is an output parameter or a method result, it enables the display of its value
by means of a UI component contained in the parameter panel associated with
a visible method.

3.5. Groups of Elements

Stereotype ElementsGroup (see Figure 11) represents an attribute of a class
with the VisibleClass stereotype used for grouping its elements (properties,
methods, associations), thus forming semantic groups that map to groups of
UI components in a panel associated with the class. Each group can define the
following: an ordered collection of contained elements (tag element), the UI el-
ement orientation in layout (orientation), the location of the group in the panel
(location), and the alignment of elements in the group (alignment).

The inherited tag label represents a label displayed in a UI component asso-
ciated with the group (frame title, panel title, name of the menu item that opens
a submenu).

414 ComSIS Vol. 8, No. 2, Special Issue, May 2011

UML Profile for Specifying User Interfaces of Business Applications

orientation : GroupOrientation [1]
location : GroupLocation [0..1]
alignment : GroupAlignment [0..1]

«stereotype»

ElementsGroup

componentPanel

operationPanel

nextSubmenu
mainMenu

header

toolbar

«enumeration»

GroupLocation

ownerOrientation
horizontal
vertical
area

«enumeration»

GroupOrientation

center

justify
right

left

«enumeration»

GroupAlignment
«stereotype»

VisibleElement

«metaclass»

Property

{ordered}

element

1..*

Fig. 11. Groups of elements

3.6. Visible Methods

hasParametersForm : Boolean [1] = true
filteredByKey : Boolean [1] = true

«stereotype»

BusinessOperation

refreshRow : Boolean [0..1] = true
refreshAll : Boolean [0..1] = false
askConfirmation : Boolean [1] = true
confirmationMessage : String [0..1]
showErrors : Boolean [1] = true

«stereotype»

Transaction

logErrors : Boolean [1] = true

«stereotype»

VisibleOperation

reportName : String [1]
dataFilter : String [0..1]
sortBy : String [0..1]

«stereotype»

Report

«stereotype»

PersistentOperation

«stereotype»

VisibleElement

«stereotype»

VisibleClass

«metaclass»

Operation

{incomplete, disjoint}

OperationType

refreshPanel

*

activateForm

0..1

importedOperation

0..1*persistentOperation 0..1

*

Fig. 12. Visible methods

Stereotype VisibleOperation (see Figure 12) denotes the method of a visible
class that has an associated UI component (a button or a menu item) that en-
ables its invocation by the user. If the method has input parameters, they must
have the VisibleParameter stereotype (see section 3.4).

Abstract stereotype BusinessOperation represents a method that is mapped
to an activity in the problem domain. Its descendants are Report and Transac-
tion. Report describes a method that invokes a report created by one of the
reporting tools. Report ’s tags enable specifying the report name, and the filter-
ing and sorting criteria. Transaction represents a complex business transaction

ComSIS Vol. 8, No. 2, Special Issue, May 2011 415

B. Perišić et al.

that is implemented as a stored procedure in the database or a method in a
middle tier. Its tags enable specifying the UI behaviour immediately before and
after its invocation (requesting the confirmation from the user, display refresh
mode, error display mode, etc).

3.7. Visible Association Ends

autoActivate : Boolean [1] = false
displayIdentifier : Boolean [1] = true
displayRepresentative : Boolean [1] = true

«stereotype»

Next

comboZoom : Boolean [1] = false

«stereotype»

Zoom

«stereotype»

VisibleAssociationEnd

PanelAdjustment

StandardOperations

«stereotype»

BussinesOperation

PanelAdjustment

StdPanelSettings «stereotype»

VisibleProperty

«stereotype»

ElementsGroup

«stereotype»

VisibleElement

«stereotype»

StandardPanel

«stereotype»

GroupElement

level : Integer [1]

«stereotype»

Hierarchy

«metaclass»

Property

«metaclass»

Property

DataSettings

«stereotype»

Activate

{incomplete, disjoint}

AssociationEndType

appliedToPanel 0..1

hiddenOperation
*

disabledProperty

*

hiddenGroup *

hiddenProperty

*

viaAssociationEnd
0..1

Fig. 13. Visible association ends

Abstract stereotype VisibleAssociationEnd (see Figure 13) is applied to a
property belonging to a binary association between two visible classes. It de-
fines the relationship between the panel belonging to the class that owns the
property (activation panel) and the panel belonging to the class at the other end
(destination panel). The nature of the relationship is determined by this stereo-
type’s descendants. VisibleAssociationEnd only introduces common properties
and constraints that enable destination panel to adjust its layout and behaviour
to the context it is used in. For this purpose, VisibleAssociationEnd implements
the following interfaces: StandardOperations, DataSettings, StdPanelSettings,
and PanelAdjustment. Tag values specified by PanelAdjustment can be set for
all types of panels (VisibleClass and its descendants), while tag values spec-
ified by StandardOperations, DataSettings, and StdPanelSettings can be ap-
plied to standard panels only (stereotype StandardPanel, see section 3.2).

If tag values are not defined at the association end, values defined at the
standard panel are used. If values of tags add, update, copy, delete, search,
and changeMode are set to false in the standard panel, the value set at the
association end is ignored. This helps adhering to rules that are usually conse-
quences of problem domain constraints independent of the usage context.

416 ComSIS Vol. 8, No. 2, Special Issue, May 2011

UML Profile for Specifying User Interfaces of Business Applications

Stereotypes Zoom, Next, and Activation model the corresponding type of
activation as defined by the HCI standard. Stereotype Hierarchy denotes that
the destination panel has the role of an element in the parent-child or many-to-
many panel. Role of the destination panel is set by the value of the level tag.
For many-to-many complex panels, level = 1 is the panel that represents the
header, level = 2 is the panel for choosing data, and level = 3 is the panel
that contains the transferred data (for example, see class PickAuthors in Figure
17). For parent-child complex panels, level = 1 is the standard panel being the
root of the tree, level = 2 is the child panel, level = 3 is the child of the child
panel, and so forth: for n > 2, level = n is a panel that is the child for panel at
level = n− 1 (for example, see class JournalPaperComposite in Figure 17).

Composing parent-child and many-to-many complex panels requires defin-
ing only levels of hierarchy for each contained panel; runtime association of
panels is performed by analysing their associations. If two or more associations
exist between two panels, or there is a recursive association, association end
to be used must be explicitly stated in the viaAssociationEnd tag.

Stereotype GroupElement denotes that the destination panel is an element
of a complex panel, where its role and behaviour are defined in the application
code and/or using values of tags inherited from VisibleAssociationEnd.

3.8. Validator

activation : Activation [1]
onEvent : ValidationEvent [1]
message : String [1]

«stereotype»

Validator

lostFocus
getFocus

execute

destroy

change

create

show
hide

«enumeration»

ValidationEvent
«metaclass»

Operation

«metaclass»

Constraint
before
after

«enumeration»

Activation

performsValidation

0..1

Fig. 14. Validator

Stereotype Validator (see Figure 14) is used to model constraints imposed
by problem domain rules. Constraints are defined either as OCL expressions
(tag specification), or as methods (performsValidation). The activation tag spec-
ifies whether the validation should be performed before or after the occurence
of the selected event (onEvent). Tag message contains a human-readable mes-
sage displayed in the case the constraint is not met.

3.9. Subsystem

Stereotype BusinessSubsystem (see Figure 15) represents an extension of the
Package metaclass used for defining business subsystems. Every business

ComSIS Vol. 8, No. 2, Special Issue, May 2011 417

B. Perišić et al.

«stereotype»

BusinessSubsystem

«stereotype»

VisibleElement

«stereotype»

MainPanel

«metaclass»

Package

subsystemForm

0..11

Fig. 15. Business subsystem

subsystem can have a main form that contains a menu structure for the given
subsystem.

3.10. Example

Figure 16 presents a domain model of a part of a CERIF-compliant research
management system presented in [17]. All classes and attributes in this model
are persistent, but their stereotypes are not displayed for the sake of brevity.

text : String
trans : TranslationType

MultiLangContent

startPage : int
endPage : int
totalPages : int
volume : String
number : String
year : int
uri : String

JournalPaper

birthYear : int
institution : String
title : String
vocation : String
sex : Sex
uri : String

Person

ResearchInterest

firstName : String
lastName : String
otherNames : String

PersonName

PersonKeywords

machineTranslation
humanTranslation
original

«enumeration»

TranslationType

PaperKeywordsPaperAbstractPaperSubtitle

female
male

«enumeration»

Sex

order : int

PaperAuthor

name : String
code : String

Language

PaperNotePaperTitle

-subtitles 0..*

-keywords 0..*

-notes 0..*-titles 1..*

-lang

10..*

-authored

0..*

-author

1

-interests 0..*

-paper 1

-authoredBy

0..*

-otherFormatNames 0..*

-name

1

-keywords 0..*-abstracts 0..*

Fig. 16. A domain model of a part of CERIF-compatible system

The problem domain model in Figure 16 is automatically transformed into
the UI model presented in Figure 17. Persistent classes from the domain model
were mapped to UI classes with StandardPanel stereotype, persistent proper-
ties to UI properties with Editable stereotype, association ends with cardinality
0..* to UI association ends with Next stereotype, and association ends with car-

418 ComSIS Vol. 8, No. 2, Special Issue, May 2011

UML Profile for Specifying User Interfaces of Business Applications

dinality 0..1 or 1 to UI association ends with Zoom stereotype. This was an initial
version of the UI model.

The application developer manually changed this version to meet the users’
requirements. The diagram in Figure 17 shows manually added classes Pick-
Authors (a many-to-many form for choosing paper authors) and JournalPaper-
Composite (a parent-child form for managing journal papers) with correspond-
ing associations. Properties with Lookup and ElementsGroup stereotypes in all
classes are also manually added.

«Editable»institution : String
«Editable»birthYear : int
«Editable»title : String
«Editable»vocation : String
«Editable»sex : Sex
«Editable»uri : String
«ElementsGroup»connections

«StandardPanel»

Person

«Lookup»journalTitle : String
«Editable»volume : String
«Editable»number : String
«Editable»year : int
«Lookup»authors : String
«Editable»startPage : int
«Editable»endPage : int
«Editable»totalPages : int
«Editable»uri : String
«ElementsGroup»connections

«StandardPanel»

JournalPaper

«Editable»text : String
«Editable»trans : TranslationType

«StandardPanel»

MultiLangContent

«Editable»firstName : String
«Editable»lastName : String
«Editable»otherNames : String

«StandardPanel»

PersonName order : int
«Lookup»personName : String
«Lookup»paperTitle : String

«StandardPanel»

PaperAuthor

«ElementsGroup»panels

«ParentChild»

JournalPaperComposite

«ElementsGroup»panels

«ManyToMany»

PickAuthors

«Editable»name : String
«Editable»code : String

«StandardPanel»

Language

«StandardPanel»

ResearchInterest

«StandardPanel»

PersonKeywords

machineTranslation
humanTranslation
original

«enumeration»

TranslationType

«StandardPanel»

PaperKeywords

«StandardPanel»

PaperNote

«StandardPanel»

PaperSubtitle

«StandardPanel»

PaperTitle

«StandardPanel»

PaperAbstract

female
male

«enumeration»

Sex

«Hierarchy»

{level = 1 }

1..*titles

«Hierarchy»

{level = 1 }

«Next»

pickAuthors

«Next»

keywords 0..*

«Zoom»

paper 1

authoredBy

0..*

«Zoom»

1

lang

0..*

papers«Zoom»

author

1

«Next»

0..*

«Next»

otherFormatNames0..*

«Hierarchy» {level = 3 }

«Hierarchy»

{level = 2 }

name 1

1

«Hierarchy»

{level = 2 }
«Next»

interests 0..*

«Next»

notes 0..*

«Next»

keywords 0..*

«Next»

subtitles 0..*

«Next»

abstracts 0..*

«Activate»

Fig. 17. A UI model of a part of CERIF-compatible system

An example of a web-based form generated for JournalPaperComposite is
presented in Figure 18.

4. Related Work

In order to compare the EUIS profile with other profiles presented in the litera-
ture, this section reviews recent papers ranging in subject from modelling user
interfaces of business applications to complete methodologies and tools for in-
formation system development, including its presentation aspects. Papers that
deal with developing user interfaces in general are not discussed here.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 419

B. Perišić et al.

Fig. 18. Managing journal papers data

The papers [21, 22], like this paper, propose the use of the problem domain
model as a starting point that is transformed into a model of the user interface.
The approach to modelling of application views based on the available classes
(various complex panels, navigation among them) is also similar. However, [21,
22] introduces more transformation levels in order to achieve portability across
different implementation platforms while not restricting to a particular fixed set
of components (we deal with portability as well, but with a limited set of com-
ponents). Besides, [21, 22] require the development of an information retrieval
model in order to implement fetching of data used in the user interface, while
we opt for implicit mapping of the user interface model to the persistence layer
(the cases where implicit mapping is insufficient are defined by OCL constraints
or an associated method). The authors in [21, 22] only plan the development of
a tool prototype that will provide transformations of models and the application
generation, while their approach is tested by manual application of transforma-
tion rules.

The papers [10, 5] present a way of automatic user interface generation
based on the following: a business logic model (UML activity diagrams) and
a user interface model (UML class diagrams). An activity diagram is supplied
with elements of the UML profile for defining system and user actions with the
specified inputs and outputs, while the class diagram that is produced from the
activity diagram is supplied with elements of the UML profile for user interface
specification (e.g., ContainerElement, GuiElement, ActionElement). The profile
does not support modelling the relationships between forms (navigation is omit-
ted). Furthermore, obtaining classes that provide management of data from the
problem domain model is not specified, although their presence is assumed

420 ComSIS Vol. 8, No. 2, Special Issue, May 2011

UML Profile for Specifying User Interfaces of Business Applications

(the dataProvider attribute in the ChoiceElement stereotype, and the method-
URL attribute in the ActionElement stereotype).

In [23], the authors propose the use of patterns for accelerating the user
interface development. Those patterns are at a higher abstraction level and may
be used in task models, presentation models, and component layout models.
This paper also proposes the use of a number of tools that guide the designer
in the choice and the application of patterns during modelling, assist in model
synchronisation, and generate the user interface.

Compared to elements of the standard presented in Section 2, the patterns
used in [23] represent finer-grained application components. The paper [23]
does not specify neither the relationship between the problem domain model
and the user interface model, nor if there is a mapping of the generated user
interface to the data persistence layer (whether the generated user interface is
immediately testable in the real users’ environment).

The paper [27] presents a method for developing web-based information
systems based on problem domain models, applications and navigations that
are directly mapped to existing development frameworks. The mapping is pro-
vided by the UML profile named FrameWeb whose stereotypes correspond with
the categories of the framework used, so that the development team can de-
liver the implementation in a straightforward way (the implementation is manual,
there are no code generators used). The majority of stereotypes in the pre-
sented UML profile are aimed at the development of the problem domain model
and its mapping to the persistence layer, while support for specifying the user
interface is relatively modest (there are only four stereotypes that specify the
type of the web page).

The series of papers [2, 8, 7, 18] presents a methodology for developing
web-based information systems UWE (UML-based Web Engineering) that uses
a UML profile for modelling hypermedia and the ArgoUWE tool that provides
for definition of different application models, their transformation, and semi-
automatic code generation. The UML profile provides for the creation of nav-
igation models, navigation structure models, and presentation models. A navi-
gation model is a class diagram that is extracted as a problem domain model
subgraph and defines which web pages assigned to problem domain model
classes are linked (associations among problem domain model classes are the
link candidates). A navigation structure model is a consequence of the navi-
gation model and defines the nature of links and additional elements needed
to specify navigation (menus, indices, navigational contexts). The presentation
model is a composition diagram that provides for sketching the layout of appli-
cation elements although these sketches are not obligatory – the user interface
layout is finalised during implementation.

The concept of modelling an application in UWE methodology is the closest
to the proposition in this paper – in both cases, the starting point is the problem
domain model expressed as a class diagram that is automatically mapped to
the application model, data model, and other models needed. Thanks to this
approach, there is a direct mapping of application elements to the layer that

ComSIS Vol. 8, No. 2, Special Issue, May 2011 421

B. Perišić et al.

implements business logic, a feature missing in the majority of reviewed solu-
tions. The most notable differences between UWE and EUIS approaches are
the following:

– The UWE methodology and profile are focused solely on developing web-
based systems, while the methods presented here can be applied to both
web and “classical” information systems.

– The UWE method does not rely on an HCI standard (there is only one type
of forms).

– Our approach proposes a single user interface model that defines coarse-
grained application building elements, their structure and layout (using the
ElementsGroup stereotype), and navigation among them. Sketches of forms
need not be made thanks to the mechanism for intelligent component layout
that forms a usable user interface according to rules and groups, and which
can be further adapted during implementation.

Although not based on a UML profile, the concept of specifying GUI forms
and generating the database schema and the functional prototype of the ap-
plication using the IIS*Case tool [20, 11, 6] is similar to the solution presented
here, apart from the order in which artifacts are implemented. Using IIS*Case,
the modelling starts with specifying form types, while database schema and
the prototype application are generated. Here we start with the model of the
problem domain, that is used to generate the user interface model, database
schema model, and the middle-tier model (in the case of three-tier architec-
tures). After manual changes applied to these automatically obtained models,
the application is generated.

Our previously implemented tools for generating UIs of business applica-
tions for various platforms are presented in [12–16, 9]. All tools are based on
the HCI standard presented in Section 2, but the difference is that UI model
was not generated from the domain model, but was kept as metadata in the
application repository. Metadata was further customised by the Form Genera-
tor tool, which utilised this information to generate source code. Metadata in the
application repository, although stored in the database or an XML file and edited
by a special-purpose tool, can be considered to be a DSL (domain specific lan-
guage) for the description of UIs. The UI model enriched with EUIS stereotypes
is based on the same metadata, but this UML-based form is more suitable for
team work of experts from different fields (developers, UI design specialists,
problem domain specialists, users) during application development.

5. Conclusions

Automatic generation of UIs in the general case requires development of a num-
ber of UI models and thus needs much time and effort, often with unsatisfactory
results. Synchronisation and integration among different models, is another big
problem, especially in developing business applications that require tight inte-
gration of UI models with models that specify business logic.

422 ComSIS Vol. 8, No. 2, Special Issue, May 2011

UML Profile for Specifying User Interfaces of Business Applications

In order to overcome the problem of integration and to facilitate the exchange
of information among different tools, UML was used to model all aspects of an
application. This paper presented EUIS profile, an UML profile for specifying UIs
of business applications. Being a regular UML extension, this language can be
used in any general-purpose UML modelling tool and can easily be integrated
with other UML-based models of the application.

EUIS profile is based on our HCI standard of a business application that de-
fines functional and presentational features of coarse-grained building blocks.
Relying on this standard has enabled the rapid development of UIs for this par-
ticular type of applications at a high abstraction level, without need to develop
a number of different UI models. Automatic transformation from domain to UI
model additionally speed up this process.

Our previous tools developed to support the presented concepts [12–16, 9]
are used for the implementation of more than 70 projects of business informa-
tion systems by several different development teams. The percentage of the
generated code in the overall code base (database, middle tier, UI) ranged from
81.8% to 98.2%, depending on the type of application.

The code generation tool that relies on the presented EUIS profile is imple-
mented as a MagicDraw plugin. Although this tool is still in development, initial
results show that the percentage of the generated code will increase when all
elements are implemented. The current version does not support parsing OCL
constraints. Since we have already implemented a dynamic general-purpose
parser Arpeggio [1], the support for OCL expressions is soon to be finalised.

Acknowledgments. Research presented in this paper was supported by Ministry of
Science and Technological Development of Republic of Serbia, Grant III-44010, Title:
Intelligent Systems for Software Product Development and Business Support based on
Models.

References

1. Arpeggio Parser, http://code.google.com/p/arpeggio/
2. Baumeister, H., Koch, N., Mandel, L.: Towards a UML Extension for Hypermedia

Design, In: Proceedings of The Unified Modelling Language Conference: Beyond
the Standard (UML 1999), France R. and Rumpe B., Eds, LNCS vol. 1723, pp. 614–
629, Springer Heidelberg (1999)

3. van den Bergh, J., Coninx, K.: Using UML 2.0 and Profiles for Modelling ContextSen-
sitive User Interfaces, In: Model Driven Development of Advanced User Interfaces,
Montego Bay, Jamaica (2005)

4. Dejanović, I., Milosavljević, G., Perišić, B., Tumbas, M.: A Domain-Specific Lan-
guage for Defining Static Structure of Database Applications, Computer Science
and Information Systems 7(3), (2010) (in print)

5. Funk, M., Hoyer, P., Link, S.: Model-driven Instrumentation of Graphical User In-
terfaces, In: Second International Conference on Advances in Computer-Human
Interaction, Cancun, Mexico (2009)

ComSIS Vol. 8, No. 2, Special Issue, May 2011 423

B. Perišić et al.

6. Govedarica, M., Luković, I., Mogin, P.: Generating XML Based Specifications of In-
formation Systems, Computer Science And Information Systems 1(1), pp. 117–140
(2004)

7. Knapp, A., Koch, N., Zhang, G.: Modelling the Structure of Web Applications with
ArgoUWE, LNCS vol. 3140, Springer Heidelberg (2004)

8. Koch, N., Kraus, A.: The Expressive Power of UML-based Web Engineering, In:
Proc. 2nd International Workshop on Web Oriented Software Technology, pp. 105–
119 (2002)

9. Komazec, S., Milosavljević, B., Konjović, Z.: XML Schema-Driven GUI Forms En-
vironment, In: 11th IASTED Intl. Conf. Software Engineering and Applications, pp.
342–348, Cambridge, MA (2007)

10. Link, S., Schuster, T., Hoyer, P., Abeck, S.: Focusing Graphical User Interfaces
in Model-Driven Software Development, In: First International Conference on Ad-
vances in Computer-Human Interaction, Saint Luce, Martinique (2008)

11. Luković, I., Mogin, P., Pavievi, J., Risti, S.: An Approach to Developing Complex
Database Schemas Using Form Types, Software: Practice and Experience 37(15),
pp. 1621-1656 (2007)

12. Milosavljević, B., Vidaković, M., Milosavljević, G.: Automatic Code Generation for
Database-Oriented Web Applications, In: Power, J., Waldron, J. (eds): Recent Ad-
vances in Java Technology: Theory, Application, Implementation. pp. 89–97, Trinity
College Dublin (2003) ISBN 0954414500

13. Milosavljević, B., Vidaković, M., Komazec, S., Milosavljević, G.: User Interface Code
Generation for EJB-Based Data Models Using Intermediate Form Representations,
In: Principles and Practice of Programming in Java, pp. 125–132, Kilkenny, Ireland
(2003)

14. Milosavljević, B., Vidaković, M., Komazec, S., Milosavljević, G.: User Interface Code
Generation for Data-Intensive Applications with EJB-Based Data Models, In: Soft-
ware Engineering Research and Practice (SERP’03), pp. 23–27, Las Vegas, NV
(2003)

15. Milosavljević, G., Perišić, B.: Really Rapid Prototyping of Large-Scale Business In-
formation Systems, In: IEEE Intl. Workshop on Rapid System Prototyping, pp. 100–
106, San Diego, CA (2003)

16. Milosavljević, G., Perišić, B.: A Method and a Tool for Rapid Prototyping of Large-
Scale Business Information Systems, Computer Science And Information Systems
2(1), pp. 57–82 (2004)

17. Milosavljević, G., Ivanović, D., Surla, D., Milosavljević, B.: Automated Construction
of the User Interface for a CERIF-Compliant Research Management System, The
Electronic Library (in print)

18. Moreno, N., Melia, S., Koch, N., Vallecillo, A.: Addresing New Concerns in Model-
Driven Web Engineering Approaches, In: Proc. Web Information Systems Engineer-
ing (WISE), LNCS vol. 5175, pp. 426–442, Springer Heidelberg (2008).

19. Paterno, F.: Towards a UML for Interactive Systems, In: Proc. Engineering for
Human-Computer Interaction, pp. 7–18, Toronto, Canada, (2001)

20. Pavićević, J., Luković, I., Mogin, P., Govedarica, M.: Information System Design And
Prototyping Using Form Types, In: International Conference on Software and Data
Technologies, pp.157–160, Setubal, Portugal (2006)

21. Schattkowsky, T., Lohmann, M.: Towards Employing UML Model Mappings for Plat-
form Independent User Interface Design, In: Model Driven Development of Ad-
vanced User Interfaces, Montego Bay, Jamaica (2005)

424 ComSIS Vol. 8, No. 2, Special Issue, May 2011

UML Profile for Specifying User Interfaces of Business Applications

22. Schattkowsky, T., Lohmann, M., UML Model Mappings for Platform Independent
User Interface Design, In: MoDELS 2005 Workshops, LNCS 3844, pp. 201-209,
Springer, Heidelberg (2006)

23. Seffah, A., Gaffar, A.: Model-Based User Interface Engineering with Design Pat-
terns, Journal of Systems and Software 80(8), pp. 1408–1422 (2007)

24. Shneiderman, B.: Designing the User Interface: Strategies for Effective HumanCom-
puter Interaction, Addison-Wesley, Third Edition (1998)

25. da Silva, P.P.: User Interface Declarative Models and Development Environments:
A Survey, In: Proc. Design, Specification and Verification of Interactive Systems,
LNCS vol. 1946, pp. 207–226, Limerick, Ireland (2000)

26. da Silva, P.P., Paton, N.W.: Improving UML Support for User Interface Design: A
Metric Assessment of UMLi, In: Workshop on Bridging the Gaps Between Software
Engineering and Human-Computer Interaction at International Conference on Soft-
ware Engineering (ICSE 03), pp. 76–83, Portland, Oregon, USA (2003)

27. Estêvão Silva Souza, V., Almeida Falbo, R., Guizzardi, G.: A UML Profile for Mod-
elling Framework-based Web Information Systems, In: Workshop on Exploring
Modelling Methods for Systems Analysis and Design (EMMSAD’07), pp. 149–158,
(2007)

Branko Perišić is an associated professor at University of Novi Sad, Faculty
of Technical Sciences. He has received his engineer diploma from University of
Sarajevo, Faculty for electrical engineering, M.Sc. and PhD diplomas from Uni-
versity of Novi Sad, Faculty of Technical Sciences. He is currently a Computer
center manager and head of Software development team at Faculty of Techni-
cal Sciences. As a teaching professor he has developed and teached a variety
of Computer Engineering, Software Engineering and Information System De-
sign courses at different Universities. His major research interests are related
to Model Driven Software Development, Business Information Systems Design,
Software Configuration Management and Secure Software Design.

Gordana Milosavljević is an assistant professor at University of Novi Sad, Fac-
ulty of Technical Sciences. She teaches courses in Business Information Sys-
tems and Model Driven Software Development. Her research interests focus on
software engineering methodologies, rapid development tools and enterprise
information systems design.

Igor Dejanović received his M.Sc. (5 years, former Diploma) degree from the
Faculty of Technical Sciences in Novi Sad. He completed his Mr (2 year) de-
gree at the University of Novi Sad, Faculty of Technical Sciences. Currently,
he works as a teaching assistant at the Faculty of Technical Sciences at the
University of Novi Sad, where he assists in teaching several Computer Sci-
ence and Software Engineering courses. His research interests are related to
Domain-Specific Languages, Model-Driven Engineering and Software Configu-
ration Management.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 425

B. Perišić et al.

Branko Milosavljević is an associate professor at University of Novi Sad, Fac-
ulty of Technical Sciences. He teaches courses in Net-Centric Computing, XML
and Web Services, and Security in E-Business Systems. His research inter-
ests include information retrieval, digital libraries, document management and
information security.

Received: January 12, 2011; Accepted: May 5, 2011.

426 ComSIS Vol. 8, No. 2, Special Issue, May 2011

DOI: 10.2298/CSIS110111015S

Formalizing Business Process Specifications

Andreas Speck1, Sven Feja1, Sören Witt1, Elke Pulvermüller2,
and Marcel Schulz3

1 Christian-Albrechts-University Kiel
Olshausenstrasse 40, 24098 Kiel, Germany
{aspe,svfe,swi}@informatik.uni-kiel.de

2 University of Osnabrueck
Albrechtstr. 28, 49076 Osnabrueck, Germany

elke.pulvermueller@informatik.uni-osnabrueck.de
3 Intershop Communications AG

Intershop Tower, 07740 Jena, Germany
marcel.schulz@intershop.com

Abstract. The behavior of commercial systems is described with busi-
ness process models. There are different notations and formalism to ex-
press business processes. Many of these notations such as BPMN or
ARIS EPC models are widely used in commercial projects.
In the paper we focus on formalisms to express rules and specifications
for the business processes. Temporal logic in general is a suitable formal-
ism to express rules for dynamic processes. CTL is one kind of temporal
logic focusing on branches and paths in particular. With CTL it is possi-
ble to formulate rules about different paths in business processes. Since
the textual formulae of CTL are not very suitable in the development of
commercial systems we introduce a graphical notation (G-CTL) based on
the business process notation ARIS EPC. Moreover, we add to the CTL
semantics specializers to differentiate between the element types in busi-
ness process models and provide wildcards which allow the user to check
for unknown elements or elements with only partially known properties.

Keywords: formal business process rules, temporal logic, model check-
ing, extended graphical-CTL.

1. Introduction

Business process models are used to describe the behavior of commercial sys-
tems. There are different notations of business process models. Especially the
formal business process models may be the base of an automated checking.
In order to reach this goal we need also formalisms to express the rules or
specifications for the business processes.

Temporal logic in general and the Computational Tree Logic (CTL) [7] in
particular are promising in order to express business rules and temporal depen-
dencies of business processes. Since CTL focuses on the branches and paths
of processes it allows to distinguish between elements in different paths. More-
over, there are well established checking tools like the Symbolic Model Verifier
(SMV) [39] which may be applied or at least serve as base for extensions [43].

Andreas Speck et al.

In the following section 2 we examine business process characteristics and
the business process modeling. In the following section 3 first CTL as basic
notation is introduced and the more suitable graphical notation G-CTL is pre-
sented. In section 4 the extensions of the G-CTL (specializers and wildcards)
are motivated by checking examples and then presented. Section 5 gives an
overview about the related work.

2. Business Process Models

2.1. Business Process Modeling

There are different types of business process models. For instance, BPMN
(Business Process Model and Notation), ARIS (Architecture of integrated Infor-
mation Systems) or UML Activity Diagrams are well-known approaches sup-
porting the modeling of business systems in general. However, the basic ex-
pressiveness of these model types is quite similar. They provide functions (or
activities) and events, various types of connections (like control or sequence
flows or associations), splits and joins (mostly combined with logic operators
such as AND, OR or XOR) and different elements for further information. This
convergence of business process model types allows reducing the models to a
formal nucleus: an automaton model. Business process models may be trans-
formed or reduced to states and transitions between the states [38]. Further-
more, such automaton models may be subject of automated checking. Two
typical approaches for such transformations may be found in [3] and [42]. [3]
transforms the business processes to Petri nets, followed by a transformation
into Kripe structures which are then checked. [42] transforms the business pro-
cesses directly into Kripke structures. The Kripke structures are a base for
model checking.

In this paper we focus on the application domain of e-commerce systems in
general and in particular on one of the largest standard e-commerce systems:
Intershop Enfinity . Intershop Enfinity is modeled with an ARIS profile ARIS for
Enfinity [11].

Although, Enfinity-based e-commerce systems are modeled using various
model types, we concentrate on the model type mainly used to describe busi-
ness processes: the Event-driven Process Chains (EPCs). 4

The EPCs are used to model the business processes on a specific detail
level (cf. model elements description in figure 1). EPCs are more concrete than
value added chains and present the business aspects of the processes very
well. However, they are no concrete implementation models e.g. like UML se-
quence charts. The EPC models are ideal for the communication between the
domain experts (economists) and the computer scientists, since they are still
understood by both groups.

4 Further model types are value added chain models or function hierarchies. These
model types are not issue of the paper.

428 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Formalizing Business Process Specifications

Based on the EPC models the design of the implementation may start. In
the case of Intershop Enfinity, executable workflow models (called Pipelines)
represent the design and are executed by the system’s application server.

When the domain experts want to check the business process descriptions
of an e-commerce system, this is generally performed on the level of EPC mod-
els. Therefore, business rules, regulations and system specific requirements
which have to be implemented by the system should be verified on this busi-
ness process (EPC) level, too. If the EPC models do not represent the required
rules and regulations correctly then the resulting system will hardly meet the
needs. Therefore it is essential to verify the EPC models.

Fig. 1. Basic Elements of Event-driven Process Chains (EPCs).

The main elements in the EPC models are (cf. figure 1):

– Functions are considered as active elements in EPCs. They describe func-
tionality such as tasks or activities. Functions represent transformations
from one state to another, follow-up state. If different follow-up states can
occur, the selection of the respective follow-up state can be modeled explic-
itly by logical connectors (as described below). Functions may be refined
into another EPC (hierarchical functions). In the EPC model rounded rect-
angles represent functions.

– Events are passive elements which describe the conditions or circumstances
which result from functions or are triggering the execution of functions. An
event is represented by a hexagon.

– The control flow connects events, functions or logical connectors creat-
ing a chronological sequence and depicts the logical interdependencies be-
tween them. Control flows are represented by arrows.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 429

Andreas Speck et al.

– Logical connectors express the logical relationships between elements in
the control flow (events and functions). The relationships correspond to the
logical operations AND, OR and XOR. Figure 1 depicts the graphical repre-
sentation of an XOR relationship. The notation elements for AND or OR are
similar and with the corresponding Boolean symbol within the circle.
An XOR in a control flow defines a branching point or branch, respectively.
There, a decision is required which follow-up state (or path, respectively)
is to be taken exclusively. The counterpart of a branch is a merge which
means that different branches are merged into one. Branches as well as
splits use the same symbol.
An AND may represent the split or join in the control flow. A split activates
the outgoing control flows in parallel. The join synchronizes incoming control
flows.
OR is the weakest relation. An opening OR connector activates one or more
control flows and deactivates the rest of them. The counterpart of this is the
closing OR connector which activates the control flow when at least one of
the incoming control flows is activated.

Besides these EPC model elements there are several others. A further re-
markable element is the organizational unit and its assignment which de-
scribes the connection between an organizational unit (a person or an orga-
nization responsible for a specific function) and the function it is responsible
for.

Fig. 2. Example of a Function Flow in an eProcurement System.

430 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Formalizing Business Process Specifications

2.2. Commercial Information System Models

As all comparatively large systems commercial information systems may be
modeled on several levels of abstraction. This approach is backed by the mod-
eling concepts such as ARIS. Overview models are used to express the major
parts of the system on a very abstract level. Figure 2 depicts an abstract func-
tion flow. Here, the details of the complete process are hidden.

These comparatively abstract process models may be further detailed and
transformed into EPC models with different sub-processes. Finally, we will end
up in very detailed sub-process models. In table 1 three examples of detailed
sub-processes are presented which are typical for the e-commerce domain:
Login Sub-Process, Search Sub-Process and Invoice Sub-Process.

Table 1. Detailed Business Process Patterns for eCommerce Systems.

Login Sub-Process Search Sub-Process Invoice Sub-Process

Looking at the representation of processes in a commercial information sys-
tem then there are mainly two alternatives to present the model: either a large
printout as a wall paper or as comparatively small models of sub-processes in
a modeling tool (such as ARIS). When we look at the wall paper we have to
search manually.

However, in each case it is difficult to keep the overview as well as the
knowledge of the (important) details and the interactions between these de-

ComSIS Vol. 8, No. 2, Special Issue, May 2011 431

Andreas Speck et al.

tails. The verification or checking of such systems is quite hard for human be-
ings and requests automated assistance. An assistance which is able to read
rules which have to be fulfilled by the commercial information system and to
check the model automatically.

3. Formal Specifications

Formal specifications express the rules to be checked. In the following subsec-
tions we present temporal logic as base to represent the business rules.

Table 2. Examples of some basic CTL Operators EF, EG, AF and AG [18].

S1
{ }

S3
{ }

S4
{ }

S2
{ }

S5
{ }

S6
{p}

S0
{ }

S1
{p}

S3
{ }

S4
{ }

S2
{ }

S5
{p}

S6
{p}

S0
{ }

s0 |= EF p s0 |= AF p

S1
{ }

S3
{ }

S4
{ }

S2
{p}

S5
{ }

S6
{p}

S0
{p}

S1
{p}

S3
{p}

S4
{p}

S2
{p}

S5
{p}

S6
{p}

S0
{p}

s0 |= EG p s0 |= AG p

432 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Formalizing Business Process Specifications

3.1. Computational Tree Logic (CTL)

Temporal logic as extension of Boolean logic may be used as formal language
to express the rules. Computational Tree Logic (CTL) is the logic we use in our
research.

As already mentioned CTL is based on Boolean logic:

Φ ::= ⊥ | > | p | (¬Φ) | (Φ ∧ Ψ) | (Φ ∨ Ψ) | (Φ→ Ψ) 5

Additionally, there are temporal operators in CTL. These operators are called
Temporal Connectives and are used pairwise:

Φ ::= AXΦ | EXΦ | A [Φ U Ψ] | E [Φ U Ψ] | AGΦ | EGΦ | AFΦ | EFΦ

A means Always
E means Eventually
G means Globally
X means Next
U means Until

Table 2 shows four general CTL operators. EFΦ means that Φ potentially
holds. AFΦ means that Φ will occur on each potential path. EGΦ expresses
that Φ is true in each states of one complete path. AGΦ is an invariant: Φ is true
in each state [16].

Table 2 omits the operator pairs with Next and Until operators. Examples for
these operator pairs are the following:
EXΦ means that there is a path in which in the next state Φ holds.
AXΦ means that in all paths in the next state Φ becomes true.
E(ΦUΨ) means that there is a path in which Φ is true until Ψ holds.
A(ΦUΨ) means that in all paths Φ is true until Ψ becomes true.

When we apply CTL for expressing rules for business processes these may
look like the examples below:

– Customer may always Catalog Browse
AF Catalog Browse
(Always in the Future Catalog Browse)

– There is a path to Product Search
EF Product Search
(it Exists in the Future Product Search)

– Centralized Buyer will get a Personal Content and Personalized Offer
AG (Customer is Centralized Buyer ->
AF (Personal Content ∧ Personalized Offer))
(Always Globally if Customer is Centralized Buyer is true implies that Always
in the Future Personal Content and Personalized Offer will be true)

– User not logged in until User login successful
AG (¬User logged in U User login successful)
(Always Globally User logged in is false Until User login successful)

5 Φ→ Ψ is a logic implication.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 433

Andreas Speck et al.

– Login Data is inserted next Login Data Check
AG (Login Data is inserted -> AX Login Data Check)
(Always Globally Login Data is inserted Always neXt state will be Login
Data Check)

3.2. Visualization of Graphical Specifications

Considering the examples in the previous section the CTL formula does not look
very convenient. The likelihood that business modelers will accept the temporal
CTL formulae is rather low. This leads us to a more suitable notation for the
business modeling community: the graphical representation of CTL on base of
EPC models: the Temporal Logics Visualization Framework (TLVF). TLVF de-
scribes how graphical specifications of the rules are derived from the business
process models [23]. Our business process models are EPCs. However, the
graphical notation may also be applied on other notations such as BPMN.

Fig. 3. G-CTL Operators.

The EPC-based definition of the TLVF language elements of Graphical CTL
(G-CTL) is shown in figure 3. G-CTL operators are based on CTL operators
[17], [7]. Like CTL (introduced in the previous section 3.1) there are two types
of operators which are combined pairwise: Path quantifiers always (A) and ex-
ists (E) which indicate the occurrence within a path. The temporal operators
determine the temporal order. The G-CTL temporal operators are: in the future
(F), globally (G), next (X) and until (U). Examples for pairwise combinations are:
AG always globally or EX exists next.

434 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Formalizing Business Process Specifications

These operators are represented by graphical symbols which may be com-
bined with EPC notation elements in order to describe a specification.

Table 3. Examples of G-CTL Specification Patterns in the Search Sub-process.

CTL format: AG Initiate search → EF Insert simple search item

CTL format: AG Select search type → ! AF Present search result

An example of two simple rules formatted in G-CTL graphical notation are
depicted in table 3. Boolean logic operators (the implication in this case) are
represented by symbols which may be connected with other operators (logical
or temporal logical operators) and model elements such as events or functions.
Temporal logical operators like the AG (always globally) and EF (exists in the
future) are realized as containers since they embrace a sub-formula or element
as operand.
The informal semantics of the two rules is:

1. Rule (top of table 3): Always globally it has to be true that when the event
Initiate search has occurred (became true) there exists in the future the
function Insert simple search item (logical implication).
Or in other words: When the event Initiate search occurred in the following
of the process there must be at least one branch with the function Insert
simple search item.

2. Rule (below): Always globally it has to be true that if the function Select
search type has occurred (became true) always in the future the event
Present search result becomes not true (logic implication).

ComSIS Vol. 8, No. 2, Special Issue, May 2011 435

Andreas Speck et al.

Or in other words: When the function Select search type occurred (which
means that the search function is activated by the user) in the following of
the process there is a branch in which the event Present search result does
not occur. This means that we are looking for counterexamples of actually
desired behavior: We want to assure that at least an empty search result is
presented to the user when s/he has initiated a search.

4. Enhanced Checking

The visualization of rules is part of the user front end. The checking algorithms
of the checking system are another issue. Basically, we rely on the CTL model
checking algorithms e.g. like realized in the SMV model checker [39].

However, before we are able to apply model checkers (or any other checking
concepts) we have to transform the models (the EPC business process models
in our case) and the specifications to the formal representations used by the
checkers.

The result of a checking is either that the specification is fulfilled or violated.
If the model is correct according to the specification only the notification of ”true”
is reported. In an error case the model checker answers with a textual descrip-
tion of a counter example. The result may be presented in the format of a textual
description as in [26] .

4.1. Extended Model Checking

In general, model checkers need automata models as input for the checking
procedure. Actually, the automata models are represented in a specific struc-
ture – the Kripke structure. Kripke structures may be considered as a specific
expression of ordinary automata representations [7].

If we consider a direct transformation of the EPC models we might trans-
form the elements event and function directly into states which are connected
according to the control flow. This straight-forward approach is not necessar-
ily wrong. In some cases it is sufficient and temporal specifications may be
checked in a correct manner in compliance to the semantics.

However, there may be cases in which we would like to distinguish between
the different model elements when we develop a specification. We propose an
extension of the CTL notation with specializers which characterize the specific
model elements.

Two examples in which a specification without distinction between the el-
ement types leads to an error are presented in figure 4. Both examples are
supplemented with textual specifications. In both examples the upper specifica-
tion is without additional specializers and the lower specification makes use of
the two additional specializers F and E 6.

6 These additional specializers are not to be confused with the operators Future and
Exists which are always used in a pairwise manner.

436 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Formalizing Business Process Specifications

Fig. 4. Specializers in Temporal Logic.

1. In the example on the left upper specification (without specializers) of the
model at the left requires that directly after the function Select search type
the functions Insert simple search item or Insert search attributes have to
follow. The model on which this rule is applied is the already known search
example. Such a specification or rule may be defined in the situation when
we would like to keep the denomination of the events after Select search
type open (e.g. for customizing at design time) and are only interested that
they are followed by standard functions (such as Insert simple search item
or Insert complex search item). The second specification contains the spe-
cializer F (for function) directly after the Always neXt (AX). This indicates
that only function elements have to be considered in the checking. An event
(or an element of another type) is ignored. This specification is true (as we
would expect it in the domain semantics).

2. The example on the right side of figure 4 contains a loop. The process is a
price alert process. If a price falls below (or rises upon) a certain threshold
there is a price alert and the system purchases.
It may be of interest if the process Check(s) all current offers is performed
until the price threshold is met and the Offer (is) accepted. The first speci-
fication without specializers turns out to be false although the model meets
the requirement. When we use the specializers then the specification is cor-
rect. In our example Always the function Check(s) all current offers (due to

ComSIS Vol. 8, No. 2, Special Issue, May 2011 437

Andreas Speck et al.

the specializer only functions are considered) Until the event Offer accepted
becomes true. The event Offer not accepted is in the loop back to the func-
tion Check all current offers. Since Offer not accepted is an event and not a
function as indicated by the specializer the checker does not care about it.

With this specializer concept in temporal logic specifications we are able
to select specific element types and focus on these. This is an extension of
the temporal logic CTL we call ECTL1 (Extended CTL). In order to handle the
specializers the algorithm of the model checker has to be modified. A more
detailed description of the modified checking algorithm may be found in [43].

Fig. 5. Example of graphical Representation of Specializers (EG-CTL).

An example of a graphical representation of Extended Graphical-CTL (EG-
CTL) specification is depicted in figure 5. In the figure the rule of the left example
in figure 4 is a little improved: An AG operator is added:
AG (Select search type → AX F [(Insert simple search item ∨ Insert search attributes)])

Due to the specializers the specification may be more precise. The expres-
siveness of the temporal logic is extended and captures different types of ele-
ments. This leads to the question to introduce uncertainty in the way of using
wildcards in specifications.

4.2. Wildcards

The previous specifications of rules require that we know there must be a cer-
tain function or an event occurs at a specific moment. In other cases the explicit
expected element is not clear. Figure 6 depicts an example: the payment pro-
cess with some alternative payment functions. This is one possible implemen-
tation of the payment process. However, it is up to the wishes of the later shop
owner which payment function is realized. E.g. in our example the payment via
Pay Pal is not considered.

If we use wildcards we are able to specify rules which expect specific el-
ement types of business process models not knowing the explicit element. It
is most likely that all web shops use a specific payment function or a set of

438 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Formalizing Business Process Specifications

Fig. 6. Payment Process with alternative Payment Functions.

payment functions or at least in case of a free download a specific interaction
function with the customer. We may express this function which is at the time
of rule specification unknown by a wildcard. Of course a completely open wild-
card may be critical since it may be meaningless. However, in our example we
know that it is important to interact with the customer, that the function is cus-
tomer driven. The relation of the unknown function to the organization customer
expresses this.

The wildcard functionality may be expressed as:
AG (E[Transition initiated] → AF F [∗ ∧ O[Customer]])

Fig. 7. Wildcard in Payment Function Rule.

The graphical representation of the rule is shown in figure 7. The specializ-
ers are indicated by a capital E, F and O 7. The asterisk character symbolizes
the wildcard.

7 The O specializer represents an organizational unit which is by default connected to
its function by a logical AND.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 439

Andreas Speck et al.

5. Related Work

Software models have been issue of verification like model checking for a rather
long period. Examples for early approaches based on model checking are [21]
or [39].

However, base of all the checking is the formalization of business process
models like [32] (graph grammar based approach) and [8] which enable to apply
formal methods for business processes. The transformation of EPC models to
Petri nets also formalize them ([35] and [36]). In this case the semantics are
restricted. The formalization proposed in [30] uses a fix-point-semantics-based
definition of the semantics of EPCs which is also used for model checking.

The mapping of business process models on ASM (Abstract State Ma-
chines) allows to operate the business processes on an abstract level [9]. Many
approaches (also the majority of the here referenced approaches) consider
BPMN. However, executable models like BPEL are object of formalization as
well [13]. Further formalization approaches are based on the pi calculus [37].
An issue of research to be addressed by formalization approaches are the joins
after branching [8]. In the EPC model [45] the semantics as base of the for-
malization have been analyzed e.g. by [2] and [40]. An example for the BPMN
analysis may be found at [28].

Examples for approaches employing model checking on business processes
are [22], [33], [5] or [6]. [33] evaluates different checking technologies for being
applied on business processes. [5] and [6] focus on the aspect of transactions
in e-commerce systems. In [22] a large number of business processes have
been investigated and different checking concepts are applied. One important
conclusion is that several concepts could be combined in order to improve their
effect.

An example of an approach for the verification of business process systems
based on Petri nets is [19] using BPMN. With Petri nets the business processes
are mapped to the Petri net elements similar to Kripke structure mapping. An
alternative approach for Petri net based verification is based on bi-simulation
and algebraic solutions (e.g. [41]).

The approach presented in this paper relies directly on the push-button
model checking technology and temporal logic requirement specifications. Most
approaches applying formal methods to business process models for the pur-
pose of checking use straight-forward model transformations. These transfor-
mations result in a loss of information and, therefore, verification precision. The
reason is the incompatible semantics of the business process models and the
verification models which causes several problems resulting in different alterna-
tive approaches to tackle them [20]. Moreover, additional information (such as
organizational units in EPC models) is lost during the transformation due to a
surjective mapping. Two approaches transforming business process models to
verification models are [42] (SMV Kripke structures) or [1] (Petri nets).

An approach which proposes a graphical representation of models and spec-
ifications is [26]. In this approach the business process notation are UML activ-

440 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Formalizing Business Process Specifications

ity diagrams and the result of the LTL-based checking is presented in a textual
manner.

In the domain of formal methods approaches may be found which concen-
trate on an increase of semantic expressiveness of the specification languages
(e.g. the µ-calculus [10] and [34] or in the multi-valued logic research as in [15]).
Extensions to the temporal logic for LTL have been proposed in [14] or [29], for
instance. In these approaches a link to software models or business process
models is missing and the general idea of a specialization on different model
elements is not considered. In contrast to [14], [29], [27] and [31] we are able
to explicitly distinguish and mix specializers (and thus views) for different model
elements.

6. Conclusions and Future Work

Most business process models are very large and consist of a large number
of elements and flows. The checking of these large models by hand is time
consuming and still not satisfying in all cases 8.

Formal verification methods may help to automate at least some kinds of
checking (e.g. routine checks). The formal method we apply in our work is model
checking. The rules to be verified must be able to express the temporal relations
between the process elements (e.g. the control flow).

Due to this we use the temporal logic CTL (Computational Tree Logic) as a
base. However, the pure CTL has some drawbacks.
It does not support a graphical notation and the semantics of CTL may be ex-
tended. We present G-CTL as a graphical notation of CTL supporting a similar
element notation than EPC models and combining them with the temporal op-
erators of CTL.
Due to the lack of expressiveness of CTL we extend the semantics of CTL by
specializers (Extended Graphical-CTL, EG-CTL). These specializers allow dis-
tinguishing between different model element types (in our case EPC events,
functions, organizational units and others). With the help of the specializers it is
possible to check on the existence of a specific type in the process not consid-
ering elements of other types. In order to support the specializers the checking
algorithm has been modified. Moreover, we introduced wildcard which allows
defining a rule in a moment when the concrete modeling of a process is not
clear. The wildcards keep the position in the process open. Nevertheless, by
some additional information, e.g. the knowledge which concrete organizational
unit will be related to the unknown element represented by a wildcard it is pos-
sible to complete the rule.

8 The checking of large models may result in state explosion problems. However, there
are different approaches to deal with this problem. One used by most model checking
tools is to optimize the model structure by applying Ordered Binary Decision Diagrams
(OBDD) [12]. Other approaches are abstraction or partial evaluation and composi-
tional model checking [25]. These different approaches are known to the authors and
taken into account. Although, these approaches are not issue of the paper.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 441

Andreas Speck et al.

The different techniques of the graphical representation of specifications and
the extension of CTL in order to represent different model element types as
well as the introduction of wildcards are integrated in the Business Application
Modeler (BAM) in order to improve the usability of this business process model
checking concept.

At the moment we are developing a presentation tool on the base of Eclipse
the Business Application Modeler (BAM) [24]. In detail, BAM is based on the
Eclipse Graphical Editing Framework (GEF) [4]. GEF has been chosen since
it supports the required presentation functions and is comparatively portable
which means that the BAM editor runs on different operating system platforms.
The goal of this Eclipse-based implementation is a high degree of portability
and the ability to integrate transformation and checking systems as simple as
possible.

In our future work we intend to support further notations (e.g. BPMN). Al-
ready now we are working on an i* model support [44]. The interoperability be-
tween our BAM and other modeling tools like ARIS or ViFlow has not yet been
realized. An intermediate (probably XML-based) data format may be useful.

References

1. van der Aalst, W.M.P.: Formalization and Verification of Event-driven Process
Chains. Information and Software Technology 41(10), 639–650 (1999)

2. van der Aalst, W.M.P., Desel, J., Kindler, E.: On the semantics of EPCs: A
vicious circle. In: EPK 2002 - Geschäftsprozessmanagement mit Ereignisges-
teuerten Prozessketten, Proceedings des GI-Workshops und Arbeitskreistreffens
(Trier, November 2002). pp. 71–79 (2002)

3. van der Aalst, W.M.P.: Formalization and Verification of Event-driven Process
Chains. Information and Software Technology 41(10), 639–650 (1999)

4. Anders, E.: Modellierung und Validierung von Prozessmodellen auf Basis variabler
Modellierungsnotationen und Validierungsmethoden als Erweiterung für Eclipse,
Diploma Thesis (2010)

5. Anderson, B.B., Hansen, J.V., Lowry, P.B., Summers, S.L.: Model checking for de-
sign and assurance of e-Business processes. Decision Support Systems 39(3),
333–344 (2005)

6. Anderson, B.B., Hansen, J.V., Lowry, P.B., Summers, S.L.: The application of model
checking for securing e-commerce transactions. Communications of the ACM 49(6),
97–101 (2006)

7. Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoebe-
len, P.: Systems and Software Verification – Model-Checking Techniques and Tools.
Springer, Berlin, Germany (2001)

8. Börger, E., Sörensen, O., Thalheim, B.: On Defining the Behavior of OR-joins in
Business Process Models. The Journal of Universal Computer Science (J. UCS)
15(1), 3–32 (2009)

9. Börger, E., Thalheim, B.: Modeling Workflows, Interaction Patterns, Web Services
and Business Processes: The ASM-Based Approach. In: Proceedings of Abstract
State Machines, B and Z, First International Conference (ABZ 2008). pp. 24–38.
Springer LNCS 5238 (2008)

442 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Formalizing Business Process Specifications

10. Bradfield, J., Stirling, C.: Modal logics and mu-calculi: an introduction. In: Handbook
of Process Algebra, pp. 293–33. Elsevier Science Publishers (2001)

11. Breitling, M.: Business Consulting, Service Packages & Benefits. Tech. rep., Inter-
shop Customer Services, Jena (2002)

12. Bryant, E., R.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers C-35(8), 677–691 (1986)

13. Cámara, J., Canal, C., Cubo, J., Vallecillo, A.: Formalizing WSBPEL Business Pro-
cesses Using Process Algebra. Electronic Notes in Theoretical Computer Science
154(1), 159–173 (2006)

14. Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/Event-Based
Software Model Checking. In: Proceedings of the 4th International Conference on
Integrated Formal Methods (IFM). pp. 128–147. Springer, LNCS 2999 (2004)

15. Chechik, M., Devereux, B., Easterbrook, S., Gurfinkel, A.: Multi-Valued Symbolic
Model-Checking. ACM Transactions on Software Engineering Methodology 12(4),
371–408 (October 2003)

16. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Verification of Finite-State Con-
current Systems Using Temporal Logic Specifications. ACM Transactions on Pro-
gramming Languages and Systems 8(2), 244 – 263 (April 1986)

17. Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient generation of coun-
terexamples and witnesses in symbolic model checking. In: DAC ’95: Proceedings
of the 32nd ACM/IEEE conference on Design automation. pp. 427–432 (1995)

18. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge, Massachusetts; London, England, 3 edn. (2001)

19. De Backer, M., Snoeck, M.: Business Process Verification: a Petri Net Approach.
Tech. rep., Catholic University of Leuven, Belgium (2008)

20. van Dongen, B.F., Jansen-Vullers, M., Verbeekm, H.H.M.W., van der Aalst, W.M.P.:
Verification of the SAP reference models using EPC reduction, state-space analysis,
and invariants. Computers in Industry 58(6), 578–601 (2007)

21. Emerson, E.A., Clarke, E.M.: Characterizing Correctness Properties of Parallel Pro-
grams Using Fixpoints. In: ICALP 1980, Automata, Languages and Programming,
7th Colloquium. pp. 169–181. Springer LNCS 85 (1980)

22. Fahland, D., Favre, C., Jobstmann, B., Köhler, J., Lohmann, N., Völzer, H., Wolf,
K.: Instantaneous Soundness Checking of Industrial Business Process Models. In:
Proceedings of the 7th International Conference on Business Process Management
(BPM 2009). pp. 278–293. Springer, LNSC 5701 (2009)

23. Feja, S., Fötsch, D.: Model Checking with Graphical Validation Rules. In: Proceed-
ings of the 15th IEEE International Conference on the Engineering of Computer-
Based Systems (ECBS 2008). pp. 117–125. IEEE (2008)

24. Feja, S., Speck, A., Witt, S., Schulz, M.: Checkable Graphical Business Pro-
cess Representation. In: Proceedings of the 14th East-European Conference on
Advances in Databases and Information Systems (ADBIS 2010,). pp. 176–189.
Springer, LNCS 6295 (2010)

25. Fisler, K., Krishnamurthi, S.: Decomposing Verification by Features. In: IFIP Working
Conference on Verified Software: Theories, Tools, Experiments (October 2005)

26. Förster, A., Engels, G., Schattkowsky, T., Van Der Straeten, R.: Verification of Busi-
ness Process Quality Constraints Based on Visual Process Patterns. In: Proceed-
ings of the First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software
Engineering (TASE ’07). pp. 197–208 (2007)

27. Giannakopoulou, D., Magee, J.: Fluent Model Checking for Event-based Systems.
In: Proceedings of the 9th European Software Engineering Conference (ESEC) held

ComSIS Vol. 8, No. 2, Special Issue, May 2011 443

Andreas Speck et al.

jointly with 10th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering (FSE). pp. 257–266. ACM Press (2003)

28. Grosskopf, A.: xBPMN. Formal control flow specification of a BPMN based process
execution language, Master’s thesis (2007)

29. Jonsson, B., Khan, A.H., Parrow, J.: Implementing a Model Checking Algorithm by
Adapting Existing Automated Tools. In: Proceedings of the International Workshop
on Automatic Verification Methods for Finite State Systems. pp. 179–188. Springer,
LNCS 407 (1989)

30. Kindler, E.: On the Semantics of EPCs: A Framework for Resolving the Vicious Cir-
cle. In: Proceedings fo Business Process Management: Second International Con-
ference, (BPM 2004). pp. 82–97. Springer LNCS 3080 (2004)

31. Kindler, E., Vesper, T.: ESTL: A Temporal Logic for Events and States. In: Proceed-
ings of the 19th International Conference on Application and Theory of Petri Nets
(ICATPN). pp. 365–384. Springer LNCS 1420 (1998)

32. Klauck, C., Müller, H.J.: Formal business process engineering based on graph gram-
mars. International Journal on Production Economics 50, 129–140 (1999)

33. Köhler, J., Tirenni, G., Kumaran, S.: From Business Process Model to Consistent
Implementation: A Case for Formal Verification Methods. In: 6th International Enter-
prise Distributed Object Computing Conference (EDOC 2002). pp. 96–106 (2002)

34. Kozen, D.: Results on the propositional mu-calculus. Theoretical Computer Science
3(27), 333–354 (December 1983)

35. Langner, P., Schneider, C., Wehler, J.: Prozeßmodellierung mit ereignisges-
teuerten Prozeßketten (EPKs) und Petri-Netzen. Wirtschaftsinformatik 39(5), 479–
489 (1997)

36. Langner, P., Schneider, C., Wehler, J.: Petri net based certification of event-driven
process chains. In: Proceedings of Application and Theory of Petri Nets 1998, 19th
International Conference (ICATPN ’98). pp. 286–305. Springer, LNI 1420 (1998)

37. Ma, S., Zhang, L., He, J.: Towards Formalization and Verification of Unified Busi-
ness Process Model Based on Pi Calculus. In: Proceedings of the 6th ACIS Inter-
national Conference on Software Engineering Research, Management and Appli-
cations (SERA). pp. 93–101. IEEE Computer Society (2008)

38. Mahleko, B., Wombacher, A.: Indexing Business Processes based on Annotated
Finite State Automata. In: IEEE International Conference on Web Services (ICWS
2006). pp. 303–311. IEEE Computer Society, Los Alamitos, CA, USA (2006)

39. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
40. Mendling, J., Neumann, G., van der Aalst, W.M.P.: Understanding the Occurrence of

Errors in Process Models Based on Metrics. In: On the Move to Meaningful Internet
Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, OTM Confederated Inter-
national Conferences CoopIS, DOA, ODBASE, GADA, and IS 2007. pp. 113–130
(2007)

41. Morimoto, S.: A Survey of Formal Verification for Business Process Modeling. In:
ICCS 2008, 8th International Conference. pp. 514–522. Springer LNCS 5102 (2008)

42. Pulvermüller, E.: Composition and correctness. Electronic Notes in Theoretical
Computer Science (ENTCS) 65(4) (2002)

43. Pulvermüller, E.: Reducing the Gap between Verification Models and Software De-
velopment Models. In: The 8th International Conference on Software Methodolo-
gies, Tools and Techniques (SoMeT 2009). pp. 297–313. IOS Press (2009)

44. Rusnjak, A., El Kharbili, M., Hristov, H., Speck, A.: Managing the Dynamics of
E/mCommerce with a Hierarchical Overlapping Business-Value-Framework. In: 24th

444 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Formalizing Business Process Specifications

IEEE International Conference on Advanced Information Networking and Applica-
tions Workshops (AINA Workshops), WAINA 2010. pp. 461–466. IEEE Computer
Society (2010)

45. Scheer, A.W.: ARIS - Modellierungsmethoden, Metamodelle, Awendungen.
Springer, Berlin, Germany (1998)

Prof. Dr. Andreas Speck is head of the ”Business Information Technology” re-
search group at Christian-Albrechts-University of Kiel, Germany. Previously he
headed the research group ”Application Systems (Software Engineering and
eCommerce)” at the Friedrich-Schiller-University of Jena and led the research
group of the Intershop Communications AG at Jena. His main research inter-
ests are the modeling and verification of commercial application systems and
electronic and mobile commerce systems. Andreas Speck is member of the
German Computer Society (GI).

Sven Feja studied Business Informatics at the Friedrich-Schiller-University of
Jena, Germany, and received his degree in Business Informatics in 2006. Af-
ter his graduation he joined the research group ”Application Systems (Software
Engineering and eCommerce)” at the Friedrich-Schiller-University of Jena. Cur-
rently he is a research assistant at the Christian-Albrechts-University of Kiel,
Germany, researching in the field of business process modeling and validation
and verification of correctness of process models (including functional and non-
functional aspects). Sven Feja is member a member of the German Computer
Society (GI).

Sören Witt studied Computer Engineering at the Christian-Albrechts-University
of Kiel, Germany. He received his degree as Computer Engineer in 2009. After
his graduation he joined the ”Business Information Technology” research group
at Christian-Albrechts-University of Kiel as research assistant. Soeren Witt is
researching in the area of business process model verification and validation
on basis of graphically represented specifications.

Prof. Dr.-Ing. Elke Pulvermüller is a professor (Jun.Prof.) in the Department
of Mathematics & Computer Science at the University of Osnabrueck, Ger-
many. There, she is head of the Software Engineering research group. Between
September 2009 and March 2010 she has been temporarily appointed as an
Acting Full Professor of the Institute of Software Technology and Programming
Languages at the University Luebeck, Germany. Previous to her appointments
at Luebeck and Osnabrueck she has been a senior researcher / research as-
sistant at the University of Luxembourg (2006 - 2007), at the Friedrich Schiller-
University of Jena (Germany) and at the Universitaet Karlsruhe (Germany). She
received her doctoral degree from the Friedrich Schiller-University of Jena in
2006. Her research focuses on new approaches in software and quality engi-
neering. Elke Pulvermueller is a member of the German Computer Society (GI)
and the ACM.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 445

Andreas Speck et al.

Marcel Schulz studied Business Informatics at the Friedrich-Schiller-University
of Jena, Germany, and received his degree in Business Informatics in 2009.
He gained interactional experience as project manager for commercial informa-
tion systems in Shanghai, China working for American customers from 2007 till
2009. Currently he is member of the Intershop Commuincations research group.
His research interests are business intelligence, data mining and simulation.

Received: January 11, 2011; Accepted: May 5, 2011.

446 ComSIS Vol. 8, No. 2, Special Issue, May 2011

DOI:10.2298/CSIS101231014M

An Approach to Assess and Compare

Quality of Security Models

Raimundas Matulevičius1, Henri Lakk
1
, and Marion Lepmets

2

1 Institute of Computer Science, University of Tartu,
J. Liivi 2, 50409 Tartu, Estonia

rma@ut.ee, henri.lakk@gmail.com
2 Centre for Public Research Henri Tudor – SSI

29 Av. John F. Kennedy, L-1855 Luxembourg,
Marion.Lepmets@tudor.lu

Abstract. System security is an important artefact. However security is
typically considered only at implementation stage nowadays in industry.
This makes it difficult to communicate security solutions to the
stakeholders earlier and raises the system development cost, especially
if security implementation errors are detected. On the one hand
practitioners might not be aware of the approaches that help represent
security concerns at the early system development stages. On the other
hand a part of the problem might be that there exists only limited support
to compare different security development languages and especially
their resulting security models. In this paper we propose a systematic
approach to assess quality of the security models. To illustrate validity of
our proposal we investigate three security models, which present a
solution to an industrial problem. One model is created using PL/SQL, a
procedural extension language for SQL; another two models are
prepared with SecureUML and UMLsec, both characterised as
approaches for model-driven security. The study results in a higher
quality for the later security models. These contain higher semantic
completeness and correctness, they are easier to modify, understand,
and facilitate a better communication of security solutions to the system
stakeholders than the PL/SQL model. We conclude our paper with a
discussion on the requirements needed to adapt the model-driven
security approaches to the industrial security analysis.

Keywords: model-driven security development, modelling quality,
PL/SQL, secureUML, UMLsec.

1. Introduction

Nowadays, computer software and systems play an important role in different
areas of everyday life. They deal with different type of information including
the one (e.g., bank, educational qualification, and health records) that must be
secured from the unintended audience. Thus, ensuring system security is a
necessity rather than an option. Security analysis should be performed

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 448

throughout the whole system development cycle starting from the early stages
(e.g., requirements engineering and system design) and leading to the late
stages (e.g., implementation and testing). However this is not the case in
practice [13], [32] where security is considered only when the system is about
to be implemented (e.g., at implementation stage) or deployed (e.g., at
installation stage). This is a serious limitation to the secure system
development, since it is the early stages where security requirements should
be discovered and communicated among stakeholders, security trade-offs
should be considered, and security concerns should be clearly differentiated
among different system aspects (e.g., data, functionality, and etc).

One possible suggestion to solve the above problem is an approach called
model driven architecture (MDA). MDA provides a solution for the system
development process based on models [5] that are the simplified
representations of reality. Although MDA is certainly useful for the general-
purpose system and software development [14], [20], [33], [34], the current
state of the art gives little evidence (we identified only one study – [3]) on how
model driven security (MDS) could help developers to improve the security
definition and implementation process.

A part of the problem could be a lack of the systematic support to assess
the security development languages both at the systems modelling and
system implementation stages. In this paper we have proposed a systematic
approach to evaluate quality the security models following the instantiation of
the Semiotic Quality (SEQUAL) framework [15] [16]. To validate our proposal
we have performed a case study (carried on at the Software Technology and
Application Centre in Estonia), where we compare quality of the security
model prepared using PL/SQL [9] (a procedural programming language), and
quality of the security model prepared using MDS approaches, namely
SecureUML [2], [19] and UMLsec [11]. All the security models define a role-
based access control [8] on the data model provided to us by our industrial
partner. Our case study results in a higher quality for the security models,
created at the requirements engineering and design stages of the systems
development. However we also highlight a set of requirements that are
necessary to fulfil in order the MDS approaches were applicable in practice.

The structure of the remaining paper is as follows: in Section 2 we
introduce the background of our research. We present the general RBAC
model, the quality framework, and the approaches that help express system
security concerns. In Section 3 we introduce an approach to assess quality of
the security models. Next in Section 4 we illustrate the application of our
proposal to evaluate quality of three languages, namely PL/SQL, SecureUML
and UMLsec. Hence, we list our observations regarding model semantic,
syntactic and pragmatic quality types. Finally, in Section 5 we discuss the
results against the related work, and we also conclude our study.

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 449

2. Background

In this section we provide the background for our study. Firstly, we discuss the
principles of the role-based access control. Secondly, we survey an
evaluation framework that helps to assess model quality. Finally, we discuss
development languages to represent system security.

2.1. Role-based Access Control

In this work we adapt the core role-based access control (RBAC) model [8].
This model defines a minimum set of concepts and relationships in order to
define a role-based access control system. The basic concept of RBAC is that
users are assigned to roles, permissions are assigned to roles, and users
acquire permissions by being members of roles. The same user can be
assigned to many roles and a single role can have many users. Similarly, for
permissions, a single permission can be assigned to many roles and a single
role can be assigned to many permissions.

The basic concepts of the RBAC model are illustrated in Fig. 1. The main
elements of this model are Users, Roles, Objects, Operations, and
Permissions. A User is typically defined as a human being or a software
agent. A Role is a job function within the context of an organisation. Role
refers to authority and responsibility conferred on the user assigned to this
role. Permissions are approvals to perform one or more Operations on one or
more protected Objects. An Operation is an executable sequence of actions
that can be initiated by the system entities. An Object is a protected system
resource (or a set of resources). Two major relationships in this model are
User assignment and Permission assignment. User assignment relationship
describes how users are assigned to their roles. Permission assignment
relationship characterises the set of privileges assigned to a Role.

Fig. 1. Role-based Access Control Model (adapted form [8])

In Section 3 we propose an assessment of the quality for security models.
There, the RBAC model suggests the criteria that help to judge about the
model semantic properties as we illustrate in Section 4.

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 450

2.2. Modelling Quality

Evaluations of a model quality [30] could be performed (i) using detailed
qualitative properties or (ii) through general quality frameworks. A systematic
survey of these approaches could be found in [28]. In this study we combine
both approaches: firstly, we follow guidelines of the semiotic quality
(SEQUAL) framework [15], [16] to select the quality types of interest.
Secondly, we identify a set of qualitative properties that are used to compare
two security models.

The SEQUAL framework (Fig. 2) is an extension of the Lindland et al,
(1994) quality framework [18], which includes discussion on syntax, semantics
and pragmatics. It adheres to a constructivistic world-view that recognises
model creation as part of a dialog between the participants whose knowledge
changes as the process takes place. The framework distinguishes between
quality goals and means to achieve these goals. Physical quality pursues two
basic goals: externalisation, meaning that the explicit knowledge K of a
participant has to be externalised in the model M by the use of a modelling
language L; and internalisability, meaning that the externalised model M can
be made persistent and available, enabling the stakeholders to make sense of
it. Empirical quality deals with error frequencies when reading or writing M, as
well as coding and ergonomics when using modelling tools. Syntactic quality
is the correspondence between M and the language L in which M is written.
Semantic quality examines the correspondence between M and the domain
D. Pragmatic quality assesses the correspondence between M and its social
as well as its technical audiences’ interpretations, respectively, I and T.
Perceived semantic quality is the correspondence between the participants’
interpretation I of M and the participants’ current explicit knowledge KS. Social
quality seeks agreement among the participants’ interpretations I. Finally,
organisational quality looks at how the modelling goals G are fulfilled by M. In
the second case the major quality types include physical, empirical, syntactic,
semantic, pragmatic, social and organisational quality.

2.3. System Security

In order to define the system security policy in a systematic way it is important
to understand the need for security within an organisation. One of the possible
ways is to apply the security risk management process [26]. This process
begins with the identification of the secure assets and the determination of the
security objectives (in terms of confidentiality, integrity, and availability).
During the next step security risks and their harm to the secured assets and
their security objectives, are identified. Once the risk assessment is
performed, risk treatment decisions (e.g., risk avoidance, risk reduction, risk
transfer or risk retention) are taken. Following these decisions, the developers
formulate the security requirements in order to mitigate the identified risks.
Security requirements are, finally implemented into the security controls.

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 451

Fig. 2. The SEQUAL framework (adapted from [15], [16])

In order to support security modelling various research groups have
proposed a variety of different approaches. For instance abuse frames [17]
suggest means to consider security during early requirements engineering
stage. Secure i* [6] addresses security trade-offs. KAOS’ extension to security
[35] was augmented with anti-goal models designed to elicit attackers’
rationales. Tropos has been extended with the notions of ownership,
permission and trust [10]. Another version of Secure Tropos [29] defines
security through the security constraints. Abuse cases [27], misuse cases [32]
and mal-activity diagrams [31] are the extensions for the modelling languages
from the UML family. Another UML extension (through the stereotypes,
tagged values and constraints) towards security is UMLsec [13]. This
language is, basically, used to address the security concerns during the
system design stage. Although the majority of those approaches contribute to
a proper definition of the security requirements, but they discuss little on how
these security requirements should be implemented into the security controls.

Furthermore there is little support to assess these languages before their
actual application to solve problems of system and software development.
Thus, in this paper we propose a systematic approach, which could guide
evaluation of the security languages through the hands-on testing. To
illustrate application of the approach we have executed a case study where
we have selected three languages – PL/SQL [9], SecureUML [2], [19],
UMLsec [13]. We have investigated how these languages could contribute to
the implementation of the security controls. More specifically we use these
three approaches to define a role based access control (RBAC) policy for the
data that needs to be secured.

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 452

3. An Assessment of Quality for Security Models

In this paper we introduce a systematic and hands-on-based approach to
assess and compare quality of the security models. Our proposal consists of
six steps as illustrated in Fig. 3. During the first step one needs to define the
evaluation goal. With respect to the security models, the assessment goal
could be understanding of the nature of the security needs, learning about the
scope of the security models, learning about the quality of the security
models, comparing different security models according to the quality criteria
identified in the second step and similar.

Fig. 3. An Assessment of Quality for Security Models

The second and the third steps of our proposal could be executed in
parallel. The second step is identification of the quality evaluation criteria.
Although, as illustrated in Section 2.2, the SEQUAL framework provides
fundamental principles to evaluate model quality, firstly, it remains abstract,
and, secondly, it is dedicated to the models of the general purpose, but not to
the security models. As we show in Section 4.2, we select a set of qualitative
properties that instantiates SEQUAL for the security model assessment based
on the literature [4], [15] and on our experience of assessing the requirements
engineering tools [21], development guidelines [11], goal modelling languages
and models [24].

As discussed in Section 2.3, the security concerns could be represented
using different languages. Thus, depending on the goal defined in the first

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 453

step, one needs to select or to create security models, which quality will be
executed assessed in the subsequent steps.

The fourth step is about performance of the evaluation of the
selected/created (in step 3) security models. This includes the investigation of
the models and assignment of the subjective and objective values to the
predefined (in step 2) model measures.

Expressing security quality is not an easy task. Thus we introduce the fifth
step where evaluators have to validate the quality evaluation results. This
typically means consultation of the received measures to the experts or to the
model developers (see for instance Section 4.5.2). The final step of the
security model assessment is the summary and report on the evaluation
results.

In Section 4 we are reporting on a case study where we use our proposal
to assess quality of three security models, created using PL/SQL [9],
SecureUML [2] [19] and UMLsec [13].

4. A Case Study

Two researchers have followed the steps of the assessment of the quality for
security models. They have defined the evaluation goals, identified the quality
evaluation criteria and created the security models for evaluation. The model
assessment results were communicated to the model developers in order to
validate their correctness. The overall application of the method is illustrated
in the following subsections.

4.1. Defining the Evaluation Goals

The goal of this case study is twofold:

 Firstly, we are interested in learning about the quality of the security
models created using different languages. More specifically we will
compare the models created at the software system design stage and
software system implementation stage. In both cases our model will
be defining the role-based access control polity for the system data.

 Secondly, we are interested in performance and feasibility of the
method introduced in Section 3. Through the case study we will
record our observations on the method application.

4.2. Identifying the Quality Evaluation Criteria

Although being influenced by the overall theoretical background of the
SEQUAL framework, in our study we specifically focus only on three quality
types, namely semantics, pragmatics, and syntax. Hence we will introduce a

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 454

set of measures in order to understand the quality of the security models. In
fact in [25] we have already defined a set of subjective measures that helped
us to address the model quality by its relative level (there we applied the
ordinal scale consisting of Low, Partial, and High values). In this work we
extend the quality model by introducing measures that allow developers to
estimate quality quantitatively. The instantiation of the SEQUAL framework for
the security model is illustrated in Fig. 4 and presented below.

Fig. 4. Instantiation of the SEQUAL framework

Semantic quality is a correspondence between a model and its semantic
domain. We assess semantic quality through the following qualitative
properties and their measures:
Semantic completeness. It means that everything that the software is

supposed to do is included in the model. With respect to the security
domain, we say that the security model should include concepts
corresponding to the RBAC domain, which is presented in Section 2.1. The
Percentage of the RBAC domain coverage is calculated as a division
between the number of RBAC concepts presented in the model and the
number of RBAC concepts.

Semantic correctness. It means that a model should represent something that
is required to be developed. With respect to the security domain this
qualitative property requires separation between data- and security-related
concerns – only the security-related knowledge is required in the security
model. Percentage of security related statements describe the degree of
security statements with respect to the overall model is.

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 455

Traceability. It requires that the origin of the model and its content should be
identifiable. The security model should clearly present the rationale why
different security solutions are included in the model. We define a measure
Number of traceability links, which characterise a count of links traced to
the origin of the model.

Annotation. It means that a reader is easily able to determine which elements
are most likely to change. This is especially important in the security model
because system security policy might be changed often. A measure of
Number of annotation elements gives the count of annotations used in the
model.

Modifiability. It means that the structure and the content are easy to change.
When security policies change it should be easy to change the security
concerns quickly in the model. To estimate modifiability we define a
measure of Time spent to modify. It indicates how long it takes to change
security policy in the system.
The last two qualitative properties are important when the new system

security policies are introduced. Knowing the place and being able to
implement the new security concerns quickly might substantially reduce the
maintenance cost of overall system.

Syntactic quality is a correspondence between a model and a modelling
language. The major goal of the syntactic quality is syntactic correctness. The
following qualitative properties and their measures are defined:
Syntactic validity. It means that the grammatical expressions used to create a

model should be a part of the modelling language. The measure defined for
this qualitative property is a Number of syntactically invalid statements. If
the value for this measure is higher the syntactical validity of the model is
worse.

Syntactic completeness. It means that all grammar constructs and their parts
are present in the model. We define a measure Number of syntactically
incomplete statements. Similarly to syntactic validity measure, the syntactic
completeness estimates high if Number of syntactically incomplete
statements results in null.
To test the syntactic correctness of the security models we need to

investigate the concrete syntax of the languages used to create these models.
Pragmatic quality is a correspondence between a model and an

interpretation of social and technical audience. The social audience of security
model is typically security engineer, but it also includes the system analysts,
the software developers, the stakeholders (actors who pay for the
development of the secure system), and even the direct users, who should
also be involved in the security requirements definition process. With respect
to the social actors we define the following qualitative properties and their
measures:
Understandability. It means that a reader is able to understand the model with

minimum explanations. To estimate the understandability of the security
model we can count number of the explanations needed for the social
audience. On the other hand here we define a measure Time spent to
understand the model.

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 456

Cross-referencing. It means that the different pieces of model content are
linked together. A measure of Number of cross-reference links provides a
count of cross-referenced links between model components.

Organisation. It means that the model content should be arranged so that a
reader could easily locate information and logical relationships among the
related information. This could be done by the table of content, division of
the model to different sections/chapters, inclusion of the glossary and
similar. A measure of Number of organisation elements returns a count for
the elements, which could help in arrangement of the logical information.
For the technical model interpretation we define that the model should be

estimated according to executability property, meaning that there should exist
technology capable of inputting the model and resulting in its implementation.
The existence of technology is characterised by a measure Technology
capable to execute the model.

4.3. Selecting / Creating Security Models

In order to understand the quality of the security models we have selected
three languages: PL/SQL [9], SecureUML [2] [19], and UMLsec [13]. We have
applied these languages to create the models following the RBAC policy. In
fact in our models we were solving the industrial problem; however the actual
data and security models could not be presented here due to the privacy
concerns of our industrial partner. But here we include an extract of a meeting
scheduling system [7]. This example closely corresponds to the industry
models used in the assessment. Our observations are the same for the
industrial problem and for the meeting scheduler system.

Security problem. Meeting scheduling system [7] is described as follows:
there is a need to organise a top-secret meeting in the way that only intended
users would know when the meeting starts and ends, what meeting owner
and location are. In our example users are allowed adding information about
new meetings and viewing information about all existing meetings. But one
can delete or change meeting information if and only if he/she is an owner
(e.g., meeting initiator) of the meeting. We will present solutions to this
problem in the PL/SQL, SecureUML and UMLsec security models.

PL/SQL. Oracle PL/SQL is a procedural language extension [9] to the
standard query language (SQL). PL/SQL was introduced by Oracle
Corporation to overcome some limitations of SQL and to provide a more
complete implementation solution to develop the mission-critical applications,
which run on the Oracle database. PL/SQL is an embedded language and
could not be used as a standalone language. The language ensures that the
programs can stay entirely within the operating-system independent Oracle
environment. One of the important aspects of the language is its tight
integration with SQL. This means the programs do not rely on intermediate
software (e.g. Open Database Connectivity (ODBC) or Java Database
Connectivity (JDBC)) in order to run SQL statements. Among other features,

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 457

PL/SQL deals with control flows, exception handling, and advanced data
types.

Fig. 5. Excerpt of the PL/SQL security model

The PL/SQL security model is prepared using the EditPlus1 tool. In general
the security model consists of the library that accumulates different security
procedures written in PL/SQL. In our example this library contains three
procedures that define different security policies for three RBAC roles –
Admin, SuperUser, and User. For example in Fig. 5 we illustrate a procedure
of meeting_permissions that describes a set of permissions, which are
defined on the meeting for one RBAC role, called User (e.g., the role is
checked through the condition if sec.is_role(‘User’)). Here we see that if a
certain condition (e.g., a user is a meeting owner and the meeting end date
has not yet passed) holds, it is possible to edit meeting attributes (e.g., start,
end, location, and owner); otherwise editing is not allowed. In order to receive
a running application one needs to compile the PL/SQL source code.

1 http://www.editplus.com/

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 458

SecureUML. The SecureUML modelling language [2] [19] adapts the
RBAC model. At the concrete syntax level SecureUML is a “lightweight
extensions” of the UML, namely through stereotypes, tagged values and
constraints. It introduces the concepts and the stereotypes for User, Role, and
Permission as well as the relationships between them (RoleAssignment and
PermissionAssignment). Here the secured objects and the operations are
expressed through the protected objects, which are modelled using the
standard UML elements.

The semantics of Permission is defined through ActionType elements used
to classify permissions. Here every ActionType represents a class of security-
relevant operations (e.g., specific security actions: select, change, insert, and
delete) on a particular type of protected resource. An AuthorisationConstraint
is a part of the access control policy. It expresses a precondition imposed to
every call to an operation of a particular resource. This precondition usually
depends on the dynamic state of the resource, the current call, or the
environment. The authorisation constraint is attached either directly or
indirectly, via permissions, to a particular model element representing a
protected resource.

The SecureUML security model was prepared using MagicDraw2. The
overall model consists of five diagrams. A top-level diagram is a content
diagram as shown in Fig. 6. Other four diagrams present four aspects of the
security model. For instance, diagram SecurityResource-Views describes the
data, which need to be secured, diagrams RolePermissions-Admin,
RolePermissions-SuperUser, and RolePermissions-User present the security
permissions with respect to the roles Admin, SuperUser, and User.

Fig. 6. SecureUML content diagram

In Fig. 7 we present an excerpt of the Meeting Scheduling system (User

permissions). Here two security permissions (e.g., UserSelectAllMeetings and
UserUpdateOwnMeeting) are defined for the role User over the resource
Meeting. Similarly like in the PL/SQL model, an authorisation constraint
UserOwnDataConstraint defines that only an owner is allowed to update or
delete meeting information if the meeting date has not yet passed.

2 http://www.magicdraw.com/

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 459

In order to receive an executable application, the SecureUML model is
automatically transformed to the PL/SQL code (see illustration in the
Appendix of this paper). The transformed PL/SQL code is then compiled to a
running application.

In our case study we have selected to analyse the model created using
SecureUML, but not its PL/SQL transformation. The reason is that we intend
to analyse the model, which is editable by the system developers directly.

Fig. 7. Excerpt of the SecureUML security model

UMLsec. The UMLsec modelling language [13] is defined as a UML profile
extension using stereotypes, tagged values and constraints. Constraints
specify security requirements. Threat specifications correspond to actions
taken by the adversary. Thus, different threat scenarios can be specified
based on adversary strengths.

A subset of UMLsec that is directly relevant to this study is the role-based
access control stereotype – <<rbac>> – its tagged values and constraints.
This stereotype enforces RBAC in the business process specified in the
activity diagram. It has three associated tags {protected}, {role}, and {right}.
The tag {protected} describes the states in the activity diagram where the
access to the activities should be protected. The {role} tag may have a list of
pairs (actor, role) as its value, where actor is an actor in the activity diagram,
and role is a role. The tag {right} has a list of pairs (role, right) as its value,
where role is a role and right represents the right to access a protected
resource. The associated constraint requires that the actors in the activity
diagram only perform actions for which they have the appropriate rights.

In Fig. 8 we define an activity diagram, which describes an interaction
between User and Meeting. The diagram specifies that User can Insert data
(e.g., meeting start- and end-dates, meeting owner, and meeting location).
Next, User is able to Select data in order to check if data are correct. If these
are not OK User is able to Update data. After the meeting is over, User is able
to Delete data about this meeting.

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 460

Fig. 8. Meeting Scheduler with UMLsec

This diagram carries an <<rbac>> stereotype, meaning that the security
policy needs to be applied to the protected actions. For instance, the User’s
actions lead to the secured actions executed by the Meeting. For example,
Insert data is executed if and only if there exists an associated tag that
defines the following: (i) Insert data is a protected action, (ii) there exists a
user (e.g., Bob) who plays role User, and (iii) User enforces the action Insert
data. In the activity diagram this associated tag is defined as follows:
 {protected = Insert data}

 {role = (Bob, User)}

 {right = (User, Insert data)}

Similarly, the sets of associated tags are defined for other three protected
actions Select data, Update data, and Delete data. Like in the SecureUML
model, using UMLsec we need to define activity diagrams (with the models
<<rbac>> stereotype) for other two actors – Admin and SuperUser.

4.4. Performing Evaluation of the Security Models

In this section we will subsequently discuss the results of our assessment of
the security models. We will see the results on semantic, syntactic and
pragmatic quality types.

4.4.1. Assessment of Semantic Quality

Our analysis of the semantic quality for the security models is summarised in
Table 1. As defined in Section 4.2 we considered semantic quality according

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 461

to semantic completeness, semantic correctness, traceability, annotation, and
modifiability.

Table 1. Semantic quality of the security models

Qualitative
property

Measure PL/SQL
security
model

SecureUML
security
model

UMLsec
security
model

Semantic
completeness

Percentage of the
RBAC domain
coverage

42,86%
71,43%
(100%)

85,71%

Semantic
correctness

Percentage of
security related
statements

7,69% 100% 33%

Traceability
Number of traced
links

0 0 0

Annotation
Number of
annotation elements

0 5 1

Modifiability
Time spent to
modify

Not-known 5-10 minutes 5-10 minutes

PL/SQL security model. Semantic completeness is assessed through a

model correspondence to the RBAC domain (see Section 2.1). In the first
condition the PL/SQL model explicitly defines the role (e.g., User in Fig. 5) for
which security permission is defined. Next the PL/SQL model focuses partially
on the presentation of the security permissions (e.g., see the second condition
expression in Fig. 5), which are defined for the attributes of secured objects
(e.g., statements like meeting.start, meeting.end, and others shown in Fig. 5).
However it does not define on which operations the security permissions are
placed. Also the PL/SQL model does not express users and user assignment
relationships. We estimate 42.86% (expresses 3 RBAC concepts out of 7) of
the RBAC domain coverage.

The semantic correctness of the PL/SQL model is low, because it does not
separate the data and programmable concerns from the security concerns. In
PL/SQL diagram we found only two statements that are defining security
concerns (see two conditions defined in Fig. 5). All other 24 statements are
defining different programmable variables or user interface components (e.g.,
DO.item_enable(‘meeting.new_meeting’) is enabling the item of the user
interface). We estimate only 7,69% (2 statements out of 26) of the security
related statement in the diagram presented in Fig. 5.

The PL/SQL model is not traced. This means that origin and rationale for
the security decisions are not provided in the model and we did not observe
any traceable links in this model. The PL/SQL model is not annotated, thus it
is difficult to determine which elements are most likely to change.

Modifiability is estimated by the time used to modify different aspects of the
model. To estimate this characteristic it was rather difficult because it directly
correlates to the understandability property (see discussion below). However
we acknowledge that, once the model is understood, time spent to modify the
model might depend on the scope of the changes and skills of the developer.

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 462

SecureUML security model. SecureUML is developed to design the
RBAC-based solutions. This means that SecureUML could fully correspond to
the semantic domain, thus resulting in high semantic completeness. However
in our analysed diagram (see Fig. 7) we did not identify RBAC concept of
User and relationship User assignment. Thus we result in 71,43% of the
RBAC domain coverage (however we should note that definition of User and
User assignment is not a problem using SecureUML, thus possibly resulting in
100% of semantic completeness).

We identify high semantic correctness, because only security solutions are
presented in the SecureUML model. We assess percentage of security
related statements as 100%.

Like in the PL/SQL security model, in the SecureUML model we did not
observe any rationale for security decisions, thus it results in a low traced
property.

The Secure UML model is partially annotated. This annotation is achieved
through SecureUML stereotypes (e.g., <<secuml.permission>>,
<<secuml.role>>, etc.) and class names given to the permissions (e.g.,
UserSelectAllMeetings and UserUpdateOwnMeeting) and the authorisation
constraints (e.g., UserOwnDataConstraint). These class names are not
directly used in the transformation of the model to code, but they provide
additional information to the model reader. They also identify the places in the
model where security policy is most likely to be changed. We counted 5
annotation examples in the SecureUML model.

The SecureUML model is modifiable. The model implies a certain
presentation pattern – Role-Permission-Resource, which facilitates the
changing of the model. Like for the PL/SQL model we acknowledge that
modifiability much depends on the change requirements and on the skills of
the developer, but we also observe that the average time of one change might
vary from 5 to 10 minutes.

UMLsec security model. The RBAC principles are expressed through the
activity diagram using UMLsec. Using UMLsec the majority of the RBAC
concepts are defined in the associated tags. For example, User and Roles are
associated in the {role} tag, thus, expressing the RBAC user association link),
Roles and Operations are combined in the {right} tag, thus, defining the RBAC
Permission association link. The only RBAC concept that is not expressed in
the UMLsec model is Permission, i.e., what the Roles are allowed to do with
the secure Objects. We result in 85,71% (6 concepts out of 7) of the RBAC
domain coverage.

Regarding semantic correctness, in the UMLsec diagram we can observe
actions related to business/work description (e.g., Create new meeting, Check
if meeting information is correct, Correct meeting information, and Erase
information after the meeting) and actions that needs to support the
business/work actions (e.g., ones executed by Meeting – Insert data, Select
data, Update data, and Delete data). The later ones each needs security-
related treatment defined through the association tags. Thus we result in 33%
of security related statements (actions and association tags) in the UMLsec
model.

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 463

In the UMLsec model we find only one annotation element, i.e., the
<<rbac>> (see Fig. 8) stereotype that the modelled security aspect. Similar
like in the SecureUML model, we observed no traceability from/to the UMLsec
model. In addition, we identify, that depending on the needs for changes, we
can modify the UMLsec model in 5-10 minutes.

4.4.2. Assessment of Syntactic Quality

Syntactic quality is expressed through syntactic validity and syntactic
completeness, as defined in Section 4.2. We summarise our analysis of the
security models in Table 2.

Table 2. Syntactic quality of the security models

Qualitative
property

Measure PL/SQL
security
model

SecureUML
security
model

UMLsec
security
model

Syntactic
validity

Number of
syntactically invalid
statements

0 1 0

Syntactic
completeness

Number of
syntactically
incomplete
statements

0 0 0

PL/SQL security model. The PL/SQL model is of high syntactic validity

and syntactic completeness, because the model is created using the PL/SQL
language, a programmable language. We did not observe any syntactically
invalid or syntactically incomplete statements. Syntactically this model is also
correct because otherwise it would not be possible to compile it to the
application.

SecureUML security model. In the current model of the SecureUML we
can identify a case of syntactic invalidity. For instance the SecureUML
documentation [2] [19] identify that authorisation constraints need to be
written in OCL (Object Constraint Language). However in our model (see Fig.
7) the SQL-based authorisation constraints are used (e.g., see class
UserOwnDataConstraint constraint {owner=sec.get_username(),
end>SYSDATE}). On the other hand the model is syntactically complete – it
includes only UML extensions and their relationships proposed by the authors
of SecureUML, thus we did not observe any syntactically incomplete
statements.

UMLsec security model. We did not observe any syntactically invalid or
syntactically incomplete statements in the UMLsec model. However we
should note that this model was checked only manually. For the UMLsec
model investigated by us, we were not running any transformations to the
application code (like we did with the PL/SQL or SecureUML models).

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 464

4.4.3. Assessment of Pragmatic Quality

We summarise the analysis of the pragmatic quality for the security models in
Table 3. Pragmatic quality is defined in terms of understandability,
organisation, cross-referencing, and executability, as presented in Section
4.2.

Table 3. Pragmatic quality of the security models

Qualitative
property

Measure PL/SQL
security
model

SecureUML
security
model

UMLsec
security
model

Understand
a-bility

Number of
explanations

More than
45 minutes

10-15
minutes

10-15
minutes

Organisation
Number of elements
for model
organisation

2 4 4

Cross
referencing

Number of cross-
reference links

1 3 3

Executability
Tools to execute the
model

Yes Yes No

PL/SQL security model. We found the PL/SQL model of low

understandability. We were not able to understand the PL/SQL model without
a proper explanation provided by the model developers. All together it took us
more than 45 minutes to grab some security concerns defined in the PL/SQL
model. On the one hand the reason might be that we as the evaluators, were
not the experts in the PL/SQL language. But, on the other hand, taking into
account that the security models should be used to communicate with the
users of the software systems (who are not familiar with PL/SQL neither), the
time spent to understand security concerns could be even longer.

As presented in Section 4.3, the PL/SQL model is organised into the library
that accumulates different security-oriented procedures. Thus, this model
contains a structure, which could guide finding the relevant security concerns.

Furthermore the PL/SQL model is presented as a plain-text source code,
thus it does not contain any hyperlinks that would cross-reference related
security concerns (but also see Section 4.5.2). On the other hand the library
structure could be used to follow from one security procedure to another (in
our case between three procedures, defined regarding to the user role).
However these links could be used only manually; no tool support for them is
provided.

Finally, regarding the PL/SQL model executability, it is possible to compile
this model using the Oracle database management system resulting in a
running application.

SecureUML security model. The Secure UML model is well understood
by those readers familiar with the UML modelling notation. This also opens
the way to communicate this model to a larger audience, including various
project stakeholders, potential direct users of the system, the systems
analysts, and the developers. Our personal experience is that this model is

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 465

quite intuitive and did not require a big effort (around 10-15 minutes) to
understand it.

As described in Section 4.3, the SecureUML model consists of several
diagrams. It is also supported by a modelling tool (in our case – MagicDraw),
which simplifies managing the model itself and support the model
organisation. The tool provides the containment view and zoom means (see
Fig. 9), which developer could use to find the relevant model elements,
navigate between and within the model diagrams. As illustrated in Fig. 6 the
navigation map diagram helps to navigate from the content diagram to
diagrams presenting different security concerns.

Fig. 9. Means to support SecureUML model organisation provided by the tool

Model cross-references includes links between the navigation map and
separate diagrams, between the containment views and separate diagrams
and model elements. It is also possible to define cross-references between
the separate model diagrams (however this possibility was not used in our
case).

The SecureUML model is executable: there exists a number of the
transformation rules defined using the Velocity3 language (interpretable by the
MagicDraw tool).These rules define how to transform the model to PL/SQL
code, which could be executed through Oracle database management
system.

UMLsec security model. Regarding the social actor interpretation, we
result in the same assessment of the UMLsec model as for the SecureUML
model. For instance, we found that both models can be understood in 10-15
minutes. The UMLsec contains 4 elements for its organisations (since it is

3 http://velocity.apache.org/engine/devel/user-guide.html

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 466

created using MagicDraw, the same modelling tool as the SecureUML
security model). Similarly it includes three means to cross reference inter-
related parts.

However we were not able to execute the UMLsec model – there are no
means to generate the PL/SQL code from this model (at least using the
MagicDraw tool). Thus there exist a potential field for improvement regarding
the technical interpretation aspect.

4.5. Validating the Evaluation Results

After performing the evaluation of the security models, next step is to validate
the received results. In this section we will characterise the potential threats to
validity. We will also describe what feedback we received from the models
authors regarding our evaluation scores.

4.5.1. Threats to Validity

In our case study only two evaluators assessed the security models according
to their knowledge and experience. This certainly raises the level of
subjectivity and influences the internal validity of the case study. To mitigate
this threat the evaluation results were communicated to the model developers.

In our case the SEQUAL framework was instantiated with a certain set of
qualitative properties (and their measures). This certainly affects the
conclusion validity, because if any other qualitative properties were applied, it
might result in different outcome. But this threat is rather limited because
these qualitative properties are theoretically sound and the selection is based
on the previous experience (i.e., [4], [11], [15], [21], [24]).

In this case study we analysed only three different security models and
these models were quite limited in their size. This might influence the external
validity by a fact, that different results might be received if some other security
models (created either using PL/SQL, SecureUML, UMLsec or any other
language) would be analysed. However our research subject is providing a
solution to an industry problem; thus, we believe that our analysis is
generalisable in similar situations.

Finally, we try to avoid a use of single type of measuring that might affect
the construct validity. The evaluation of the security models is followed with
the communication of the received results to the models developers (see
Section 4.5.2). This certainly reduces a risk of the mono-interpretation.

4.5.2. Communicating Results to Developers

We reviewed our results together with the developers of the security models.
Firstly, the developers noted that the overall quality of both models could be
improved if these evaluation results were taken into account. For example, the

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 467

traceability, annotation, and understandability of the PL/SQL model could be
easily improved using code comments. However, the developers
acknowledged that this is not the case in the common practice; or the code
comments, even if they are present, are not sufficient.

Secondly, developers provided few remarks regarding some qualitative
properties. For instance, semantic completeness could be improved by
presenting concrete instances in the models (similarly as done in [2] and [19]).
This means hard coding in the PL/SQL model and object presentation in the
SecureUML model; however, doing so we would neglect the principle of
generosity in modelling.

In order to improve syntactic validity of the SecureUML model we could
write the authorisation constraints in OCL instead of SQL. However the
current approach to transform the SecureUML model does not have rules for
the OCL interpretation. Further, it is not possible to perform transformation
from the UMLsec security model to the executable code. Certainly the
targeted transformation templates (as they are provided for the models
created in SecureUML) could improve the executability of UMLsec.

On the one hand, a tool used to make the PL/SQL model, does not support
hyper-linking. Although there exist several PL/SQL editing tools (e.g., Oracle
SQLDeveloper or Quest Software Toad for Oracle, actually used by our
industrial partner) that supports cross-references between various model
elements, these were not used in this case study. On the other hand,
developers also indicated that PL/SQL grammar principles, the ones, which
allow expressing procedures (e.g., PROCEDURE meeting_permissions in
Fig. 5) and referring to them from the main code, could also be seen as
textual cross-referencing. We took this in mind when scoring for the Number
of cross-reference links.

4.6. Reporting on the Quality of the Security Models

Table 4 shows the summary of the overall comparison of the security models.
We found that three qualitative properties (i.e., traceability, syntactic
completeness, and executability) score equally for the PL/SQL and
SecureUML models. One qualitative property – syntactic validity – is found to
be better in the PL/SQL model. The seven remaining qualitative properties
(i.e., semantic completeness, semantic correctness, annotation, modifiability,
understandability, organisation, and cross-referencing) are evaluated to be
higher in the SecureUML model.

Regarding models in PL/SQL and UMLsec, we see that PL/SQL was
scoring better for executability qualitative property. Three qualitative
properties – traceability, syntactic validity and syntactic completeness – are
assessed equally. The remaining seven qualitative properties (semantic
completeness, semantic correctness, annotation, modifiability,
understandability, organisation, and cross-referencing) are evaluated better
for the security model created in UMLsec.

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 468

Table 4. Summary of quality assessment for the security models

Model A
created in

Model B
created in

Model A
is better in

Two models score
equal in

Model B
is better in

PL/SQL SecureUML

Syntactic validity Traceability,
syntactic
completeness,
executability

Semantic completeness,
semantic correctness,
annotation, modifiability,
understandability,
organisation, and cross-
referencing

1 qual. property 3 qual. properties 7 qual. properties

PL/SQL UMLsec

Executability Traceability,
syntactic validity,
syntactic
completeness

Semantic completeness,
semantic correctness,
annotation, modifiability,
understandability,
organisation, cross-
referencing

1 qual. property 3 qual. properties 7 qual. properties

SecureUML UMLsec

Semantic
completeness,
semantic
correctness,
annotation,
executability

Traceability,
modifiability,
syntactic
completeness,
understandability,
organisation, cross-
referencing

Syntactic validity

4 qual. properties 6 qual. properties 1 qual. property

Six qualitative properties, namely traceability, modifiability, completeness,

understandability, organisation, and cross referencing – are evaluated equally
both for the SecureUML and for the UMLsec security models. One qualitative
property – syntactic validity – is found better for the UMLsec model. The
remaining four qualitative properties (semantic completeness, semantic
correctness, annotation, and executability) are evaluated better for the
SecureUML security model.

5. Discussion

In this section we finalise our work. Firstly, we discuss the related work
regarding the link between the RBAC, security languages and the model-
driven security. Next, we conclude our paper and highlight few future research
directions.

5.1. RBAC and Security Languages

In [1] the BRAC0 pattern is applied for comparison of security modelling
approaches. The survey shows that, on the one hand, SecureUML does not
explicitly model security criteria (such as confidentiality, integrity, and
availability) but it focuses on modelling the solutions to security problems
guided by the RBAC nature. With SecureUML, a modeller can define assets,
however, the language does not allow expressing attacks or harms to the
assets. On the other hand, UMLsec is guided by security criteria, however it

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 469

does not have means to model them explicitly. The UMLsec application is
driven by analysis of system vulnerabilities: (i) once security vulnerabilities
have been identified, the system design is progressively refined to eliminate
the potential threats; (ii) the refinement of the design might be continued until
the system satisfies the security criteria. Although UMLsec was analysed
based on the BRAC0 pattern, authors does not specifically indicate how well
this approach is suitable for the RBAC modelling.

In [12] Jayaram and Mathur investigate how the practice of software
engineering blends with the requirements of secure software. The work
describes a two-dimensional relationship between the software lifecycle
stages and modelling approaches used to engineer security requirements. A
part of the study is dedicated to the RBAC modelling using SecureUML and
UMLsec. Authors indicate that UMLsec is rather general approach than
specific, thus it cannot be used to model access control policies solely. On the
other hand SecureUML is suggested as the means to specify access control
policies. However SecureUML cannot describe protected resources (system
design), thus, it has to be used in conjunction with a base modelling language.

Elsewhere in [22] [23] the SecureUML and UMLsec are compared in order
to determine the transformation points between models of these languages. It
was noticed the limitation of SecureUML to indicate security criteria, but this
language is well suited to engineer security controls after the security
decisions are done. It was also observed that the UMLsec application follows
the standard security modelling methods [26] and it could provide means for
the RBAC modelling: it helps defining the dynamic characteristics of the
secure system. The analysis suggests that both SecureUML and UMLsec can
complement each other and result in more complete specifications of secure
information systems (where both static and dynamic system characteristics
are understood).

Although the identified works are useful regarding their timely comparison
of the modelling languages against the RBAC model, these studies remain
theoretical. It is suggested that such an approach could be used at the initial
stage of the languages selection, but for the deeper understanding one needs
more fine-grained analysis of the development means. Thus our current
proposal – an approach to assess the quality of the security models –
suggests the means for the hands-on testing of the modelling and
development languages for security. Using our proposal the developers are
encouraged to apply the modelling and development languages in order to
understand the quality of the resulting security models.

5.2. Model-driven Security

We found none empirical studies that would compare quality of security
models prepared using approaches from different development stages. The
literature reports on a number of case studies [5], [33], [34] analysing different
characteristics of the model-driven development. Mostly these studies focus
on the benefits and on the infrastructure needed for the model-driven

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 470

development. Similarly to [3], [20], [34] we observe that security model
facilitates automatic code generation, i.e., the SecureUML security model is
executable through its generation to PL/SQL code. We also argue that the
security models should be prepared with the high-quality modelling language
[5] that ensures the model semantic completeness, and tools [20] that
guarantee model syntactic validity and syntactic completeness. Only then one
could expect that model-driven security could yield a higher productivity with
respect to a traditional development [34].

We identified only one case study performed by Clavel et al [3], reporting
on the SecureUML application in practice. Here authors observe that although
the security models are integrated with the data models, the security design
remains independent, reusable and evolvable. In our work we also observe
that semantic correctness of SecureUML and UMLsec models is high,
because the representation is oriented to the security aspects. We also
observe that SecureUML and UMLsec models are modifiable, which means
the first step towards model evolvability. Like in [3] we identify that the
SecureUML and UMLsec models are understandable at least to readers who
are familiar with UML. This might ease communication of requirements and
design solutions to project stakeholders [20].

5.3. Conclusion and Future Work

In this paper we have developed a systematic approach to compare quality of
security models. Our approach is based on the instantiation of the SEQUAL
framework [15] [16]. To illustrate the performance of our proposal we have
executed a cases study, where we have compared quality of three security
models. One model is prepared at the implementation stage using PL/SQL
[9]; other two models are developed at the system design stage using
SecureUML [2] [19] and UMLsec [13]. We resulted in (i) a higher quality for
the SecureUML security model regarding UMLsec and PL/SQL; and (ii) higher
quality for the UMLsec security model regarding PL/SQL. Thus, it suggests
that practitioners should consider security analysis at the earlier stages (at
least design or maybe even requirements engineering) of the software system
developing. However we also note that executability of the UMLsec model is
worse than executability of the PL/SQL model. Thus, if one wishes to create
executable models he would prefer PL/SQL (or SecureUML) instead of
UMLsec.

Our comparison also identifies important directions [33] for improvement of
the security analysis at the early stages. For example, a mature security
modelling method needs to be introduced in order to guide discovery of the
early security requirements and to support security quality assurance through
overall project planning. This would allow improving the traceability qualitative
property, also facilitating recording of the rationales for security decisions.

Another concern includes development and improvement of the modelling
tools (e.g., MagicDraw and Velocity interpreter) that would support the
translation of the design models (e.g., SecureUML) to the implementation

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 471

code (e.g., PL/SQL). For instance, we need to define guidelines and
transformation rules for the OCL-based authorisation constraints. This would
also improve the syntactic validity of the SecureUML model. On the other
hand executability of the UMLsec security model is not supported at all – this
might result in that practitioners would select the PL/SQL language instead.

For the successful adoption by practitioners, model driven security analysis
should be compatible with the working processes. We plan to perform another
case study where we would investigate quality of processes to develop
security models at the system design stage (e.g., using SecureUML, UMLsec
or other modelling language) against quality of processes to develop security
models at the system implementation stages (e.g., using PL/SQL).

Finally, we need to support a goal-driven process [33], where we would
define goals to introduce security model-driven development systematically. In
this paper we specifically focused on the security policy for the data model.
Our future goal is to develop transformation rules that would facilitate
implementation of the security concerns at the system application and
presentation levels.

Acknowledgment. This research was conducted while the first and third authors were
at the Software Technology and Applications Competence Centre (STACC) and the
second author was at Logica Estonia. The research is partly funded by the EU
Regional Development Funds via Enterprise Estonia. We also thank the anonymous
referee for the helpful comments and suggestions.

References

1. Bandara, A., Shinpei, H., Jurjens, J., Kaiya, H., Kubo, A., Laney, R., Mouratidis,
H., Nhlabatsi, A., Nuseibeh, B., Tahara, Y., Tun, T., Washizaki, H., Yoshioka, N.,
Yu, Y.: Security Patterns: Comparing Modelling Approaches. Technical Report No
1009/06, Department of Computing Faculty of mathematics, Computing
Technology, The Open University (2009)

2. Basin, D., Doser, J., Lodderstedt, T.: Model Driven Security: from UML Models to
Access Control Infrastructure. ACM Transactions on Software Engineering and
Methodology (TOSEM), 15 (1), 39--91. (2006)

3. Clavel, M., Silva, V., Braga, C., Egea, M.: Model-driven Security in Practice: an
Industrial Experience, In Proceedings of the 4th European Conference on Model
Driven Architecture: Foundations and Applications, Springer-Verlag, pp. 326--337.
(2008)

4. Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid,
G., Ledeboer, G., Reynolds, P., Srimani, P., Ta, A., Theofanos, M.: Identifying and
Measuring Quality in a Software Requirements Specification. In Proceedings of
the 1st International Software Metrics Symposium, pp. 141--152. (1993)

5. de Miguel, M., Jourdan, J., Salicki, S.: Practical Experiences in the Application of
MDA. In Proceedings of the 5th International Conference on The Unified Modeling
Language, Springer-Verlag, 128--139, (2002)

6. Elahi, G., Yu, E.: A Goal Oriented Approach for Modeling and Analyzing Security
Trade-Offs, In: Parent et al. (eds.), Proceedings of the 26th International
Conference on Conceptual Modelling (2007)

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 472

7. Feather, M.S., Fickas, S., Finkelstein, A., van Lamsweerde A.: Requirements and
Specification Exemplars. Automated Software Engineering, 4: 419--438. (1997)

8. Ferraiolo D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST Standard for Role-based Access Bontrol. ACM Transactions on Information
and System Security (TISSEC), 4(3), 224--274. (2001)

9. Feuerstein, S., Pribly, B.: Oracle PL/SQL Programming. O'Reilly Media Inc, 4th
edition edition (2005)

10. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling Security
Requirements Through Ownership, Permision and Delegation. In Proceedings of
the 13th IEEE International Conference on Requirements Engineering, IEEE
Computer Society (2005)

11. Hakkarainen S., Matulevičius R., Strašunskas D., Su X. and Sindre G.: A Step
Towards Context Insensitive Quality Control for Ontology Building Methodologies.
In Proceedings of the CAiSE 2004 Open INTEROP-EMOI Workshop, 205--216.
(2004)

12. Jayaram, K.R., Mathur, A.P.: Software Engineering for Secure Software – State of
the Art: a Survey. Technical report CERIAS TR 2005-67, Department of Computer
Sciences & CERIAS, Purdue University (2005)

13. Jurjens, J.: Secure Systems Development with UML. Springer-Verlag Berlin
Heidelberg, (2005)

14. Knodel, J., Anastasopolous, M., Forster, T., Muthig, D.: An Efficient Migration to
Model-driven Development (MDD). Electronic Notes in Theoretical Com puter
Science 137 17--27. (2005)

15. Krogstie, J.: A Semiotic Approach to Quality in Requirements Specifications. In
Proceedings of IFIP 8.1 working Conf. on Organisational Semiotics, 231--249.
(2001)

16. Krogstie, J.: Using a Semiotic Framework to Evaluate UML for the Development
for Models of High Quality. In: Siau, K., Halpin, T. (eds.) Unified Modelling
Language: Sys- tem Analysis, Design and Development Issues, IDEA Group
Publishing, pp. 89--106. (1998)

17. Lin, L., Nuseibeh, B., Ince, D., Jackson, M.: Using Abuse Frames to Bound the
Scope of Security Problems. In Proceedings of the 12th IEEE International
Conference on Requirements Engineering, IEEE Computer Society 354--355.
(2004)

18. Lindland, O. I., Sindre, G., Sølvberg, A.: Understanding Quality in Conceptual
Modelling. IEEE Software, 11(2), pp. 42--49. (1994)

19. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-based Modeling
Language for Model-driven Security. In Proceedings of the 5th International
Conference on The Unified Modeling Language, LNCS, vol. 2460 Springer-Verlag,
426--441. (2002)

20. MacDonald, A., Russell, D., Atchison, B.: Model-driven Development within a
Legacy System: An Industry Experience Report. In Proceedings of the 2005
Australian Software Engineering Conference (ASWEC’05). IEEE Computer
Science. (2005)

21. Matulevičius, R.: Process Support for Requirements Engineering: A Requirements
Engineering Tool Evaluation Approach. PhD theses. Norwegian University of
Science and Technology. (2005)

22. Matulevičius, R., Dumas, M.: A Comparison of SecureUML and UMLsec for Role-
based Access Control, Proceedings of the 9th Conference on Databases and
Information Systems, 171--185. (2010)

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 473

23. Matulevičius, R., Dumas, M.: “Towards Model Transformation between
SecureUML and UMLsec for Role-based Access Control,” Databases and
Information Systems VI, IOS Press, 339--352. (2011)

24. Matulevičius, R., Heymans, P.: Comparison of Goal Languages: an Experiment. In
Proceedings of the Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ 2007), Trondheim, Norway, Springer-
Verlag, 18--32. (2007)

25. Matulevičius, R., Lepmets, M., Lakk, H., Sisask, A.: Comparing Quality of Security
Models: a Case Study. In Local Proceedings of the 14th East-European
Conference on Advances in Database and Information Systems. University of Novi
sad, Serbia, 95 - 109. (2010)

26. Mayer N.: Model-based Management of Information System Security Risk. PhD
Thesis, University of Namur (2009)

27. McDermott, J., Fox, C.: Using Abuse Case Models for Security Requirements
Analysis. In Proceedings of the 15th Annual Computer Security Applications
Conference (1999)

28. Moody, D.L.: Theoretical and Practical Issues in Evaluating the Quality of
Conceptual Models: Current State and Future Directions. Data and Knowledge
Engineering 55 (3) 243--276. (2005)

29. Mouratidis, H.: Analysing Security Requirements of Information Systems using
Tropos. In Proceedings 1st Annual Conference on Advances in Computing and
Technology 55--64. (2006)

30. Piattini, M., Genero, M., Poels, G., Nelson, J.: Towards a Framework for
Conceptual Modelling Quality. In: Genero, M., Piattini, M., Calero, C. (eds.)
Metrics for Software Conceptual Models, Imperial College Press, London 1--18.
(2005)

31. Sindre, G.: Mal-activity Diagrams for Capturing Attacks on Business Processes. In
Proceedings of the Working Conference on Requirements Engineering:
Foundation for Software Quality, Springer-Verlag Berlin Heidelberg 355--366.
(2007)

32. Sindre, G., Opdahl, A.L.: Eliciting Security Requirements with Misuse Cases.
Requirements Engineering Journal 10 (1) 34--44. (2005)

33. Staron, M.: Adopting Model Driven Software Development in Industry – A Case
Study at Two Companies. In the 9th International Conference on Model Driven
Engineering Languages and Systems (MoDELS 2006). Springer-Verlag 57--72.
(2006)

34. The Middleware Company: Model Driven Development for J2EE Utilizing a Model
Driven Architecture (MDA) Approach: Productivity Analysis, MDA Productivity
case study. (2003)

35. van Lamsweerde, A.: Elaborating Security Requirements by Construction of
Intentional Anti-models. In Proceedings of the 26th International Conference on
Software Engineering, IEEE Computer Society 148--157. (2004)

Appendix

In order to get the impression on how the SecureUML security model (e.g.,
see Fig. 7) is transformed into the PL/SQL code, we included a sample of the
transformation outcome with respect to the Update security action. Similarly
the PL/SQL code is generated for other three security actions – Select, Insert
and Delete.

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 474

-- Imported common-sql.vtl
CREATE OR REPLACE TRIGGER Meeting_sec_update_trg
 INSTEAD OF UPDATE ON Meeting_v
 REFERENCING NEW AS NEW OLD AS OLD
 FOR EACH ROW
DECLARE
 self Meeting%ROWTYPE;
 ex_denied EXCEPTION;
BEGIN
 SELECT *
 INTO self
 FROM Meeting res
 WHERE res.ID = :OLD.ID;
 IF util.null_eq(:NEW.start, :OLD.start) != 'Y' -- start updated
 THEN
 IF 1 != 1 OR sec.is_role('User') = 'Y' AND
 self.owner = sec.get_username() AND
 self.end > SYSDATE -- Permission from UserUpdateOwnMeeting
 THEN
 self.start := :NEW.start;
 ELSE
 RAISE ex_denied;
 END IF;
 END IF;
 IF util.null_eq(:NEW.end, :OLD.end) != 'Y' -- end updated
 THEN
 IF 1 != 1 OR sec.is_role('User') = 'Y' AND
 self.owner = sec.get_username() AND
 self.end > SYSDATE -- Permission from UserUpdateOwnMeeting
 THEN
 self.end := :NEW.end;
 ELSE
 RAISE ex_denied;
 END IF;
 END IF;
 IF util.null_eq(:NEW.owner, :OLD.owner) != 'Y' -- owner updated
 THEN
 IF 1 != 1 OR
 sec.is_role('User') = 'Y' AND
 self.owner = sec.get_username() AND
 self.end > SYSDATE -- Permission from UserUpdateOwnMeeting
 THEN
 self.owner := :NEW.owner;
 ELSE
 RAISE ex_denied;
 END IF;

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 475

 END IF;
 IF util.null_eq(:NEW.location, :OLD.location) != 'Y' -- location updated
 THEN
 IF 1 != 1 OR
 sec.is_role('User') = 'Y' AND
 self.owner = sec.get_username() AND
 self.end > SYSDATE -- Permission from UserUpdateOwnMeeting
 THEN
 self.location := :NEW.location;
 ELSE
 RAISE ex_denied;
 END IF;
 END IF;

 UPDATE Meeting res
 SET ROW = self
 WHERE res.ID = :OLD.ID;
EXCEPTION
 WHEN ex_denied THEN
 raise_application_error(-20000, 'Access denied!');
END;
/

Dr. Raimundas Matulevičius received his PhD diploma from the Norwegian
University of Science and Technology, Norway in the area of computer and
information science. Currently Matulevičius holds an associated professor
position at the Institute of Computer Science, University of Tartu, in Estonia.
Matulevičius’ research interests cover information systems and requirements
engineering, system and software development processes, model-driven
development, system and software security, and security risk management.
Currently, the publication record includes more than 50 articles published in
the peer-reviewed international journals, conferences and workshops.
Matulevičius was invited for multiple times to co-review papers for the
international journals (e.g., REJ, TOSEM, SoSyM, COSE). Few years in a row
he is invited to be a program committee member at the international
workshops and conferences (e.g., CAiSE, REFSQ, PoEM and other).

Henri Lakk is a master’s degree student at University of Tartu, where he is
also giving labs and lectures. His study and research interest includes model
driven security of information system. Lakk is working also in Webmedia
Estonia as a PL/SQL programmer.

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 476

Dr. Marion Lepmets is a recognised researcher on software and IT service
quality, process improvement and assessment. She is currently a Post-
Doctoral fellow in Public Research Centre Henri Tudor conducting research
on IT service quality measurement and process improvement impact on IT
service quality. She is a technical program committee member at SPICE,
EuroSPI and Baltic IT&DB conferences, and Luxembourgish representative to
ISO/IEC JTC1 SC7 (software and systems standards subcommittee).

Received: December 31, 2010; Accepted: April 29, 2011.

DOI: 10.2298/CSIS110107006A

GammaPolarSlicer

Sérgio Areias, Daniela da Cruz, Pedro Rangel Henriques,
and Jorge Sousa Pinto

Departamento de Informática e CCTC
Universidade do Minho

Braga, Portugal

Abstract. In software development, it is often desirable to reuse existing
software components. This has been recognized since 1968, when Dou-
glas Mcllroy of Bell Laboratories proposed basing the software industry
on reuse. Despite the failures in practice, many efforts have been made
to make this idea successful.
In this context, we address the problem of reusing annotated components
as a rigorous way of assuring the quality of the application under con-
struction. We introduce the concept of caller-based slicing as a way to
certify that the integration of an annotated component with a contract into
a legacy system will preserve the behavior of the former.
To complement the efforts done and the benefits of the slicing techniques,
there is also a need to find an efficient way to visualize the annotated com-
ponents and their slices. To take full profit of visualization, it is crucial to
combine the visualization of the control/data flow with the textual repre-
sentation of source code. To attain this objective, we extend the notion of
System Dependence Graph and slicing criterion.

Keywords: safety reuse, caller-based slicing, annotated system depen-
dency graph.

1. Introduction

Reuse is a very simple and natural concept, however in practice it is not so easy.
According to the literature, selection of reusable components has proven to be
a difficult task [9]. Sometimes this is due to the lack of maturity on supporting
tools that should easily find a component in a repository or library [11]. Also, non
experienced developers tend to reveal difficulties when describing the desired
component in technical terms. Most of the times, this happens because they
are not sure of what they want to find [11, 12]. Another barrier is concerned with
reasoning about component similarities in order to select the one that best fits
in the problem solution; usually this is an hard mental process [9].

Integration of reusable components has also proven to be a difficult task,
since the process of understanding and adapting components is difficult, even
for experienced developers [9]. Another challenge to component reuse is to
certify that the integration of such component in a legacy system is correct. This
is, to verify that the way the component is invoked will not lead to an incorrect
behavior.

Sérgio Areias et al.

A strong demand for formal methods that help programmers to develop cor-
rect programs has been present in software engineering for some time now.
The Design by Contract (DbC) approach to software development [10] facilitates
modular verification and certified code reuse. The contract for a component (a
procedure) can be regarded as a form of enriched software documentation that
fully specifies the behavior of that component. So, a well-defined annotation can
give us most of the information needed to integrate a reusable component in a
new system, as it contains crucial information about some constraints safely
obtaining the correct behavior from the component.

In this context, we say that the annotations can be used to verify the validity
of every component’s invocation; in that way, we can guarantee that a correct
system will still be correct after the integration of that component. This is the
motivation for our research: to find a way to help on the safety reuse of compo-
nents.

This article introduces GamaPolarSlicer, a tool that we are currently develop-
ing to identify when an invocation is violating the component annotation, and
display, whenever possible, a diagnostic or guidelines to correct it. For such a
purpose, the tool implements the caller-based slicing algorithm, that takes into
account the calls of an annotated component to certify that it is being correctly
used.

The remainder of this paper is structured into 5 sections. Section 2 is de-
voted to basic concepts. In this section the theoretical foundation for GamaPo-
larSlicer is settle down; the notions of caller-based slicing and annotated system
dependence graph are defined. Section 3 gives a general overview of GamaP-
olarSlicer, introducing its architecture; each block on the diagram will be ex-
plained. Sub-section 4 complements the architecture discussing the decisions
taken to implement the tool and presenting the interface underdevelopment.
Section 5, also a central one, illustrates the main idea through a concrete exam-
ple. As to our knowledge we do not known any tool similar to GamaPolarSlicer, in
Section 6 we discuss related work concerned with the use of slicing technique
for annotated programs. Then the paper is closed in Section 7.

2. Basic Concepts

We consider that each procedure consists of a body of code, annotated with a
precondition and a postcondition that form the procedure specification, or con-
tract. The body may additionally be annotated with loop invariants. Occurrences
of variables in the precondition and postcondition of a procedure refer to their
values in the pre-state and post-state of execution of the procedure respectively.

2.1. Caller-based slicing

In this section, we briefly introduce our slicing algorithm.

Definition 1 (Annotated Slicing Criterion) An annotated slicing criterion of a
program P consists of a triple Ca = (a, Si, Vs), where a ∈ {α, δ} is an annotation

478 ComSIS Vol. 8, No. 2, Special Issue, May 2011

GammaPolarSlicer

of Pa (the annotated callee), Si correspond to the statement of P calling Pa and
Vs is a subset of the variables in P (the caller), that are the actual parameters
used in the call and constrained by α or δ.

Definition 2 (Caller-based slicing) A caller-based slice of a program P on an
annotated slicing criterion Ca = (α, callf , Vs) is any subprogram P ′ that is ob-
tained from P by deleting zero or more statements in a two-pass algorithm:

1. a first step to execute a backward slicing with the traditional slicing criterion
C = (callf , Vs) retrieved from Ca — callf corresponds to the call statement
under consideration, and Vs corresponds to the set of variables present in
the invocation callf and intervening in the precondition formula (α) of f

2. a second step to check if the statements preceding the callf statement will
lead to the precondition satisfaction of the callee;

For the second step in the two-pass algorithm, in order to check which state-
ments are respecting or violating the precondition we are using abstract inter-
pretation, in particular symbolic execution.

According to the original idea of James King in [7], symbolic execution can
be described as “instead of supplying the normal inputs to a program (e.g. num-
bers) one supplies symbols representing arbitrary values. The execution pro-
ceeds as in a normal execution except that values may be symbolic formulas
over the input symbols.”

Using symbolic execution we will be able to propagate the precondition of
the function being called through the statements preceding the call statement.
In particular, to integrate symbolic execution with our system, we are thinking
in use JavaPathFinder [1]. JavaPathFinder is a tool than can perform program
execution with symbolic values. Moreover, JavaPathFinder can mix concrete and
symbolic execution, or switch between them. JavaPathFinder has been used for
finding counterexamples to safety properties and for test input generation.

The main goal of our caller-based slicing algorithm is to ease the use of
annotated components by discovering statements that are critical for the satis-
faction of the precondition or postcondition (i.e, that do not verify it, or whose
value can lead to the non-satisfaction) before or after calling an annotated pro-
cedure (a tracing call analysis of annotated procedures). In the work reported
here, we just deal with preconditions and statements before the call.

2.2. Annotated System Dependence Graph (SDGa)

In this section we present the definition of Annotated System Dependence
Graph, SDGa for short, that is the internal representation that supports our
slicing-based code analysis approach. We start with some preliminary defini-
tions.

Definition 3 (Procedure Dependence Graph) Given a procedure P, a Proce-
dure Dependence Graph, PDG, is a graph whose vertices are the individual
statements and predicates (used in the control statements) that constitute the

ComSIS Vol. 8, No. 2, Special Issue, May 2011 479

Sérgio Areias et al.

body of P, and the edges represent control and data dependencies among the
vertices.

In the construction of the PDG, a special node, considered as a predicate,
is added to the vertex set: it is called the entry node and is decorated with the
procedure name.

A control dependence edge goes from a predicate node to a statement node
if that predicate affects the execution of the statement. A data dependence edge
goes from an assignment statement node to another node if the variable as-
signed at the source node is used (is referred to) in the target node.

Additionally to the natural vertices defined above, some extra assignment
nodes are included in the PDG linked by control edges to the entry node: we
include an assignment node for each formal input parameter, another one for
each formal output parameter, and another one for each returned value — these
nodes are connected to all the other by data edges as stated above. Moreover,
we proceed in a similar way for each call node; in that case we add assignment
nodes, linked by control edges to the call node, for each actual input/output
parameter (representing the value passing process associated with a procedure
call) and also a node to receive the returned values.

Definition 4 (System Dependence Graph) A System Dependence Graph, SDG,
is a collection of Procedure Dependence Graphs, PDGs, (one for the main pro-
gram, and one for each component procedure) connected together by two kind
of edges: control-flow edges that represent the dependence between the caller
and the callee (an edge goes from the call statement into the entry node of
the called procedure); and data-flow edges that represent parameter passing
and return values, connecting actualin,out parameter assignment nodes with
formalin,out parameter assignment nodes.

Definition 5 (Annotated System Dependence Graph) An Annotated System
Dependence Graph, SDGa, is a SDG in which some nodes of its constituent
PDGs are annotated nodes.

Definition 6 (Annotated Node) Given a PDG for an annotated procedure Pa,
an Annotated Node is a pair < Si, a > where Si is a statement or predicate
(control statement or entry node) in Pa, and a is its annotation: a pre-condition
α, a post-condition ω, or an invariant δ.

The differences between a traditional SDG and a SDGa are:

– Each procedure dependence graph (PDG) is decorated with a precondition
as well as with a postcondition in the entry node;

– The while nodes are also decorated with the loop invariant (or true, in case
of invariant absence);

– The call nodes include the pre- and postcondition of the procedure to be
called (or true, in case of absence); these annotations are retrieved from
the respective PDG and instantiated as explained below;

480 ComSIS Vol. 8, No. 2, Special Issue, May 2011

GammaPolarSlicer

We can take advantage from the call linkage dictionary present in the SDGa

(inherited from the underlying SDG) — the mapping between the variables present
in the call statement (the actual parameters) and the formal parameters of the
procedure — to associate the variables used in the calling statement with the
formal parameters involved in the annotations. Figure 1 shows an example of a
SDGa.

3. GamaPolarSlicer Architecture

As referred previously, our goal is to ease the process of incorporating an an-
notated component into an existent system. This integration should be smooth,
in the sense of that it should not turn a correct system into an incorrect one.

To assure this, there is the need to verify a set of conditions with respect to
the annotated component and its usage. It is necessary to:

– to verify the component correctness with the respect to its contract (us-
ing a traditional Verification Condition Generator, already incorporated in
GamaSlicer [5], available at http://gamaepl.di.uminho.pt/gamaslicer);

– to verify if the actual calling context preserves the precondition;
– to verify if the component is properly used in the actual context after the

call;
– Given a reusable component and a set of calling points, specify the compo-

nent body according to the concrete calling needs.

The whole process is a bit complex and was divided in a set of smaller
problems (divide and conquer). The tool under discussion in this document will
only focus on the second item, working with preconditions and backward slicing.
Notice that the third and fourth conditions will be addressed by future projects.

The chosen architecture, designed to achieve the second condition, was
based on the classical structure of a language processor. Figure 2 shows the
defined GamaPolarSlicer architecture.

Source Code can be a Java project or only Java files to analyze by the tool.
Lexical Analysis, Syntactic Analysis, Syntactic Analysis: the Lexical layer

converts the input into symbols that will be later used in the identifiers table.
The Syntactic layer uses the result of the Lexical layer above and analyzes it
to identify the syntactic structure of it. The Semantic layer adds the semantic
information to the result from the Syntactic layer. It is in this layer that the
identifier table is built. These three layers, usually are always present in
language processors.

Invocations Repository is the data structure where all function calls processed
during the code analysis are stored. The contract verification will be applied
to each one of these calls and the slicing criterion of each one will consider
the parameters struct.

Annotated Components Repository is the data structure where all compo-
nents with a formal specification (precondition and postcondition at least)

ComSIS Vol. 8, No. 2, Special Issue, May 2011 481

Sérgio Areias et al.

Fig. 1. SDGa for a program

482 ComSIS Vol. 8, No. 2, Special Issue, May 2011

GammaPolarSlicer

Fig. 2. GammaPolarSlicer Architecture

ComSIS Vol. 8, No. 2, Special Issue, May 2011 483

Sérgio Areias et al.

are stored. All these components will be later used in the slicing process
in order to filter all the calls (from the invocation repository) defined without
any type of annotation. This repository has an important role when verifying
if the call respects the component contract.

Identifiers Table flags, always, an important role on the implementation of the
processor. All symbols and associated semantic processed during the code
analysis phase are stored here. It will be one of the backbones of all struc-
tures and of all stages of the tool process.

Annotated System Dependence Graph is the internal representation chosen
to support our slicing-based code analysis approach. Constructed during
the code analysis, this type of graph allows to associate formal annotations
, like preconditions, postconditions or even invariants, to the its nodes (see
Section 2.2).

Caller-based Slicing is the layer where the backward slicing is applied to each
annotated component call. It uses both invocations repository and anno-
tated components repository to extract the parameters to execute the slic-
ing for each invoked annotated component. The resulting slice is a SDGa

this a subgraph of the original SDGa, with all the statements relevant to the
particular call.

Contract Verification using the slice that resulted from the layer above, and
using the component contract, this layer analyzes every node on the slice
and verifies in all of them if there are guarantees that every annotation in
the contract is respected.

Output Report describes all contract violations found during the whole pro-
cess. All violations found are marked with the degree of relevance in order
to aid the user in the revision process. In the future, the tool will provide
some suggestions to solve these issues, and a graphic display of the viola-
tions over the SDGa.

4. GamaPolarSlicer Implementation

To address all the ideas, approaches and techniques presented in this paper, it
was necessary to choose the most suitable technologies and environments to
support the development.

To address the design-by-contract approach we decide to use the Java Mod-
eling Language (JML) 1. JML is a formal behavior interface specification lan-
guage, based on design-by-contract paradigm, that allows code annotations in
Java programs [8]. JML is quite useful as it allows to describe how the code
should behave when running it. Also it allows the specification of the syntac-
tic interface [8]. Preconditions, postconditions and invariants are examples of
formal specifications that JML provides.

1 http://www.cs.ucf.edu/ leavens/JML/

484 ComSIS Vol. 8, No. 2, Special Issue, May 2011

GammaPolarSlicer

As the goal of the tool is not to create a development environment but to
support one, our first thought was to implement it as an Eclipse 2 plugin. The
major reasons that led to this decision were:

– the large community and support. Eclipse is one of the most popular frame-
works to develop Java applications and thus a perfect tool to test our goal;

– the fact that it includes a great environment to develop new plugins. The
Plugin Development Environment (PDE) 3 that allows a faster and intuitive
way to develop Eclipse plugins;

– the built-in support for JML, freeing us from checking the validity of such
annotations.

After the first days of the development process we realized that Java has a
limitation regarding the number of bytes per class (only allows 65535 bytes per
class). This limitation prevented us of continue the work with Java because the
parser we were generating for Java/JML grammar exceeded this limit of bytes.
This led us to abandon the idea of the Eclipse plugin and implement GamaPo-
larSlicer using Windows Forms and C# (under .NET framework). Figure 3 shows
the current interface of GamaPolarSlicer.

4.1. Tool Workflow

As depicted in the architecture (see Figure 2), our tool is divided in a set of
phases where each one solves a particular task. In this section we will explain
how these phases interact with each other and how data flows between them.

The tool begins analyzing the source code (Java code/JML annotations) in
order to extract all symbols and to construct all data structures. In order to ease
the slicing process it is mandatory to have an appropriate data structure to
support this type of techniques. For this job we have chosen the SDGa(SDGa)
(see Section 2.2). Using all the gathered information during the code analysis
we are able to construct this graph.

The graph and the Identifier Table construction are made once for each input
file processed. At the end of these steps, the system will have a set of Identifier
Tables and a set of SDGa. The union between all the SDGa will result in the SDGa

for the entire source code. The same happens to the set of Identifier Table.
After building all the data structures, the backward slicing is then applied to

a component invocation and the resulting slices together with the component
contract are used to verify if its call respects the contract. These steps are
applied to the set of calls resulting of the intersection between the Invocation
Repository and the Annotated Components Repository.

During this process (depicted in the Figure 4), if a violation is found, a textual
report is issued. Also a graphic report can be selected. This graphic report uses
the constructed SDGa.

2 http://www.eclipse.org/
3 http://www.eclipse.org/pde/

ComSIS Vol. 8, No. 2, Special Issue, May 2011 485

Sérgio Areias et al.

Fig. 3. Interface of GamaPolarSlicer prototype

486 ComSIS Vol. 8, No. 2, Special Issue, May 2011

GammaPolarSlicer

Fig. 4. Tool Workflow

4.2. Contract Verification Strategies

As already shown, the contract verification is applied upon the slices that result
from the caller-based slicing process. This implies the verification of all state-
ments on the slices to check possible violations. Depending on the statement
type, there are a few critical verifications that need to be made. For readable
purposes, we will use the following notation in the remainder of this paper:

– Call refers to the function invocation for which we want to apply the contract
verification;

– Caller is the component where the call occurs;
– Callee is the component invoked.

Please consider the example 1 with two annotated components, where one
of the components invokes the other.

On the notes in red, we can see that one of the parameters of the call we
want to verify is also a parameter on the caller. As the verification is only made
on caller (as standalone component), there is no way to verify the value of the
parameter at the beginning. This lead us to the first critical verification, precon-
dition versus precondition.

Precondition vs Precondition When the call and the caller share a parameter
we decided to certify it value using the caller precondition. Doing this, we have
three possible cases:

1. the caller has an annotation for the parameter and the callee does not;

ComSIS Vol. 8, No. 2, Special Issue, May 2011 487

Sérgio Areias et al.

Example 1 Precondition violation
1: / ∗@ behavior
2: @ requires a > 0;
3: @ ensures pot = ab;
4: @ ∗ /
5: public int sqr(int a, int b) {
6: int pot = 1, i;
7: for(i=0;i¡b;i++) {
8: pot = mult(a, pot);
9: }

10: return pot;
11: }
12: / ∗@ behavior
13: @ requires c > 10 && d > 0;
14: @ ensures pot = c ∗ d;
15: @ ∗ /
16: public int mult(int c, int d) {
17: int res = c ∗ d;
18: return res;
19: }

2. the caller does not have an annotation for the parameter and the callee
does;

3. both, the caller and the callee, have an annotation for the parameter.

In the first case, it is obvious that does not change anything. If the callee
does not have an annotation for the parameter then it means the parameter
can assume any value.

The second case brings ambiguity to the problem. If the caller does not have
an annotation for the parameter, then there is no way to guarantee that its value
will respect the clause on the call contract. Even if after the verification of all
statements, the value respects the clause, that value will always be dependent
of the value received as parameter on the caller.

The third case, and the most complex one, gives us chance to predict a value
for the parameter on the call moment. With the annotation we can calculate or
predict the set of values the parameter can take during the execution of the
method. To do this we have created an object with a set of flags that tell us
what type of value we have and the range of values that can take.

Please consider that we have the following annotation:

requires x>0 && x<200

After processing this annotation, the object will have the flags for values
higher than, lower than and between activated. The between flag is activated
when the annotation contains a closed interval.

488 ComSIS Vol. 8, No. 2, Special Issue, May 2011

GammaPolarSlicer

These flags also help us to make comparisons between annotations. We
can compare preconditions with preconditions and even preconditions with post-
conditions. The last one is very important to the second critical verification.

Precondition vs Postcondition Most of all pieces of source code have func-
tion calls. When the call of these functions affects the value of a parameter on
the call that we are trying to verify, then forces the verification of their postcon-
dition (if defined). This is what we will discuss in this section.

When we found a statement with a function call in the slice result, we verify
if the invoked component exists on the loaded source code. If it is an external
component, like one included from an imported library, then we have no way to
guarantee that the program will work correctly after this point.

During the review process of one of our papers we received a question
that raised questions for another issue. The question was, ”(. . .) depends on
the (human) reader’s knowledge that an input function might not have return
a positive integer (or even any number); but how does the slicer knows this?”
(the given example was using integers). When we identify a call to an external
function, we add an entry on the output report with a warning, alerting to the fact
that a few verifications must be make in order to guarantee that all calls, to an
annotated component, that receive value as parameter, will have the contract
respected. We recognize this type of functions using all the data structures
constructed during the analysis process. If a call is found in a slicing result,
but has no entry on the identifier table, then is considered a call to an external
function.

Everything discussed until now in this section happen when found a call to
an external function. But how about, when the function is on the identifier table
and on the repositories? When this happen we have three possible cases:

1. the call we are verifying the contract has no annotation for the parameter
with the resulting value of the function call;

2. the found call has no postcondition and the call we are verifying has an
annotation for the parameter with the resulting value of the function call;

3. the found call has postcondition and the call we are verifying has an anno-
tation for the parameter with the resulting value of the function call;

In the first case, the result of the found call makes no difference as the
parameter has no restrictions of value.

The second case will generate a warning message as we are not able to
predict the values of the parameter making impossible to guarantee that the
contract will be respected.

The last case force the calculation of the possible values, to be used on the
next iterations, using the postcondition. All the information is stored in the ob-
jects already seen. These objects are later used to compare the postcondition
and precondition annotations regarding a particular parameter in order to find
contract violations.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 489

Sérgio Areias et al.

Values vs Precondition This last critical verification occurs every time during
of the verification of the statements on the slicing result. Each time the parame-
ter suffers a change, the values it can take must be recalculated. This may look
easier than it really is.

If we have an assignment it is pretty easy to calculate the new value but if
we have the same assignment inside an if block, for example, the complexity
increases significantly. We must assure that both values (if the condition is true
and if it is not) are used to compare with the call precondition.

Having all this in consideration, we decided to use a flexible list in order to
store the list of values the parameter can accept. Every time we found a new
path in the code to reach the call we are verifying, we create a new entry on
the list with the calculated value. The way we have defined the object, seen in
section 4.2, also allow us to compare values with annotations.

In case of violations, these comparisons always lead to error messages. At
this point we are able to find contract violations without any doubts so there is
no reason to generate warning messages.

4.3. Tool Views

The assessement made to other tools, developed under our group, have shown
that a variety of views are in some way needed to work with the tool, and give a
better understanding of its results. Following this, the tool provides four different
types of views: the Code View, the Identifier Table View, the SDGa View and the
Slicing View.

The user has access to the Code view (Figure 5) as the default view where
has access to the source code that will be used as input in the verification. The
Java code is highlighted using scintillaNet 4 library to improve its readability. This
is a library that can be imported by Visual Studio, that provides us a special text
box where we can define all the color definitions we want to highlight our code.

The Identifier Table view shows the information collected for all symbols in
the selected class. The information can be filtered in order to visualize only the
details of the symbols in a particular method selected by the user. Figure 6
shows the identifier table of an entire class.

The SDGa view shows all the control flow dependencies and data flow de-
pendencies present on the source code. In order to help to visualize which
contracts and statements are being violated, we display the SDGa with such
entities colored in red. The Figure 7 shows the representation of a graph by the
tool.

The Slicing view (Figure 8) was included to show the result of an interme-
diate calculation. As the slicing isolates the statements relevant to a particular
call (the statement that we are interested to our work), then will probably ease
in the understanding and correctness of any error found during the verification.

4 http://scintillanet.codeplex.com/

490 ComSIS Vol. 8, No. 2, Special Issue, May 2011

GammaPolarSlicer

Fig. 5. GamaPolarSlicer Code View

ComSIS Vol. 8, No. 2, Special Issue, May 2011 491

Sérgio Areias et al.

Fig. 6. GamaPolarSlicer Identifier Table View

Fig. 7. GamaPolarSlicer SDGa View

492 ComSIS Vol. 8, No. 2, Special Issue, May 2011

GammaPolarSlicer

Fig. 8. GamaPolarSlicer Slicing View

ComSIS Vol. 8, No. 2, Special Issue, May 2011 493

Sérgio Areias et al.

5. An illustrative example

To illustrate what we intended to achieve, please consider the Example 2 listed
below that computes the maximum difference among student ages in a class.
This component reuses other two: the annotated component Min, defined in
Example 3, that returns the lowest of two positive integers (Figure 5 shows the
view of the code provided by GamaPolarSlicer); and Max, defined in Example 4,
that returns the greatest positive integer.

Example 2 DiffAge
1: public int DiffAge() {
2: int min = System.Int32.MaxValue;
3: int max = System.Int32.MinValue;
4: int diff;
5:
6: System.out.print(”Number of elements: ”);
7: int num = System.in.read();
8: int[] a = new int[num];
9: for(int i=0; i¡num; i++) {

10: a[i] = System.in.read();
11: }
12:
13: for(int i=0; i¡a.Length; i++) {
14: max = Max(a[i],max);
15: min = Min(a[i],min);
16: }
17:
18: diff = max - min;
19: System.out.println(”The gap between max and min age is ” + diff);
20: return diff;
21: }

Example 3 Min
/ ∗@ requires x ≥ 0 && y ≥ 0
@ ensures (x > y)? \result == x : \result == y
@ ∗ /
1: public int Min(int x, int y) {
2: int res;
3: res = x− y;
4: return ((res < 0)? x : y);
5: }

494 ComSIS Vol. 8, No. 2, Special Issue, May 2011

GammaPolarSlicer

Example 4 Max
/ ∗@ requires x ≥ 0 && y ≥ 0
@ ensures (x > y)? \result == y : \result == x
@ ∗ /
1: public int Max(int x, int y) {
2: int res;
3: res = x− y;
4: return ((res > 0)? x : y);
5: }

Let us consider that we want to analyze the Min invocation present in the
DiffAge component.

Our slicing criterion will be: Ca = (x ≥ 0&&y ≥ 0,Min, {a[i],min})
In the second step, a backward slicing process is performed taking into ac-

count the variables present in Vs. Then, using the obtained slices, the detection
of contract violations starts. For that, the precondition is back propagate (using
symbolic execution) along the slice to verify if it is preserved after each state-
ment. Observing the slice for the variable a[i], listed in the example 5 below,
it can not be guaranteed that all integer elements are greater than zero; so a
potential precondition violation is detected.

Example 5 Backward Slicing for a[i]

i n t [] a = new i n t [num] ;
f o r (i n t i =0; i<num; i ++) {

a [i] = System . i n . read () ;
}
f o r (i n t i =0; i<a . Length ; i ++) {

max = Max(a [i] ,max) ;
min = Min (a [i] , min) ;

}

The third step consists in the notification of all the contract violations de-
tected. In the example above, the user will receive a warning (Figure 9 shows
the output report from GamaPolarSlicer) alerting to the possible invocation of Min
with negative numbers (what does not respect the precondition).

6. Related Work

In this section we review the published work on the area of slicing annotated
programs, as those contributions actually motivate the present proposal.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 495

Sérgio Areias et al.

Fig. 9. GamaPolarSlicer Output Report

In [4], Comuzzi et al present a variant of program slicing called p-slice or
predicate slice, using Dijkstra’s weakest preconditions (wp) to determine which
statements will affect a specific predicate. Slicing rules for assignment, condi-
tional, and repetition statements were developed. They presented also an algo-
rithm to compute the minimum slice.

In [3], Chung et al present a slicing technique that takes the specification
into account. They argue that the information present in the specification helps
to produce more precise slices by removing statements that are not relevant
to the specification for the slice. Their technique is based on the weakest pre-
condition (the same present in p-slice) and strongest post-condition — they
present algorithms for both slicing strategies, backward and forward.

Comuzzi et al [4], and Chung et al [3], provide algorithms for code analysis
enabling to identify suspicious commands (commands that do not contribute to
the postcondition validity).

In [6], Harman et al propose a generalization of conditioned slicing called
pre/post conditioned slicing. The basic idea is to use the pre-condition and the
negation of the post-condition in the conditioned slicing, combining both for-
ward and backward conditioning. This type of program slicing is based on the
following rule: “Statements are removed if they cannot lead to the satisfaction of
the negation of the post condition, when executed in an initial state which satis-
fies the pre-condition”. In case of a program which correctly implements the pre-
and post-condition, all statements from the program will be removed. Otherwise,
those statements that do not respect the conditions are left, corresponding to
statements that potentially break the conditions (are either incorrect or which
are innocent but cannot be detected to be so by slicing). The result of this work
can be applied as a correctness verification for the annotated procedure.

496 ComSIS Vol. 8, No. 2, Special Issue, May 2011

GammaPolarSlicer

7. Conclusion

As can be seen in section 5, the motivation for our research is to apply slicing,
a well known technique in the area of source code analysis, to create a tool that
aids programmers to build safety programs reusing annotated procedures.

The tool under construction, GamaPolarSlicer, was described in Section 3.
Its architecture relies upon the traditional compiler structure; on one hand, this
enables the automatic generation of the tool core blocks, from the language at-
tribute grammar; on the other hand, it follows an approach in which our research
team has a large knowhow (apart from many DSL compilers, we developed a
lot of Program Comprehension tools: Alma, Alma2, WebAppViewer, BORS, and
SVS). The new and complementary blocks of GamaPolarSlicer implement slice
and graph-traversal algorithms that have a sound basis, as described in Sec-
tion 2; this allows us to be confident in there straight-forward implementation.

At the moment, the tool is capable to apply the Caller-based Slicing to a pro-
gram and compute precise slices. Also the computed slices are displayed by
the tool to ease the comprehension of the program by the developer, allowing
him to focus on the relevant aspects of the program. This tool is also very useful
on the program comprehension on its general.

One of our goals was to check if it was possible to do a contract verification
with low computing effort and reasonable precision. This was successfully ac-
complished but we still need more empirical studies so that we can strengthen
our conclusions regarding its efficiency and reliability.

The tool still presents some limitations in the contract verification process.
Expand it in order to process annotations regarding any Java data type does
not appear to be an easy job and can make the tool to become less accurate.

GamaPolarSlicer will be included in Gama project (for more details see http:
//gamaepl.di.uminho.pt/gama/index.html). This project aims at mix-
ing specification-based slicing algorithms with program verification algorithms to
analyze annotated programs developed under Contract-base Design approach.
GamaSlicer is the first tool built under this project for intra-procedural analysis
that is available at http://gamaepl.di.uminho.pt/gamaslicer/.

To test the behaviour of our algorithms and the tool output and performance,
we selected a collection of diversified programs (medium size and medium com-
plexity). As the objective of that phase was to verify the correctness of the al-
gorithms and its coverage, we were exclusively concerned with the variety of
the test cases concerning call paths and the kind of contract annotations. After
that phase, that finished successfully, we will be concerned with scalability. For
that purpose, a new collection of tests of large size will be used to measure
the performance degeneration. We are aware that the biggest difficulty we will
face is to find in the industrial or academic worlds huge programs with annota-
tions, but we need to obtain them (even generating the test cases) to fully test
GamaPolarSlicer.

Although reuse was not the topic of the paper (just some considerations
were drawn in the Introduction), reuse is the main motivation for GamaPolarSlicer

ComSIS Vol. 8, No. 2, Special Issue, May 2011 497

Sérgio Areias et al.

development. We are preparing an experiment to assess the validity of our pro-
posal and the usefulness of the tool [2].

References

1. Anand, S., Păsăreanu, C.S., Visser, W.: Jpf-se: a symbolic execution extension to
java pathfinder. In: TACAS’07: Proceedings of the 13th international conference on
Tools and algorithms for the construction and analysis of systems. pp. 134–138.
Springer-Verlag, Berlin, Heidelberg (2007)

2. Areias, S.: Contracts and Slicing for Safety Reuse. Master’s thesis (Dec 2010)
3. Chung, I.S., Lee, W.K., Yoon, G.S., Kwon, Y.R.: Program slicing based on specifica-

tion. In: SAC ’01: Proceedings of the 2001 ACM symposium on Applied computing.
pp. 605–609. ACM, New York, NY, USA (2001)

4. Comuzzi, J.J., Hart, J.M.: Program slicing using weakest preconditions. In: FME ’96:
Proceedings of the Third International Symposium of Formal Methods Europe on
Industrial Benefit and Advances in Formal Methods. pp. 557–575. Springer-Verlag,
London, UK (1996)

5. da Cruz, D., Henriques, P.R., Pinto, J.S.: Gamaslicer: an online laboratory for pro-
gram verification and analysis. In: Proceedings of the 10th Workshop on Language
Descriptions Tools and Applications (LDTA’10) (2010)

6. Harman, M., Hierons, R., Fox, C., Danicic, S., Howroyd, J.: Pre/post conditioned
slicing. icsm 00, 138 (2001)

7. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394
(1976)

8. Leavens, G.T., Cheon, Y.: Design by contract with jml (2004)
9. Maiden, N.A.M., Sutcliffe, A.G.: People-oriented software reuse: the very thought.

In: Advances in Software Reuse - Second International Workshop on Software
Reusability. pp. 176–185. IEEE Computer Society Press (1993)

10. Meyer, B.: Applying ”design by contract”. Computer 25(10), 40–51 (1992)
11. Sherif, K., Vinze, A.: Barriers to adoption of software reuse a qualitative study. Inf.

Manage. 41(2), 159–175 (2003)
12. Shiva, S.G., Shala, L.A.: Software reuse: Research and practice. In: ITNG. pp. 603–

609. IEEE Computer Society (2007), http://dblp.uni-trier.de/db/conf/
itng/itng2007.html\#ShivaS07

Sérgio Areias got his degree in ”Computer Engineering”, at University of Minho
(UM) in 2008. In 2010, he finished the M.Sc. with the dissertation ”Contracts
and Slicing for Safety Reuse”, also at University of Minho. Since 2011, he is
working at University of Minho under the research project named CROSS (An
Infrastructure for Certification and Re-engineering of Open Source Software),
and the research team of ”gEPL, the Language Processing group”.

Daniela da Cruz received a degree in ”Mathematics and Computer Science”,
at University of Minho (UM), and now she is a Ph.D. student of ”Computer Sci-
ence” also at University of Minho, under the MAPi doctoral program. She joined
the research and teaching team of ”gEPL, the Language Processing group” in

498 ComSIS Vol. 8, No. 2, Special Issue, May 2011

GammaPolarSlicer

2005. She is teaching assistant in different courses in the area of Compilers and
Formal Development of Language Processors; and Programming Languages
and Paradigms (Procedural, Logic, and OO). She was also involved in several
research projects (CROSS, DSLpc, PCVIA).

Pedro Rangel Henriques got a degree in ”Electrotechnical/Electronics Engi-
neering”, at FEUP (Porto University), and finished a Ph.D. thesis in ”Formal Lan-
guages and Attribute Grammars” at University of Minho. In 1981 he joined the
Computer Science Department of University of Minho, where he is a teacher/re-
searcher. Since 1995 he is the coordinator of the ”Language Processing group”
at CCTC (Computer Science and Technologies Center). He teaches many dif-
ferent courses under the broader area of programming: Programming Lan-
guages and Paradigms; Compilers, Grammar Engineering and Software Anal-
ysis and Transformation; etc. Pedro Rangel Henriques has supervised Ph.D.
(11), and M.Sc. (13) thesis, and more than 50 graduating trainingships/projects,
in the areas of: language processing (textual and visual), and structured docu-
ment processing; code analysis, program visulaization/animation and program
comprehension; knowledge discovery from databases, data-mining, and data-
cleaning. He is co-author of the ”XML & XSL: da teoria a prática” book, publish
by FCA in 2002; and has published 3 chapters in books, and 20 journal papers.

Jorge Sousa Pinto got his ”Docteur de l’École Polytechnique” degree in 2001.
Since then he has been a lecturer at the University of Minho, and since 2005
he has served as the deputy director of the Computer Science and Technology
Centre at that university. He is the author of about 30 research papers, and
a co-author of the textbook ”Rigorous Software Development – An Introduc-
tion to Program Verification”. His research interests comprise both deductive
and model checking-based approaches to program verification. He is a senior
member of the Association for Computing Machinery.

Received: January 7, 2011; Accepted: April 13, 2011.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 499

DOI: 10.2298/CSIS101220005W

Animation of Tile-Based Games Automatically
Derived from Simulation Specifications

Jan Wolter, Bastian Cramer, and Uwe Kastens

University of Paderborn
Department of Computer Science

Fürstenallee 11, 33102 Paderborn, Germany
jwolter@mail.uni-paderborn.de, {bcramer, uwe}@uni-paderborn.de

Abstract. Visual Languages (VLs) are beneficial particularly for domain-
specific applications, since they can support ease of understanding by vi-
sual metaphors. If such a language has an execution semantics, compre-
hension of program execution may be supported by direct visualization.
This closes the gap between program depiction and execution.
To rapidly develop a VL with execution semantics a generator framework
is needed which incorporates the complex knowledge of simulating and
animating a VL on a high specification level.
In this paper we show how a fully playable tile-based game is specified
with our generator framework DEViL. We illustrate this on the famous Pac-
man1 game.
We claim that our simulation and animation approach is suitable for the
rapid development process. We show that the simulation of a VL is easily
reached even in complex scenarios and that the automatically generated
animation is mostly adequate, even for other kinds of VLs like diagram-
matic, iconic or graph based ones.

Keywords: visual languages, DEViL, simulation, animation, tile-based games,
pac-man

1. Introduction

A prominent representative of a visual language is the Unified Modeling Lan-
guage (UML) [10] which is often used in software engineering process. Even
smaller languages precoined for a specific domain are popular, because they
can use visual metaphors of the target domain. In general an instance of such
a visual language is used to produce source code of a different domain, e.g.
Java Code from an UML class diagram.

To gain acceptance in rapid prototyping, generator frameworks are used
which can generate graphical structure editors for such visual languages from
high-level specifications. These generators incorporate expert knowledge to
produce a complete development environment for a VL with all features known
from typical text editors like cut and paste, printing, drag and drop and so on.

1 Pac-man
R©

is a registered trademark of Namco.

Jan Wolter, Bastian Cramer, Uwe Kastens

Unfortunately there is still a gap between program depiction and the generated
code of that program. The programmer has to keep in mind what the program,
he just created, does when it is executed. This gap is known as the gulf of ex-
ecution [9]. Simulation and animation of the visual language instance can help
to narrow this gap. The execution semantics of a visual language (if it has one)
can be integrated into the visual language. Hence the VL instance is no longer
static. It can be simulated and smoothly animated. The user can ”see” his lan-
guage being executed before he generates code.

This helps to avoid mistakes at a very early stage and it supports program
comprehension which is a challenging task especially in languages where many
things happen in parallel.

The Development Environment for Visual Languages, DEViL, is a generator
framework for visual languages which produces graphical editors from declar-
ative high-level specifications. We extended it with simulation and animation
support for VLs whereas a smooth and challenging animation can be derived
automatically from a simple simulation specification. In this paper we want to
show that our simulation specification language is powerful to simulate even
complex behavior. We claim that the language helps in rapid prototyping, be-
cause simulation becomes an easy task due to powerful encapsulated concepts
like event driven simulation and the extension of the visual semantic model to
constitute a tailored simulation model. We will show that the automatically de-
rived animation is suitable in most situations.

We will demonstrate this on the famous Pac-man game. It has a playful
character, but it is also a challenging language for simulation, because of the
complex navigation concepts of the ”ghost” pawns in the game.

The paper is structured as follows: First we introduce the DEViL system and
its underlying specification concepts with particular attention to simulation and
animation. In Section 3 we give a brief description of the Pac-man game. In the
next section we present our Pac-man Editor with special attention to the strate-
gies of the ghost characters. Section 5 addresses related work and section 6
completes the exposition with a conclusion and a look at other implemented
languages.

2. The DEViL System

The DEViL framework generates syntax-directed graphical structure editors for
visual languages. The generated environments support all features of com-
monly used editors. Especially 2.5D views on the underlying semantic model
are supported. A more in depth look at the generator framework and its gener-
ated products with respect to usability can be found in [13].

DEViL has already been successfully used for projects with nameable com-
panies like Bosch [3], VW or SagemOrga [15]. The specification of this Pac-
man Game Editor was one of many bachelor resp. master-theses that used the
DEViL framework.

502 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Animation of Tile-Based Games Derived from Simulation Specifications

The specification process to generate ”static” environments - environments
without simulation and animation support - is divided into three parts. As can
be seen later in this paper, simulation and animation support can be extended
easily by the reuse of components of some of these three specification steps.
Hence, an user of the DEViL system who can build visual development envi-
ronments, can extend a language with simulation and animation support with
reasonable effort.

To generate a structure editor for DEViL one first specifies the semantic
model of the visual language. This is done with DSSL (DEViL Structure Spec-
ification Language). The semantic model abstracts from the visual representa-
tion. It stores just the information necessary to describe the semantics of the
visual program. DSSL is inspired by an object oriented design with classes, in-
heritance, attributes and references. Fig. 1 shows a part of the specification of
the semantic model for our Pac-man Editor. DEViL can generate an editor with
a tree based structure manipulation view from this part of the specification.

� �
CLASS Tile {
columnRef: REF Column;
item: SUB Item?;

}
ABSTRACT CLASS Item {
name: VAL VLString;

}
CLASS Pacman INHERITS Item {
direction: VAL VLInt INIT "2";
angle: VAL VLInt INIT "0";
clockwise: VAL VLBoolean;

}�
Fig. 1. Part of the semantic model for the Pac-man Editor.

To obtain an advanced visual representation, the semantic model (created
with DSSL) is decorated with so called ”visual patterns”. Visual patterns define
how constructs of the structure tree should look like. E.g. one can specify that
some part of the structure tree should be laid out as the abstract concept ”list”
and aggregated nodes play the role of ”list elements”. Control attributes may
modify this layout, for instance the list could be constituted vertically instead of
horizontally. DEViL provides a huge library of precoined visual patterns with var-
ious possibilities to adapt their layout and appearance. A subset of this library
is for example ”sets, lists, trees, formulae or matrices”. Technically, symbols of
the semantic structure definition inherit from these visual patterns. The attribute
evaluator, generated by LIGA [4], of the underlying compiler generator frame-
work, Eli [5], computes the final graphical representation.

The last (optional) step of the specification process is the definition of a code
generator. Here, all of the tools of the Eli system to analyze the visual language
instance can be used. A more detailed description of the VL specification pro-
cess can be found in [14].

ComSIS Vol. 8, No. 2, Special Issue, May 2011 503

Jan Wolter, Bastian Cramer, Uwe Kastens

In order to separate concerns of specification, simulation and animation
have to be distinguished: simulation is the raw execution semantics of the vi-
sual language and animation is the smooth depiction of discrete execution of
VL programs. Some visual languages have a precisely defined execution se-
mantics, e.g. the firing of tokens in a Petri-net may be smoothly depicted by
animation. For other visual languages simulation and animation may require to
extend the semantic model to represent the simulation states or its graphical
representation.

The presented Pac-man Editor (Fig. 4) considered as a visual language has
a number of pawns that can be placed on a tile-based board which constitute
the playing field. The pawns are typed structure objects of this VL. The Pac-
man Editor has only four different pawns: ”wall”, ”ghost”, ”powerpill” and ”pac-
man”. Additionally, some structure objects are needed to represent the rows and
columns of the board. Hence, our Pac-man VL is a playground editor where the
user can create custom levels.

To specify a simulation for the Pac-man Editor we have to define the state
space and the state transitions. Both can be specified in our simulation specifi-
cation language DSIM.

� �
MODEL {
CLASS Tile {

OBJECT pill OF PowerPill: "THIS.item.CHILDREN[0]";
position: VAL VLPoint?;
diffVal: VAL VLInt INIT "0";
visited: VAL VLBoolean INIT "0";

}
CLASS Pacman {

OBJECT tile OF Tile: "THIS.PARENT.PARENT";
}

}�
(a) Simulation model.� �

EVENTS {
goGhost(Tile from, Tile to){

Item i = REMOVE(from.item, FIRST);
INSERT(to.item, i, FIRST);

}
eatPacman(Tile from, Tile to){

IF(#[0]Root.sound == VLBoolean(1)){
vlPlaySound("pacmanDeath.wav");

}
REMOVE(to.item, FIRST);
Item i = REMOVE(from.item, FIRST);
INSERT(to.item, i, FIRST);
FIRE gameLost(#[0]Root)@TIME_NOW + 1;

}
}�

(b) Events.

Fig. 2. Simulation model in DSIM and some events which can be scheduled in the sim-
ulation loop.

504 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Animation of Tile-Based Games Derived from Simulation Specifications

Fig. 2 (a) shows the specification of the simulation model in DSIM. As can be
seen, we again reuse DSSL concepts and we can extend the semantic model
of the visual language to reach a new model that is suited for simulation. In
this case we extended the semantic model class Tile (see Fig. 1). We can
introduce new attributes that are needed for simulation purposes only or extend
our simulation model with so called path expressions to traverse the simulation
model tree at run time. Both model the state space for the simulation.

We could also narrow the semantic model of the visual language in our
simulation model. This can be done if parts of the semantic model of the visual
language are only needed for representation purposes and not for simulation.

� �
FOREACH ghost IN [Ghost] {
IF(ghost.strategy == VLInt(1)) {

Tile to = NEIGHBOUR_TILE(mapping, NEUMANN, ghost.tile, Pacman);
IF(NOTNULL(to) AND (ghost.eatable == VLBoolean(0))){

FIRE eatPacman(ghost.tile, to) @TIME_DIRECT;
}
ELSE {

IF(NOTNULL(#[0]Pacman)) {
Tile to = NEIGHBOUR_EMPTY_TILE_RANDOM(mapping, NEUMANN, ghost.tile);
IF(NOTNULL(to)) {
FIRE goGhost(ghost.tile, to) @TIME_DIRECT;

}
}

}
}

}�
Fig. 3. Part of the simulation loop.

Fig. 3 shows an excerpt of the behavior specification part of DSIM. Here the
simulation model can be inspected and events can be scheduled that modify an
instance of the simulation model. Hence we follow the event based approach
to simulation. Events are scheduled for an arbitrary time. Any event can trigger
arbitrary so called simulation modification actions. These actions modify the
simulation model and they constitute the interface to the animation framework.
The excerpt shows the behavior specification of the ghost pawns. They try to
eat Pac-man if it is located on a neighbour tile. If not, the ghost moves according
to its strategy to the next tile.

In DSIM the following simulation modification actions exist which also form
the interface to the animation part:

– REMOVE a structure object.
– INSERT a new structure object instance or insert a structure object, that

was removed before. The latter would yield a MOVE action.
– COPY a structure object.
– CHANGE VAL to change a primitive attribute or a reference.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 505

Jan Wolter, Bastian Cramer, Uwe Kastens

In Fig. 2 (b) some events with corresponding simulation modification actions
can be seen. The specific characteristics of the simulation modification actions
is that an animation can be automatically derived from such a specification.

The default animations triggered are: slow shrinking to invisibility of an ob-
ject that is removed, slow growing of an object that is newly inserted. Linear
moving (with optional easing) of a structurally moved object. Copied objects
move from their copy source to their destination while changing their trans-
parency value from invisible to visible. Since editors generated by DEViL are
syntax-directed structure editors, the creation or removal of structure objects
can have side effects to other structure objects with respect to their size or
position. These objects are automatically adapted smoothly, in that they are
morphed. Even colors of structure objects are adapted smoothly.

The default animation behaviour is sufficient for most automatically derived
animations as can be seen later. But, in some cases the default animation that
is automatically triggered is not what the animator of a visual language desires.
Here the animator can override the default behavior with so called animated
visual patterns (AVPs). The AVPs can be decorated like the visual patterns to a
structure object and tell the structure object in what way it is animated if a cer-
tain simulation modification action occurs. For instance if a token in a Petri-net is
removed it should not shrink to invisibility which is the standard animation. The
desired animation is to move the token to the fired transition, hence the used
AVP to override the default behavior for remove is AVPOnRemoveMove. We
have AVPs for changing size and transparency values of structure objects, for
moving, scaling, rotating and so on. All of them can be combined and adapted
to the needs of the animation.

A more detailed description of DEViL’s simulation and animation facilities
can be found in [2].

3. Pac-man

Pac-man is the most popular arcade computer game in the eighties of the last
century and it was originally developed by Toru Iwatani for the Namco company
in 1980. Because of the large degree of esteem different versions of the game
have been reprogrammed many times for several systems like home comput-
ers, game-consoles and recently even for the iPhone [8]. The game is very
interesting in terms of navigating a character around a structured playground,
accumulating points, avoiding and (in some cases) attacking non-player game
characters.

The classic version of Pac-man is an one-player game where the human
player routes the Pac-man around a maze with the goal to avoid the four ghost
characters and to eat as much pills as possible. Initially the pills are placed in
each walk-in field of the playground and will be eaten via the achievement of
the field by Pac-man. The overall four ghosts roam through the maze trying to
catch Pac-man. This is successful when a ghost achieves a tile in which Pac-
man is located. In this case Pac-man looses one of his initial three lives and the

506 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Animation of Tile-Based Games Derived from Simulation Specifications

game restarts when Pac-man has just one life. Each of the four ghosts pursues
a different strategy to eat the Pac-man.

(a) Starting position of a Pac-man game. (b) A dynamic animation
object.

Fig. 4. Screenshots of our Pac-man game.

Besides the normal pills in each tile there are four powerpills which are lo-
cated near each corner of a maze. When Pac-man eats a powerpill he gets
a special score and is able to eat ghosts on his part. In this case all ghosts
change their color to blue for few moments, reverse their direction, and usually
move more slowly. If Pac-man eats a ghost, he gets a special score and the
ghost resurrects in the middle of the maze after a few moments. In addition to
the previously seen options there is one more possibility to increment the score:
sometimes a symbol of a fruit appears at a random position of the maze, which
also gives the chance to get extra points.

The game ends when all pills have been eaten or Pac-man has lost all of
his lives. In the former case the player reaches a new level which is more diffi-
cult than the previous one. This can be achieved for example by faster moving
ghosts.

Fig. 4 (a) shows a playground of a Pac-man game, which has been build
with our Pac-man Editor. Besides the Pac-man the figure shows three different
ghosts, wall items and powerpills.

4. Pac-man Editor

Our Pac-man Editor is structured as a multi document interface (MDI) and offers
the ability to create user-defined playgrounds for Pac-man games. The user
has the option to insert different items to the playground, e.g. Pac-man, ghosts,
powerpills or wall items. It is also possible to expand the playground by adding

ComSIS Vol. 8, No. 2, Special Issue, May 2011 507

Jan Wolter, Bastian Cramer, Uwe Kastens

rows and columns. A playground which is constructed in such a way allows to
play Pac-man as mentioned above.

The specification of the semantic model was the first task to implement this
editor. The most important part of the semantic model is the matrix structure.
An object of the matrix class is associated with an arbitrary number of columns
and rows. Each row owns several tiles, which includes in turn an item or not.
The item is an abstract class and the concrete subclasses are either Wall-item,
Pac-man, Ghost or Powerpill.

To realize a correct semantic playground it is essential to avoid more than
one Pac-man or a game without Pac-man. Hence, the DEViL System provides
the ability to specify consistency constraints on various levels. E.g. cardinalities
in the semantic model or specialized callback functions which can navigate the
structure tree. All these checks are automatically performed before simulation.
Hence, only a correct Pac-man game instance can be simulated.

Besides the consistency constraints the language designer can implement
initialization functions for each class of the semantic structure. Such a func-
tion is a callback function and will be automatically called by the system, if a
new object has been created. We used this, for example, to realize a default
playground dimension of 10× 10 tiles.

4.1. Strategies

With our editor it is possible to allot one of overall three different strategies to
each ghost. We draw our inspiration with respect to the strategies of Repenning
[12]:

Random The ghost roams randomly through the maze. At each step it evalu-
ates the walk-in fields in the von Neumann neighbourhood [17] and chooses
one randomly.

Incremental Approach The ghost tries to move closer to the Pac-man. At each
step it evaluates the empty neighbour tiles and selects the closest one in
euclidean sense.

Hill-climbing Due to the fact that the incremental approach does not permit
the overcoming of walls, the strategy of hill-climbing affords this. To achieve
this goal, diffusion values are used for each tile. These are used to spread
the ”scent” of the Pac-man in the maze. The value represents the closeness
of a ghost to Pac-man. The largest value gets the tile in which Pac-man is
allocated. Starting from this tile, the value is distributed to all walk-in fields
of the playground. Every tile which is not accessible, e.g. a tile with a wall
item, gets a negative diffusion value. At each step of the game the ghost
selects the tile which has the largest diffusion value. Due to the fact that
the diffusion values must be recalculated at each step, this brings the ghost
closer to Pac-man. Fig. 5 illustrates the allocation of diffusion values and
the way a ghost must go to get Pac-man.

508 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Animation of Tile-Based Games Derived from Simulation Specifications

993 994 995 996 997 996 995 994 993

992 996 997 998 997 992

999 998 997 991

996 997 998 999 1000 999 998 990

995 989

994 993 992 991 990 989 988 987 988

Fig. 5. Distribution of diffusion values to apply hill-climbing.

A closer look to the implementation of the hill-climbing strategy is available
in the next section. Amongst other things we describe the implementation of
ghost strategies in DSIM.

4.2. Simulation

The user interaction via keyboard is essential for the Pac-man game. The DEViL
System provides the ability to define arbitrary keyboard events which can be
processed in the simulation.

We used the simulation model to add particular attributes which are neces-
sarily needed for the simulation. An extract is given in Fig. 2 (a). We extend the
Pac-man class with a tile attribute, which allows the access of the tile in which
Pac-man is located, from the context of a Pac-man object. Besides others, we
had extended the tile class with an attribute which stores the diffusion value of a
tile. This is needed to realize the hill-climbing strategy. Keep in mind, that these
attributes only exist in the simulation model, not in the semantic model of the
Pac-man VL.

In the event block we specified events, which can be scheduled at an arbi-
trary simulation time in the loop block. Hence, our simulator follows an event
driven approach. We had implemented overall 16 different events. Fig. 6 shows
two events. The coordinatePacman event gets the Pac-man instance and a
direction to move to. It checks, whether a powerpill or a ghost is in the way. If so
Pac-man tries to eat the ghost resp. the powerpill. If there is nothing to eat Pac-
man just walks to the next tile, the goPacman event is called. This event again
calls two events to increment the score and to compute the rotation, which is
needed for the animation. Finally the Pac-man pawn is removed from the actual
tile and inserted to the tile in the desired direction. This yields a MOVE action for
the Pac-man pawn.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 509

Jan Wolter, Bastian Cramer, Uwe Kastens� �
coordinatePacman(Pacman pacman, VLInt direction){
Tile go = NEIGHBOUR_TILE(default, NEUMANN, pacman.tile, PowerPill);
IF(NOTNULL(go)){

FIRE eatPowerpill(pacman.tile, go, pacman, direction) @TIME_DIRECT;
} ELSE {

go = NEIGHBOUR_TILE(default, NEUMANN, pacman.tile, Ghost);
IF(NOTNULL(go)){

FIRE eatGhost(pacman.tile, go, pacman, direction) @TIME_DIRECT;
}ELSE{

go = NEIGHBOUR_TILE(default, pacman.tile, direction);
IF(NOTNULL(go) AND (SIZE(go.item) == VLInt(0))){

FIRE goPacman(pacman.tile, go, pacman, direction) @TIME_DIRECT;
}

}
}

}

goPacman(Tile from, Tile to, Pacman p, VLInt d){
FIRE incrementScore(#[0]Score, 1) @ TIME_DIRECT;
FIRE computeRotation(p,d) @ TIME_DIRECT;
Item i = REMOVE(from.item, FIRST);
INSERT(to.item, i, FIRST);

}�
Fig. 6. Coordination of the Pac-man pawn.

In each simulation step we have to compute the diffusion value for the hill-
climbing strategy. This is done by a call of a C function. The function computes
the value via a simple breadth-first search. Afterwards the ghost has to pick the
target tile which has the largest diffusion value. To get a specific neighbour, we
extended the simulation language such that we can access structure objects (of
a specific type) in the neighbourhood of a given tile. All editors generated with
DEViL that make use of tiling have the same underlying model. Due to this fact
we could identify a subset of tile-access functions which are often needed and
generalize these functions. This lead to a decrease of hand written C-code.

Fig. 7 shows some neighbour access functions. The first function counts
the ghosts in Moore neighbourhood [16] of the Pac-man. A computation of the
neighbour tile in south direction of a ghost shows the second function. The last
function returns a random tile in von Neumann neighbourhood of Pac-man.

� �
NEIGHBOUR_COUNT(mapping, MOORE, pacman.tile, Ghost);
NEIGHBOUR_TILE(mapping, ghost.tile, S);
NEIGHBOUR_TILE_RANDOM(mapping, NEUMANN, pacman.tile);�

Fig. 7. Exemplary neighbour access functions.

510 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Animation of Tile-Based Games Derived from Simulation Specifications

4.3. Animation

The default animation which is automatically derived from the simulation speci-
fication is almost adequate. A ghost and the Pac-man move fast from the start
tile to the target tile in each simulation step. This is the case, because the an-
imation framework interprets the modification actions REMOVE and INSERT as
a moving animation. Furthermore the Pac-man shrinks to invisibility when he is
caught by a ghost.

But Pac-man looks in the desired viewing direction until he has accessed
the target tile. It would be nicer if Pac-man rotates to the desired viewing di-
rection in the start tile before he moves to the target tile. Now the idea is to
override the default behaviour for Pac-man. All animations are typed over their
simulation modification action. Hence, we need to override the default anima-
tion pattern MOVE, because the Pac-man is moved (REMOVEd and INSERTed)
on the playground. We do it with the specification in Fig. 8 (a). We use the
animated visual patterns OnMoveRotate and OnMoveMove. OnMoveRotate
rotates a structure object if it is moved. Hence, we have to override the angle
and rotate attributes. The angle and rotate attributes are stored in the ”pacman”
class (see Fig. 1) and will be computed via the computeRotation event in each
simulation step. In addition we override the duration attribute to specify the du-
ration of the rotate operation. In this configuration the rotation and the move
are scheduled at the same simulation time, but we want the animation of the
rotation to appear before the animation of the move. Hence the OnMoveMove
animation must be animated after the OnMoveRotate animation. Hence, we
have to assign the value 2 to the time attribute. Furthermore we override the
duration attribute to indicate the duration time for a move operation. As can be
seen, besides the simulation time, we have an animation time which defines
an order of the animations and which can easily be adapted to gain a desired
animation.

The animation framework offers the possibility to animate objects which
are not part of the semantic model (so called dynamic objects). If Pac-man is
caught, we have used this feature to display a skull (see Fig. 4 (b)). For such a
purpose it is only necessary to use the provided visual patterns as described in
Fig. 8 (b). The visual pattern CreateDynamicObject reacts to a modification
action and offers the possibility to add a drawing. As seen in Fig. 8 (b) we over-
ride the modification action attribute to react to a remove action. Furthermore,
we override the drawing attribute to add the skull drawing. In order that the skull
moves bottom-up from the position of the Pac-man, we had used the pattern
MoveDynamicObject. We also had used the pattern OnRemoveShrink to
show the skull temporary.

The specification of an animation in DEViL is straight forward: first specify
a simulation, then derive the animation automatically. Hence the animation is
a formal mapping of its simulation part. At last, animations can be adapted by
overriding the default animations through the application of a huge declarative
animation pattern library.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 511

Jan Wolter, Bastian Cramer, Uwe Kastens� �
SYMBOL pacmView_Pacman INHERITS VPContainerElement, VPForm,

AVPOnMoveRotate, AVPOnMoveMove, AVPOnRemoveShrink
COMPUTE
SYNT.drawing = ADDROF(PacmanDrawing);
SYNT.onMoveRotateAngle = THIS.pers_angle;
SYNT.onMoveRotateClockwise = THIS.pers_clockwise;
SYNT.onMoveRotateDuration = 600;
SYNT.onMoveMoveRaiseDisplayOrder = 1;
SYNT.onMoveMoveAnimationTime = 2;
SYNT.onMoveMoveDuration = 900;
SYNT.onRemoveShrinkAnimationTime = 10;

END;�
(a) Mapping of AVPs with control attributes to override default animation.� �

SYMBOL pacmView_Pacman INHERITS AVPCreateDynamicObject,
AVPMoveDynamicObject

COMPUTE
SYNT.createDynamicObjectModificationAction = REMOVE;
SYNT.createDynamicObjectDrawing = ADDROF(SkullDrawing);
SYNT.createDynamicObjectPosition = POSITION(

SELECT(THIS.oPosition, sub(VLPoint(0,10))));

SYNT.moveDynamicObjectDuration = 8000;
SYNT.moveDynamicObjectStartPosition = POSITION(

SELECT(THIS.oPosition, sub(VLPoint(0,10))));
SYNT.moveDynamicObjectEndPosition = POSITION(

SELECT(THIS.oPosition, sub(VLPoint(0,60))));
END;�

(b) Creating a dynamic animation object and moving it.

Fig. 8. Animation of Pac-man.

5. Related Work

The Agentsheets system [11] can generate tile based simulations and games.
The specification process is fully graphical and rule based. Agentsheets uses
the programming by demonstration paradigm. In the rules one can access
neighbour tiles through the help of icons with specific arrows. This is the vi-
sual variant of our neighbour access functions. Agentsheets is restricted to tile
based simulation whereas our system can also handle diagrammatic or iconic
visualizations.

In the area of generator frameworks for visual language environments the
GenGed [1] system makes use of graph transformation and visual rewrite rules
to specify simulation. To store the simulation state, rules must be extended.
This is similar to our simulation model which can extend the semantic model of
a VL. GenGed uses a formal mapping between simulation and animation. This
is comparable to our simulation modification actions which trigger default ani-
mations. They are the interface between simulation and animation framework.
Smooth and complex animations can not be specified with GenGed.

512 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Animation of Tile-Based Games Derived from Simulation Specifications

The DiaGen [6] system also uses graph transformation to specify a visual
language. Some editors already support simulation and animation. Interesting
is that every animation step is a state of the underlying graph transformation
system whereas we interpolate between two adjacent simulation model states.

6. Conclusion

The specification of the Pac-man editor is a straight forward task. Table 1 shows
that we needed 220 LOC for the whole simulation part including all ghost strate-
gies and 400 LOC for hand written C-code. The other specs part needs only 236
LOC. The second column of the table shows a decrease of total LOC from 883
to 646 LOC. This is because of the neighbour access functions we had gener-
alized. This reduced the LOC of C-code nearly by 250 LOC and we need only
7 additional LOC in the simulation specification to realize the mapping between
concrete and generalized matrix structure. The 156 LOC of C-code is just a
simple tile initialization function for the hill-climbing strategy. The automatically
derived animation is sufficient to play the game. The 27 LOC are just syntactic
sugar.

Table 1. Distribution of the specification complexity.

LOC LOC with access fct. generated LOC

simulation 220 227

87.504
animation 27 27

C-code 400 156

other specs. 236 236

883 646 87.504

The DSIM language with its narrow interface to the animation and its con-
structs tailored for the simulation of visual languages has already been ap-
proved in other VLs with execution semantics like Petri-nets, a Datapath simu-
lation, electronic circuits and even the game Ludo. Table 2 shows the amount
of LOC for simulation and animation part of already implemented editors. The
examples in line two and three are based on the Petri-net simulation shown
in line one. They show the simulation of the well-known dining philosophers
and a simulation of a signal light of a four-way-crossing. Both are structurally
coupled to the Petri-net with DEViL’s internal declarative coupling mechanism.
A simulation of the Petri-net automatically triggers synchronization functions in
the philosophers resp. signal-light view. The simulator detects these triggerings
and calls the animation framework. Hence, additional specification amount is
not needed.

As can be seen in Table 2 the automatically triggered animation is mostly
sufficient. We need to adapt the animation only in simulations where animations

ComSIS Vol. 8, No. 2, Special Issue, May 2011 513

Jan Wolter, Bastian Cramer, Uwe Kastens

Table 2. Simulation and Animation LOC of other VLs.

Simulation Coupling Animation Anim. syntactic sugar

Petri-nets 29 4 0

Dining-Philosophers 29 95 4 0

Signal-Lights 29 57 4 0

Logo 211 3 3

Game of Life 39 0 0

Ludo 338 0 0

Statecharts 78 2 0

Bubblesort 13 0 0

Quicksort 93 0 0

Heapsort 225 0 0

CPU Datapath 263 160 0

Washing bay 35 0 0

Electronic circuits 99 109 0

DTM 96 9 9

Monitor 162 1 0

Sokoban 157 10 0

LR(1)-Parser 199 0 0

Traffic simulation 3372 26 6

depend on the context of their structure objects. E.g. this is the case in our CPU
datapath simulation where an animation of an instruction is different whether it
is located in an instruction decoder, in an accumulator or somewhere else.

The already implemented VLs have a very diverse appearance: we have
diagrammatic, iconic and graph based depictions.

We just finished a visual language for traffic simulation. It is also a tile-bases
VL and can simulate behaviour of cars following the well-known traffic simula-
tion model of Nagel and Schreckenberg [7]. The language supports user de-
fined rules, traffic analyses, the definition of routes and driver profiles. All in all
we specified more than 3000 LOC for the simulation part. Hence the language
is one of the most complex examples and it proves DEViL’s ability to support
large simulations and team work, because it was specified in a students project
with 10 participants and a workload of one year.

We implemented about 19 different languages with simulation and animation
support up to now. The overall simulation specification amount is 5500 LOC. For
the animation we only needed about 350 LOC. Hence the standard animation
is mostly sufficient and only needs few adaption.

514 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Animation of Tile-Based Games Derived from Simulation Specifications

Interesting extensions to our system would be semantic zooming, camera
views or even isometric views. Here also a pattern based approach is imagin-
able.

Also outstanding is a visual language for DSIM and an usability study.

References

1. Bardohl, R.: GenGed: A generic graphical editor for visual languages based on al-
gebraic graph grammars. In: 1998 IEEE Symp. on Visual Lang. pp. 48–55 (Sep
1998)

2. Cramer, B., Kastens, U.: Animation automatically generated from simulation speci-
fications. In: VLHCC ’09: Proceedings of the 2009 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC). pp. 157–164. IEEE Computer
Society, Washington, DC, USA (2009)

3. Cramer, B., Klassen, D., Kastens, U.: Entwicklung und Evaluierung einer
domänenspezifischen Sprache für SPS-Schrittketten. In: Fahland, D., Sadilek,
D.A., Scheidgen, M., Weileder, S. (eds.) DSML. CEUR Workshop Proceedings,
vol. 324, pp. 59–73. CEUR-WS.org (2008), http://dblp.uni-trier.de/db/
conf/dsml/dsml2008.html#CramerKK08

4. Kastens, U.: An attribute grammar system in a compiler construction environment.
In: Proceedings of the International Summer School on Attribute Grammars, Appli-
cation and Systems. Lecture Notes in Computer Science, vol. 545, pp. 380–400.
Springer Verlag (1991)

5. Kastens, U., Pfahler, P., Jung, M.: The Eli system. In: Koskimies, K. (ed.) Proceed-
ings of 7th International Conference on Compiler Construction CC’98. pp. 294–297.
No. 1383 in Lecture Notes in Computer Science, Springer Verlag (Mar 1998)

6. Minas, M.: Concepts and realization of a diagram editor generator based
on hypergraph transformation. Science of Computer Programming 44(2), 157–
180 (Aug 2002), http://www.elsevier.com/gej-ng/10/39/21/86/49/
29/abstract.html

7. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. Jour-
nal de Physique I 2, 2221–2229 (Dec 1992)

8. Namco Games: Pacman for iPhone. http://www.appsafari.com/games/2741/pacman-
for-iphone/ (2008), [Online; accessed 16-December-2010]

9. Norman, D.A., Draper, S.W.: User Centered System Design; New Perspectives on
Human-Computer Interaction. L. Erlbaum Associates Inc., Hillsdale, NJ, USA (1986)

10. Object Management Group: Unified Modeling Language (UML), version 2.2 (2009),
http://www.omg.org/technology/documents/formal/uml.htm

11. Repenning, A.: AgentSheets
R©

: an Interactive Simulation Environment with End-
User Programmable Agents. In: Interaction 2000, Tokyo, Japan (2000)

12. Repenning, A.: Collaborative Diffusion: Programming Antiobjects. In: OOPSLA
2006, ACM SIGPLAN International Conference on Object-Oriented Programming
Systems, Languages, and Applications, (Portland, Oregon, 2006). IEEE Press
(2006)

13. Schmidt, C., Cramer, B., Kastens, U.: Usability evaluation of a system for implemen-
tation of visual languages. In: Symposium on Visual Languages and Human-Centric
Computing. pp. 231–238. IEEE Computer Society Press, Coeur d’Alne, Idaho, USA
(Sep 2007)

ComSIS Vol. 8, No. 2, Special Issue, May 2011 515

Jan Wolter, Bastian Cramer, Uwe Kastens

14. Schmidt, C., Kastens, U., Cramer, B.: Using DEViL for implementation of domain-
specific visual languages. In: Proceedings of the 1st Workshop on Domain-Specific
Program Development. Nantes, France (Jul 2006), http://ag-kastens.upb.
de/paper/dspd2006-devil.pdf

15. Schmidt, C., Pfahler, P., Kastens, U., Fischer, C., Gmbh, O.K.: Simtelligence
designer/j: A visual language to specify sim toolkit applications. In: Proceed-
ings of the Second Workshop on Domain Specific Visual Languages (OOP-
SLA 2002 (2002), http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.2.9269

16. Wikipedia, The Free Encyclopedia: Moore neighborhood.
http://en.wikipedia.org/wiki/Moore neighborhood (2010), [Online; accessed 16-
December-2010]

17. Wikipedia, The Free Encyclopedia: Von Neumann neighborhood.
http://en.wikipedia.org/wiki/Von Neumann neighborhood (2010), [Online; accessed
16-December-2010]

Jan Wolter received his bachelor degree in Computer Science from the Uni-
versity of Paderborn, Germany in 2009. He spent one year student assistant
in the area of visual languages. Currently he is working on his master thesis
concerning a concept to implement visual three-dimensional languages.

Bastian Cramer received his Ph.D. in Computer Science from the University
of Paderborn in 2010. He joined the research group ”Programming Languages
and Compilers” of Prof. Kastens at the same university. His research focus is
the generation of software from specifications and especially the generation of
environments for visual domain specific languages. He has several years of
experience in language design in corporation with the automotive industry. In
his Ph.D. thesis he evaluated the possibilities of simulation and animation of
visual languages.

Uwe Kastens graduated as a ”Diplom-Informatiker” in 1972 at the University
of Karlsruhe, Germany. In 1976 he received his doctorate in Computer Science
from that University. Since 1982 he has been a Professor of Practical Computer
Science at the University of Paderborn, Germany. His major research areas are
methods and tools for language implementation, domain-specific languages,
and program analysis. Since 1988 he has been a member of the IFIP Work-
ing Group 2.4 (System Implementation Languages, Software Implementation
Technology) and was its chairman from 1991 to 1996.

Received: December 20, 2010; Accepted: February 16, 2011.

516 ComSIS Vol. 8, No. 2, Special Issue, May 2011

DOI: 10.2298/CSIS101116008R

Solving Difficult LR Parsing Conflicts by
Postponing Them

C. Rodriguez-Leon1 and L. Garcia-Forte1

Departamento de EIO y Computación,
Universidad de La Laguna

casiano@ull.es, lgforte@ull.es,
http://nereida.deioc.ull.es

Abstract. Though yacc-like LR parser generators provide ways to solve
shift-reduce conflicts using token precedences, no mechanisms are pro-
vided for the resolution of difficult shift-reduce or reduce-reduce conflicts.
To solve this kind of conflicts the language designer has to modify the
grammar. All the solutions for dealing with these difficult conflicts branch
at each alternative, leading to the exploration of the whole search tree.
These strategies differ in the way the tree is explored: GLR, Backtrack-
ing LR, Backtracking LR with priorities, etc. This paper explores an en-
tirely different path: to extend the yacc conflict resolution sublanguage
with new constructs allowing the programmers to explicit the way the con-
flict must be solved. These extensions supply ways to resolve any kind of
conflicts, including those that can not be solved using static precedences.
The method makes also feasible the parsing of grammars whose ambigu-
ity must be solved in terms of the semantic context. Besides, it brings to
LR-parsing a common LL-parsing feature: the advantage of providing full
control over the specific trees the user wants to build.

Keywords: parsing, lexical analysis, syntactic analysis.

1. Introduction

Yacc-like LR parser generators [3] provide ways to solve shift-reduce conflicts
based on token precedence. No mechanisms are provided for the resolution of
difficult reduce-reduce or shift-reduce conflicts. To solve such kind of conflicts
the language designer has to modify the grammar. Quoting Merrill [5]:

Yacc lacks support for resolving ambiguities in the language for which
it is attempting to generate a parser. It does a simple-minded approach
to resolving shift/reduce and reduce/reduce conflicts, but this is not of
sufficient power to solve the really thorny problems encountered in a
genuinely ambiguous language

Some context-dependency ambiguities can be solved through the use of
lexical tie-ins: a flag which is set by the semantic actions, whose purpose is to
alter the way tokens are parsed [1, p. 106]. But it is not always possible or easy
to resort to this kind of tricks to fix some context dependent ambiguity.

C. Rodriguez-Leon and L. Garcia-Forte

A more general solution is to extend LR parsers with the capacity to branch
at any multivalued entry of the LR action table. For example, Bison [1], via the
%glr-parser directive and Elkhound [4] provide implementations of the
Generalized LR (GLR) algorithm [11]. In the GLR algorithm, when a conflicting
transition is encountered, the parsing stack is forked into as many parallel pars-
ing stacks as conflicting actions. The next input token is read and used to de-
termine the next transitions for each of the top states. If some top state does
not transit for the input token it means that path is invalid and that branch can
be discarded. Though GLR has been successfully applied to the parsing of am-
biguous languages, the handling of languages that are both context-dependent
and ambiguous is more difficult [10, p. 3]. The Bison manual [1] points out the
following caveats when using GLR:

. . . there are at least two potential problems to beware. First, always
analyze the conflicts reported by Bison to make sure that GLR splitting
is only done where it is intended. A GLR parser splitting inadvertently
may cause problems less obvious than an LALR parser statically choos-
ing the wrong alternative in a conflict. Second, consider interactions
with the lexer with great care. Since a split parser consumes tokens
without performing any actions during the split, the lexer cannot obtain
information via parser actions. Some cases of lexer interactions can be
eliminated by using GLR to shift the complications from the lexer to the
parser. You must check the remaining cases for correctness.

The strategy presented here extends yacc conflict resolution mechanisms
with new ones, supplying ways to resolve conflicts that can not be solved using
static precedences. The algorithm for the generation of the LR tables remains
unchanged, but the programmer can modify the parsing tables during run time.

The technique involves labelling the points in conflict in the grammar spe-
cification and providing additional code to resolve the conflict when it arises.
Crucially, this does not requires rewriting or transforming the grammar, trying to
resolve the conflict in advance, backtracking or branching into concurrent spe-
culative parsers. Instead, the resolution is postponed until the conflict actually
arises during parsing, whereupon user code inspects the state of the underlying
parse engine to decide the appropriate solution. There are two main benefits:
Since the full power of the native universal hosting language is at disposal, any
grammar ambiguity can be tackled. We can also expect - since the conflict han-
dler is written by the programmer - a more efficient solution which reduces the
required amount of backtracking or branching.

This technique can be combined to complement both GLR and backtrack-
ing LR algorithms [10] to give the programmer a finer control of the branch-
ing process. It puts the user - as it occurs in top down parsing - in control
of the parsing strategy when the grammar is ambiguous, making it easier to
deal with efficiency and context dependency issues. One disadvantage is that
it requires some knowledge of LR parsing. It is conceived to be used when
none of the available techniques - static precedences, grammar modification,

518 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Solving Difficult LR Parsing Conflicts by Postponing Them

backtracking LR or Generalized LR - produces satisfactory solutions. We have
implemented these techniques in eyapp [7], a yacc-like LALR parser generator
for Perl [13, 6].

This paper is divided in six sections. The next section introduces the Post-
poned Conflict Resolution (PPCR) strategy. The following three sections illus-
trate the way the technique is used. The first presents an ambiguous grammar
where the disambiguating rule is made in terms of the previous context. The
next shows the technique on a difficult grammar that has been previously used
in the literature [1] to illustrate the advantages of the GLR engine: the declara-
tion of enumerated and subrange types in Pascal [12]. The last example deals
with a grammar that can not be parsed by any LL(k) nor LR(k), whatever the
value of k, nor for packrat parsing algorithms [2]. The last section summarizes
the advantages and disadvantages of our proposal.

2. The Postponed Conflict Resolution Strategy

The Postponed Conflict Resolution (PPCR) is a strategy to apply whenever
there is a shift-reduce or reduce-reduce conflict which is unsolvable using static
precedences. It delays the decision, whether to shift or reduce and by which
production to reduce, to parsing time. Let us assume the eyapp compiler an-
nounces the presence of a reduce-reduce conflict. The steps followed to solve a
reduce-reduce conflict using the PPCR strategy can be divided in two activities:
conflict identification and mapping (steps 1a to 1d) and writing the solver (step
2a).

1. Conflict Identification and Mapping
(a) Identify the conflict: What LR(0)-items/productions and tokens are invol-

ved?.
Tools must support that stage, as for example via the .output file gen-
erated by eyapp. Suppose we identify that the participants are the two
LR(0)-items A→ α↑ and B → β↑ when the lookahead token is @.

(b) Give a name to the productions: the software must allow the use of sym-
bolic labels to refer by name to the productions involved in the conflict.
Let us assume that production A → α has label :rA and production
B → β has label :rB. A difference with yacc is that in eyapp produc-
tions can have names and labels. In eyapp names and labels can be
explicitly given using the directive %name, using the following syntax:

%name :rA A → α

%name :rB B → β

(c) Give a symbolic name to the conflict. In this case we choose isAorB
as name of the conflict.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 519

C. Rodriguez-Leon and L. Garcia-Forte

(d) Inside the body section of the grammar, mark the points of conflict using
the new reserved word %PREC followed by the conflict name:

%name :rA A→ α %PREC IsAorB

%name :rB B → β %PREC IsAorB

2. Writing the Conflict Handler
(a) Introduce a %conflict directive inside the head section of the transla-

tion scheme to specify the way the conflict will be solved. The directive
is followed by some code - known as the conflict handler - whose mis-
sion is to modify the parsing tables. This code will be executed each
time the associated conflict state is reached. This is the usual layout of
the conflict handler:

%conflict IsAorB {
if (is_A) { $self->YYSetReduce(’@’, ’:rA’); }

else { $self->YYSetReduce(’@’, ’:rB’); }
}

The call to is_A represents the context-dependent dynamic knowledge
that allows us to take the right decision. It is usually a call to a nested
parser for A but it can also be any other contextual information we have
to determine which one is the right production.
Inside a conflict handler the Perl default variable $_ refers to the full
input text and $self refers to the parser object.
Variables in Perl - like $self - have prefixes like $ (scalars), @ (lists), %
(hashes or dictionaries), & (subroutines), etc. specifying the type of the
variable. These prefixes are called sigils. The sigil $ indicates a scalar
variable, i.e. a variable that stores a single value: a number, a string or
a reference. In this case $self is a reference to the parser object. The
arrow syntax $object->method() is used to call a method: it is the
equivalent of the dot operator object.method() used in most OOP
languages. Thus the call

$self->YYSetReduce(’@’, ’:rA’)

is a call to the YYSetReduce method of the object $self.
The method YYSetReduce provided by Parse::Eyapp receives a to-
ken, like ’@’, and a production label, like :rA. The call

$self->YYSetReduce(’@’, ’:rA’)

sets the parsing action for the state associated with the conflict IsAorB
to reduce by the production :rA when the current lookahead is @. The
token argument ’@’ is optional. If omitted, the set of conflictive tokens
will be used.

520 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Solving Difficult LR Parsing Conflicts by Postponing Them

The procedure is similar for shift-reduce conflicts. Let us assume we have
identified a shift-reduce conflict between LR-(0) items A → α↑ and B → β ↑ γ
for some token ’@’. Only steps 1d and 2a change slightly:

1d’. Again, we must give a symbolic name to A → α and mark with the new
%PREC directive the places where the conflict occurs:

%name :rA A→ α %PREC IsAorB

B → β %PREC IsAorB γ

2a’. Now the conflict handler calls the YYSetShift method to set the shift
action:

%conflict IsAorB {
if (is_A) { $self->YYSetReduce(’@’, ’:rA’); }
else { $self->YYSetShift(’@’); }

}

The token argument ’@’ of YYSetShift is optional. If omitted, the set of
conflictive tokens is used instead.

In order to clarify the use of PPCR we will address three different kind of
conflicts:

– A simple case of dynamically changing the associativity to show the use of
the %conflict directive (section 3)

– The classical subrange/enum Pascal conflict [1, p. 21] presented in section
4 depicts the use of preparsing, the %explore directive and some details
of the eyapp compiler

– The parsing of a non LR(k) unambiguous grammar (section 5)

3. A Simple Example

The following example1 accepts lists of two kind of commands: arithmetic ex-
pressions like 4-2-1 or one of two associativity commands: left or right.
When a right command is issued, the semantic of the ’-’ operator is changed
to be right associative. When a left command is issued the semantic for ’-’
returns to its classic left associative interpretation. Here follows an example of
input. Between shell-like comments appears the expected output:

1 For the full examples used in this paper, see [8]

ComSIS Vol. 8, No. 2, Special Issue, May 2011 521

C. Rodriguez-Leon and L. Garcia-Forte

$ cat input_for_dynamicgrammar.txt
2-1-1 # left: 0 = (2-1)-1
RIGHT
2-1-1 # right: 2 = 2-(1-1)
LEFT
3-1-1 # left: 1 = (3-1)-1
RIGHT
3-1-1 # right: 3 = 3-(1-1)

We use a variable $reduce (initially set to 1) to decide the way in which the
ambiguity NUM-NUM-NUM is solved. If false we will set the NUM-(NUM-NUM)
interpretation. The variable $reduce is modified each time the input program
emits a LEFT or RIGHT command.

Following the steps outlined above, and after looking at the .output file,
we see that the items involved in the announced shift-reduce conflict are

expr → expr↑ − expr
expr → expr − expr↑

and the lookahead token is ’-’. We next mark the points in conflict in the
grammar using the %PREC directive (see Figure 1)

%%
p:

/* empty */ {}
| p c {}

;

c:
$expr { print "$expr\n"}

| RIGHT { $reduce = 0}
| LEFT { $reduce = 1}

;

expr:
’(’ $expr ’)’ { $expr }

| %name :M
expr.left %PREC LoR
’-’ expr.right %PREC LoR
{ $left - $right }

| NUM
;

Fig. 1. An Example of Context Dependent Ambiguity Resolution

The dollar and dot notation used in some right hand sides (rhs) like in
expr.left ’-’ expr.right and $expr is used to associate variable na-
mes with the attributes of the symbols.

The conflict handler LoR defined in the header section is:

522 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Solving Difficult LR Parsing Conflicts by Postponing Them

%conflict LoR {
if ($reduce) {$self->YYSetReduce(’:M’)}
else {$self->YYSetShift()}

}

If $reduce is true we set the parsing action to reduce by the production la-
belled :M, otherwise we choose the shift action.

Observe how PPCR allow us to dynamically change at will the meaning of
the same statement.

4. Nested Parsing

This section illustrates the technique through a problem that arises in the decla-
ration of enumerated and subrange types in the programming language Pascal.
The problem is taken from the Bison manual, (see section ‘Using GLR on Un-
ambiguous Grammars’ [1, p. 21]) where it is used as a paradigmatic example
of when to switch to the GLR engine [1]. Here are some cases:

type subrange = lo .. hi;
type enum = (a, b, c);

The original language standard allows only numeric literals and constant
identifiers for the subrange bounds (lo and hi), but Extended Pascal (ISO/IEC
10206) [12] and many other Pascal implementations allow arbitrary expressions
there. This gives rise to declarations like the following:

type subrange = (a) .. b; type enum = (a);

The corresponding declarations look identical until the ‘..’ token. With nor-
mal LALR(1) one-token lookahead it is not possible to decide between the two
forms when the identifier ‘a’ is parsed. It is, however, desirable for a parser to
decide this, since in the latter case ‘a’ must become a new identifier to repre-
sent the enumeration value, while in the former case ‘a’ must be evaluated with
its current meaning, which may be a constant or even a function call. The Bi-
son manual considers and discards several potential solutions to the problem
to conclude that the best approach is to declare the parser to use the GLR al-
gorithm. To aggravate the conflict we have added the C comma operator inside
expr, making room for the generation of declarations more difficult to parse as:

type subrange = (a, b, c) .. (d, e);
type enum = (a, b, c);

ComSIS Vol. 8, No. 2, Special Issue, May 2011 523

C. Rodriguez-Leon and L. Garcia-Forte

Here is our modification of the vastly simplified subgrammar of Pascal type
declarations found in [1].

%token ID = /([A-Za-z]\w*)/
%token NUM = /(\d+)/

%left ’,’
%left ’-’ ’+’
%left ’*’ ’/’

%%

type_decl : ’TYPE’ ID ’=’ type ’;’
;

type :
’(’ id_list ’)’

| expr ’..’ expr
;

id_list :
ID

| id_list ’,’ ID
;

expr :
’(’ expr ’)’

| expr ’+’ expr
| expr ’-’ expr
| expr ’*’ expr
| expr ’/’ expr
| expr ’,’ expr
| ID
| NUM

;

4.1. Identifying the problem

When used as a normal LALR(1) grammar, eyapp correctly complains about
two reduce/reduce conflicts:

$ eyapp -v pascalenumeratedvsrange.eyp
2 reduce/reduce conflicts

The generated .output file tell us that both conflicts occur in state 11. It also
give us the contents of state 11:

State 11:
id_list -> ID . (Rule 4)
expr -> ID . (Rule 12)
’)’ [reduce using rule 12 (expr)]
’)’ reduce using rule 4 (id_list)
’,’ [reduce using rule 12 (expr)]
’,’ reduce using rule 4 (id_list)

’*’ reduce using rule 12 (expr)
’+’ reduce using rule 12 (expr)
’-’ reduce using rule 12 (expr)
’/’ reduce using rule 12 (expr)

524 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Solving Difficult LR Parsing Conflicts by Postponing Them

From the inspection of state 11 we can conclude that the two reduce-reduce
conflicts occur between productions id_list -> ID and expr -> ID in the
presence of tokens ‘)’ and ‘,’. To solve the conflict we label the two involved
productions and set the %PREC directives:

id_list :
%name ID:ENUM
ID %PREC rangeORenum

| id_list ’,’ ID
;
expr : ’(’ expr ’)’

| %name ID:RANGE
ID %PREC rangeORenum

| expr ’+’ expr
| expr ’-’ expr
| expr ’*’ expr
| expr ’/’ expr
| expr ’,’ expr
| NUM

;
%%

4.2. Pre-parsing the Incoming Input

To find which production applies we will pre-parse the input at the point where
a range or a enumerated type is expected. To achieve it, we introduce an auxi-
liary syntactic variable Lookahead marking the point where the nested parsing
starts:

type_decl : ’type’ ID ’=’ type ’;’ ;

type :
%name ENUM
Lookahead ’(’ id_list ’)’

| %name RANGE
Lookahead expr ’..’ expr

;

The semantic action associated with Lookahead is to check if the incoming
input matches a range:

Lookahead: /* empty */
$is_range = $self->YYPreParse(’range’);

;

The call to the method $_[0]->YYPreParse(’range’) uses a range parser
to parse the input from the current position. It returns true if the range parser
finds a conformant substring starting at that point.

The range parser recognizes the language defined by the subgrammar:

ComSIS Vol. 8, No. 2, Special Issue, May 2011 525

C. Rodriguez-Leon and L. Garcia-Forte

range: expr ’..’ expr ’;’

where the definition of expr is as in the previous grammar.
The conflict handler in the head section decides which production must be

used in terms of the value of $is_range:

%{
my $is_range = 0;

%}
%conflict rangeORenum {
if ($is_range)
{ $self->YYSetReduce(’ID:RANGE’); }

else
{ $self->YYSetReduce(’ID:ENUM’); }

}

The eyapp compiler uses these token definitions

%token ID = /([A-Za-z]\w*)/
%token NUM = /(\d+)/

to automatically generate the lexical analyzer. The rest of the head section of
the grammar set the classic static priorities for the arithmetic operators:

%left ’,’
%left ’-’ ’+’
%left ’*’ ’/’

4.3. Compiling the Grammar

To produce the parser, we start compiling the auxiliary grammar:

$ eyapp -P range.eyp

The -P option used when compiling range tells eyapp to produce parsing
tables that will accept if a prefix of the input belongs to the language generated
by the range grammar2. We then proceed to compile the full grammar3:

$ eyapp -TC enumvsrange.eyp

The eyapp compiler provides a default main which will be used if no main
is provided. The default main accepts several command line arguments:

$./enumvsrange.pm -t -i -m 1 -c ’type e = (x, y, z);’

2 By default, the generated parser only accepts if the full input conforms to the grammar
3 Option -T tells the compiler to insert semantic actions in order to produce the syntax

tree. Option -C is used to generate an executable

526 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Solving Difficult LR Parsing Conflicts by Postponing Them

Option -t tells the main to print the result returned by the parser: a descrip-
tion of the syntax tree will be printed. Options -i and -m 1 control the way the
syntax tree is shown. Option -c is followed by the input for the parser. It indi-
cates that the input is given in the command line. The execution of the former
command produces the following output:

typeDecl_is_type_ID_type(
TERMINAL[e],
ENUM(

idList_is_idList_ID(
idList_is_idList_ID(ID(TERMINAL[x]), TERMINAL[y]),
TERMINAL[z])))

4.4. The %explore Directive

In the previous grammar we explicitly introduced a new syntactic variable Lookahead
to set the point for nested parsing. The eyapp programmer can use the

%explorer conflictName { CODE }

directive inside the head section to declare the code in charge of the nested
parsing:

%explorer rangeORenum {
$is_range = $_[0]->YYPreParse(’range’);

}

Then the point where the exploration starts is marked inside the grammar
body using the %conflictname? syntax:

type :
%name ENUM
%rangeORenum? ’(’ id_list ’)’

| %name RANGE
%rangeORenum? expr ’..’ expr

;

The eyapp compiler will mimic the technique outlined in the previous sec-
tion, creating a new syntactic variable, let us call it Lh, whose only empty pro-
duction has as associated semantic action the code defined in the %explorer
directive:

Lh: /* empty */ { $is_range = $_[0]->YYPreParse(’range’) }

The points where the %rangeORenum? directive appears are substituted by
that variable:

ComSIS Vol. 8, No. 2, Special Issue, May 2011 527

C. Rodriguez-Leon and L. Garcia-Forte

type :
%name ENUM
Lh ’(’ id_list ’)’

| %name RANGE
Lh expr ’..’ expr

;

forcing the execution of the exploration code at that points.

5. Conflicts Requiring Unlimited Look-ahead

The following unambiguous grammar can not be parsed by any LL(k) nor LR(k),
whatever the value of k, nor by packrat parsing algorithms [2].

%%
T: S ;
S: x S x | x ;
%%

Though it is straightforward to find equivalent LL(1) and LR(1) grammars (the
language is even regular: /x(xx)*/), even GLR [11] and Backtrack LR parsers
[5] for this grammar will suffer of a potentially exponential complexity in the input
size. The unlimited number of look-aheads required to decide if the current x is
in the middle of the sentence, leads to an increase in the number of branches
to explore. To make the problem more difficult and more representative, let us
assume x is not a token but defines the language of the arithmetic expressions.

The challenge is to make the parser work without changing the grammar.
As in the previous example we start identifying the conflict - which we name
isInTheMiddle -, labelling as :MIDx the reduction item and marking the ex-
ploration point:

%token NUM = /(\d+)/
%token OP = /([-+*\/])/

%%
T: %isInTheMiddle? S ;

S:
x %PREC isInTheMiddle S x

| %name :MIDx
x %PREC isInTheMiddle

;

x: NUM | x OP NUM
;
%%

528 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Solving Difficult LR Parsing Conflicts by Postponing Them

The exploration code uses the auxiliary parser ExpList to compute the
number of xs in the list. Variable $nxr is then used to store the mid position:

%explorer isInTheMiddle {
($nxr) = $self->YYPreParse(’ExpList’);
$nxr = int ($nxr/2);

}

When YYPreParse is called in a list context like above - observe the paren-
thesis around $nxr - it returns the semantic value computed by ExpList. The
ExpList.eyp grammar computes the number of xs:

%%
S: $S x { $S + 1 } | x { 1 } ;
%%

Where the definition of x is as in the previous grammar.
The conflict solver code is quite simple: it keeps the position of the current

x inside the state/persistent variable $nxs. The reduction is called when the
middle point is reached:

%conflict isInTheMiddle {
state $nxs = 0;

$nxs++;
if ($nxs == $nxr+1) {

$self->YYSetReduce(’:MIDx’);
$nxr = $nxs = 0;

}
else { $self->YYSetShift() }

}

6. Conclusions

The strategy presented in this paper extends the classic yacc precedence me-
chanisms with new dynamic conflict resolution mechanisms. These new me-
chanisms provide ways to resolve conflicts that can not be solved using static
precedences. They also provides finer control over the conflict resolution pro-
cess than other alternatives. There are no limitations to PPCR parsing, since
the conflict handler is implemented in a universal language and it then can
resort to any kind of nested parsing algorithm. The conflict resolution mecha-
nisms presented here can be introduced in any LR parsing tools, since they
are independent of the implementation language and the language used for the
expression of the semantic actions. One disadvantage of PPCR is that it re-
quires more effort than branching methods like GLR or backtracking LR. With

ComSIS Vol. 8, No. 2, Special Issue, May 2011 529

C. Rodriguez-Leon and L. Garcia-Forte

some effort, the PPCR methodology can be extended to be merged with GLR
and backtracking LR, allowing for a mixed exploration that uses both branching
(GLR) and correct pruning (PPCR). This research line seems worth to explore.

LR conflict removal is a laborious task. The number of conflicts in a progra-
mming language can reach tens and even hundreds: The original grammars of
Algol-60 and Scheme result in 61 and 78 conflicts respectively with an average
density of one conflict for each two productions. By adding Postponed Conflict
Resolution to the classical precedence and associativity settings we can fix the
conflicts in such grammars without modifying the grammars. Removing conflicts
while preserving the grammar is preferable to rewriting the grammar in several
situations: When using a conflict removal tool like the one described in [9], since
the language designer will be still familiar with the resulting grammar, when the
original grammar better reflects the author ideas about the syntax and semantic
of the language, when the original grammar is easier to read and to understand
(size matters) and when such unambiguous grammar is hard or impossible to
find. As future work, we intend to address the building of tools assisting the pro-
cess of conflict identification and conflict removal without modifying the original
grammar.

Acknowledgments. This work has been supported by the EC (FEDER) and the Spanish
Ministry of Science and Innovation inside the ’Plan Nacional de I+D+i’ with the contract
number TIN2008-06491-C04-02. It has also been supported by the Canary Govern-
ment project number PI2007/015.

References

1. Donnelly, C., Stallman, R.M.: Bison: the yacc-compatible parser generator. Techni-
cal report, Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139 (2010)

2. Ford, B.: Functional pearl: Packrat parsing: Simple, powerful, lazy, linear time. Mas-
sachusetts Institute of Technology. Cambridge, MA (2002)

3. Johnson, S.C.: Yacc: Yet another compiler compiler. AT&T Bell Laboratories Techni-
cal Report July 31, 1978 2, 353–387 (1979)

4. Mcpeak, S.: Elkhound: A fast, practical GLR parser generator (2004), [Online]. Avail-
able: http://scottmcpeak.com/elkhound/

5. Merrill, G.H.: Parsing Non-LR(k) Grammars with Yacc. Software, Practice and Ex-
perience 23(8), 829–850 (1993)

6. Randal, A., Sugalski, D., Totsch, L.: Perl 6 and Parrot Essentials. O’Reilly Media
(2004)

7. Rodrı́guez-León, C.: Parse::Eyapp Manuals (2007), [Online]. Available at CPAN:
http://search.cpan.org/dist/Parse-Eyapp/

8. Rodrı́guez-León, C., Garcı́a-Forte, L.: Grammar Repository (2010), [Online]. Avail-
able at google-code: http://code.google.com/p/grammar-repository/

9. Teixeira Passos, L., Bigonha, M.A., Bigonha, R.: A methodology for removing
LALR(k) conflicts. In: Journal of Universal Computer Science. pp. 735–752 (2007)

10. Thurston, A.D., Cordy, J.R.: A backtracking LR algorithm for parsing ambiguous
context-dependent languages. In: 2006 Conference of the Centre for Advanced
Studies on Collaborative Research (CASCON 2006). pp. 39–53. Toronto (2006)

530 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Solving Difficult LR Parsing Conflicts by Postponing Them

11. Tomita, M.: The generalized LR parser/compiler - version 8.4. In: Proceedings of
International Conference on Computational Linguistics (COLING’90). pp. 59–63.
Helsinki, Finland (1990)

12. van der Veen, V.: Extended pascal iso 10206:1990, [Online]. Available:
http://www.standardpascal.org/iso10206.txt

13. Wall, L., Christiansen, T., Schwartz, R.: Programming Perl. O’Reilly & Associates
(1996)

C. Rodriguez-Leon is a full professor of Computer Science at Universidad de
La Laguna, Spain. He received his Diploma in Mathematics and his Doctorate
(Ph. D.) in 1978 and 1987, respectively, both from the same University. He is
in the Editorial Board of journals like Parallel Computing, International Jour-
nal of Computational Science and Engineering (IJCSE), etc. and has been in
the Program Committee of several parallel computing conferences including
EuroPVM/MPI, HeteroPar, EuroPar, HLPP, CIT, ICA3PP, CACIC, INFORUM,
WGISD, etc. His research interest includes Parallel Algorithms, Evolutionary
Computation, Combinatorial Optimization, Distributed Computing, Language
Processing and High Level Programming.

L. Garcia-Forte is a Ph. D. student of the Department of Statistics, Operation
Research and Computation at Universidad de La Laguna, Spain. He received
his Diploma in Computer Engineering in 1997. His main research interests fo-
cus on Programming Languages and Parallel Systems.

Received: November 16, 2010; Accepted: April 19, 2011.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 531

DOI: 10.2298/CSIS110110007L

Detecting Concurrency Anomalies
in Transactional Memory Programs

João Lourenço, Diogo Sousa, Bruno Teixeira and Ricardo Dias?

CITI / Departamento de Informática
Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa
2829-516 Caparica, Portugal

{joao.lourenco, rjfd}@di.fct.unl.pt
{dm.sousa, bct18897}@fct.unl.pt

Abstract. Concurrent programs may suffer from concurrency anomalies
that may lead to erroneous and unpredictable program behaviors. To en-
sure program correctness, these anomalies must be diagnosed and cor-
rected. This paper addresses the detection of both low- and high-level
anomalies in the Transactional Memory setting. We propose a static anal-
ysis procedure and a framework to address Transactional Memory anoma-
lies. We start by dealing with the classic case of low-level dataraces, iden-
tifying concurrent accesses to shared memory cells that are not protected
within the scope of a memory transaction. Then, we address the case of
high-level dataraces, bringing the programmer’s attention to pairs of mem-
ory transactions that were misspecified and should have been combined
into a single transaction. Our framework was applied to a set of programs,
collected form different sources, containing well known low- and high-level
anomalies. The framework demonstrated to be accurate, confirming the
effectiveness of using static analysis techniques to precisely identify con-
currency anomalies in Transactional Memory programs.

Keywords: testing, verification, concurrency, software transactional mem-
ory, static analysis.

1. Introduction

Concurrent programming is inherently hard. The fact that more than one order-
ing of events may take place at runtime leads to an exponential growth in the
number of both valid and invalid program states. Programs with concurrency
errors may reach invalid states and expose unpredicted and anomalous behav-
iors. Thus, more than just convenient, tool based approaches tackling the auto-
matic verification and validation of programs are essential building-blocks in the
? This work was partially supported by Sun Microsystems under the “Sun Worldwide

Marketing Loaner Agreement #11497”, by the Centro de Informática e Tecnologias da
Informaçao (CITI), and by the Fundaçao para a Ciencia e Tecnologia (FCT/MCTES) in
the research projects Byzantium (PTDC/EIA/74325/2006) and RepComp (PTDC/EIA-
EIA/108963/2008), and research grant SFRH/BD/41765/2007.

João Lourenço, Diogo Sousa, Bruno Teixeira and Ricardo Dias

process of developing correct concurrent programs. This paper addresses the
identification of both low- and high-level dataraces in the Transactional Mem-
ory [12,18,20,21] setting.

Data races are among the most notorious concurrency errors. A program
suffers from a low-level datarace, or simply datarace, when two threads concur-
rently access a shared variable with no concurrency control enforced, and at
least one of those accesses is an update. Low-level dataraces may be avoided
by synchronizing the conflicting threads, e.g., using locks, thus enforcing that
critical sections, program code blocks that are mutually exclusive, will not be
executed concurrently.

A program free from low-level dataraces may still exhibit concurrency anoma-
lies resulting from the a scope misspecification, where two or more correctly
synchronized critical sections should be merged into a single one to ensure the
program’s correctness. We shall call these errors high-level dataraces or high-
level anomalies. Likewise, low-level dataraces are also referred in this paper as
low-level anomalies.

Transactional Memory (TM) [11,19] is a promising approach that offers multi-
ple advantages for concurrent programming. In contrast to locks, which enforces
mutual exclusion, TM is neutral concerning the execution model, resorting in a
transactional monitor to establish the transactional properties at run-time. The
transactional monitor may opt to enforce mutual exclusion, as with locks, or to
allow transactions to execute concurrently, optimistically assuming they will not
conflict, and later aborting and restarting those that do conflict.

TM is inherently immune to some of the concurrency anomalies that are
common in lock-based programs, such as deadlocks. Data races are among
the anomalies that can still be observed. A transaction is only shielded against
another transaction, in the same way that a lock-protected critical section is only
protected from another critical section which holds a common lock. Therefore,
in the TM setting, non-transactional and transactional code may also compete
when accessing shared variables, leading to low-level dataraces. Likewise high-
level dataraces in lock-based programs, the misspecification of the scope of
two or more memory transactions may lead to high-level dataraces in the TM
setting.

There are several approaches for detecting low-level dataraces in lock-based
programs, both static [6, 9, 14], dynamic [8, 13, 16], and hybrid [17]. Likewise,
there are also some approaches for detecting high-level dataraces in lock-
based programs [3, 5, 10, 22, 24]. As locks relate to transactions, these works
on low- and high-level dataraces also relate to TM, but none of them targets
specifically this setting, which is in the core of our approach.

In Section 2, we discuss a process that enables the usage of a low-level
datarace detector meant for locks in a TM-based program. In Section 3 we pro-
pose a definition for high-level dataraces in the TM setting and address their
detection using static analysis, by conservatively extracting all possible concur-
rent execution traces of a program and searching for anomalies using a pattern-

534 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Detecting Concurrency Anomalies in Transactional Memory Programs

Ø Unprotected access
 L Lock-guarded access
 T Transactional access
 Synchronized access
 Datarace

Conditions with TM

Ac
ce

ss
1

Ac
ce

ss
2

Ø
T
Ø
T

Ø
Ø
T
T

Conditions with Locks

Ac
ce

ss
1

Ac
ce

ss
2

Ø
L1
Ø
L1
L1

Ø
Ø
L1
L2
L1

Fig. 1. Conditions for a datarace in Transactional and Locks.

based heuristic approach. We then discuss the related work in Section 4, fol-
lowed by the conclusions and future work in the last section.

2. Low-Level Dataraces in Transactional Memory

Locks enforce mutual exclusion between critical sections. If two critical sections
are protected by at least one common lock, then no two threads may execute
them at the same time. Transactional memory, on the other hand, does not
enforce mutual exclusion. Instead, two transactional code blocks may execute
concurrently, provided by the TM run-time with the guarantees of Isolation and
Atomicity. TM usually provides the serializability of transactions, ensuring that
if two memory transactions take place concurrently and both succeed, then its
final outcome is the same as if those two transactions were executed one after
the other. Violations of serializability usually lead to dataraces.

Consider the distinct situations that may lead to a low-level datarace be-
tween two lock-based synchronized threads:

1. None of the accesses are performed while holding a lock;
2. One of the accesses is performed holding no locks; or
3. Both accesses are performed while holding disjoint sets of locks.

When using locks, the user chooses which critical sections shall be mutually
exclusive by acquiring and holding the appropriate lock. In the TM setting, all
transactions are guaranteed to be atomic and isolated from all other concur-
rent transactions, which excludes the third case above. Hence, as illustrated in
Figure 1, the only two situations that may lead to low-level dataraces in TM are:

1. None of the accesses is performed in the scope of a transaction; or
2. Only one of the accesses is performed in the scope of a transaction.

Listing 1 illustrates cases of dataraces in both lock-based and transactional
memory programs (left and right columns respectively). In the lock-based case,
blocks A, B, and C, are assumed to execute concurrently. Likewise for the TM
case, where blocks W, X, and Y, are also assumed to execute concurrently.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 535

João Lourenço, Diogo Sousa, Bruno Teixeira and Ricardo Dias

// A
synchronized (a) {

a.x = 0;
}
...
// B
print(a.x);
...
// C
synchronized (this) {

a.x++;
}

// W
atomic {

a.x = 0;
}
...
// X
print(a.x);
...
// Y
atomic {

a.x++;
}

Listing 1. Example of a low-level dataraces with locks (left) and with transactional mem-
ory (rigth)

The lock-based version has two different kinds of dataraces. Blocks A and B
have a no-lock conflict, as block B is accessing a.x without holding a lock. The
same applies to blocks C and B. Blocks A and C have a wrong-lock conflict, as
both are holding different locks and thus their concurrent accesses to a.x are
not protected. All the dataraces in the TM-based version are of a single type.
Blocks W and X have a data race resulting from the execution of block X outside
the scope of a transaction, and the same applies to blocks Y and X.

Our approach to identify low-level dataraces in TM programs resorts to their
similarities and relations to the low-level dataraces in lock-based programs, in-
terpreting the TM atomic blocks as if they were synchronized on a single global
lock and then apply techniques and tools used in the detection of dataraces in
lock-based programs. Hence, each of the scenarios of low-level datarace in TM
maps into an analogous scenarios in a single lock setting, as denoted by the
arrows in Figure 1, making this approach both sound and complete [21].

2.1. Detection Approach

Our approach to identify low-level dataraces in transactional memory programs
is depicted in Figure 2.

The TM Java program is processed with AJEX [7], an extension to Poly-
glot [15], that recognizes the keyword atomic as a new Java construct to de-
note a transactional memory code block and generates the corresponding Ab-
stract Syntax Tree (AST). The AST generates by AJEX is then traversed using
the Polyglot framework and the transactional blocks are replaced with blocks
synchronized on a single unused global lock. The definition of the new global
lock is added to the main class, if one exists, otherwise to another arbitrary
class. The identifier of the global lock has a fresh name inside the possess-
ing class and is a public static object. Figure 3 illustrates this transformation
process.

536 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Detecting Concurrency Anomalies in Transactional Memory Programs

Automatic
Transformation
(Polyglot based

tool)

Datarace
Detector
(JChord)

TM-based
Program

Lock-based
(single lock)
Program

LLDR Detector

Atomic Block
Replacement

Global Lock
Generation

AJEX
Parsing

Datarace
Report

Fig. 2. The low-level datarace detection procedure.

This automatic transformation process generates a Java compliant version
of the original TM-based program. This program is then fed to a lock-based
datarace detector. We used JChord [14] as a datarace detector, but other similar
tools could be used instead.

2.2. Experiments

In order to validate our approach for transforming TM programs to synchronized
single-lock programs, a set of validation tests have been carried out [21]. Some
of these tests are well-known erroneous programs intended to benchmark val-
idation tools like our own. Others were developed specifically to test our tool,
containing simple stub programs with dataraces. We also tested Lee-TM [2],
a renowned transactional memory benchmark. It was necessary to have two
versions of each test, one using locks and another using TM. This implies that
the existing tests meant for locks had to be manually rewritten using TM. We
succeeded in keeping the original semantics (and errors) in the TM versions of
the test programs, except for a small number of well identified cases.

Tests were carried out by initially running JChord on the lock-based version
of each test. The results were registered for future reference. Then, we applied
our approach to the TM versions of those tests, by transforming them into single
global-lock programs and feeding them to JChord. The results were again reg-
istered. For each test, the results for both executions of JChord — in the original
and transformed TM versions — were then compared. All the results obtained
fit into one of the following scenarios: for tests where the lock-based and TM-
based versions were strictly equivalent, the analysis results were equivalent as
well; when the TM and lock-based versions of a test would have slightly different
semantics, since some lock-based bugs could not be replicated using the TM
model, results were slightly different, but all those differences could be clearly
mapped to the semantic variations between the two versions.

As an example, consider the Lee-TM benchmark. By running JChord in the
original lock-based version, we identified 52 dataraces. A careful analysis of

ComSIS Vol. 8, No. 2, Special Issue, May 2011 537

João Lourenço, Diogo Sousa, Bruno Teixeira and Ricardo Dias

private boolean hasSpaceLeft() {
 atomic { return (list.size() < MAX_SIZE); }
}
private void store(Object obj) {
 atomic { list.add(obj); }
}

public Object GLOCK;

private boolean hasSpaceLeft() {
 synchronized (GLOCK) { return (list.size() < MAX_SIZE); }
}
private void store(Object obj) {
 synchronized (GLOCK) { list.add(obj); }
}

Fig. 3. Transformation of transactions into code blocks synchronized in a global lock.

these dataraces proved them all to be either false positives or, although con-
firmed, harmless. Running JChord in the single-lock version resulting from our
automatic transformation process, we identified 48 dataraces, all with a direct
correspondence to the dataraces observed in the original lock-based version.
The remaining 4 dataraces correspond to wrong-lock situations, which do not
exist in TM.

3. High-level Dataraces

A program that is free from low-level dataraces may still suffer from concur-
rency errors. Unlike low-level dataraces, high-level dataraces do not result from
unsynchronized accesses to shared variables, but rather from a combination of
multiple synchronized accesses, which may lead to incorrect behaviors if exe-
cuted in a specific order.

As an example, consider the program in Listing 2, showing a bounded data
structure whose size cannot go beyond MAX_SIZE. All accesses to the list
fields are safely enclosed inside transactions, therefore no low-level datarace
exists. But there is nonetheless a high-level datarace.

In the function attemptToStore(), a thread always checks for available
room before storing an item in the queue. However, between the executions of
hasSpaceLeft() and store(), the list may be filled by another concurrent
thread executing the same code, leaving no space left; thus, the first thread
would now be adding an element to an already full list. Both method calls to
hasSpaceLeft() and store() should have been executed inside the same
transaction. This was not the case, thus leading to a high-level datarace.

In the following sections we will discuss the conditions that may trigger high-
level anomalies, propose a possible categorization of those anomalies, and
present our approach for their identification.

538 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Detecting Concurrency Anomalies in Transactional Memory Programs

private boolean hasSpaceLeft() {
atomic { return (this.list.size() < MAX_SIZE); }

}

private synchronized void store(Object obj) {
atomic { this.list.add(obj); }

}

public void attemptToStore(Object obj) {
if (this.hasSpaceLeft()) {

// list may become full!
this.store(obj);

}
}

Listing 2. Example of a High-level Anomaly

3.1. Thread Atomicity

High-level anomalies are related to sets of transactions involving different threads,
which leave the program in an inconsistent state when executed in a specific
order. This happens because two or more of the transactions executed by one
thread are somehow related, making assumptions about each other (e.g., as-
suming success), but there is a scheduling in which another thread issues a
concurrent transaction which breaks that assumption. The simplest way to solve
this problem is to merge those related transactions into a single one. Further-
more, through empirical observation, it seems that many of such anomalies
involve only three transactions. Two consecutive transactions from one thread
and a third transaction from another thread, that when scheduled to run be-
tween the other two, causes an anomaly.

Without further information from the developer intention on the program se-
mantics, at compile time it is not possible to infer all the relations among transac-
tions. It is possible, however, to identify transactions that may or will affect other
transactions, and use this information to identify potential high-level anomalies.

Consider a coordinate pair object shared between multiple threads. Assume
that a thread T1 issues a transaction t1.1 to read value x, and then issues trans-
action t1.2 to read y. In between them, thread T2 could issue transaction t2.1
which sets both values to 0, and so thread T1 would have read values corre-
sponding to the old x and new y (zero), when it is likely that both read opera-
tions were meant to read one single instant, i.e., either both before or after t2.1.
In this scenario, the final outcome is not equivalent to a situation in which both
read operations were ran without interleaving. The property of a set of threads
whose interleavings are guaranteed to be equivalent to their sequential execu-
tion is called thread atomicity [24], and will be further discussed in Section 4. It
is common to pursue thread atomicity as being a correctness criterion.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 539

João Lourenço, Diogo Sousa, Bruno Teixeira and Ricardo Dias

Thread 1

Thread 2

write(a) read(a)

write(a)

Fig. 4. An unserializable pattern which does not appear to be anomalous.

3.2. Anomaly Patterns in Transactional Memory Programs

Since full thread atomicity may be too restrictive, thus triggering too many false
positive scenarios, we opted for a more relaxed semantic that allows a restricted
number of atomicity violations. As an example of an atomicity violation which in
principle is not an error, consider the example in Figure 4, where each rect-
angle corresponds to a transactional code block. The second operation in T1

will be retrieving the results written by T2. In order for this set of threads to be
serializable, and thus thread atomic, all possible interleavings would have to be
equivalent to the scenario in which the read immediately follows the write of the
same thread.

However, given the specific context of TM and the set of operations pre-
sented in Figure 4, it seems unintuitive that this particular set would contain an
error. The read operation is retrieving a, and it seems unlikely that an operation
will be performed based on the value written before by the same thread, as it
would possibly be already outdated. The only error scenario involving this par-
ticular setup would be the case in which after the read, the first thread would
do a set of operations that depend on both, the value just read and the value
previously written and assuming them to be equal.

We propose a framework for detecting a configurable set of patterns, and
we opted to include only those most likely will result in concurrency anomalies.
Out of all the patterns that incur in atomicity violations, we have isolated three
highly suspicious patterns which describe possible high-level anomalies. These
patterns are summarized in Figure 5 (with x 6= y).

Read–write–Read or RwR — Non-atomic global read. A thread reads a global
state in two or more separate transactions, and the global state was changed
by another thread meanwhile. If the first thread makes assumptions based
on that state, it will most probably be a high-level anomaly.

Write–read–Write or WrW — Non-atomic global write. This is the opposite
scenario from above. A thread is changing the global shared state in multi-
ple separate transactions. Other thread reading the global state will observe
this state as inconsistent.

Read–write–Write or RwW — Non-atomic compare-and-swap. In this pattern
a thread checks a variable value, and based on that value it changes the
state of the variable. If the variable was changed meanwhile, the update will
probably may not make sense anymore.

Anomalies between two consecutive transactions can be defined a triple of
transactions (T1, T2, T3), such that the execution of T2 by one thread interferes

540 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Detecting Concurrency Anomalies in Transactional Memory Programs

Thread 1

Thread 2
RwR

read(x) read(y)

write(x,y)

Thread 1

Thread 2
WrW

write(x) write(y)

read(x,y)

Thread 1

Thread 2
RwW

read(x) write(y)

write(x)

Fig. 5. Common anomalous access patterns.

with the normal execution of T1—T3 by another thread. It is common for a pro-
gram to have multiple anomalies A = (T1, T2, T3) and A′ = (T1, T

′
2, T3). Even

though these anomalies are of different nature, they reflect the lack of atom-
icity between the same pair of transactions. We define a main anomaly as a
triple (T1, S, T2) were S is the set of transactions that interfere with the expected
execution of T1—T3.

In the following, we will present our approach for statically matching suspi-
cious patterns against the program source code, and will report on the experi-
ments that assess the applicability and effectiveness of these patterns.

3.3. Symbolic Execution of Transactional Memory Programs

To detect high-level anomalies in TM programs, we perform a symbolic execu-
tion of the program and generate a set of possible execution traces of the trans-
actional code. From these traces, we generate the set of possible interleavings
of transactional code blocks and check if there are matches with any of the
patterns identified in Section 3.2. Our approach for the detection of high-level
anomalies in TM programs was also implemented resorting to the Polyglot [15]
framework and AJEX [7].

The thread traces are obtained by performing a symbolic execution of the
given program. When the program to be analyzed is loaded, all class declara-
tions that contain main thread methods are retrieved. This includes classes
that have a execution entry point such as a main() method, and classes
that inherit from java.lang.Thread or java.lang.Runnable containing
a run() method declaration. Hence, we obtain a list of all thread bootstrap
methods. Statements in these thread methods are then analyzed. Whenever a
transactional code block is found, it is added to the current trace, together with
the full list of read and write operations of that transaction.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 541

João Lourenço, Diogo Sousa, Bruno Teixeira and Ricardo Dias

<?xml version="1.0" encoding="UTF-8"?>
<classes>
<class id="a.package.AClass">
<method id="doThings(Object, Object)">
<changes>this</changes> <!-- Target object may change -->
<changes>1</changes> <!-- First argument may change -->

</method>
</class>

</classes>

Listing 3. Example of the XML file that specified access to unavailable methods.

To find out the read and write operations of a method call, we in-line the
called code, i.e., we replace the method call with the body of the target method,
so that the transactions performed by that method are still seen as being per-
formed by the current thread. Care must be taken not to perform infinite in-
linings when in the presence of recursive methods.

In real world programs much code is already compiled, and the original
source code is unavailable (this includes Java standard libraries). It may also
happen that a program calls native methods, that may not be analyzed by our
tool. When these cases arises our tools issues a warning, with the full qualified
signature of the method it cannot analyze. With this information the user can
build a database of the accesses performed by methods whose source code is
not available. This is performed with an XML file as illustrated in Listing 3.

Additional challenges derive from disjunctions in the program control flow.
When there are multiple possible execution flows, such as with if-else or switch
statements, the current trace must still represent all possible executions. In-
stead of having numerous alternative traces for the same thread, a special dis-
junction node is added to the trace, symbolizing a disjunction point, where the
execution can follow one of the multiple alternative paths. Thus, the trace actu-
ally takes the form of a tree representing all the transactional blocks in all the
possible execution paths for a thread.

Finally, we also have to deal with loop structures in the input program. This
is solved by considering the representative scenarios of the execution of loops.
The trace tree only considers the cases in which the loop is not executed or
is executed twice. We need to consider zero executions of the loop body, for
the case in which the transaction that precedes and the one that follows the
loop are both involved in an anomaly. When considering two executions of the
loop we cover three different cases: when a transaction that precedes the loop
is involved in an anomaly with a transaction in the loop; when a transaction in
the loop is involved in an anomaly with the transaction that follows the loop;
and when a transaction in the loop is involved in an anomaly with itself in the
next iteration of the loop. It is not necessary to check for a single execution of
the loop as two loop unrolls generate a super-set of the cases generated by a
single loop unroll. It is also not necessary to consider more than two consecutive

542 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Detecting Concurrency Anomalies in Transactional Memory Programs

Table 1. Experimental results summary.

Test Total Total Correct False Missed
Name Anomalies Warnings Warnings Warnings Anomalies

Connection [5] 2 3 2 1 0

Coordinates’03 [3] 2 7 2 5 0
Local Variable [3] 1 1 1 0 0
NASA [3] 1 1 1 0 0

Coordinates’04 [4] 1 2 1 1 0
Buffer [4] 0 1 0 1 0
Double-Check [4] 0 1 0 1 0

StringBuffer [10] 1 1 1 0 0

Account [23] 1 1 1 0 0
Jigsaw [23] 1 2 1 1 0
Over-reporting [23] 0 1 0 1 0
Under-reporting [23] 1 1 1 0 0

Allocate Vector [1] 1 2 1 1 0

Knight Moves [21] 1 1 1 0 0
Arithmetic Database [21] 1 2 2 0 1*

Total 14 27 15 12 1
* This anomaly was partially detected.

executions, since all the anomalies detected with three or more expansions of
the loop body are duplicates of those detected with just two expansions.

3.4. Validation of the Approach

We ran a total of 15 tests for detecting high-level anomalies in TM programs.
Many of those tests consist of small programs taken from the literature [3, 4,
5, 10, 23] with well studied high-level anomalies. The Allocate Vector test was
taken from the IBM concurrency benchmark repository [1]. We also developed
two of the tests [21]. All the 15 test programs were analyzed with success by
our tool.

We measure the effectiveness of our high-level datarace detector by the
number of main anomalies reported, as defined in Section 3.2. This metric is
better than the regular, pattern specific, anomaly count, since it reflects the
number of spots that lack inter-transaction atomicity. It is also more meaningful
for the user since it point our the transactions that should be merged.

The results are summarized in Table 1. In a total of 14 anomalies present in
these programs, 13 were correctly pointed out.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 543

João Lourenço, Diogo Sousa, Bruno Teixeira and Ricardo Dias

In the Arithmetic Database test our tool indicates two anomalies; these
anomalies are part of a larger anomaly which was not detected as a whole.
This program performs four transactions that should be merged in a single one.
Since our detection approach is based on the most common case of anomalies
between a pair of adjacent transactions, we fail to see the lack of atomicity of
these four transactions. It is also worth noticing that two specific cases of the
anomaly were reported.

In addition to the correctly detected anomalies, there were also 12 false
positives (45% of total warnings). We group the causes for these imprecisions
in 4 different categories.

Out of these 12 false warnings, 2 were due to redundant read operations:
when reading object.field, we consider that two readings are actually be-
ing performed, one to object and another to field. It makes no sense for
two instances of this statement to be involved in an anomaly. It is possible to
eliminate these false positives by tailoring the analysis and consider only one
read operation in the access to field.

Another 4 false positives are related to cases for which additional semantic
information would have to be provided by the software developer or somehow
inferred. These false warnings could be eliminated with the aid of other available
techniques, such as points-to and may-happen-in-parallel analyses.

Two other false positives could be eliminated by refining the definition of
the anomaly patterns described in Section 3.2. For example, an RwR anomaly
could be ignored if the last transaction reads both values involved.

Finally, 4 false warnings which are matched by our anomaly patterns are
definite false positives. Further study would be necessary to adapt the anomaly
patterns in order to leave out these correct accesses, without compromising the
precision of the detector. If we fix all the previous false positives but these last
four, we will be able to reduce the percentage of false positives from 45% to
15%, which is much better than what can be observed in related works.

4. Related Work

Low-level datarace detection, either by observing a program’s execution (dy-
namic approach) or its specification (static approach) has been an area of in-
tense research [6,8,9,13,14,16,17]. We are unaware of any work that specifi-
cally targets the detection of low-level dataraces in the TM setting. However, we
have shown that current algorithms and tools, which are intended for use with
lock-based mechanisms, may as well be applied to transformed TM programs.

There are some relevant works on high-level anomaly detection that, al-
though not targeting the TM setting, share some principles and features with
our own work. One of the earliest works on the subject is the one by Wang and
Stoller [24]. They introduce the concept of thread atomicity, with atomicity hav-
ing a different meaning than the one stated in the ACID properties provided by
TM systems. In this case, thread atomicity is more related to serializability, and
it means that any concurrent execution of a set of threads must be equivalent

544 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Detecting Concurrency Anomalies in Transactional Memory Programs

to some sequential execution of the same set of threads. Wang and Stoller pro-
vide two algorithms for dynamically (i.e., at runtime) finding atomicity violations.
Other authors have based on this work to develop other approaches [5,10]. Our
approach, being less strict than the one from Wang and Stoller [24], tends to be
more precise and generates much less false positives.

An attempt to provide a more accurate definition of anomalies is the work on
High-Level Dataraces (HLDRs) by Artho et. al [3]. Informally, an HLDR in this
context refers to variables that are related and should be accessed together, but
there is some thread that does not access that variable set atomically. This is
different from thread atomicity, which considers the interaction between trans-
actions, without regard for relations between variables.

Because HLDR is concerned with sets of related variables, some atomicity
violations are not regarded as anomalies, such as those concerning only to one
variable. On the other hand, it is possible that an HLDR does not incur in an
atomicity violation. This work is in some way related to ours, in that it attempts to
increase the precision of thread atomicity by reducing the false positives cases.
However, while our approach is to simply disregard some atomicity violations as
safe, the work by Artho founds a new definition, which still exhibits some false
positives, and also introduces some false negatives. This work is also related
to our in that they both automatically infer data relationships and do not require
processing user annotations which state those relationships.

A different approach has been taken by Vaziri et. al [22]. Their work fo-
cuses on a static pattern matching approach. The patterns reflect each of all
the possible situations that may lead to an atomicity violation. The anomalies
are detected based on sets of variables that should be handled as a whole.
To this end, the user must explicitly declare the sets of values that are related.
This work is similar to ours in that both approaches are static, and both follow
a pattern-matching scheme. However, our approach is intended to be applied
to existing programs, and so it assumes that any set of variables may be re-
lated. Contrarily, the work by Vaziri demands that the user explicitly declares
which sets of variables are meant to be treated atomically, and so it can trigger
anomalies on all atomicity violations, without too many false positives.

5. Concluding Remarks

In this paper we proposed to detect low-level dataraces in transactional mem-
ory programs by explore the correspondence between low-level dataraces in
these programs with equivalent low-level dataraces in lock-based programs.
We proposed to convert all memory transactions in a program into synchro-
nized blocks, all synchronizing in a single global lock. This was achieved with
static analysis of the source code and a source-to-source transformation.

Application of this technique to well known test programs proved to be effec-
tive in the detection of low-level anomalies in transactional memory programs.

We have analyzed common criteria for reporting high-level anomalies, and
attempted to provide a more useful criteria by defining three anomaly pat-

ComSIS Vol. 8, No. 2, Special Issue, May 2011 545

João Lourenço, Diogo Sousa, Bruno Teixeira and Ricardo Dias

terns. A new approach to static detection of high-level concurrency anomalies
in Transactional Memory programs was defined and implemented. This new
approach works by conservatively tracing transactions and matching the inter-
ference between each consecutive pair of transactions against a set of well
defined anomaly patterns. Our approach raises false positives, although at an
acceptable level; and well known techniques can be applied to prune the false
warnings to and even lower level. When compared with the existing reports from
literature, these results are, in general, considerably better. We may therefore
conclude that our conservative tracing of transactions is a reasonable indica-
tor of the behavior of a program, since our results rival with those of dynamic
approaches.

The developed framework can be improved by further refining the error
patterns. The addition of points-to and may-happen-in-parallel analyses would
help to improve the tool by reducing the number of states to be analyzed. Other
improvements could be achieved by enabling the analysis of standard or un-
available methods, and by solving the issue of redundant read accesses.

Our approach is novel because it is based in static analysis; it extracts con-
servative trace trees aiming at reducing the number of states to be analyzed;
and it detects anomalies using a heuristic based in a set of suspicious patterns
believed to be anomalous.

References

1. IBM’s Concurrency Testing Repository, https://qp.research.ibm.com/
concurrency_testing

2. Ansari, M., et al.: Lee-TM: A non-trivial benchmark suite for transactional memory.
In: Proceedings of ICA3PP ’08. pp. 196–207. Springer-Verlag, Berlin (2008)

3. Artho, C., Havelund, K., Biere, A.: High-level data races. Softw. Test., Verif. Reliab.
13(4), 207–227 (2003)

4. Artho, C., Havelund, K., Biere, A.: Using block-local atomicity to detect stale-value
concurrency errors. In: Wang, F. (ed.) ATVA. Lecture Notes in Computer Science,
vol. 3299, pp. 150–164. Springer (2004)

5. Beckman, N.E., Bierhoff, K., Aldrich, J.: Verifying correct usage of atomic blocks and
typestate. SIGPLAN Not. 43(10), 227–244 (2008)

6. deok Choi, J., Loginov, A., Sarkar, V., Logthor, A.: Static datarace analysis for mul-
tithreaded object-oriented programs. Tech. rep., IBM Research Division, Thomas J.
Watson Research Centre (2001)

7. Dias, R., Teixeira, B.: Ajex: A source-to-source java stm framework compiler. Tech.
rep., DI-FCT/UNL (Apr 2009)

8. Dinning, A., Schonberg, E.: Detecting access anomalies in programs with critical
sections. SIGPLAN Not. 26(12), 85–96 (1991)

9. Flanagan, C., Freund, S.N.: Type-based race detection for Java. SIGPLAN Not.
35(5), 219–232 (2000)

10. Flanagan, C., Freund, S.N.: Atomizer: a dynamic atomicity checker for multithreaded
programs. In: Proceedings of POPL’04. pp. 256–267. ACM, New York, NY, USA
(2004)

546 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Detecting Concurrency Anomalies in Transactional Memory Programs

11. Herlihy, M., Luchangco, V., Moir, M., Scherer, I.W.N.: Software transactional memory
for dynamic-sized data structures. In: Proceedings of PODC’03. pp. 92–101. ACM,
New York, NY, USA (2003)

12. Herlihy, M., Luchangco, V., Moir, M., William N. Scherer, I.: Software transac-
tional memory for dynamic-sized data structures. In: PODC ’03: Proceedings of
the twenty-second annual symposium on Principles of distributed computing. pp.
92–101. ACM, New York, NY, USA (2003)

13. Marino, D., Musuvathi, M., Narayanasamy, S.: Literace: effective sampling for
lightweight data-race detection. In: Proceedings of PLDI’09. pp. 134–143. ACM,
New York, NY, USA (2009)

14. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for java. In: PLDI. pp.
308–319. ACM Press (2006)

15. Nystrom, N., Clarkson, M.R., Myers, A.C.: Polyglot: An extensible compiler frame-
work for java. In: CC. pp. 138–152 (2003)

16. O’Callahan, R., Choi, J.D.: Hybrid dynamic data race detection. SIGPLAN Not.
38(10), 167–178 (2003)

17. Qi, Y., Das, R., Luo, Z.D., Trotter, M.: Multicoresdk: a practical and efficient data race
detector for real-world applications. In: Proceedings of the 7th Workshop on Parallel
and Distributed Systems. pp. 1–11. ACM, New York, NY, USA (2009)

18. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of PODC’95.
pp. 204–213. ACM, New York, NY, USA (1995)

19. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of PODC’95.
pp. 204–213. ACM, New York, NY, USA (1995)

20. Teixeira, B., Sousa, D., Lourenço, J., Dias, R., Farchi, E.: Detection of transactional
memory anomalies using static analysis. In: Proceedings of PADTAD’10. pp. 26–36.
ACM, New York, NY, USA (2010)

21. Teixeira, B.: Static Detection of Anomalies in Transactional Memory Programs. Mas-
ter’s thesis, Universidade Nova de Lisboa (Apr 2010)

22. Vaziri, M., Tip, F., Dolby, J.: Associating synchronization constraints with data in
an object-oriented language. In: Proceedings of POPL’06. pp. 334–345. ACM, New
York, NY, USA (2006)

23. von Praun, C., Gross, T.R.: Static detection of atomicity violations in object-oriented
programs. In: Journal of Object Technology. p. 2004 (2003)

24. Wang, L., Stoller, S.D.: Run-time analysis for atomicity. Electronic Notes in Theo-
retical Computer Science 89(2), 191–209 (2003), RV ’2003, Run-time Verification
(Satellite Workshop of CAV ’03)

Joao Lourenço is an Assistant Professor at the Computer Science Depart-
ment of New University of Lisbon, Portugal. He received his MSc and PhD in
1995 and 2004 respectively, both from the New University of Lisbon. His cur-
rent research interests focus on Software Transactional Memory, more specif-
ically in Transactional Memory run-time and programming language support,
and also software development environments and tools for TM, including test-
ing and debugging tools. He is currently a member of the Transactional Sys-
tems Research Team (TrxSys) at the Center for Informatics and Information
Technologies (CITI).

ComSIS Vol. 8, No. 2, Special Issue, May 2011 547

João Lourenço, Diogo Sousa, Bruno Teixeira and Ricardo Dias

Diogo Sousa is a BSc student at the Computer Science Department of New
University of Lisbon, Portugal. He will conclude his BSc in July 2011 and plans
to enroll in the MSc immediately after. He has been collaborating in the research
activities of the Transactional Systems Research Team (TrxSys) at the Center
for Informatics and Information Technologies (CITI) since his first year of the
BSc, always under the supervision of Dr. Joao Lourenço. He also frequently
participates in programming contests and is a supporter of Free Software.

Bruno Teixeira is currently working as an IT Consultant at a private corporation
in Lisbon, Portugal. He received his MSc in 2010 from the New University of Lis-
bon with a dissertation entitled “Static Detection of Anomalies in Transactional
Memory Programs” and was advised by Dr. Joao Lourenço.

Ricardo Dias is a PhD student at the Computer Science Department of New
University of Lisbon, Portugal. He received his MSc in 2008 from the New Uni-
versity of Lisbon. His current research interests focus on Software Transactional
Memory, more specifically in static verification of isolation anomalies in trans-
actional programs.

Received: January 10, 2011; Accepted: March 2, 2011.

548 ComSIS Vol. 8, No. 2, Special Issue, May 2011

 ComSIS Vol. 8, No. 2, Special Issue, May 2011

CIP – Каталогизација у публикацији
Народна библиотека Србије, Београд

004

COMPUTER Science and Information
Systems : the International journal /
Editor-in-Chief Mirjana Ivanović. – Vol. 8,
No 2 (2011) - . – Novi Sad (Trg D. Obradovića
3): ComSIS Consortium, 2011 - (Belgrade
: Sigra star). –30 cm

Polugodišnje. – Tekst na engleskom jeziku

ISSN 1820-0214 = Computer Science and
Information Systems
COBISS.SR-ID 112261644

Cover design: V. Štavljanin
Library administration: M. Petković
Printed by: Sigra star, Beograd

	013 - SpeckA_FejaS_WittS_PulvermullerE_MarcelS.pdf
	Formalizing Business Process Specifications
	Andreas Speck, Sven Feja, Sören Witt, Elke Pulvermüller, and Marcel Schulz

