
UDC 004.78

Wireless Sensor Network Application
Programming and Simulation System

Žarko Živanov1, Predrag Rakić1 and Miroslav Hajduković1

1 Faculty of Technical Sciences, Trg D. Obradovića 6,
21000 Novi Sad, Serbia

{zzarko,pec,hajduk}@uns.ns.ac.yu

Abstract. We present, a wireless sensor network application
programming and simulation system, suitable for wireless sensor
network application development for both resource constrained and
unconstrained hardware. Developed programs can be tested inside
simulator, or (with source unchanged) executed directly on hardware.
Main contribution of our project is uniform object oriented programming
model with predefined basic concurrency abstractions.

Keywords: wireless sensor networks; operating systems; simulation;
code generation.

1. Introduction

Wireless sensor networks (WSNs for short) are networks consisting of large
number of battery powered sensor devices (sensor nodes, or just nodes for
short), interconnected by radio waves. The main task of such network is to
collect physical data in the given environment and to send it to one or more
collector (sink) nodes. Since it is often expensive or impossible to charge or
replace node's battery, prolonging the node's lifetime is essential.

Topology of the network is usually dynamic. Although in most cases nodes
are not movable, lifetime of each node is different. And because of energy
saving, RF range of each node is usually limited to nearest neighbors. This
implies that communication with sink must be done by using point to point
protocols. When a neighbor dies, node usually must find another route to
send its data. There are many protocols addressing this issue [1], [2].

Each node consists of several parts:
− microcontroller (CPU) with RAM and some kind of ROM memory (usually

flash or EEPROM);
− one or more sensors (accessed through analog-to-digital converters -

ADC);
− battery;
− RF module;
− optional actuators;

Žarko Živanov, Predrag Rakić and Miroslav Hajduković

110 ComSIS Vol. 5, No. 1, June 2008

− optional additional flash memory.
CPU can be 8, 16 or 32-bit, while available memory is usually a couple of

tens kilobytes or hundreds of kilobytes. This imposes constrains on node's
program size and complexity. Today's nodes vary from nodes with 8-bit micro
controllers like MICA and MICA2 [3], to nodes with 32-bit 400 MHz micro
controllers and megabytes of memory, like Intel Mote 2 [4].

Since hardware characteristics vary in wide range, characteristics of their
operating systems vary, too. Operating systems of heavily constrained nodes
are event-based or cooperative. More powerful nodes (usually with permanent
power source) are preemptive.

In this paper we present WAPAS (Wireless sensor network Application
Programming And Simulation system) project suitable for wireless sensor
network application development for both (power, memory, processor, etc.)
constrained and unconstrained hardware. Depending on target hardware
characteristics, appropriate concurrency model can be selected (Fig 1).

Fig. 1. WAPAS project structure overview

Main contribution, in this paper, is uniform object oriented programming
model with predefined basic concurrency abstractions. This programming
model can be used with both preemptive and cooperative concurrency
models, i.e. it is suitable for both hardware constrained and unconstrained
platforms.

Our programming model offers opportunity to application programmers to
develop code for both nodes and sinks using almost identical programing
model and to test it together, in the same simulation environment.

WAPAS simulator offers complete virtual environment for simulating WSN
behavior. Node's hardware is simulated by simulation libraries (sensors, RF
module, energy consumption). All functions are accessible from graphical

Wireless Sensor Network Application Programming and Simulation System

ComSIS Vol. 5, No. 1, June 2008 111

user interface, allowing simulation starting, stopping, modifying and
monitoring.

Chapter 2 of the paper presents related work. Chapter 3 introduces
proposed programming model. Chapter 4 describes details of the
programming model implementation. Chapter 5 contains simulator
description. Conclusions are given in Chapter 6.

2. Related Work

2.1. Operating Systems

In literature we recognized two distinctive categories of wireless sensor
network operating systems. One category is intended for cheap sensor nodes
[5] with finite state machine programing models and event based concurrency,
like TinyOS [6] and Contiki [7]. The other is designed for high-end nodes (e.g.
sinks), with preemptive operating systems and multi-threaded programming
models, like Mantis [8].

Preemptive multitasking with blocking procedure calls is, what today's
programmers consider, comfortable environment. Unfortunately, it can not be
efficiently implemented on energy constrained hardware platforms, at least
not natively.

To fill in the gap, number of projects offer improved programing and
concurrency models for low-end nodes operating systems as library
extensions or virtual machines:

− TinyThreads [9] is implemented as library on top of TinyOS, allowing
intermixing event-driven and threaded programming. It contains library
functions that provide blocking I/O operations. Every thread has its own
stack.

− Coroutines for TinyOS [10] offer a programming model which combines
event-driven system with cooperative multitasking, enabling the
programmer to structure his application as sequential code instead of as
a state machine.

− Protothreads [11] supports an extremely lightweight stackless type of
thread, and provides conditional blocking on top of event-driven system
without the overhead of per thread stacks.

− Fibers for TinyOS [12] allows user to use blocking I/O calls using just
one (system) stack with limitation that there can be only one user fiber.
Implementation is similar to protothreads but instead of jumping back to
main loop, a blocking call actually calls scheduler. This allows user to
use local variables and block inside subroutines.

− Mate [13] is a virtual machine environment for TinyOS. Among other
things, Mate provides a way for threating split-phase operations as
though they were strait-line pseudo-blocking operations. However, since

Žarko Živanov, Predrag Rakić and Miroslav Hajduković

112 ComSIS Vol. 5, No. 1, June 2008

Mate is virtual machine these operations introduce cost of byte-code
interpretation.

These projects provide improved models to underline operating systems,
but their concurrency model improvements are available only together with
certain overhead and programming interface change.

2.2. Simulators

First sensor network simulators were made as an extension of already
existing network simulators. These simulators mainly focus on protocols used
in WSNs. Recently, several simulators are made specifically for WSNs. Some
of them are general simulators, while others are simulators for a specific
hardware platform or operating system.

SensorSim [14] is an extension to ns-2 network simulator. This simulator
provides models needed for WSN modeling: battery, CPU, sensors, RF
module, etc. Power consumption of all components is also modeled. It also
supports hybrid simulation: ability to interconnect real and simulated nodes.

GTSNetS [15] is a simulator for large-scale sensor networks, capable of
simulating hundreds of thousand nodes. This simulator is an extension of
GTNetS network simulator. It provides several models for the different
functional units composing a sensor node. It is mainly a communication
protocol simulator.

SENS [16] is a customizable WSN simulator, consisting of components for
every aspect of the simulation. It is a platform independent simulator with a
thin compatibility layer which allows portability between simulator and real
sensor nodes.

J-Sim [17] is a simulation environment for WSN developed in Java. It is
mainly oriented towards communication protocol simulation. WSN modeling is
based on inheritance of classes in the simulation framework.

TOSSIM [18] is a simulator for TinyOS applications. The main goal of
TOSSIM is to provide a simulator that bridges the gap between algorhytms
and implementation. Most of the code written for TOSSIM can be directly
compiled for TinyOS.

TOSSF [19] is a scalable simulator for TinyOS applications. It allows
heterogeneous collection of sensor nodes and allows dynamic network
topology. TOSSF simulates execution of TinyOS applications at source level.
This simulator is an adaptation of SWAN, a simulator for wireless ad-hoc
networks.

3. Programming model

The traditional approach to deal with concurrency is to use preemptive
multithreading. In preemptive systems, programmer has no control over the
moment at which control switch occur. This imposes context switching and

Wireless Sensor Network Application Programming and Simulation System

ComSIS Vol. 5, No. 1, June 2008 113

shared variables protection overhead. This overhead can be significant in
hardware constrained systems. Since preemptive concurrency model is
convenient and comfortable for hardware unconstrained platforms and at the
same time inappropriate for hardware constrained platforms both preemptive
and non-preemptive concurrency models are used in WSN operating
systems. We are developing uniform programming model suitable for both
types of platforms: preemptive and non-preemptive.

Our programming model is inspired by COLIBROS operating system [20],
[21]. It is based on C++ language because object oriented view is much more
natural and comfortable than procedural or state machine views are [22].
Concurrency is described (and implemented in preemptive systems) by
inheritance and polymorphisms.

We identified basic concurrency abstractions suitable for wireless sensor
programming and integrated them in our programming model. These
abstractions are:

− threads;
− shared variables.
These concurrency abstractions, threads and shared variables, relate like

speaking language subjects and objects. Thread, like subject, represents
somebody conducting actions. Shared variable, like object, represents
something actions are conducted on. Together they are used to model
wireless sensor network application.

3.1. Threads

Thread represents context of execution. Separate tasks in application are
implemented as threads.

We concluded that any activity in WSN application that is needed once will
be probably needed again. Activities that are really needed only once are
some kind of initialization and their place is in thread object constructors. So,
we offer no dynamic thread instantiation. Thread objects are statically
instantiated. Thread can be started only once and when it is finished it's
memory is not freed. For that reason, threads should never end. Instead, they
should contain endless loop. In the loop, thread activity can be blocked
(postponed):

− waiting for some time to expire;
− waiting for some condition to be fulfilled;
− waiting for some event to happen.
WAPAS application entry point is not main() function but instead system

declared and user defined Initial::run() member function.
Example of thread definition, instantiation and start is shown in Program 1.

In this example one user thread class called Simple is defined. Member
function run() contains thread instructions: endless loop the body of which
is executed every 500ms. First, current time is saved in local variable
start_time. After that analog-to-digital (A/D) conversion is started

Žarko Živanov, Predrag Rakić and Miroslav Hajduković

114 ComSIS Vol. 5, No. 1, June 2008

(adc.getData()) and when conversion result is returned in local variable
data, it is sent through RF module (rf.send()). When cycle (A/D
conversion and sending) is finished thread activity is stopped. Thread activity
is resumed (cycle repeated) 500ms after beginning of previous cycle
(delay_till()). Function delay_till() provides mechanism for
scheduling periodic activities independent of activity duration. Objects adc
and rf represent ADC and RF module devices, respectively. Operation
adc.getData() acquires data from ADC. It is presented in Program 3.
Operation rf.send() transmits data. It is not presented in this article.

Thread object simple is statically instantiated. In initial thread, node's
duty cycle is defined through working (working_period()) and sleeping
(sleeping_period()) period. Duty cycle is set to 2% (10ms working period
and 490ms sleeping period). After that, thread simple is scheduled
(start()).

Program 1: Simple Thread Example

class Simple : public Thread {
 public:
 void run(void) {
 unsigned data;
 unsigned start_time;
 int result;
 for (;;) {
 start_time = time_get();
 data = adc.getData();
 result = rf.send(data, ...);
 ...
 delay_till(start_time+500);
 }
 }
};

Simple<DEFAULT_STACK_SIZE> simple;

void Initial::run() {
 working_period(10);
 sleeping_period(490);
 simple.start();
}

3.2. Shared variables

During application execution threads need to communicate (exchange data)
with other threads as well as with environment (timers, sensors,
communication devices, etc.). Depending on concurrency model used,
communication (accessing shared memory locations) can lead to race
conditions. Shared variables are developed with appropriate synchronization

Wireless Sensor Network Application Programming and Simulation System

ComSIS Vol. 5, No. 1, June 2008 115

protocols which provide safe communication, independent of concurrency
model used.

We recognize two types of shared variables:
− exclusive;
− atomic.

Exclusive Variables

Exclusive variables are used for communication between threads. They
provide mechanisms for thread synchronization – mutual exclusion and
conditional synchronization.

Mutual exclusion is achieved through instancing Exclusive_block class
objects and conditional synchronization is achieved using member attributes
of type Condition.

Exclusive variable definition example is shown in Program 2. In this
example exclusive class Communicate is defined. This class guarantees
safe communication between two threads, i.e. communication is atomic. One
message can not be read more then once and new message can not
overwrite old, unread one. Objects of this type are used for communication in
producer-consumer situations. The Communicate class has two member
functions send() and receive(), bodies of which are executed in exclusive
blocks. Constructor and destructor of object of Exclusive_block type
borders exclusive block.

In member function send() first it is checked if object is EMPTY. If it's not,
calling thread execution is suspended (empty.await()) until object is
emptied. When object becomes empty, thread execution is resumed, new
message is placed in object, object state is changed to FULL and thread (if
any) waiting for state FULL is resumed (full.signal()).

Member function receive() is symmetrical. So, first it is checked if object
is FULL. If it's not, calling thread execution is suspended (full.await())
until message is placed in object. After that, object state is changed to EMPTY,
thread (if any) waiting for state EMPTY is resumed (empty.signal()) and
message is returned to calling thread. Message consistency is preserved
because message (data) is returned before destruction of local variable
set_up.

Program 2: Exclusive variable Example

class Communicate : public Exclusive {
 enum States { FULL, EMPTY };
 unsigned data;
 Condition full, empty;
 States state;
 public:
 Comunicate() : state(EMPTY) {}
 void send(unsigned d) {
 Exclusive_block set_up(this);

Žarko Živanov, Predrag Rakić and Miroslav Hajduković

116 ComSIS Vol. 5, No. 1, June 2008

 if(state != EMPTY)
 empty.await();
 data = d;
 state = FULL;
 full.signal();
 }
 unsigned receive() {
 Exclusive_block set_up(this);
 if(state != FULL)
 full.await();
 state = EMPTY;
 empty.signal();
 return data;
 }
};

Atomic Variables

Atomic variables usually represent hardware components. They are used for
communication between threads and devices to ensure communication
atomicity.

Atomic class definition example is shown in Program 3. In this example,
Adc class represents ADC assigned ADC_INT_NUMBER interrupt vector
number. This class has two member functions. One, getData() is blocking
and designed for thread to ask ADC for new sample and expect for
conversion completion. The other is interrupt handler invoked by ADC to notify
system that conversion is completed.

Bodies of these two member functions are atomic. Atomicity of getData()
is protected by variable set_up of Atomic_block type. Atomic_block
constructor disables interrupt handling and destructor returns it in previous
state, thus protecting atomicity of region in which variable of this type lives.
Atomicity of interrupt handler is protected by hardware mechanisms.

In function getData() first it is checked if A/D conversion is already
started by another thread (busy). If it is, calling thread execution is
suspended (ready.expect()) until ADC is ready for new cycle. When ADC
is ready, it is declared busy and is instructed to start conversion. After that,
calling thread is unconditionally suspended (dataReady.expect()) to wait
for conversion completion indicated by interrupt handler. After resuming, ADC
is declared ready for new cycle, thread waiting for ADC (if any) is resumed
(ready.notify()) and acquired sample is returned to calling function.

Interrupt handler is called when sampling cycle is completed. Interrupt
handler places the sample in attribute data and resumes activity of thread
that initiated sampling cycle, i.e. thread that called getData().

Program 3: Atomic variable example

class Adc : public Atomic <ADC_INT_NUMBER> {
 Event ready, dataReady;

Wireless Sensor Network Application Programming and Simulation System

ComSIS Vol. 5, No. 1, June 2008 117

 bool busy;
 unsigned data;
 public:
 Adc() : busy(false) {start_interrupt_handling();}
 unsigned getData() {
 Atomic_block set_up;
 if(busy) ready.expect();
 busy = true;
 ...; // instruct hardware to start sampling
 // and place result in attribute “data”
 dataReady.expect();
 busy = false;
 ready.notify();
 return data;
 }
 void interrupt_handler(void) {
 data = ...; // io access
 dataReady.notify();
 }
}

4. Programming Model Implementation

Programs written using previously described programming model can be
efficiently compiled for both preemptive and non-preemptive system. For
preemptive system we are developing system library. For event-based
systems we are developing preprocessor. This preprocessor translates object
oriented C++ source code to plain and efficient C code.

On both platforms application code is compiled together with system
libraries similar to exokernel application [23].

4.1. Preemptive System

In preemptive system which is generally not resource constrained, whole
program is compiled with C++ compiler and linked with appropriate system
libraries (target hardware platform or simulation system).

Threads and shared variables (exclusive and atomic) are statically defined
global objects. Order of thread execution is determined by preemptive priority
scheduler.

Every thread has its own memory region containing descriptor followed by
stack. Stack size is defined with Thread class template parameter. In
simulation, block of memory with no access rights is placed between
descriptor and stack. Access to this block can be used to detect stack
overflow.

Exclusive variables are protected against race conditions. Exclusive
regions are used for mutual exclusion. Part of code in which threads access

Žarko Živanov, Predrag Rakić and Miroslav Hajduković

118 ComSIS Vol. 5, No. 1, June 2008

exclusive variables (actually their attributes) is called critical section.
Execution of these parts of code should be serialized (mutually exclusive).
Mutual exclusion is achieved by enclosing critical sections in exclusive region
blocks.

Every exclusive variable contains ticket, that thread should obtain before
accessing it. Thread that obtains ticket enters exclusive region. Other threads
suspend their execution until the ticket is granted to them.

Ticket is obtained in constructor of Exclusive_block type and released
in its destructor. Thus, exclusive regions are represented by blocks of code in
which local variable of Exclusive_block type exist.

Conditional synchronization is achieved through member objects of
Condition type. Object of this type contains list in which threads that wait
fulfillment of that condition are linked. Thread can choose place for itself in list
using operations: first(), next() and last() and link itself using
await() operation. Condition fulfillment is indicated with signal()
operation. This operation transfers first thread out of the list.

Race condition protection in access to atomic variables is achieved through
atomic regions. Atomic regions are implemented in constructor and destructor
of Atomic_block class. In constructor interrupt handling is disabled and in
destructor it is enabled.

Thread can suspend its activity until arrival of event. The events are
represented with objects of Event class. Object of this class contains list in
which threads, expecting the event, are linked. Thread is always linked at the
last position in the list (expect()). Event arrival is usually indicated in
interrupt handler (notify()).

4.2. Non-preemptive System

WAPAS offers natural programing model for preemptive systems. In non
preemptive system whole WAPAS program is transformed to fit in cooperative
multitasking paradigm and hardware limitations.

Thread bodies (body of member function run()) of all thread classes are
combined in one body() function with certain changes (described later). The
body() function is executed in infinite loop. Interrupt handlers can preempt
body() function.

In WAPAS application time is divided in working and sleeping periods (Fig
2). One working period is called epoch. Epoch consists of many cycles. One
cycle is one execution of body()function.

Most of the time, node is in power-saving (sleeping) mode. When sleeping
time expires, system becomes on-line (active) and executes body() function
i.e. first cycle begins. After cycle is finished, system checks if active time
expired, and if it isn't, next cycle is started. If active time expired, system goes
to sleep mode unless some thread called operation_in_progress()
system call. In that case, cycles are executed until
operation_completed() system call. After completion of the cycle in

Wireless Sensor Network Application Programming and Simulation System

ComSIS Vol. 5, No. 1, June 2008 119

which system call operation_completed() is executed, system goes to
sleep mode.

Fig. 2. Application time line in non-preemptive system: showing one working and one
sleeping period. Working period begins when sleep time expires. It consists of cycles.
Working period ends after (1) completion of cycle in which active time expired, if
operation_in_progress() has not been called, or either (2) after completion of
cycle in which operation_completed() system call is executed after active time
expired.
Note: The sleeping period is usually much longer than active one [24].

operation_in_progress() and operation_completed()system
calls are designed for operations (e.g. communication) that span over multiple
cycles but should not be suspended in one and resumed in next epoch. It is
up to the programmer to use this mechanism carefully, taking care not to
disturb node's duty cycle significantly. These system calls are ignored in
preemptive system, since duty cycle of preemptive system is 100% (it is never
in sleep mode).

The first phase during code generation is preprocessing. Preprocessing is
largely based on code earlier developed for kiosk application generator [25].
Preprocessor first translates application's source code into C code, with
inherently less overhead (binary code compiled directly from object oriented
source code introduces certain overhead). In order to optimize programs for
such systems, some restrictions and semantic changes on program model are
present if the target is non-preemptive:

− Only one thread can wait on a single condition;

Žarko Živanov, Predrag Rakić and Miroslav Hajduković

120 ComSIS Vol. 5, No. 1, June 2008

− Calls to Condition::await() and Event::notify() are
implemented as conditions. If condition is not fulfilled, thread's code is
not executed in the given cycle;

− Condition::await() and Condition::signal() can only be used
inside member functions of exclusive class;

− Event::expect() and Event::notify() can only be used inside
member functions of atomic class;

− first(), next() and last() methods of Exclusive class are not
allowed;

− Only periodic threads are allowed (that is, only threads that run from
beginning to end in each epoch). Thread that have long execution can
monopolize CPU time;

− Declaration of local variables is not allowed inside blocks contained in any
of the functions (it is allowed only at the function body level).

All thread classes, exclusive variable classes and atomic variable classes
are registered. Also, all objects representing recognized classes are
registered. Conditional jumps are inserted to enable continuation of execution
of each thread's code in the cycle (if, for example, thread waits for signal()
or notify(), it will not start from the beginning, but from inserted conditional
jump that decides if thread's code should continue its execution).
Modifications of the source code are:

1. For each registered object (threads, shared variables), appropriate
structure is created, holding all needed data, including local
variables (if present);

2. Accessing local variables is converted into accessing member of
appropriate structure;

3. For each atomic variable, its interrupt handler's code is extracted
and placed in appropriate interrupt handler function;

4. run() method of all threads are combined into body() function, in
descending priority order. In front of each thread's code a
conditional jump is inserted, that decides if thread's code should be
executed in the given cycle. Thread's run() code is sliced into
code segments divided by calls to await(), expect() and
yield()(willingly give-up the CPU) methods. A switch statement
is introduced for jumping into appropriate place in code;

5. Calls to shared variable methods are replaced by complete code
from that method;

6. Calls to await() or expect() methods are replaced by
appropriate conditional jump;

7. Calls to signal() and notify() methods are replaced with
code that sets attribute of appropriate structure. These attributes
are checked inside inserted conditional jumps.

After execution of last cycle in the current epoch, hardware is adjusted for
next epoch. After that, node goes to sleep mode, until awakening.

Wireless Sensor Network Application Programming and Simulation System

ComSIS Vol. 5, No. 1, June 2008 121

5. Simulation Environment

In order to simulate wireless sensor network, one must provide complete
virtual environment to code executing in each node. This includes:

− simulating sensor readings;
− simulating actuator actions;
− simulating message sending and receiving;
− simulation-data collecting, presenting and analysis.
For sensor readings simulation we need to model sensor behavior and to

supply data values for each sensor. Most of the sensors are, from the node's
code point of view, AD converters and are relatively easy to simulate. AD
converter can be described with its data size, conversion time, and level of
oscillations in accuracy (needed for modeling malfunctions). Depending on
physical signal and required level of realism, physical signal propagation can
be simulated (e.g. sound waves).

Actuator actions can be modeled according to their influence on the
environment. Each action must be separately programmed, depending on its
nature.

Message sending and receiving simulation includes RF module simulation
and wave propagation simulation. Again, depending on required level of
realism, wave propagation can be simply modeled as RF module sending
range/strength, or it can include influence of obstacles.

The sole purpose of WSN simulation is to provide insight information on
WSN functionality. Thus, simulation environment must be able to collect
relevant data and to display it on demand.

Our simulation environment consists of two main parts:
− simulation libraries;
− simulation server.
Simulation libraries are used in node's program code, replacing code used

for hardware handling (sensors, actuators, RF module, battery, ...). Simulation
server coordinates all actions needed for simulation, supplies physical data to
virtual sensors, handles RF communication and collects simulation data.

5.1. Simulation Libraries

Simulation libraries are linked with node's program code in order to simulate
node's hardware. Simulation includes:

− RF module simulation;
− AD converters simulation;
− actuator simulation;
− hardware timers simulation;
− battery consumption simulation.
RF module simulation is done via TCP/IP communication with simulation

server.

Žarko Živanov, Predrag Rakić and Miroslav Hajduković

122 ComSIS Vol. 5, No. 1, June 2008

AD converters and actuator simulation is also done via communication with
simulation server, which provides all physical data. Internal timings of the AD
converters are realized inside library.

Hardware timers simulation provides all the functionality of node's internal
timers (including watchdog timer, external timers, etc.).

Battery consumption simulation is based on energy consumption of node's
parts (CPU - for all power saving modes, RF module - for sending and
receiving, sensors, actuators, flash memory).

5.2. WSN Simulation Server

WSN Simulation server's (server, for short) main role is to simulate node's
environment. That includes:

− supplying data for sensor readings and reacting to actuator commands;
− simulating message sending and receiving.
In order to achieve these goals, server needs additional functionality:
− reading simulation configuration files and creating simulation

environment;
− receiving messages from all nodes and determining which message can

go to which node;
− calculating every node's visibility to all other nodes;
− calculating current physical data for all sensors;
− starting, stopping or pausing simulation;
− displaying all relevant data;
− user interaction with simulation;
− monitoring of the whole simulation process.
At the start of the simulation, server first reads configuration files. Every

node is described with its ID, coordinates, battery state, node's software
(name of the file with software image), start and stop time(s). Terrain is
described with simplified obstacles. Each obstacle has its type (square/circle),
coordinates, RF attenuation factor and, eventually, description of its
movement during the simulation. Since the simulation can be done on a
computer network, server also needs a list of all computers available for
simulation (their IP addresses). For each simulated node, a new process is
created on one of available computers.

Calculating RF visibility between nodes is done by using each node's
range/strength and by including influence of obstacles. For each node it is
determined which nodes can receive its messages, and from which nodes it
can receive messages. If there are moving obstacles, this calculation must be
done after each obstacle configuration change.

 RF interference is simulated using RF interference sources (each
described with its coordinates and strength, similar to RF module strength)
and by calculating packet collision (based on sending time of each packet).
Random RF interference is also included via probability factor.

Wireless Sensor Network Application Programming and Simulation System

ComSIS Vol. 5, No. 1, June 2008 123

Sensor data is described as a two-column table with time and value in each
row. Server calculates actual value for the current time using linear
interpolation.

Separate configuration file describes conditions for automatic simulation
pausing. Simulation can be paused when certain amount of time passes,
when (average) value of some variable or parameter (e.g. software version,
battery capacity, working status, internal variables, etc.) for a node or group of
nodes reaches certain value, etc.

5.3. Graphical Interface

Important part of the server's functionality is a graphical representation of
simulated WSN. Each node is represented with a square and some basic text
information. Square's color roughly describes node's status. Detailed
information about node can be obtained by clicking on it (node's range is
displayed as a transparent circle and more text data is shown). Graphical
interface allows many operations on simulated WSN:

− loading and saving current WSN configuration;
− starting, pausing and stopping of the whole simulation;
− changing of parameters for one or more nodes (working state, variables,

coordinates, etc.);
− changing of parameters for one or more obstacles (coordinates, size,

etc.);
− viewing graph representation of any parameter;
− launching text editor to manually edit configuration files or to edit node's

source code;
− compiling node's source code.

5.4. Additional programs

Additional programs are used to generate some of data needed for
simulation. Their functions are:

− generating regular/random node placement;
− generating sensor data using mathematical functions;
− generating data for obstacle movement during time.
Additional programs can be executed from GUI, or independently from the

command line.

Žarko Živanov, Predrag Rakić and Miroslav Hajduković

124 ComSIS Vol. 5, No. 1, June 2008

6. Conclusion and Further Work

Main contribution of WAPAS is uniform object oriented programming model,
suitable for both hardware constrained and unconstrained platforms (with
some limitations for the hardware constrained platforms).

Preemptive part of WAPAS is based on COLIBROS operating system. For
non-preemptive system, the whole application is transformed to fit in
cooperative multitasking paradigm and hardware limitations. Application
programmer may or may not understand all details of this transformation, but
(s)he must be aware of certain limitations. Level of application programmer's
expertise necessary for efficient usage of this programming model (especially
in non-preemptive environments) remains to be determined.

Though WAPAS is still in development phase, we are simultaneously
developing simulation environment with graphical user interface, to ease
application development.

7. References

1. Uludag, S. and Lui, K. and Nahrstedt, K. and Brewster, G.: Analysis of Topology
Aggregation techniques for QoS routing. ACM Comput. Surv., ACM, 39, 7. (2007)

2. Nakamura, E. F. and Loureiro, A. A. F. and Frery, A. C.: Information fusion for
wireless sensor networks: Methods, models, and classifications. ACM Comput.
Surv., ACM, 39, 9. (2007)

3. http://www.xbow.com
4. http://www.intel.com/research/exploratory/motes.htm
5. Akyildiz, I. F. and Su, W. and Sankarasubramaniam, Y. and Cayirci, E. Wireless

sensor networks: a survey. Comput. Networks, Elsevier North-Holland, Inc., 38,
393-422. (2002)

6. Hill, J. and Szewczyk, R. and Woo, A. and Hollar, S. and Culler, D. and Pister, K.:
System architecture directions for networked sensors. SIGPLAN Not., ACM Press,
35, 93-104. (2000)

7. Dunkels, A. and Gronvall, B. and Voigt, T.: Contiki - A Lightweight and Flexible
Operating System for Tiny Networked Sensors. lcn, IEEE Computer Society, 00,
455-462. (2004)

8. Bhatti, S. and Carlson, J. and Dai, H. and Deng, J. and Rose, J. and Sheth, A. and
Shucker, B. and Gruenwald, C. and Torgerson, A. and Han, R.: MANTIS OS: an
embedded multithreaded operating system for wireless micro sensor platforms.
Mob. Netw. Appl., Kluwer Academic Publishers, 10, 563-579. (2005)

9. McCartney, W. P. and Sridhar, N.: Abstractions for safe concurrent programming
in networked embedded systems. SenSys '06: Proceedings of the 4th international
conference on Embedded networked sensor systems, ACM Press, 167-180.
(2006)

10. Rossetto, S. and Rodriguez, N.: A cooperative multitasking model for networked
sensors. ICDCSW '06: Proceedings of the 26th IEEE International
ConferenceWorkshops on Distributed Computing Systems, IEEE Computer
Society, 91. (2006)

Wireless Sensor Network Application Programming and Simulation System

ComSIS Vol. 5, No. 1, June 2008 125

11. Dunkels, A. and Schmidt, O. and Voigt, T.: Using Protothreads for Sensor Node
Programming. Proceedings of Proceedings of the REALWSN'05 Workshop on
Real-World Wireless Sensor Networks. (2005)

12. Welsh, M. and Mainland, G.: Programming sensor networks using abstract
regions. NSDI'04: Proceedings of the 1st conference on Symposium on
Networked Systems Design and Implementation, USENIX Association, 3-3. (2004)

13. Levis, P. and Culler, D.: Maté: a tiny virtual machine for sensor networks. SIGOPS
Oper. Syst. Rev., ACM Press, 36, 85-95. (2002)

14. Park, S. and Savvides, A. and Srivastava, M. B.: SensorSim: a simulation
framework for sensor networks. MSWIM '00: Proceedings of the 3rd ACM
international workshop on Modeling, analysis and simulation of wireless and
mobile systems, ACM Press, 104-111. (2000)

15. Ould-Ahmed-Vall, G. H. B. R. D.: Simulation of large-scale sensor networks using
GTSNetS. Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 2005. 13th IEEE International Symposium on, IEEE
Computer Society, 211-218. (2005)

16. Sundresh, S. and Kim, W. and Agha, G.: SENS: A Sensor, Environment and
Network Simulator. anss, IEEE Computer Society, 00, 221. (2004)

17 Sobeih, A. and Chen, W. and Hou, J. C. and Kung, L. and Li, N. and Lim, H. and
Tyan, H. and Zhang, H.: J-Sim: A Simulation Environment for Wireless Sensor
Networks. anss, IEEE Computer Society, 00, 175-187. (2005)

18. Levis, P. and Lee, N. and Welsh, M. and Culler, D.: TOSSIM: accurate and
scalable simulation of entire tinyOS applications. SenSys '03: Proceedings of the
1st international conference on Embedded networked sensor systems, ACM
Press, 126-137. (2003)

19. Perrone, L. F. and Nicol, D. M.: Network modeling and simulation: a scalable
simulator for TinyOS applications. WSC '02: Proceedings of the 34th conference
on Winter simulation, Winter Simulation Conference, 679-687. (2002)

20. Hajdukovic, M.: Operativni sistemi (problemi i struktura). Fakultet tehnickih nauka,
257, (2004)

21. Rakic, P.: Migracija konkurentne biblioteke COLIBRY sa MS/DOS na GNU/Linux
platformu. Fakultet tehnickih nauka. (2006)

22. Cao, Q. and Abdelzaher, T.: liteOS: a lightweight operating system for c++
software development in sensor networks. SenSys '06: Proceedings of the 4th
international conference on Embedded networked sensor systems, ACM Press,
361-362. (2006)

23. Engler, D. R. and Kaashoek, M. F. and J. O'Toole, J.: Exokernel: an operating
system architecture for application-level resource management. SOSP '95:
Proceedings of the fifteenth ACM symposium on Operating systems principles,
ACM Press, 251-266. (1995)

24. Hill, J. and Horton, M. and Kling, R. and Krishnamurthy, L.: The platforms enabling
wireless sensor networks. Commun. ACM, ACM Press, 47, 41-46. (2004)

25. Živanov, Ž.: Generator for kiosk applications (Masters thesis). Author's reprint,
Library of Faculty of Technical Sciences, Novi Sad, Serbia. (2006)

Žarko Živanov, Predrag Rakić and Miroslav Hajduković

126 ComSIS Vol. 5, No. 1, June 2008

Žarko Živanov has graduated at the Faculty of Technical Sciences,
University of Novi Sad, in 2000. He got Master Degree in 2006, at the Faculty
of Technical Sciences, University of Novi Sad. He is currently assistant at
Chair for Applied Computer Science at the Faculty of Technical Sciences,
Computing and Control Department, University of Novi Sad.

Predrag Rakić has graduated at the Faculty of Technical Sciences,
University of Novi Sad, in 2001. He got Master Degree in 2006, at the Faculty
of Technical Sciences, University of Novi Sad. He is currently assistant at
Chair for Applied Computer Science at the Faculty of Technical Sciences,
Computing and Control Department, University of Novi Sad.

Miroslav Hajduković has graduated at the Faculty of Electrical Engineering,
University of Sarajevo, in 1977. He got Master Degree in 1980 and his Ph.D.
in 1984 from Faculty of Electrical Engineering, University of Sarajevo. In 1985
he was on post-doctoral studies in Computer Laboratory at the Cambridge
University in Great Britain. He is currently a Professor of Computer Science at
the Faculty of Technical Sciences, Computing and Control Department,
University of Novi Sad.

Received: November 8, 2007; Accepted: November 22, 2007

