
UDC 004.71

Using Code Generation Approach in Developing
Kiosk Applications

Žarko Živanov1, Predrag Rakić1 and Miroslav Hajduković1

1 Faculty of Technical Sciences, Trg D. Obradovića 6,
21000 Novi Sad, Serbia

{zzarko,pec,hajduk}@uns.ns.ac.yu

Abstract. Today, kiosk automata (kiosks, for short) are used for variety
of services: from all sort of kiosks for providing informations, to kiosks
for paying tickets and ATM's. Kiosks are usually programmed either
using high level programming languages, like C++, or using HTML in
conjunction with web browser. In this paper, we analyzed a vast range
of kiosk automata and derived common characteristics. We present
approach for programming kiosk applications based on Domain Specific
Language (DSL), designed specifically to meet the needs of developing
kiosk applications that are usually programmed using high level
programming languages and are deployed on kiosks with touch-screen
monitors. Our goal is to make development of such kiosk applications
more rapid, while minimizing number of programming errors.

Keywords: domain specific language; rapid application development;
code generation; kiosks.

1. Introduction

Kiosk automata (kiosks, for short) are stand-alone machines used for variety
of services: from all sort of kiosks for providing informations, to kiosks for
paying tickets and ATM's. Most of them have similar user interface, hardware
and software. Kiosk applications development seems to be a subject that is
not very well covered, mainly because every kiosk application is specific to its
domain.

While working on our first kiosk (using general programming language), we
encountered a number of programming errors to be very common, mainly
errors related to data initialization and framework usage. We developed
classes and routines for hardware control and for screen design and handling.
Although all these code was easy to use, we constantly needed to repeat a
number of steps for each generated screen. This was major source of errors,
especially when we needed to include additional steps to further simplify the
user interface, because it was easy to skip one of the steps needed to
correctly setup the screen. That was the main reason for us to try to make this
process more automatic. Luckily, it appeared that we could automatize a good

Žarko Živanov, Predrag Rakić and Miroslav Hajduković

42 ComSIS Vol. 5, No. 1, June 2008

portion of our kiosk development and maintenance. The approach that was
accepted included use of a Domain Specific Language, initially developed for
our second kiosk. During language development, we tried to generalize it to
suit a wider range of kiosks.

In this paper, we summarized common characteristics of one class of
kiosks and we presented a solution that can make development of kiosk
applications for that class easier and less error prone.

Chapter 2 of the paper presents related work. Chapter 3 introduces kiosks
and their software and hardware characteristics. Chapter 4 gives brief
introduction to Domain Specific Languages. Chapter 5 introduces Kiosk
Application generator. Chapter 6 shows a kiosk specification example.
Chapter 7 contains conclusion.

2. Related work

Most of the papers, available to us, dealing with kiosks cover design of user
interface and evaluation of kiosk usage during a period of time. Quite a few
papers are dealing with kiosk development and programming.

Classic user interfaces, using screen sensitive areas, the same that we
accepted, were discussed in [1], [2] (kiosks with mouse navigation), [3] (kiosk
with touch-screen), [4] (design rules for screen layout using web browser).

Screen layout evaluation was discussed in [5] (several layouts for
information kiosks), [6] (using video presentation as help for kiosk usage).

Special input methods were discussed in [7] (user face recognition and
virtual host), [8] (Japanese sign language recognition using special glove),
[9](kiosk with user tracking and virtual host), [10] (user tracking and robotic
head), [11] (speech recognition and virtual host).

Showcases of developed kiosks were discussed in [12] (information kiosk
made by using web browser and Java), [13] (using kiosks for surveys), [14]
(student information system using keyboard with integrated pointing device),
[15] (kiosk with user tracking and virtual host), [16] (kiosk with speech
recognition and virtual host), [17] (using smartphone to interact with kiosk),
[18] (kiosk for educating young children using touch-screen-like interface),
[19] (delivering data to kiosks in rural areas using cars and buses).

Quite a few papers are dealing with kiosk development and programming:
[20] (script language for programming responses of virtual host),
[21](customizing KDE configuration files and scripts to restrict user actions).
Literature available to us mostly don't cover kiosk application programming. In
this paper we presented application generator approach for programming
touch-screen kiosks.

Concerning DSLs, there are a lot of them around, albeit not in kiosk
domain. For example, ATMOL [22] is designed for formulation of atmospheric
models. Models described in ATMOL are translated into codes for CTADEL
(tool for symbolic manipulation and code synthesis). JAMOOS [23] is a

Using Code Generation Approach in Developing Kiosk Applications

ComSIS Vol. 5, No. 1, June 2008 43

language for describing attribute grammars and generation of compilers,
interpreters and other language processing tools.

3. Kiosks

Kiosks are autonomous machines designed to provide all sort of services in
public places, without human intervention. They are usually built around a
IBM-PC compatible personal computer, which allows using already existing
operating systems and development tools.

Common types of kiosks, based on their purpose, are:
− ATM type kiosks;
− kiosks for buying all sorts of tickets;
− kiosks for making photographs from digital media;
− kiosks for providing all sorts of information (street map, tourist

informations, etc.);
− Internet kiosks;
− advertising kiosks;
− video kiosks;
− kiosk for buying digital media (music, movies, mobile ring tones, etc.);
− online gaming kiosks;
− other kiosks.
Kiosks differ from standard personal computers that we use in two aspects:

hardware and software.

3.1. Hardware characteristics

Standard personal computers use keyboard and/or mouse for interaction with
users. For kiosks, that reside in public places, this is not acceptable (keyboard
and mouse can be easily ripped). To address this issue, two major
approaches are used: touch-screen monitors and specialized embedded
keyboards and/or buttons. For security reasons, most of kiosks have cameras
for monitoring and recording user actions. Kiosks which provide paying
services also have credit card readers and/or cash-intake devices. Kiosks
also have some sort of Internet connection to its owner, for status report
and/or for obtaining paying service. Uninterruptible power supply is also a
common component, allowing kiosk to end its job in a regular way in case of a
power shortage. Usually, all of kiosk hardware is placed inside strong metal
case, which protects it from harsh weather conditions and from being
damaged by destructive-oriented users. For the same reasons, metal case is
usually coupled to the ground. All kiosks that have any kind of material input
or output, require periodic maintenance (refilling printers and paper trays,
taking coins, etc.).

Žarko Živanov, Predrag Rakić and Miroslav Hajduković

44 ComSIS Vol. 5, No. 1, June 2008

3.2. Software characteristics

From the software point of view, there is also a difference in user interface
between kiosks and ordinary PC machines. This is caused by different
hardware input devices, but also by target user group. The kiosk user is
guided step by step in the process of using kiosk, using simple user interface.
User interface is organized around mostly static interconnected screens,
where each screen displays only a currently needed informations.

After successfully completing task(s) on one screen, user is guided to the
next. Screens are displayed in full screen format, hiding everything of
underlying operating system. This is necessary because users must not
interact with operating system directly, because it may lead to kiosk
malfunction.

In most cases, screen elements are limited to buttons, labels, pictures and
input fields. There are no scroll-bars or any kind of scrolling (list-boxes,
combo-boxes, etc.), because:

− there is usually no mouse-like input device;
− user interface needs to be as simple as possible in order to be used by

users with little or no technical knowledge;
− application displays only the necessary data for completing current step

of the process;
− the simpler user interface provides less errors made by users.

Fig. 1. Kiosks with embedded keyboard and buttons (a), and touch-screen monitor (b).

Kiosks organized around special embedded keyboards and/or buttons
usually have a few buttons around monitor for choosing options, and keys for
entering (alpha)numerical data (Fig. 1a). Kiosks organized around touch-
screen monitors have their options displayed as on-screen buttons (Fig. 1b),
and a virtual (screen) keyboard, displayed when needed.

First (initial) screen displays owner's logo or animation. Interaction with
kiosk may start by touching the screen, touching some of the buttons, or by
inserting credit card. Interaction with kiosk may be ended by successfully
completing all the tasks, by user canceling the process, by some error or if

Option 1
Option 2
Option 3
Option 4

Option 1
Option 2
Option 3
Option 4

a b

Using Code Generation Approach in Developing Kiosk Applications

ComSIS Vol. 5, No. 1, June 2008 45

there is no interaction for some predefined period of time (user walks away in
the middle of the process).

Kiosk application, a program which users see and use, may be represented
as a state machine, where each screen represents one or more states in the
program. Conditions for transferring from state to state may be different:

− user selects one of available options;
− user enters correct data;
− user inserts his/hers credit card;
− money transfer begun or completed;
− process of using kiosk is completed;
− no interaction with kiosk for specified interval of time;
− detected error in kiosk application, error during communication,

hardware faults, etc.;
− other conditions.
The next state advance conditions must be defined for every state. During

kiosk application execution, those conditions must be checked in order to
allow user to go to the next screen.

All screens usually share a few common options or buttons, like help,
canceling the process, going one screen back and going one screen forward.

Taking care of its user is just one aspect of kiosk application. The
application must constantly check its own state, control all the hardware,
periodically report status to its owner, immediately report all critical errors and
conditions, etc.

4. Domain Specific Languages

Domain specific languages (DSLs, for short) are as old as programming
languages. DSL is a programming language specialized for solving problems
from a limited domain [24], [25], [26], [27]. They usually cannot be used as a
general programming languages, at least in their early versions. Common
characteristic of a DSL development is adding more features to the language,
which eventually leads to general programming language. Some of today's
general high level programing languages, like Cobol, Fortran or Lisp, started
as DSLs. Cobol was used for business data processing, Fortran for numerical
calculations, and Lisp for symbolic expressions processing. As soon as
computers entered some new field of use, usually there was a need for
simplifying application development specific to that field. Even today's HTML
can be considered as DSL, specialized for web page description [28].

There are several approaches for solving domain specific problems [29]:
− subroutine libraries – they are used in some general programming

language, where programmer writes the main application which uses
those libraries;

− object-oriented frameworks – code is organized in classes, and often the
framework itself is a main application. Programmer writes subroutines
specific to actual problem;

Žarko Živanov, Predrag Rakić and Miroslav Hajduković

46 ComSIS Vol. 5, No. 1, June 2008

− domain specific languages – solution for a problem is written in
specialized language, which allows programmer to be focused on
problem solving, not on implementation details.

The main advantage of DSLs is that problem solution is written in highly
descriptive language, which allows the experts from that domain to easily
understand, change and optimize the solution, even if they are not
programmers.

Solution for a specific problem can be entered in several ways, depending
of used approach:

− by choosing options or by answering questions presented by user
interface;

− by drawing diagrams in graphical editor;
− by supplying textual description.
Apart from developing a DSL specification, one must also develop a

program for translating problem solution written in DSL into a working
application. There are three main approaches for that:

− DSL compiler, which translates DSL program directly to machine code or
byte code for virtual machine;

− DSL program interpreter;
− code (or application) generator, which translates DSL program into a

general programming language.
In the latter approach, there is no need for developing a complete compiler

or interpreter. This can also improve DSL portability, as most major general
programming languages exists on many operating systems.

Development of a DSL includes development of a language itself, and
development of a DSL compiler or interpreter. Both cases require cooperation
between a compiler/interpreter programmers and domain experts. Experts
must provide solutions for elementary domain problems, and programmers
must implement those elementary solutions. This leads to relatively long DSL
development.

Main advantages of DSLs are:
− increased productivity and less programming errors by DSL users,

because they are focused on problem solving, not on implementation
details;

− easily human-readable problem solution;
− DSLs can be used by people with limited programming knowledge;
− ease of evaluating different solutions for the same problem;
− specification-level optimization and error-correction.
Main disadvantages of DSLs are:
− DSL compiler/interpreter can be used only for that specific domain;
− adding new features includes changes in DSL specification, changes in

DSL compiler and developing solutions for those features;
− maintaining a DSL compiler/interpreter requires more time than

maintaining solution in general programming language.

Using Code Generation Approach in Developing Kiosk Applications

ComSIS Vol. 5, No. 1, June 2008 47

5. DSL Solution for Kiosk Applications

Main target of this work are kiosk applications written in high level
programming languages for kiosks with touch-screen monitors. Kiosk
applications made with HTML aren't covered (kiosks for providing
informations are often made this way), although they can be generated, if
appropriate template files are given.

As we discussed in 3.2, kiosk applications are different in many ways from
usual applications on personal computers. Since characteristics of a narrower
group of kiosks can be generalized, their programming can be automatized to
the certain level.

Because screen layout, screen-to-screen transitions and transition
conditions for our kiosks suppose to be developed by people not very skilled
with programming, we adopted a DSL-based solution. Language was
developed intuitively, while developing our second kiosk. It was tailored to our
current needs, but with more general usage in mind. For our compiler, we
adopted a code generator approach, with configurable target programming
language. Main reasons for this were shorter development time and possibility
to migrate our solution to other platforms (e.g. GNU/Linux).

5.1. Design of User Interface

Over a period of two years, we were a part of the group working on two
kiosks, one made for selling traveling health insurance policies [30], [31], and
one made for general bill payment. During that time, we encountered a
number of challenges related to

− designing an easy to use user interface;
− programming kiosk applications.
Hardware specifications for both kiosks were very similar. We used

standard PC machine equipped with touch-screen monitor, credit card reader,
two printers, uninterruptible power supply, video camera and dual Internet
connection (wireless and dial-up). Using a touch-screen monitor was crucial
for user interface design.

Analysis of physical characteristics of possible kiosk users showed that we
need big screen elements that can easily be touched by people with large
hands, and that, for the same reason, gap between these elements must be
large enough to make impossible for anyone to touch more than one screen
element with the touch of a finger.

The need for large screen elements limits the number of elements
displayed on the screen, especially when on-screen keyboard is shown.

Each screen needed a couple of buttons for common actions, like going to
next or previous screen. These buttons were positioned on the bottom of the
screen, thus enabling for the whole screen to be visible when the user
touches them. This is important, because these actions are global for all
screens and user needs to see from where he/she is going back or forward

Žarko Živanov, Predrag Rakić and Miroslav Hajduković

48 ComSIS Vol. 5, No. 1, June 2008

[32]. Screen positions of these buttons are fixed, because it's easier for users
when these common acions are always on the same place in each screen.

Analysis of technical background of possible kiosk users showed that we
need user interface which is as simple as possible. This means that we need
to split the process of using kiosk into a number of small steps, and that in
each step we need to display a minimum of informations needed (including
help for each step).

All this lead us to adopting a screen oriented user interface, consisting only
of buttons, labels, input fields and pictures.

5.2. Kiosk Specification Language for Touch-Screen Kiosks

Based on analysis of most common needs that one kiosk application must
meet, Kiosk Specification Language (KSL for short) is proposed. The main
goal of this language is to hide all the unnecessary details of writing kiosk
application, thus enabling the programmer to focus on kiosk functionality.
Kiosk specifications are written in plain text file which is analyzed by Kiosk
Application Generator.

Kiosk application is defined using a number of statements, each describing
a part of the application. There are two main types of statements:

− line-type statements – used for describing simpler elements;
− block-type statements – used for describing more complex elements;

they must end with a keyword “end” and may contain other statements;
The whole kiosk application is defined by “Kiosk” block statement. Kiosk

block consists of kiosk name (this will be the name of the final application),
optional global variables, and definitions of screens. Global variables are
directly visible in all screens, while local variables of other screens mut be
preceded by screen name.

KSL currently allows only three types of variables: strings, integer numbers
and float numbers. Each variable is defined by its type, name and initial value.
Other types, supported by target programming language, are allowed only
inside custom-written functions and screens.

Screen can be defined either as screen defined by KSL (with “Screen”
block statement), or as a completely custom made screen, independent of
KSL (with “CustomScreen” block statement). This was necessary, because
KSL currently doesn't cover all the possible uses one kiosk application may
have. In specific cases, not covered by KSL, programmer may write its own
screen for specific task (KSL does provide basic layout and functions for this
type of screen, but the rest is on the programmer). Custom screens are
defined in separate files and are included in final application, which allows
independent development of KSL code and custom code. Each screen
consists of its name (used by application), its caption (visible by user),
optional local variables, optional screen layout, optional default actions,
optional help text, optional actions to be carried when screen is shown or
closed and screen items.

Using Code Generation Approach in Developing Kiosk Applications

ComSIS Vol. 5, No. 1, June 2008 49

Screen layout may be defined by using one or more “Row” line statements,
each describing layout of one row of the screen (number of columns and their
relative widths). If no layout is given, it is assumed that each row has one
column.

There are a number of built-in actions, represented by line statements.
Each action may be performed as a reaction to user input or as a reaction to
some event. These actions provide: going to specific screen
(“JumpToScreen”), displaying messages to user (“Message”), changing
captions of screen items (“SetCaption”), showing/hiding screen items
(“SetVisible”), and manipulating variables. For other tasks, programmer may
define a custom actions which may be used equally as built-in actions
(preceded with “CustomFunction” keyword). Like custom screens, custom
actions are defined in separate files and are included in final application.

Screen can optionally contain actions to be carried out before its displaying
(“OnShow” block statement), or before its substitution with other screen
(“OnHide” block statement).

Screen items consist of default buttons, buttons, labels and input fields.
Default buttons are the buttons visible (or not) on all the screens in the
reserved part of the screen (usually bottom of the screen). There are four
default buttons and their default actions: “Previous” (going to previous
screen), “Help” (displaying help for current screen), “Cancel” (canceling the
process of using kiosk) and “Next” (going to next screen). Programmer may
specify which of default buttons will be visible on each screen, using
“DefaultButtons” line statement, but their locations on screen are fixed for the
whole application.

Screen items are placed inside screen matrix, defined by screen layout.
Each screen item is placed inside one cell in the screen matrix, using all or
part of that space, and can be aligned left, right or centered inside that space.
Screen item position is defined by “Position” line statement.

Buttons are defined using “Button” block statement. Button consists of its
name, caption, position and a list of actions which are performed if the button
is activated.

Labels are defined using “Label” block statement. Label consists of its
name, caption and position.

Input fields are defined using “Edit” block statement. Input filed consists of
its name, caption, position and optional type. If type is not specified, any text
can be entered in the input filed. If specified type is integer or real number,
min and max values can be defined. If the specified type is string, min and
max length can be defined. Also, custom input field control may be specified,
if the programmer has provided appropriate function. Min and max values are
defined with Check statements (e.g. CheckString). Before leaving the current
screen, all input fields are checked. If any of them has incorrect data, kiosk
user will stay on that screen and will be informed by appropriate message.

Because user input is the main source of errors in programs, if the
programmer has specified what should be checked for each input field on the
screen, application won't let the user to go to the next screen until all data

Žarko Živanov, Predrag Rakić and Miroslav Hajduković

50 ComSIS Vol. 5, No. 1, June 2008

he/she entered is valid. Other checks for screen transition can be defined
inside custom actions.

5.3. Kiosk Application Generator

Kiosk Application Generator (KAG, for short) is made by using standard tools
for Domain Specific Language compiler creation (lex and yacc), and by using
template kiosk application. Its output is source code for desired target
platform. Current target platform is Borland Delphi, because template kiosk
application is currently made with that tool, and is based on two kiosk projects
made earlier. Currently, there is an effort to port template kiosk application to
one of open-source cross-platform solutions, and also to reduce the need for
custom written code.

KAG is written to be portable application. Its own source code is made
using tools available on all major OS platforms. Its output is completely
defined by template kiosk application and by configuration file describing
some details of output generation. This means that it can be used to generate
output for any platform from the same kiosk specification, if files describing
that platform exists. KAG covers application layout and general logic
programming, while more complex logic (e.g. database access, complex
screen transition rules, etc.) must be separately programmed either as custom
actions, or as custom screen.

The generated application takes care of:
− initializing all variables when new user starts to use the kiosk;
− going from one screen to another;
− checking the user input;
− checking various timeouts;
− displaying help when user asks for it;
− remembering history of displayed screens;
− numerous “little” things
thus allowing programmer not to bother with details of implementation,

except when needed.
KAG is written as a console application and consists of three main parts:
− template kiosk application parser;
− kiosk specification parser;
− code generator.
Template files are made by inserting special tags in source code of a

generic kiosk application, thus giving information at which places KAG must
make modifications in order to achieve kiosk application functionality. Generic
kiosk application was based on our first kiosk application developed in
Borland Delphi. Practically, for every action, screen item, property, etc., must
be defined exact place (or places) which must be modified. There are special
tags that specify that some part of template must be repeated for every action,
screen item, variable, etc., and tags that specify that some part of template is

Using Code Generation Approach in Developing Kiosk Applications

ComSIS Vol. 5, No. 1, June 2008 51

optional. For example, for each button on some screen, several lines must be
added to appropriate pas and dfm files:

Button code in pas file:

type
 TFrameSecondScreen = class(TMainFrame)
 ButtonDoc01: TdsFancyButton;
 ...
 procedure ButtonDoc01Click(Sender: Tobject);
 ...
end;
...
procedure TFrameSecondScreen.ButtonDoc01Click(Sender:
Tobject);
begin
 inherited;
 ...
end;

Button code in dfm file:

object ButtonDoc01: TcustomButton
 Left = 55
 Top = 110
 ...
 OnClick = ButtonDoc01Click
end

In order to achieve this, all code describing one button is marked with tags
describing code start point, code end point and where to insert data
describing each button:

Button description in template pas file:

type
 TFrame$$ScreenName$$ = class(TMainFrame)
$$EveryButton$$ Button$$ItemName$$: TCustomButton;
$$EveryButtonEnd$$
...
$$EveryButton$$ procedure
Button$$ItemName$$Click(Sender: Tobject);
$$EveryButtonEnd$$
...
end;

$$EveryButton$$procedure
TFrame$$ScreenName$$.Button$$ItemName$$Click(Sender:

Žarko Živanov, Predrag Rakić and Miroslav Hajduković

52 ComSIS Vol. 5, No. 1, June 2008

Tobject);
begin
 inherited;$$EveryAction$$
 $$Action$$;$$EveryActionEnd$$
end;
$$EveryButtonEnd$$

Button description in template dfm file:

$$EveryButton$$ object Button$$ItemName$$:
TcustomButton
 Left = $$ItemX$$
 Top = $$ItemY$$
 ...
 end
$$EveryButtonEnd$$

Kiosk specification parser and code generator are practically coupled
together in the task of reading kiosk specification and generating application
code. For each statement in kiosk specification, changes are made in
structures representing template files. After all statements are parsed, source
code is generated and can be compiled into executable kiosk application
(unless errors were encountered during parsing files; in that case, appropriate
error message is displayed).

6. Kiosk specification example

As an example of simple kiosk application, let's consider the situation in a
doctor's office where patients have to check-in, giving their name and
choosing what kind of treatment do they need. Application screens are shown
on figures 2 and 3:

First screen requires user to enter his/hers name. Advancing to the next
screen is possible only if something is entered in input field. Also, because
this screen contains input field, on-screen keyboard is displayed automatically
(Fig. 2). User can advance to the screen for choosing doctor, or to the screen
for medications receiving. This screen contain only the “Help” default button
(there is no previous screen, so going back is impossible, and for the next
screen, user must to choose one of two).

On the second screen, user is asked to choose doctor he/she needs. After
choosing appropriate button, global variable Doc is set, and control is
transferred to the first screen (of course, there should be code for transferring
data to the appropriate office). There is no “Next” button, because going to
next screen is realized inside each button with JumpToScreen action.

Using Code Generation Approach in Developing Kiosk Applications

ComSIS Vol. 5, No. 1, June 2008 53

Fig. 2. First screen of the kiosk application.

Fig. 3. Second screen of the kiosk application.

Third screen asks user if he/she has a recipe. If the answer is “Yes”, then
user should be instructed what to do next (to keep this example simple, we
just go to the first screen). If the answer is “No”, the user is instructed to first
visit a doctor.

Program 1 contains KAG source code for kiosk application presented in
figures 2, 3 and 4.

Žarko Živanov, Predrag Rakić and Miroslav Hajduković

54 ComSIS Vol. 5, No. 1, June 2008

Fig. 4. Third screen of the kiosk application.

Program 1: Example of a kiosk specification

Kiosk Example
 DefInt Doc 0
 Screen FirstScreen
 Caption "Enter your name"
 Row 100
 Row 50 50
 DefaultButtons HelpButton
 Edit Name
 Caption "Full name"
 Position 1 1 40 AlignVertical
 CheckString 1 30
 End
 Button Doctor
 Caption "To Doctor"
 Position 1 2 90 AlignCenter
 JumpToScreen SecondScreen
 End
 Button Medications
 Caption "Medications"
 Position 2 2 90 AlignCenter
 JumpToScreen ThirdScreen
 End
 End
 Screen SecondScreen
 Caption "Choose doctor"
 Row 100
 Row 50 50
 Row 50 50
 Row 100
 DefaultButtons HelpButton, CancelButton,
PreviousButton

Using Code Generation Approach in Developing Kiosk Applications

ComSIS Vol. 5, No. 1, June 2008 55

 Button Doc01
 Caption "General Practitioner"
 Position 1 1 90 AlignCenter
 Doc = 1
 JumpToScreen FirstScreen
 End
 Button Doc02
 Caption "Paediatrician"
 Position 1 2 90 AlignCenter
 Doc = 2
 JumpToScreen FirstScreen
 End
 Button Doc03
 Caption "Dermatologist"
 Position 2 2 90 AlignCenter
 Doc = 3
 JumpToScreen FirstScreen
 End
 Button Doc04
 Caption "Ophthalmologist"
 Position 1 3 90 AlignCenter
 Doc = 4
 JumpToScreen FirstScreen
 End
 Button Doc05
 Caption "Orthodontist"
 Position 2 3 90 AlignCenter
 Doc = 5
 JumpToScreen FirstScreen
 End
 Button Doc06
 Caption "Surgeon"
 Position 1 4 90 AlignCenter
 Doc = 6
 JumpToScreen FirstScreen
 End
 End
 Screen ThirdScreen
 Caption "Do you have a recipe?"
 Row 100
 Row 100
 Row 10 80 10
 Row 10 80 10
 DefaultButtons HelpButton, CancelButton,
PreviousButton
 Button YesRecipes
 Caption "I have a recipe"
 Position 2 3 90 AlignCenter
 JumpToScreen FirstScreen
 End
 Button NoRecipes
 Caption "No, I don''t have a recipe"
 Position 2 4 90 AlignCenter
 JumpToScreen SecondScreen

Žarko Živanov, Predrag Rakić and Miroslav Hajduković

56 ComSIS Vol. 5, No. 1, June 2008

 End
 End
End

7. Conclusion

In spite of carefully searching available literature we have not found
counterpart for DSL usage in kiosk application programming. After several
successful applications, we are convinced that our approach has practical
value and usefulness.

Introduction of DSL in kiosk development significantly reduced number of
errors previously related to correct framework usage and thus has solved our
main problem. For example, we usually had numerous small corrections in
code with each new screen, because some calls to framework were forgotten
or some values were not properly initialized. Because framework is now
hidden behind KSL, these errors are practically non-existent. Rapid
prototyping of new applications is now possible, and maintenance and
rearranging of existing is much faster. KAG is written to be relatively easy
extended, by introducing new actions and new events in language
specification. If one can provide code in target language for specific task or for
handling specific hardware, that code can be included in generic application
template and used in KSL programs, assuming that necessary extensions to
KSL are made. Major drawbacks of our approach are need to write additional
custom code in separate files, and (for now) limited conditions complexity.

By automating the task of kiosk programming, Kiosk Application Generator
gives the kiosk programmer the opportunity to focus on kiosk functionality,
and leave most of technical details to the compiler.

Future work to be carried includes expanding kiosk specification language
and making template files for more platforms (preferably cross-platform open
source toolkits). An integrated development environment based on Kiosk
Application Generator is also considered.

8. References

1. Gitta B. Salomon: Designing casual-user hypertext: the CHI'89 InfoBooth. CHI '90:
Proceedings of the SIGCHI conference on Human factors in computing systems,
ACM Press, New York, NY, USA, 451-458. (1990)

2. Steve Burdick: Creating information kiosks for the new distributed computing
environment. SIGUCCS '94: Proceedings of the 22nd annual ACM SIGUCCS
conference on User services, ACM Press, New York, NY, USA, 1-3. (1994)

3. Martin Hitz and Hannes Werthner: Development and analysis of a wide area
multimedia information system. SAC '93: Proceedings of the 1993 ACM/SIGAPP
symposium on Applied computing, ACM Press, New York, NY, USA, 238-246.
(1993)

Using Code Generation Approach in Developing Kiosk Applications

ComSIS Vol. 5, No. 1, June 2008 57

4. Jan Borchers and Oliver Deussen and Clemens Knorzer: Getting it across: layout
issues for kiosk systems. SIGCHI Bull. Vol. 27 No. 4, ACM Press, New York, NY,
USA, 68-74. (1995)

5. K. Lim and M. Usma: Usability Evaluation in the Field: Lessons from a Case-Study
Involving Public Information Kiosks. APCHI (Asia Pacific Conference on Computer
Human Interaction) journal, IEEE Computer Society, Los Alamitos, CA, USA, 70.
(1998)

6. Sam Racine and Rachel Nilsson: Use of video in user interfaces that require non-
linguistic cues. CHI '05: CHI '05 extended abstracts on Human factors in
computing systems, ACM Press, New York, NY, USA, 1022-1036. (2005)

7. J.M. Rehg and M. Loughlin and K. Waters: Vision for a smart kiosk. CVPR
(Conference on Computer Vision and Pattern Recognition) journal, IEEE
Computer Society, Los Alamitos, CA, USA, 690. (1997)

8. Hirohiko Sagawa and Masaru Takeuchi: Development of an information kiosk with
a sign language recognition system. CUU '00: Proceedings on the 2000
conference on Universal Usability, ACM Press, New York, NY, USA, 149-150.
(2000)

9 Erno Makinen and Saija Patomaki and Roope Raisamo: Experiences on a
multimodal information kiosk with an interactive agent. NordiCHI '02: Proceedings
of the second Nordic conference on Human-computer interaction, ACM Press,
New York, NY, USA, 275-278. (2002)

10. Paul Robertson and Robert Laddaga and Max Van Kleek: Virtual mouse vision
based interface. IUI '04: Proceedings of the 9th international conference on
Intelligent user interfaces, ACM Press, New York, NY, USA, 177-183. (2004)

11. Curry Guinn and Rob Hubal: An evaluation of virtual human technology in
informational kiosks. ICMI '04: Proceedings of the 6th international conference on
Multimodal interfaces, ACM Press, New York, NY, USA, 297-302. (2004)

12. Francois Grize and Mehdi Aminian: Cybcérone: a kiosk information system based
on WWW and Java. Interactions journal Vol. 4 No. 6, ACM Press, New York, NY,
USA, 62-69. (1997)

13. Jean Scholtz: Kiosk-based user testing of online books. SIGDOC '98: Proceedings
of the 16th annual international conference on Computer documentation, ACM
Press, New York, NY, USA, 80-86. (1998)

14. Jeffrey Raymond: Electronic kiosk project: distributed access to e-mail and web
browsing. SIGUCCS '00: Proceedings of the 28th annual ACM SIGUCCS
conference on User services, ACM Press, New York, NY, USA, 266-269. (2000)

15. Andrew D. Christian and Brian L. Avery: Speak out and annoy someone:
experience with intelligent kiosks. CHI '00: Proceedings of the SIGCHI conference
on Human factors in computing systems, ACM Press, New York, NY, USA, 313-
320. (2000)

16. Michael Johnston and Srinivas Bangalore: MATCHKiosk: a multimodal interactive
city guide. Proceedings of the ACL 2004 on Interactive poster and demonstration
sessions, Association for Computational Linguistics, Morristown, NJ, USA, 33.
(2004)

17. Albert Huang and Kari Pulli and Larry Rudolph: Kimono: kiosk-mobile phone
knowledge sharing system. MUM '05: Proceedings of the 4th international
conference on Mobile and ubiquitous multimedia, ACM Press, New York, NY,
USA, 142-149. (2005)

18. Hannah Slay and Peter Wentworth and Jonathon Locke: BingBee, an information
kiosk for social enablement in marginalized communities. SAICSIT '06:
Proceedings of the 2006 annual research conference of the South African institute
of computer scientists and information technologists on IT research in developing

Žarko Živanov, Predrag Rakić and Miroslav Hajduković

58 ComSIS Vol. 5, No. 1, June 2008

couuntries, South African Institute for Computer Scientists and Information
Technologists, , Republic of South Africa, 107-116. (2006)

19. A. Seth and D. Kroeker and M. Zaharia and S. Guo and S. Keshav: Low-cost
communication for rural internet kiosks using mechanical backhaul. MobiCom '06:
Proceedings of the 12th annual international conference on Mobile computing and
networking, ACM Press, New York, NY, USA, 334-345. (2006)

20. Andrew D. Christian and Brian L. Avery: Digital smart kiosk project. CHI '98:
Proceedings of the SIGCHI conference on Human factors in computing systems,
ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 155-162. (1998)

21. Caleb Tennis: KDE kiosk mode. Linux Journal No. 130, Specialized Systems
Consultants, Inc., Seattle, WA, USA, 5. (2005)

22. Robert A. van Engelen: ATMOL: A Domain-Specific Language for Atmospheric
Modeling. Special issue on domain-specific languages, Part I. Journal of
Computing and Information Technology, CIT, Vol. 9, No. 4, 2001, 289-303. (2001)

23. Joseph (Yossi) Gil and Yuri Tsoglin: JAMOOS - A Domain-Specific Language for
Language Processing. Special issue on domain-specific languages, Part I. Journal
of Computing and Information Technology, CIT, Vol. 9, No. 4, 2001, 305-321.
(2001)

24. Cleaveland, J.C.: Building Application Generators. IEEE Software Vol 5 Is 4, 25-
33. (1988)

25. Yannis Smaragdakis and Shan Shan Huang and David Zook: Program generators
and the tools to make them. Proceedings of the 2004 ACM SIGPLAN symposium
on Partial evaluation and semantics-based program manipulation, ACM Press,
New York, NY, USA, 92-100. (2004)

26. Qian Wang and Gopal Gupta: Rapidly prototyping implementation infrastructure of
domain specific languages: a semantics-based approach. Proceedings of the
2005 ACM symposium on Applied computing, ACM Press, New York, NY, USA,
1419-1426. (2005)

27. Ryan Paul: Designing and implementing a domain-specific language. Linux
Journal archive Vol 2005 Issue 135. (2005)

28. Marjan Mernik, Jan Heering, Anthony M. Sloane: When and how to develop
domain-specific languages. ACM Computing Surveys, Vol 37 No 4, ACM Press,
New York, NY, USA, 316-344 (2005)

29. Arie van Deursen and Paul Klint and Joost Visser: Domain-specific languages: an
annotated bibliography. SIGPLAN Not., ACM Press, New York, NY, USA, 26-36.
(2000)

30. Žarko Živanov: Generator for kiosk applications (Masters thesis). Author's reprint,
Library of Faculty of Technical Sciences, Novi Sad, Serbia. (2006)

31. Stevan Stankovski and Bogdan Kuzmanovic and Miroslav Hajdukovic and Žarko
Živanov and Marija Rakic-Skokovic and Dragana Škrinjar: Automat Za Prodaju
Polisa Putnicko Zdravstvenog Osiguranja – Polisomat. INFOTEH-JAHORINA, Vol.
5, Ref. E-I-12,328-333. (2006)

32. Gerald Bieber and Emad Abd Al Rahman and Bodo Urban: Screen Coverage: A
Pen-Interaction Problem for PDA's and Touch Screen Computers. icwmc journal,
IEEE Computer Society, Los Alamitos, CA, USA, 87. (2007)

Miroslav Hajduković has graduated at the Faculty of Electrical Engineering,
University of Sarajevo, in 1977. He got Master Degree in 1980 and his Ph.D.
in 1984 from Faculty of Electrical Engineering, University of Sarajevo. In 1985
he was on post-doctoral studies in Computer Laboratory at the Cambridge

Using Code Generation Approach in Developing Kiosk Applications

ComSIS Vol. 5, No. 1, June 2008 59

University in Great Britain. He is currently a Professor of Computer Science at
the Faculty of Technical Sciences, Computing and Control Department,
University of Novi Sad.

Žarko Živanov has graduated at the Faculty of Technical Sciences,
University of Novi Sad, in 2000. He got Master Degree in 2006, at the Faculty
of Technical Sciences, University of Novi Sad. He is currently assistant at
Chair for Applied Computer Science at the Faculty of Technical Sciences,
Computing and Control Department, University of Novi Sad.

Predrag Rakić has graduated at the Faculty of Technical Sciences,
University of Novi Sad, in 2001. He got Master Degree in 2006, at the Faculty
of Technical Sciences, University of Novi Sad. He is currently assistant at
Chair for Applied Computer Science at the Faculty of Technical Sciences,
Computing and Control Department, University of Novi Sad.

Received: June 12, 2007; Accepted: November 3, 2007.

