
Computer Science and Information Systems 22(1):369–399 https://doi.org/10.2298/CSIS240411012A

Unraveling the Organisational Debt Phenomenon in
Software Companies⋆

Muhammad Ovais Ahmad1, Osama Al-Baik2, Abdelrahman Hussein3, and Mwaffaq
Abu-Alhaija4

1 Department of Computer Science, Karlstad University,
Karlstad, Sweden

{ovais.ahmad}@kau.se
2 Department of Software Engineering, Princess Sumaya University for Technology

Amman, Jordan
o.albaik@psut.edu.jo

3 Department of Software Engineering, Al-Ahliyya Amman University
Amman, Jordan

a.husein@ammanu.edu.jo
4 Department of Computer Science, Applied Science Private University

Amman, Jordan
m abualhaija@asu.edu.jo

Abstract. Organizational debt (OD) is a major challenge to software organizations
that seek to maintain agility, adaptability and sustainable competitiveness in the dy-
namic business environment. OD can be refers to suboptimal decisions, outdated
procedures, misaligned structures and cultural barriers that limit an organization’s
ability to adapt and innovate quickly. This multifaceted process includes several
factors, including ineffective workflows, knowledge silos, cultural issues, and in-
adequate resource utilization. When organizations are focused on short-term gains
at the expense of long-term organizational health, the symptoms of organizational
dysfunction may manifest themselves as reduced output, reduced quality and cus-
tomer satisfaction. This study aims at assessing the extent of knowledge, factors,
and consequences of organizational maladjustment in software organizations. A sur-
vey performed in three organizations identified several highly visible issues such as
complex code, inconsistent UI, unclear requirements, and outdated processes. These
themes often emerge due to exponential growth, prioritizing speed over quality,
lack of cooperation and coordination, and outdated processes. The adverse effects
of OD are comparable to technical debt, affecting the maintainability, user expe-
rience, and project management. This study also offers strategies for identifying,
assessing, and mitigating OD through a combination of quantitative metrics, user
feedback, and interdepartmental collaboration. By fostering a culture of continuous
improvement, open communication, and cross-functional alignment, organizations
can proactively address OD and create an environment conducive to innovation,
quality, and customer-centricity.

Keywords: Organisational debt, software development, technical debt, process debt,
nontechnical debt, agile, organisational agility.

⋆ This is an extended version of our conference paper [6].



370 Ahmad MO et al.

1. Introduction

The software development landscape is in a constant state of flux, demanding that organi-
zations remain agile, adaptable, and competitive. Tight deadlines often lead to prioritizing
features over code quality, and inadequate documentation creates a technical debt burden
[2] [33], [34]. As market needs evolve and technological advancements accelerate, com-
panies must navigate a complex interplay of technical and non-technical factors to sustain
innovation and deliver value to customers [2]. Maintaining software in a suboptimal state,
both technically and non-technically, can compromise its reliability and efficiency [33]
[50] [2].

Short-term gains and a series of less-than-ideal decisions (e.g., prioritizing speed over
proper documentation) can lead to the accumulation of “organizational debt” (OD) [2].
While technical debt (TD) has been extensively explored in academic literature [2][49][16],
non-technical debt (NTD) remains less understood [33] [2][4][9]. NTD encompasses pro-
cess debt, social debt, and people debt [13]. OD extends beyond TD and encompasses
NTD, including process, social, and people debts. Liu et al. define “organizational debt”
more narrowly, encompassing only social and process debt [36]. While TD focuses on
codebase and architecture, OD covers broader organizational inefficiencies such as out-
dated processes and misaligned structures. NTD represents the unintended consequences
of prioritizing short-term expediency over long-term sustainability [37]. This results in
a gradual accumulation of outdated processes, misaligned structures, and cultural barri-
ers within an organization. OD refers to the difference between a company’s strategic
plans and its actual ability to implement them in view of the ever-changing market needs
[6] focusing on both technical and non-technical barriers to agility and innovation. This
multifaceted concept extends beyond technical debt, encompassing a broad range of fac-
tors that can hinder an organization’s ability to adapt, innovate, and maintain a competi-
tive edge [36] [33][34][6]. As software companies grapple with the challenges posed by
OD, a comprehensive understanding of its causes, consequences, and potential mitiga-
tion strategies becomes crucial. Recognizing the various manifestations of OD, such as
inefficient workflows, knowledge silos, cultural misalignments, and inadequate resource
allocation, allows organizations to take proactive steps. These steps can foster an environ-
ment conducive to continuous improvement, open communication, and cross-functional
collaboration.

This study expands on the findings of our previous multivocal literature review (MLR)
presented at the 39th ACM/SIGAPP Symposium on Applied Computing, Track on Lean
and Agile Software Development [6]. This study seeks to provide insight into the impact
of OD on software companies by investigating IT professionals’ views on this issue. To
this end, we will use data collected from a survey conducted in three different organiza-
tions in different fields. Moreover, this research aims to explore the ways of detecting,
evaluating, and managing OD by using a set of quantitative measures, feedback from the
users, and collaboration between departments. When an organization encourages learning
and development, communication, and collaboration, they can prevent OD and establish a
culture that supports change, quality, and customer focus. Finally, this approach can help
achieving sustainable business performance and market sustainability in the context of the
software development industry.

This study is organized into seven sections. Section 2 provides background informa-
tion relevant to the research goal. Section 3 details the research methodology employed,



Organisational Debt and Software 371

including research design, data collection methods, and data analysis procedures. Section
4 presents result of our study. Section 5 addresses potential limitations of the study that
could affect the validity of findings. Section 6 provides a discussion of results, interpret-
ing them in the context of existing knowledge and highlighting their significance. Finally,
Section 7 offers concluding remarks, summarizing the key findings and outlining potential
future research directions.

2. Background

Software development is a complex process. Its complexity arises from the relationships
and interactions among a large number of stakeholders, which have unpredictable be-
haviour. Additionally, each project is unique, with specific challenges stemming from
the diverse backgrounds of individuals involved and the problem domain. Since tech-
nology and organisational processes are constantly evolving, these factors interact in un-
predictable ways. Agile and Lean processes prioritize frequent delivery of value to cus-
tomers by eliminating waste that hinders productivity and quality [10] [7] [11]. Treating
team members as interchangeable ‘resources’ and constantly swapping them in and out
of projects is ineffective [85]. In addition, they often blame the team for not following the
process when problems occur. The “Just get it done” approach is the primary driver of
debt in software development.

In 1992, Cunningham [21] introduced the concept of technical debt (TD) and de-
scribed how “Shipping first-time code is like going into debt. A small debt accelerates
development as long as it is promptly paid back with a rewrite... The danger occurs when
the debt is not repaid. Every minute spent on a not-quite-right code counts as interest on
the debt. Entire engineering organizations can be brought to a standstill under the debt
load of an unconsolidated implementation.” Avgeriou et al. [15] elaborated on this defi-
nition as TD is a collection of design or implementation constructs that are expedient in
the short term but set up a technical context that can make future changes more costly
or impossible. TD represents an actual or contingent liability whose impact is limited to
internal system qualities, primarily maintainability and evolvability. Other types of TD
include architectural debt, code debt, and test debt [33][34].

Extensive research has been carried out on TD from a wide range of perspectives,
including efforts, tools, types, management strategies, architectural aspects, agile devel-
opment and prioritisation [2][49][40]. Rios et al. [50] reported 78 causes and 66 effects
of TD. The main reported causes were deadlines, obsolete or incomplete documentation,
lack of technical knowledge, inappropriate planning, lack of knowledge of technology, a
focus on higher production at the expense of quality, and lack of a well-defined process.
Avgeriou et al. [15][16] conducted comparisons of tools used for measuring TD, assess-
ing their features, popularity, and empirical validity, and found that TD results in reduced
maintainability and quality, amplified project costs, financial losses, bad code refactoring,
team overload, difficulties in implementing the system and stakeholder dissatisfaction.
Matkovic et al. [42] highlighted challenges contributing to technical debt, such as inade-
quate identification, monitoring, and refactoring of non-functional requirements, empha-
sizing the importance of business analysis and architectural decisions. Marjanović et al.
[39] emphasized the need for updating organizational processes, developer training, and
tools to improve application security. Poth et al. [47] discussed the issue of organizational



372 Ahmad MO et al.

silos in large enterprises, proposing self-service kits as a potential solution for scaling
knowledge to autonomous teams.

Khomyakov et al. [31] specifically explored TD measurement and analysis tools, fo-
cusing on quantitative methods that could be automated. Besker et al. [18] address archi-
tectural TD and combined research efforts to produce new insights with a specific interest
in the topic. The findings indicate a lack of efficient management principles for architec-
tural debt. In agile software development, Behutiye et al. [17] stress the significance of
timely delivery and design matters, which may precipitate TD pitfalls. The adverse out-
comes of TD in agile software development comprise reduced output, system quality, and
escalated maintenance costs. Lenarduzzi et al. [34] found that code debt and architectural
debt are the most common types of TD studied. Nevertheless, research into other types of
TD, including test debt and requirement debt, was limited.

The Danish government faced challenges as a third of its critical IT systems were in-
adequate, lacking proper documentation, security, and requiring software and hardware
upgrades [26]. Sweden’s government agencies also struggled with outdated IT systems,
affecting 70 percent of their setups [14]. According to Klinger et al. [33] “the decision to
acquire TD is not made by technical architects, but rather by non-technical stakeholders
who cause the project to acquire new technical debt or discover existing TD that wasn’t
previously visible” (p. 35). Klinger’s highlight an important aspect of OD, which is that
non-technical stakeholders play a crucial role in the accumulation of debt within organiza-
tions. Software project success or failure depends on both technical and non-technical fac-
tors. TD has received more attention in research and practice compared to non-technical
debt (NTD) in software development [2].

NTD refer to a range of debt types that can arise in software companies, including
process, social, people, cultural [2] [8] [6]. NTD stems from suboptimal decisions that
prioritise short-term gains over long-term sustainability, which can impede software de-
velopment activities. In recent systematic review [2] to explore NTD in software engi-
neering, focusing on social, process, and people debt. Their study analyzed 42 primary
studies and identified 29 causes and 31 effects of NTD. It is highlighted that NTD is of-
ten interconnected and can significantly influence software development activities. The
study revealed that NTD can lead to reduced productivity, decreased software quality, and
increased development costs. It is important address NTD alongside TD for more effec-
tive software development and propose strategies for managing NTD, including improved
communication, knowledge sharing, and process optimization. Our literature review pro-
vided detailed background to various NTD types such as social, process, and people debts
in software engineering [2] [8] [8] [6]. Appendix B provided glossary of various debt
types, below we only highlight definitions and key leading causes, we reported details in
[2].

Process debt is a “suboptimal action or event with short-term advantages but long-
term detrimental effects” [17]. Teams incur process debt when conducting stand-up meet-
ings solely for status updates to leaders, limiting the meetings’ full potential. The leading
causes of process debt are lack of process competencies, process divergence, and external
dependencies (i.e. technology, tools and external trends) [2].

People debt refers to “people issues that, if present in the software organization, can
delay or hinder some development activities”, for example, expertise focussed on a few
personnel, as an effect of delayed training and hiring [2]. People’s debt causes examples



Organisational Debt and Software 373

are lack of knowledge, experience, commitment and lack of psychological safety, inade-
quate management decisions and low developer morale [2].

“Cultural debt is a technical decision that borrows against the organization’s culture.
Such decisions can introduce team divisions, deteriorate communication or even weaken
leadership effectiveness”. The leading causes of cultural debt include hiring the wrong
people, dismissing complaints, charging discrepancies, and giving unequal rewards.

Social debt refers to “the presence of sub-optimality in the development community,
which causes a negative effect on software development” [52]. An example of social debt
is lone wolf, and radio silence/bottleneck [2] [5]. Social debt causes are communication,
collaboration and coordination challenges, and community smells [2] [9].

Introducing new policies for hybrid work can expose managers to the potential of in-
curring OD [37]. These policies have the power to shape the norms that develop among
employees. If managers fail to address unfavourable norms promptly, they will be faced
with the consequences of this OD in future. Liu et al [37] research identified 23 mecha-
nisms, grouped into eight general coordination categories, and assessed their impact on
aspects such as shared mental models, team coordination, team cohesion, and team learn-
ing.

3. Research Method

In this section, we present the methodology used for our research. Our initial step in-
volved conducting a multivocal literature review (MLR) focused on OD within software
companies, as we previously reported in our work [6].

MLR typically encompass a wide array of easily accessible material. Given that this
approach incorporates diverse perspectives, including non-academic sources, it is crucial
to establish a clear objective before proceeding. In our case, the primary aim of the MLR
was to gain insight into how software industry professionals conceptualize and describe
the phenomenon of “organizational debt”.

We adhered to the MLR guidelines proposed by Garousi and Mantyla [6][7] [12]
[53]. Considering the novelty of “organizational debt” as a topic and the scarcity of aca-
demic literature, we opted to use Google search engine rather than traditional academic
databases (such as SpringerLink, ACM, or IEEE eXplore). Google search capabilities
proved effective in locating relevant grey literature. In June 2023, we conducted our search
using the query (“organizational debt” OR “organisational debt” AND “software”). This
search string was based on our study scope, incorporating both “population” and “inter-
vention” terms. We included “software” to ensure coverage of studies discussing soft-
ware, its development, engineering aspects, or software-intensive products, services, and
systems. The term (“organizational debt” OR “organisational debt”) was employed to
capture all OD-related papers.

From the search results, we examined the first 120 sources. This approach aligns with
Haddaway et al. [27] observation that grey literature researchers often focus on the top
50 results. We scrutinized each link, recording relevant findings in a Microsoft Excel
spreadsheet. We excluded sources that were non-English, videos, advertisements, cata-
logs, duplicates, research profiles, or outside the software engineering domain. Our final
selection comprised 22 blog posts out of the initial 120 sources, which are documented in
[6]. Notably, our search strategy did not yield any relevant scientific articles.



374 Ahmad MO et al.

For data analysis, we employed thematic analysis techniques, focusing on four key
themes: OD definitions, causes, consequences, and mitigation strategies. Within each
theme, we conducted an open analysis of the data. It is worth noting that we didn’t use
pre-defined themes or codes for causes, effects, and mitigation strategies; instead, these
emerged organically from the data. The initial MLR findings were published in [6]. Build-
ing upon this foundation, we subsequently expanded our research through an exploratory
survey.

The survey instrument itself was developed based on our OD literature review in soft-
ware engineering, as reported [6]. The development process adhered to best practices
for exploratory survey design, as suggested by Kitchenham and Pfleeger [32]. To ensure
methodological rigor, the survey followed a structured series of steps, including expert
reviews and pilot testing. These steps were crucial in refining the survey’s content and
ensuring its alignment with the study’s objectives. However, it is important to clarify that
the pilot testing was distinct from the main survey and was conducted solely to test the
clarity and reliability of the instrument, not to collect final survey data.

Expert reviews were conducted by professionals with over ten years of experience in
software engineering and project management, ensuring that the instrument was reviewed
by domain experts. Their feedback resulted in adjustments to question phrasing, the in-
clusion of additional response categories, and refinement of the open-ended questions.
The profile of these experts included senior software engineers and project managers. Ex-
perts recommended rephrasing some of the closed-ended questions to avoid ambiguity,
improving the clarity of operational definitions related to OD, and expanding the scope of
questions to cover a broader range of organizational levels (e.g., operational, managerial,
executive). Additionally, they suggested restructuring open-ended questions to encourage
more detailed and insightful responses from participants.

After incorporating the experts’ feedback, the survey was subjected to pilot testing
with a small sample of participants to assess the overall clarity and usability of the instru-
ment. The pilot test focused on understanding whether participants could easily interpret
the questions and provide responses that align with the survey objectives. Importantly,
the data collected from the pilot test were not included in the final survey results, as the
purpose of this phase was to refine the instrument rather than to gather actionable data.
Adjustments based on pilot test feedback included simplifying technical jargon and re-
structuring several questions to improve response accuracy.

The respondent pool included project managers, senior managers, and other key stake-
holders in software organizations, ensuring a broad representation of perspectives within
the software engineering industry. The survey consisted of 17 questions divided into six
sections:

1. Participants background
2. Organizational Information,
3. Awareness and Identification of Organizational Debt
4. Causes and Consequences of Organizational Debt
5. Mitigation Strategies and Practices
6. Additional Comments and Feedback.

The survey included a mix of closed-ended questions and open-ended questions to
gather both quantitative and qualitative data (See Appendix A, for survey questions).



Organisational Debt and Software 375

The survey was distributed electronically to nine different software organizations
across various regions. The organizations were selected based on their size (medium-
sized) and willingness to participate in the study. Responses were received from five of
the nine organizations contacted. Two organizations were excluded from the analysis due
to an insufficient number of responses (three or fewer responses received). The remain-
ing three organizations were located in Jordan (JoOrg), Canada (CaOrg), and the United
States (UsOrg). These organizations were categorized based on international definitions
for company size, where medium-sized companies are defined as having between 100
and 500 employees, as outlined in Table 3. In addition to the steps outlined in the research

Table 1. Participating Organizations

ID Size Responses Included responses Domain Location
JoOrg 200-250 16 13 Education Technology Jordan
CaOrg 300-350 21 16 E-Commerce Canada
UsOrg 200-250 18 13 Healthcare United States

method, the study also addressed validity threats by implementing strategies such as peer
debriefing and member checking. Peer debriefing involved discussions with colleagues in
software engineering to validate the coding framework, while member checking ensured
that the participants’ responses were accurately interpreted by returning initial results to
a subset of respondents for verification. Furthermore, data triangulation was employed,
comparing qualitative insights with MLR data to improve the robustness of the analysis.

3.1. Data Coding and Analysis

The closed-ended responses were coded numerically for quantitative analysis. In accor-
dance with best practices for survey analysis in software engineering research [32], de-
scriptive statistics such as frequencies and percentages were employed to provide an initial
quantitative overview of the data. For open-ended questions, a thematic analysis approach
was employed to identify common themes and patterns in the responses. We applied a de-
ductive thematic analysis, as described by Kitchenham and Pfleeger [32] and Braun and
Clarke [20], which allows researchers to analyze data using predefined theoretical frame-
works to guide the process. This approach is particularly useful when examining data
through the lens of established theories. In contrast to inductive methods, where themes
emerge directly from the data, deductive analysis facilitates a more targeted examination
of key research questions and theoretical constructs [3][20].

We compared these themes with the original ones that were reported by Ahmad and
Al-Baik [6] focusing on their relevance to OD. Specifically, the open-ended responses
were first read thoroughly to gain familiarity with the data. In line with qualitative re-
search guidelines, the initial coding process involved identifying recurring ideas, con-
cepts, or patterns in participants’ responses, which were then organized into codes. These
codes were subsequently refined and consolidated into broader themes that aligned with
the study’s research objectives. The coding process was iterative, with codes and themes
being revised as new insights emerged from the data. In order to ensure the robustness



376 Ahmad MO et al.

of our findings, methodological triangulation was applied, as recommended by Kitchen-
ham and Charters [32]. This involved comparing and integrating data from MLR and
open-ended survey responses to generate a holistic understanding of OD in software or-
ganizations.

To enhance the credibility and trustworthiness of the qualitative research, peer debrief-
ing and member-checking procedures were rigorously applied. Peer debriefing involved
discussions with an independent coder knowledgeable in OD, allowing for the verifica-
tion of the identified themes and codes, thereby improving the credibility and confirma-
bility of the analysis. Additionally, a purposive sample of participants was asked to review
the interpretations of their responses and provide feedback, a process known as member
checking. This step further strengthened the validity of the qualitative data by ensuring
that the interpretations accurately reflected participants’ perspectives. Moreover, efforts
were made to improve the reliability of the analysis by adhering to a systematic process
of comparison between qualitative and quantitative data. This methodological approach,
recommended by Kitchenham and Pfleeger [32], allows for a more nuanced understanding
of the phenomenon under investigation and ensures a reliable synthesis of both qualitative
and quantitative data. By using both data types, the study was able to address the research
questions comprehensively, reducing bias and enhancing the validity of the conclusions.

4. Results

In this section, we first review the trends of OD awareness and try to refine the definition
of OD that was established in our MLR [6]. Secondly, we discuss OD causes and effects
as reported by the survey participants and examine the alignment to the ones that were
previously reported in Ahmad and Al-Baik [6]. Thirdly, we discuss OD identification,
assessment metrics, and mitigation strategies as reported by the research participants.
Finally, we provided future directions and potential OD research agenda.

4.1. Results from Literature Review

OD Concept and Definition In our conference papers, we systematically assembled
twenty-two blog postings centred on OD, authored by software engineering professionals.
The concept of OD has gained increasing attention in recent years, as evidenced by the
growing number of publications on the topic. A clear pattern emerges as six out of 13
articles were written in the past couple of years 2020-2023, highlighting the increasing
discussion surrounding the OD phenomenon.

The conceptual roots of OD trace back to 2015 when Steve Blank extended the metaphor
of TD and characterized OD as “worse” [19]. Notably, this idea finds antecedents in Ben
Horowitz’s conceptualization of “management debt” dating back to 2012 [6]. Subsequent
contributors like Dignan broadened the scope, asserting that OD is not confined to start-
ups but holds significance on a broader organizational scale. The MLR results [6] offer a
plethora of OD definitions, reflecting the nuanced perspectives of software industry pro-
fessionals; Table 1 below shows a summary of these definitions.

We synthesis these definitions and proposed: “OD refers to the difference between a
company’s strategic plans and its actual ability to implement them in view of the ever-
changing market needs” [6]. OD, however, is a multifaceted phenomenon that encom-
passes a wide range of technical and non-technical aspects within an organization. While



Organisational Debt and Software 377

TD primarily refers to the accumulation of shortcuts and compromises made in the code-
base, OD encompasses a broader scope that includes inefficient processes, outdated poli-
cies, cultural misalignments, and suboptimal organizational structures. This reveals a nu-
anced understanding of OD that goes beyond the traditional concept of TD.

OD Causes and Consequences: As reported by Ahmad and Al-Baik [6], Table 2, sum-
marises the OD causes, consequences and mitigation strategies. It was also reported that
OD is not frequently measured in software organizations, nor valued because it’s ex-
tremely expensive [46]. Organisations that are not responsive to change accumulate OD:
decreased agility, reduced competitiveness, negative effect on employee morale and in-
creased resistance to change, and eventually lead to inefficiency and bureaucracy [6]. At
a higher level, OD manifests itself in two ways:

1. Obsolescence occurs when structures and policies become unfit for purpose. While
rules and structures may have initially served the organisation well, they can become
entrenched and inflexible, impeding adaptability and innovation.

2. Accumulation occurs when policies and procedures are constantly added but never
removed. When employees are unsure of their responsibilities and accountabilities, it
leads to confusion and inefficiency. Overcompensating some employees while neglect-
ing others can create perceptions of unfairness, leading to demotivated teams and reduced
overall productivity.

OD Mitigation Strategies: Identifying and mitigating organisational debt requires a sys-
tematic approach given its multifaceted nature. Organisational debt symptoms can be
spotted through regular performance monitoring, employee surveys, and audits of pro-
cesses [6]. A comprehensive evaluation of various organisational components is vital for
deeper insights.

Quantitative performance metrics offer warning signs such as prolonged declines in
productivity, increasing software defects, lags in new feature releases, product quality
issues, and rising customer complaints. Comparing metrics over time and against com-
petitors highlights underperformance. Periodic audits help assess process efficiency, re-
dundancy, and alignment with objectives. Surveys and interviews to gather employee per-
spectives on pain points complement the top-down analysis. The utilization of both quan-
titative and qualitative data allows for the cross-validation of findings regarding the state
of organizational components.

4.2. Practitioners Survey Results

Demographics: A total of 54 responses were collected from Jordan (JoOrg), Canada
(CaOrg), and the United States (UsOrg). Majority of the responses were from 21 re-
sponses from CaOrg, followed by 18 responses from UsOrg and 16 responses from JoOrg.
However, 3 responses from JoOrg, 5 responses from CaOrg, and 5 responses from UsOrg
were excluded due to incomplete responses, resulting in a final sample of 42 included re-
sponses. The study included a diverse group of participants from various roles (See Table
4).



378 Ahmad MO et al.

Table
2.O

D
D

efinitions,adopted
from

ourM
L

R
[6]

Proposed
D

efinition
in

G
rey

L
iterature

Y
ear

“O
D

is
allthe

people/culture
com

prom
ises

m
ade

to
‘justgetitdone’in

the
early

stages
ofa

start-up”
2015

“O
rganizationaldebtis

any
structure

orpolicy
thatno

longerserves
an

organization”
2020

“O
rganizationaldebtis

the
accum

ulation
ofchanges

and
decisions

leaders
should

have
m

ade
butdid

not”
2016

“T
he

interestcom
panies

pay
w

hen
theirstructure

&
policies

stay
fixed

and/oraccum
ulate

as
the

w
orld

changes”
2016

“M
anagem

entD
ebtis

incurred
w

hen
you

m
ake

an
expedient,short-term

m
anagem

entdecision
w

ith
an

expensive,long-term
consequence”

2022
“O

rganizations
m

ay
intentionally

orunintentionally
incurorganizationaldebtthrough

m
anagem

entactions,governance
process

changes,inter-
nalprocess

changes,orlarge-scale
organizationalchanges

w
hen

short-term
advantages

are
soughtatthe

expense
of’doing

things
right”

2017

“O
rganizationaldebtis

the
baggage

thatprevents
people

from
delivering

astonishing
results”

2015
“O

rganizationaldebt-ourorganizations
are

also
a

good
excuse

to
avoid

changes,as
w

e
often

look
forsom

eone
w

ho
is

going
to

help
us,butw

e
do

notreally
w

antto
give

him
orherthe

pow
erto

im
plem

entthe
changes”

2019

“O
rganizationaldebtis

sibling
oftechnicaldebt,forexam

ple
a

toxic
culture,struggling

leaderetc.”
2020

“O
rganizationaldebt:things

thatshould’ve
been

done
to

ensure
health

&
efficiency,butw

eren’t”
2021

“O
rganizationaldebt,an

analogy!D
uring

the
execution

oforganizationalchanges
(transform

ations,reorganizations,changes
in

w
ays

ofw
ork-

ing
etc.)shortcuts

are
taken

thatlead
to

frustration,m
ore

tim
e

and
m

oney
etc.It’s

the
sam

e
thing

as
technicaldebt”

2021

“O
rganizationalD

ebtis
the

interestcom
panies

pay
w

hen
theirstructure

and
policies

1)stay
fixed

and/or2)accum
ulate

as
the

w
orld

changes”
2016

“O
rganizational

debt
is

a
holistic

concept,
and

it
is

m
ore

than
technical

debt
and

also
different

from
bureaucracy.

O
rganizational

debt
is

a
netw

orked
conceptthatfosters

the
blam

e-free
identification

ofcross-functionaland
cross-departm

entw
eak

points”
2023



Organisational Debt and Software 379

Ta
bl

e
3.

O
D

C
au

se
s,

C
on

se
qu

en
ce

s,
an

d
M

iti
ga

tio
n

St
ra

te
gi

es
fr

om
M

L
R

[6
]

T
he

m
e

C
au

se
C

on
se

qu
en

ce
s

T
D

A
na

lo
gy

M
iti

ga
tio

n
St

ra
te

gi
es

Pr
es

su
re

to
“J

us
t

G
et

It
D

on
e”

R
oo

t
ca

us
e

is
ur

ge
nc

y
to

co
m

pl
et

e
ta

sk
s

R
ed

uc
ed

O
rg

an
iz

at
io

na
l

E
ff

ec
tiv

en
es

s:
D

e-
cr

ea
se

d
sp

ee
d,

ca
pa

ci
ty

,e
ng

ag
em

en
t,

fle
xi

bi
lit

y,
an

d
in

no
va

tio
n

R
us

he
d

to
su

bo
pt

im
al

so
lu

tio
ns

A
vo

id
ri

gi
d

or
ga

ni
za

tio
na

l
ch

ar
ts

,
se

t
w

or
k-

in
-p

ro
gr

es
s

lim
its

,
an

d
us

e
K

an
-

ba
n.

O
rg

an
iz

at
io

na
l

G
ro

w
th

C
ha

l-
le

ng
es

C
om

pr
om

is
es

in
pe

r-
so

nn
el

,
cu

ltu
re

,
an

d
le

ad
er

sh
ip

pr
ac

tic
es

D
ec

lin
e

in
K

ey
Pe

rf
or

m
an

ce
M

et
ri

cs
:

D
e-

cr
ea

se
d

ag
ili

ty
,s

lo
w

de
liv

er
y,

re
du

ce
d

co
m

pe
ti-

tiv
en

es
s

R
ap

id
gr

ow
th

w
ith

ou
t

pr
op

er
sc

al
ab

ili
ty

m
ea

-
su

re
s

E
nc

ou
ra

ge
in

di
vi

du
al

w
or

ke
rs

to
ta

ilo
r

th
ei

rr
ol

es
fo

rfl
ex

ib
ili

ty
an

d
ad

ap
ta

tio
n

C
os

t
an

d
M

ea
-

su
re

m
en

tI
ss

ue
s

O
D

no
tf

re
qu

en
tly

m
ea

-
su

re
d

or
va

lu
ed

du
e

to
pe

rc
ei

ve
d

hi
gh

co
st

D
im

in
is

he
d

A
gi

lit
y,

Sl
ow

A
da

pt
at

io
n,

an
d

R
e-

du
ce

d
C

om
pe

tit
iv

en
es

s:
H

in
de

rs
re

sp
on

si
ve

-
ne

ss
an

d
ef

fic
ie

nc
y

A
vo

id
in

g
in

ve
st

m
en

ts
in

to
ol

s
an

d
pr

oc
es

se
s.

E
st

ab
lis

h
a

fe
ed

ba
ck

cu
ltu

re
,

nu
rt

ur
-

in
g

in
te

rn
al

tr
us

ta
nd

en
co

ur
ag

in
g

op
en

fe
ed

ba
ck

Po
or

ly
M

an
ag

ed
C

ha
ng

e
In

ad
eq

ua
te

ad
ap

ta
tio

n
or

in
ef

fe
ct

iv
e

ch
an

ge
m

an
ag

em
en

ti
ni

tia
tiv

es

Po
or

ly
m

an
ag

ed
ch

an
ge

s
le

ad
to

re
si

st
an

ce
an

d
in

ef
fe

ct
iv

en
es

s
Q

ui
ck

,
te

m
po

ra
ry

fix
es

in
st

ea
d

of
co

m
pr

eh
en

-
si

ve
ch

an
ge

s

Pr
ac

tic
e

co
nt

in
uo

us
pa

rt
ic

ip
at

or
y

go
v-

er
na

nc
e:

In
vo

lv
e

pe
op

le
in

co
-d

es
ig

ni
ng

ro
le

s,
st

ru
ct

ur
es

,a
nd

po
lic

ie
s

L
ac

k
of

C
ol

la
bo

-
ra

tio
n

C
ul

tu
re

Fa
ilu

re
to

se
ek

in
pu

t
fr

om
st

ak
eh

ol
de

rs
du

r-
in

g
ch

an
ge

in
iti

at
iv

es

St
ru

ct
ur

es
an

d
po

lic
ie

s
be

co
m

e
un

fit
,h

in
de

ri
ng

ad
ap

ta
bi

lit
y

L
ac

k
of

co
lla

bo
ra

tio
n,

ou
td

at
ed

sy
st

em
s

an
d

pr
oc

es
se

s

R
eg

ul
ar

ly
m

on
ito

rp
er

fo
rm

an
ce

,b
eh

av
-

io
ra

l,
an

d
in

no
va

tio
n

m
et

ri
cs

Si
lo

ed
C

ha
ng

e
E

f-
fo

rt
s

In
de

pe
nd

en
tc

ha
ng

e
ef

-
fo

rt
s

w
ith

ou
t

co
or

di
na

-
tio

n

Fr
ag

m
en

ta
tio

n,
du

pl
ic

at
ed

ef
fo

rt
s,

an
d

la
ck

of
sy

ne
rg

y
du

e
to

in
de

pe
nd

en
tc

ha
ng

e
ef

fo
rt

s
Fr

ag
m

en
te

d
so

lu
tio

ns
th

at
do

n’
ti

nt
eg

ra
te

w
el

lIm
pl

em
en

t
pr

og
ra

m
s

lik
e

“p
ro

ce
ss

bo
un

ty
”

to
en

co
ur

ag
e

to
hi

gh
lig

ht
hi

nd
ra

nc
es

,
fo

st
er

in
g

a
cu

ltu
re

of
id

en
tif

yi
ng

an
d

re
ct

if
yi

ng
O

D
so

ur
ce

s.
L

ea
de

rs
hi

p
D

e-
ci

si
on

s
A

vo
id

in
g

D
is

ru
pt

io
n

H
es

ita
tio

n
to

ad
dr

es
s

un
de

rp
er

fo
rm

in
g

em
-

pl
oy

ee
s

an
d

av
oi

di
ng

ne
ce

ss
ar

y
ch

an
ge

s

M
ed

io
cr

ity
an

d
re

si
st

an
ce

be
co

m
e

ac
ce

pt
ed

no
rm

s,
hi

nd
er

in
g

ne
ce

ss
ar

y
ch

an
ge

s
L

ea
de

rs
hi

p
av

oi
ds

ne
c-

es
sa

ry
im

pr
ov

em
en

ts
O

ff
er

le
ad

er
sh

ip
tr

ai
ni

ng
,c

ha
ng

e
m

an
-

ag
em

en
t,

et
c.



380 Ahmad MO et al.

The largest groups were Project Managers and Product Owners, each comprising
14.29% of the sample (6 participants each), and CEOs (4.76%). This focus on managerial-
level participants ensures understanding of OD from a strategic perspective. Other roles
included Software Developers (11.90% ) and Quality Engineers (9.52%). This distribu-
tion highlights the variety of perspectives included in the study, ensuring a well-rounded
view of challenges faced by different levels within software organizations.

Table 4. Participant Titles and Demographics

Title N Percentage
Quality Engineer 4 9.52%
Graphic Designer 2 4.76%
Network Engineer 3 7.14%
Project Manager 6 14.29%
UX Researcher 2 4.76%
Software Developer 5 11.90%
Business Analyst 4 9.52%
Security Officer 3 7.14%
Product Owner 6 14.29%
Customer Support Team Lead 2 4.76%
CEO 2 4.76%
Marketing Professional 3 7.14%
Total 42 100%

Table 5 provide an over of demographic characteristics of our survey participants.
The majority of participants were male (66.67%), with females making up 33.33% of
the sample. This distribution reflects the current gender disparity often seen in the soft-
ware engineering industry. A significant proportion of participants held Graduate degree

Table 5. Demographic profile of respondents (N=42)

Characteristic Frequency Percentage
Gender Male 28 66.67%

Female 14 33.33%
Age (years) 22-25 10 23.81%

26-29 12 28.57%
30-33 8 19.05%
34 and above 12 28.57%

Education Level Graduation (Bachelor) 22 52.38%
Post-Graduation(Masters/MPhil) 14 33.33%
Doctorate 6 14.29%

Software Development (Years) Less than 1 4 9.52%
1-2 8 19.05%
3-5 12 28.57%
6-7 10 23.81%
7+ 8 19.05%



Organisational Debt and Software 381

(52.38%). Those with Post-Graduation degrees (Masters/MPhil) made up 33.33% of the
sample, and 14.29% held Doctorate degrees. This variety in educational background un-
derscores the breadth of expertise represented in the study. Participants’ experience in
software development varied widely.

The largest group had 3-5 years of experience (28.57%), followed by those with 6-7
years (23.81%). This mix of experience levels ensures that the study encompasses both
relatively new and experienced professionals, providing a comprehensive view of how
OD affects in their work.

The survey results also provide a view of OD awareness across various organizational
levels. A significant proportion of respondents (60%) indicated familiarity with the con-
cept of OD, highlighting a growing recognition of the term within the software industry.
However, 25% of participants reported only partial familiarity, and 15% were entirely
unfamiliar with OD. This suggest that while awareness is increasing, there remain knowl-
edge gaps that could hinder effective OD identification and mitigation.

Moreover, when asked to describe their organization’s current level of OD, 50% of re-
spondents identified OD at the operational level, indicating that day-to-day processes,
workflows, and procedures are where inefficiencies are most prevalent. 35% reported
OD at the managerial level, suggesting that mid-level management also grapples with
decision-making inefficiencies and misaligned structures.

Only 15% recognized OD at the executive level, reflecting that strategic misalignment
exists, it is less prevalent compared to operational and managerial layers. These findings
underscore the need for targeted OD mitigation strategies that focus on operational and
managerial inefficiencies, where the debt is most concentrated, while ensuring alignment
at the executive level to drive long-term organizational adaptability and competitiveness.

Table 6 presents a comprehensive overview of OD based on practitioners’ survey.
It outlines five key themes related to OD: complex codebase, inconsistent UI, unclear
requirements, outdated content, and inability to adapt to change. For each theme, the table
details the causes, consequences, TD analogies, and mitigation strategies. In the following
sections, we will discuss each of these themes in detail.

We will present the specific causes that lead to OD, the consequences, and strategies
that practitioners recommend for mitigating these challenges. This analysis will provide
valuable insights into the nature of OD and offer practical approaches for addressing it in
software development organizations.

OD Concept from Practitioners Survey: From a developers’ perspective, OD can man-
ifest as complex and poorly documented codebases, siloed knowledge, and a lack of clear
code ownership, hindering maintainability and the integration of new features. As de-
velopers mentioned, “Difficulty integrating new features due to complex code structure”
(Jo8), “Difficulty meeting sprint goals due to last minute feature additions or changes”
(Us12), and “Long code review times due to a large codebase” are indicators of OD
(Ca15).

For designers, OD may present itself as inconsistencies in the user interface, outdated
design guidelines, and a lack of user research, leading to design debt and usability issues.
A UX designer noted, “Inconsistency in user interface (UI) elements across different parts
of the application can indicate design debt.” (Ca8) and “Inconsistent brand application



382 Ahmad MO et al.

Table
6.O

D
C

auses,C
onsequences,and

M
itigation

Strategies
B

ased
on

Practitioners
Survey

T
hem

es
C

auses
C

onsequences
T

D
A

nalogy
M

itigation
Strategies

C
om

plex
codebases,

Siloed
know

ledge,
unclearcode

ow
nership

R
apid

uncontrolled
grow

th,pri-
oritization

of
speed

over
qual-

ity,
lack

of
clear

com
m

unica-
tion

&
collaboration,

outdated
processes

and
structures

R
educed

m
aintainability,

diffi-
culty

integrating
new

features,
longerdevelopm

entcycles

Im
pacting

code
quality

&
m

aintainability
D

edicating
tim

e
for

code
refactoring,

im
plem

enting
code

review
s,investing

in
test

autom
ation

Inconsistent
U

I,
outdated

design
guide-

lines,
lack

of
user

research

R
apid

grow
th,

prioritization
of

speed
overquality,lack

ofcom
-

m
unication

betw
een

design
&

developm
entteam

s

D
esign

debtleading
to

usability
issues,userfrustration

Im
pacting

the
user

ex-
perience

Fostering
collaboration

be-
tw

een
design

and
develop-

m
ent

team
s,

integrating
user

research
findings

into
devel-

opm
entprocess

U
nclear

requirem
ents,

inefficient
com

m
unica-

tion

L
ack

of
clear

collaboration
and

cooperation,outdated
processes

and
structures

M
issed

deadlines,
frustrated

team
s,

difficulty
adapting

to
changes

Process
debt

im
pacting

project
m

anagem
ent

&
com

m
unication

Stream
lining

w
orkflow

s,
es-

tablishing
know

ledge
m

an-
agem

entpractices,collaborat-
ing

w
ith

productteam
s

O
utdated

content,
m

is-
aligned

m
essaging

Prioritization
of

speed
over

quality,lim
ited

resources
Ineffective

com
m

unication,dif-
ficulty

aligning
content

w
ith

productfeatures

Process
debt

im
pact-

ing
content

creation
&

m
anagem

ent

Investing
in

content
creation

tools,
establishing

clear
con-

tentcreation
w

orkflow
s

Inability
to

adapt
&

change,
hindered

inno-
vation

L
ack

of
agility

and
understand-

ing
agile

concepts,
lim

ited
re-

sources
and

com
peting

priori-
ties

R
educed

com
petitiveness,

dif-
ficulty

responding
to

m
arket

shifts

A
ccum

ulated
debt

across
various

as-
pects

hindering
overall

agility

Fostering
a

culture
of

contin-
uous

im
provem

ent,
invest

in
stafftraining,prom

oting
user-

centric
m

indset



Organisational Debt and Software 383

across different platforms, potentially indicating outdated design assets or style guides.”
(Jo4).

Project managers often grapple with OD in the form of unclear requirements, scope
creep, and inefficient communication between stakeholders. In response to what symp-
toms of OD exist in the participating organizations, a project manager from CaOrg stated,
“Frequent scope creep and missed deadlines due to unclear project requirements” (Ca5),
while a project manager from JoOrg mentioned “Frustration among team members due to
inefficient workflows or unclear priorities.” (Jo5), and from the UsOrg, a project manager
stated “Project teams struggling to adapt to changes due to inflexible project management
methodologies.” (Us5).

As for marketing and content writer specialists working in the software domain, OD
can manifest as outdated content, misalignment between messaging and product features,
and inefficient content creation workflows. A marketing professional from CaOrg men-
tioned, “Difficulty aligning marketing campaigns with new product releases due to slow
content creation workflows” as an indicator of OD (Ca6), while another marketing pro-
fessional from JoOrg mentioned “Inconsistent branding across different platforms due to
outdated style guides or lack of clear communication.” as a symptom of OD (Jo7).

While TD primarily impacts the maintainability, evolvability, and quality of the code-
base, OD has far-reaching consequences that can affect an organization’s ability to adapt
to change, innovate, and remain competitive in the market. OD encompasses a broader
range of factors, including suboptimal decisions, outdated processes, misaligned struc-
tures, and cultural barriers, which collectively hinder an organization’s agility and overall
performance. Each of these terms within the OD definition can be understood as follows:
Suboptimal decisions refer to short-term choices that prioritize immediate gains at the cost
of long-term sustainability. Outdated processes reflect workflows and procedures that no
longer align with current organizational goals or market demands. Misaligned structures
refer to organizational hierarchies or teams that are no longer optimal for innovation and
flexibility.

Finally, cultural barriers involve resistance to change or a lack of openness to new
ideas, which stifles innovation. Understanding how each element of OD (suboptimal de-
cisions, outdated processes, etc.) influences organizational behavior is crucial for devel-
oping holistic approaches that address both technical and non-technical challenges. By
refining management practices to account for OD, organizations can incorporate strate-
gies that specifically target these inefficiencies.

Considering the above discussion and definitions, OD is define as the accumulation
of suboptimal decisions, outdated processes, misaligned structures, and cultural barriers
that impede an organization’s ability to adapt and innovate effectively. The inclusion of
‘and’ in the definition does not imply that all components must coexist for OD to be
present. This definition integrates the technical and non-technical aspects of debt, making
it applicable in practice. Rather, each component represents a potential source of OD,
which can be assessed individually. For instance, an organization may assess its OD by
evaluating its decision-making processes, structural efficiency, and adaptability to market
changes. The organization’s ability to adapt effectively can be defined as its capacity to
restructure processes, workflows, and team dynamics in response to internal and external
changes. Innovation, on the other hand, can be defined as the organization’s capacity to



384 Ahmad MO et al.

introduce new products, services, or processes that deliver value in line with evolving
market demands.

The gradual build-up of unresolved decisions and unimplemented actions that should
have been undertaken by leaders. This accumulation results in structures, policies, and
processes that no longer align with the organisation’s objectives, ultimately impeding its
progress and adaptability in the face of changing circumstances. This accumulation hin-
ders an organization’s ability to maintain optimal performance, agility, and responsive-
ness. As a result, OD exacerbates the gap between its intended strategic plans and the
practical capacity to meet evolving market demands. The means that OD encompasses a
broader range of organizational factors compared to TD and NTD. While TD focuses on
code quality and maintainability, OD extends beyond technical aspects to include orga-
nizational inefficiencies that limit agility and competitiveness. This expanded view helps
identify and mitigate debt beyond technical aspects, integrating social, process, and struc-
tural considerations.

OD Causes and Consequences: The survey results highlight that OD significantly af-
fects an organization’s agility, adaptability, and competitiveness. Agility refers to the abil-
ity to respond quickly to market changes, while adaptability denotes the capacity to adjust
processes and structures in response to internal and external pressures. Competitiveness
is defined as the organization’s ability to maintain or improve its position relative to com-
petitors. Rapid growth and the prioritization of speed over quality emerged as significant
contributors to the accumulation of OD across multiple departments.

The survey found that organizations burdened by OD were less agile and adaptable,
often facing challenges in maintaining competitiveness due to outdated processes and
misaligned structures. Participants noted that OD led to slow decision-making, reduced
innovation, and lower responsiveness to customer needs, further highlighting its detrimen-
tal impact on organizational performance.

In the development realm, respondents reported a primary cause of technical debt as
Ca15 cited “Rapid growth leading to pressure to ship features quickly, sometimes at the
expense of code quality” and Us1 testified “In my experience, rapid feature releases with
tight deadlines can lead to technical debt as corners are sometimes cut” (Us1). Similarly,
Ca7, a product owner, mentioned that “Rapid feature releases with tight deadlines can
lead to technical debt due to shortcuts taken.” Even in the marketing department, Ca6
noted that “Limited resources might lead to slow content creation and outdated materi-
als,” indicating that the pressure of rapid growth can contribute to process debt.

Lack of clear communication and collaboration was another recurring theme high-
lighted by respondents from various roles. Ca5, a project manager, pointed out that “.
Us6, a UX researcher, stated that “Outdated user personas that don’t reflect the current
user base could cause the product to miss user needs,” suggesting a lack of communica-
tion between user research and development teams. Ca14, a customer support team lead,
mentioned that “Lack of clear communication between development and customer sup-
port teams could be hindering the creation of user-friendly self-service options,” leading
to process debt in customer support. Us9, a network engineer stated that “Limited com-
munication between network operations and development teams can lead to mismatched
network requirements,” resulting in debt that impacts performance and scalability.



Organisational Debt and Software 385

Outdated processes and structures were also identified as significant contributors to
organizational debt. Ca15, a software developer, noted that “Lack of clear code owner-
ship makes refactoring and maintaining code quality challenging,” indicating outdated
processes for code management. Ca11, a business analyst, mentioned “A lack of stan-
dardized processes across departments, potentially resulting in redundancies and ineffi-
ciencies,” as a potential source of process debt. Ca10, a security officer, cited “Difficulty
keeping up with the evolving threat landscape due to outdated security tools,” as a con-
tributor to security debt.

Limited resources and competing priorities were frequently cited as factors hinder-
ing efforts to address organizational debt. Developers like Ca15 mentioned “Limited re-
sources and time for code refactoring and technical debt reduction” as a factor con-
tributing to technical debt accumulation. Ca16, a quality engineer, stated that “Limited
resources and time for QA to develop and maintain automated tests” led to testing debt.
Ca4, a graphic designer, noted that “Limited time and resources for the design team to
undertake large-scale organization initiatives” hindered efforts to mitigate design debt.
The limited resources were also reported on both, human and non-human resources, Us9
a network engineer from UsOrg, stated “Frequent network slowdowns, bottlenecks during
peak usage periods, and difficulty integrating new applications due to limited network ca-
pacity.” and “Limited staff resources might make network modernization a complex and
time consuming process.”

Lack of agility and inability to adapt to market changes were also reported to introduce
insufficient flexibility and incapacity to adjust to shifts in the market. The organization’s
outdated legacy systems and bloated processes hinder its ability to stay up with more agile
competitors, making it slow and inflexible. The CEO of JoOrg attested that “Reduced
agility and adaptability to changing requirements due to technical limitations” is a major
OD impact on the organization (Jo2). The CEO of CaOrg acknowledged that “I believe a
strong focus on employee development and training on new technologies will help us stay
agile and adapt to changing market demands” (Us2).

These observations from various departments and roles illustrate the multifaceted na-
ture of OD and highlight how factors such as rapid growth, communication barriers, out-
dated processes, and resource constraints can contribute to the accumulation of different
types of OD within software organizations.

OD Identification Identifying the presence of OD within an organization often involves
recognizing various indicators and symptoms across different domains. One key area is in-
efficient processes and outdated policies, where teams might encounter “Difficulty finding
clear and up-to-date documentation for internal systems” or “Repetitive tasks that could
potentially be automated” (Ca3), or “Outdated design tools or asset libraries requiring
workarounds and slowing down workflows” (Jo4). Project managers may also observe
“Frequent scope creep and missed deadlines due to unclear project requirements” (Ca5)
or “...team members struggle to adapt to changes due to inflexible project management
methodologies” (US5).

Technical debt and code quality issues can also serve as indicators of OD. Developers
might face “Difficulty integrating new features due to complex code structure” (Ca7) or
experience “Long code review times due to a large codebase” (Ca1). Additionally, teams



386 Ahmad MO et al.

may encounter “difficulty troubleshooting issues caused by legacy code or features not
documented clearly” (Us11), further highlighting the presence of technical debt.

User experience and customer satisfaction issues can be telling signs of OD as well.
Design teams might receive “User complaints about unintuitive features or cluttered inter-
face” (Ca8) or “Difficulty getting timely feedback on design concepts, leading to revisions
and delays” (Jo4), or “Inconsistent brand application across different platforms due to
lack of design guidelines” (Us4).

QA teams could struggle with “Difficulty reproducing reported bugs due to insuf-
ficient test data or unclear defect documentation” (Ca16). Customer support personnel
might encounter “Frequent reports of slow loading times or bugs in the software” (Ca13)
experience “Long resolution times for complex customer inquiries due to limited knowl-
edge base information” (Ca14), or experience “Frequent escalations to developers due to
lack of readily available solutions in the internal knowledge base” (Us11).

Moreover, employee frustration and morale concerns can be indicative of OD within
an organization. This might manifest as “Employee surveys indicate frustration with slow
internal tools and processes” (Ca2), or “Frustration among developers due to inconsis-
tent coding standards and legacy code” (Ca5). Support teams could also face “Difficulty
accessing clear and up-to-date product information” (Ca13), while development teams
may show signs of “decreased developer morale and productivity due to rework caused
by last-minute changes”(Us12), contributing to overall employee dissatisfaction.

OD Assessment: To effectively assess and monitor OD levels, organizations can imple-
ment various metrics and processes. Project data analysis can involve “Track[ing] project
metrics like cycle time, defect escape rates, and time spent on bug fixes versus new feature
development” (Jo1, Jo5, Jo9, Ca5, Ca12, Us5, and Us6) or “Analyz[ing] project data to
identify potential bottlenecks, delays, and inefficiencies” (Ca12) or “. . . track[ing] project
metrics like schedule variances, defect rates, and team member utilization. . . ” (Jo5).

User feedback and experience metrics can be gathered through “regular user surveys
and interviews” (Ca9), tracking “user task completion rates, error messages, and usability
issues” (Ca9), or monitoring “website traffic, engagement metrics, and competitor mar-
keting strategies” (Ca6).

Customer satisfaction and support metrics can provide valuable insights, such as track-
ing “customer satisfaction surveys and identify[ing] recurring pain points” (Ca14), mon-
itoring “customer service ticket volume regarding repetitive issues” (Ca2), or analyzing
or “website traffic and user engagement with different content” (Us7).

Interdepartmental collaboration and knowledge sharing can be facilitated by “estab-
lish[ing] clear communication channels and protocols for collaboration between depart-
ments” (Ca11), conducting “workshops and retrospectives to identify areas for process
improvement” (Ca12), and encouraging “open feedback loops and knowledge sharing
across teams and departments” (Us1).

Additionally, organizations should focus on security and compliance monitoring by
“track[ing] the number of unpatched vulnerabilities and time taken to address them”
(Ca10), “conduct[ing] regular penetration testing to identify potential security weak-
nesses” (Ca10), and monitoring “compliance with security regulations and industry best
practices” (Ca10).



Organisational Debt and Software 387

By leveraging a combination of these metrics and processes, organizations can gain
valuable insights into potential sources of organizational debt, identify areas that require
improvement, and monitor the effectiveness of their OD mitigation strategies over time,
enabling them to make informed decisions and implement targeted interventions to ad-
dress organizational debt proactively.

OD Mitigation Strategies: Identifying and mitigating organisational debt requires a sys-
tematic approach given its multifaceted nature. Organizations can dedicate specific time
periods for “addressing technical debt and code refactoring” (Ca15) to incrementally im-
prove their codebase. Implementing rigorous “code reviews with a focus on code quality,
maintainability, and identifying potential issues early on” (Ca1) can prevent the accu-
mulation of future technical debt. Furthermore, “investing in test automation tools and
frameworks” (Ca16) can reduce manual testing workloads and improve overall test cov-
erage, ensuring better quality assurance.

Fostering practices that promote knowledge-sharing and collaboration among devel-
opers is also crucial. Respondents highlighted the benefits of “ focus on collaboration
across teams is essential to prevent knowledge silos and maintain a healthy codebase”
(Us1), and the CEO of JoOrg stated “Clearer communication and collaboration across
teams could be beneficial” for facilitating knowledge transfer and enabling better collab-
oration on codebase maintenance.

Addressing process debt often involves optimizing processes and improving knowl-
edge management practices. “Conducting process optimization workshops” (Ca14) can
help organizations streamline workflows, eliminate redundancies, and improve overall
efficiency. Establishing “robust knowledge management practices, such as creating com-
prehensive documentation, centralized knowledge bases, and facilitating knowledge shar-
ing across teams” (Us3) can mitigate process debt stemming from knowledge gaps and
inefficient information flow.

Moreover, “collaborating with product teams to identify opportunities for improving
self-service resources based on customer feedback” (Ca14) can reduce the burden on
support teams and enhance the overall customer experience. “Integrating user research
findings into the product development process and establishing user research libraries”
(Ca9) can ensure that user needs are adequately addressed, preventing the accumulation
of user experience-related debt.

Mitigating cultural debt requires fostering an environment that promotes continuous
improvement, open communication, and cross-functional collaboration. “Encouraging
open communication, feedback loops, and cross-functional collaboration across teams
and departments” (Ca1) can break down silos, promote transparency, and leverage col-
lective expertise to address organizational challenges holistically.

Additionally, “fostering a culture of continuous improvement through practices like
retrospectives, workshops, and encouraging participatory decision-making” (Ca12) and
“Conducting regular reviews to identify areas for improvement” (Jo5), enables organi-
zations to proactively identify areas for improvement and adapt to changing needs and
requirements.

“Investing in employee training and development programs” (Ca2) can help upskill
teams on new technologies, methodologies, and best practices, ensuring they remain agile
and adaptable. Promoting a “user-centric mindset by incorporating user research, design



388 Ahmad MO et al.

thinking workshops, and prioritizing user experience throughout the product development
lifecycle” (Ca8,) can prevent the accumulation of design debt and ensure a superior user
experience.

To mitigate security debt, organizations should prioritize “implementing security aware-
ness training programs for all employees” (Ca10) to promote best practices and reduce
vulnerabilities. “Piloting automated security patching processes” (Ca10) can address vul-
nerabilities promptly and reduce the risk of security breaches. Furthermore, “integrating
security considerations earlier in the development lifecycle and investing in modern se-
curity tools and resources” (Ca10) can enhance the overall security posture of the organi-
zation.

Across all these mitigation strategies, the importance of fostering a culture of con-
tinuous improvement, open communication, and cross-functional collaboration cannot be
overstated. By embracing these principles, organizations can effectively combat organi-
zational debt, improve operational efficiency, enhance product quality, and better adapt to
changing market demands and customer needs.

4.3. Future Research Directions

While this study consolidated understanding of OD, several fruitful avenues exist for fur-
ther investigation based on current knowledge gaps:

– Develop metrics to quantify OD, enabling rigorous tracking and benchmarking. Com-
bine productivity data with indicators of culture, innovation, and TD. Establish vali-
dated scales to measure dimensions like employee engagement, psychological safety,
organizational agility, and leadership effectiveness [24] [45] [38]. Statistical mod-
elling can relate these metrics to OD.

– Conduct empirical studies on the impact of OD on workforce motivation, attrition,
fatigue, and burnout [35] [44] [41]. Use questionnaires and ethnographic methods to
gather insights. Relate debt to tangible individual performance metrics like produc-
tivity, absenteeism, and error rates.

– Investigate through case studies the relationship between OD and customer satisfac-
tion [22] [13], especially in software-intensive service organizations. Survey data can
correlate debt to metrics like call resolution times, complaint rates, churn, and net
promoter scores.

– Examine through controlled experiments the role of OD in software project suc-
cess/failure. Vary team structures and processes to reveal optimal configurations. Pro-
ductivity, quality, cost, and schedule metrics assess performance.

– Estimate the economic costs of OD through case studies and cost modelling across
software companies [30] [25]. Assess opportunity costs from delayed innovations.
Relate to the total cost of ownership models.

– Explore whether TD quantification techniques [15][16][40] can be extended to pro-
vide estimates of OD. Comparative studies could be conducted to evaluate the pre-
cision of these techniques when applied to different types of debt within software
organizations.

– Organizational forgetting [29],a concept largely overlooked in this research stream.
Organizational forgetting refers to the processes through which an organization in-
tentionally or unintentionally loses knowledge, practices, or routines that no longer



Organisational Debt and Software 389

serve its strategic goals [29]. In the context of OD, fostering deliberate organiza-
tional forgetting can be instrumental in reducing debt by eliminating outdated pro-
cesses, suboptimal decisions, and misaligned structures. Future work could explore
how organizational forgetting can be systematically applied to debt reduction efforts,
improving organizational adaptability and performance.

– Design field studies of interventions such as restructured teams, revised workflows,
and new planning processes to validate OD mitigation techniques [43]. These studies
should measure the before-and-after effects of such interventions to determine their
efficacy in reducing OD. However, it is important to recognize that OD, especially
when accumulated in the early phases of an organization’s lifecycle, is often difficult
to address without external engagement. Engaging external consultants [1], even in
a limited capacity such as providing strategic nudges or asking critical questions,
can play a pivotal role in mitigating debt that is deeply ingrained in organizational
structures and processes. To minimize OD effectively, future research should explore
the role of external consultants in the early stages of a company’s lifecycle.

Further research to address these gaps will provide more rigorous, empirically grounded
insights to guide debt management in practice. It represents an emerging interdisciplinary
arena spanning management science, organizational behaviour, anthropology, and soft-
ware engineering [54]. Collaboration between academics and industry practitioners is
needed to develop context-specific strategies rooted in both theory and pragmatism [48].
There are rich possibilities for cross-pollination between disciplines to uncover novel so-
lutions [23]. With organizational agility and adaptability growing more crucial in turbu-
lent conditions [28], understanding how to minimize friction and debt represents the key
to sustaining innovation and competitiveness [51].

5. Validity Threats and Limitations

The study presented in this manuscript has several potential validity threats and limita-
tions that should be acknowledged. One significant threat is the external validity, which
stems from the relatively small sample size, with only 42 responses obtained from three
software organizations. Although these responses provided valuable insights into OD, a
larger and more diverse sample, spanning different industries and geographical regions,
would improve the generalizability of the findings.

The survey relied on self-reported data from participants, which may be subject to
personal biases, perceptions, and interpretations. According to Kitchenham and Pfleeger
[32], reliance on self-reported data introduces a potential threat to internal validity, as
participants’ responses may not always accurately reflect the true state of OD within their
organizations. To mitigate construct validity threats, we employed several strategies, in-
cluding peer debriefing, which was conducted with subject matter experts from diverse
sectors of software engineering. These experts provided critical feedback on the coding
and interpretation of the survey data, ensuring a robust analysis. Furthermore, member
checking was performed by sharing the coded data with a subset of participants to validate
the accuracy of the interpretation and ensure alignment with their original responses. This
procedure enhanced the credibility of the qualitative findings. Additionally, data triangu-
lation was applied by comparing the qualitative data from open-ended survey questions



390 Ahmad MO et al.

with the MLR results. Triangulating these two data sources helped corroborate the find-
ings, although the inherent subjectivity in qualitative data analysis—where researchers’
interpretation might introduce bias—cannot be entirely eliminated [32].

The study provided a cross-sectional snapshot of OD at a certain period of time.
Kitchenham and Pfleeger [32] suggests, a cross-sectional design may limit the ability
to observe long-term trends or changes in OD over time. A longitudinal study, where or-
ganizations are observed over an extended period, would provide a deeper understanding
of how OD evolves and the long-term effectiveness of mitigation strategies. This is par-
ticularly relevant as OD is a dynamic construct that fluctuates with organizational and
environmental changes. Therefore, the findings of this study are valid for the period dur-
ing which the research was conducted, but future studies may need to revisit and update
the results over time.

Despite these limitations, the study offers insights into the awareness, causes, con-
sequences, and mitigation strategies for OD in software organizations. Future research
should address these limitations by incorporating a larger, more diverse sample, utiliz-
ing multiple data collection sources, and adopting longitudinal research designs to better
capture the evolving nature of OD and its effects on organizations.

6. Discussion

The notion of OD has attracted more attention by the software organizations as they face
difficulties in sustaining the key values such as flexibility, adaptability, and competitive-
ness in the context of the changing environment. This paper set out to investigate the level
of awareness, factors, impacts, and risk management measures of OD within software
organizations so as to confirm the findings of Ahmad and Al-Baik [6].

The results of this study show that OD has far-reaching consequences beyond TD,
particularly in its impact on organizational agility and competitiveness. Organizations
that accumulate OD tend to have outdated structures and processes, which slow down
their ability to respond to market changes and customer demands. Agility is reduced as
organizations struggle to implement changes efficiently, while competitiveness suffers be-
cause of their inability to innovate and adapt quickly. Addressing OD through continuous
improvement and cross-functional collaboration is crucial for maintaining organizational
performance and market relevance. As for the issues, participants pointed out several signs
and manifestations of OD in different areas such as ineffective workflows, outdated proce-
dures, poor code quality, user interface and experience problems, and dissatisfied employ-
ees. This goes to show that OD affects an organization’s performance and its capacity to
create value for clients in a profound way. Table 7, offered omparison of literature review
and survey results.

The factors that contributed to the development of OD were numerous, which in-
cluded growth, poor communication and coordination, obsolete methods and structures,
and resource constraints as some of the frequently mentioned reasons. The following fac-
tors lead to the creation of various types of debts like technical, process, and cultural debts
that affect an organization’s ability to be agile [2]. Interestingly, OD have negative impacts
not only in technical domains but also in other domains like competitiveness, employee
morale, resistance to change and inefficiency. This observation stresses the need for han-



Organisational Debt and Software 391

Ta
bl

e
7.

C
om

pa
ri

so
n

of
lit

er
at

ur
e

re
vi

ew
an

d
su

rv
ey

re
su

lts
T

he
m

es
C

au
se

sf
ro

m
re

vi
ew

C
au

se
sf

ro
m

su
rv

ey
Si

m
ila

ri
tie

s
D

iff
er

en
ce

s
R

ap
id

G
ro

w
th

O
rg

an
iz

at
io

na
lg

ro
w

th
ch

al
le

ng
es

R
ap

id
un

co
nt

ro
lle

d
gr

ow
th

B
ot

h
ac

kn
ow

le
dg

e
ra

pi
d

gr
ow

th
as

a
ca

us
e

Ta
bl

e
2

fo
cu

se
s

on
ge

ne
ra

l
or

-
ga

ni
za

tio
na

lg
ro

w
th

ch
al

le
ng

es
,

w
hi

le
Ta

bl
e

5
em

ph
as

iz
es

un
-

co
nt

ro
lle

d
gr

ow
th

Po
or

C
om

m
un

ic
at

io
n

an
d

C
ol

la
bo

ra
tio

n
L

ac
k

of
co

lla
bo

ra
tio

n
cu

ltu
re

,
si

lo
ed

ch
an

ge
ef

fo
rt

s
L

ac
k

of
cl

ea
r

co
m

m
un

ic
at

io
n

an
d

co
lla

bo
ra

tio
n

B
ot

h
em

ph
as

iz
e

po
or

co
m

m
un

i-
ca

tio
n

Ta
bl

e
2

m
en

tio
ns

si
lo

ed
ch

an
ge

ef
fo

rt
s,

w
hi

le
Ta

bl
e

5
hi

gh
lig

ht
s

la
ck

of
co

m
m

un
ic

at
io

n
be

tw
ee

n
sp

ec
ifi

c
te

am
s

U
rg

en
cy

to
C

om
pl

et
e

Ta
sk

s
Pr

es
su

re
to

“J
us

tG
et

It
D

on
e”

Pr
io

ri
tiz

at
io

n
of

sp
ee

d
ov

er
qu

al
ity

B
ot

h
re

co
gn

iz
e

ur
ge

nc
y

as
a

ca
us

e
Ta

bl
e

2
re

fe
rs

to
ge

ne
ra

l
ur

-
ge

nc
y,

w
hi

le
Ta

bl
e

5
fo

cu
se

s
on

sp
ee

d
ov

er
qu

al
ity

M
ea

su
re

m
en

t
an

d
C

os
t

Is
su

es
O

D
no

t
fr

eq
ue

nt
ly

m
ea

su
re

d
or

va
lu

ed
du

e
to

pe
rc

ei
ve

d
hi

gh
co

st
N

ot
fo

un
d

N
ot

fo
un

d
Su

rv
ey

do
es

no
t

m
en

tio
n

m
ea

-
su

re
m

en
ta

nd
co

st
is

su
es

ex
pl

ic
-

itl
y

In
ef

fe
ct

iv
e

C
ha

ng
e

M
an

ag
em

en
t

Po
or

ly
m

an
ag

ed
ch

an
ge

,
le

ad
er

-
sh

ip
de

ci
si

on
s

av
oi

di
ng

di
sr

up
tio

n
O

ut
da

te
d

pr
oc

es
se

s
an

d
st

ru
c-

tu
re

s
B

ot
h

ad
dr

es
s

ch
an

ge
m

an
ag

e-
m

en
t

L
ite

ra
tu

re
in

cl
ud

es
le

ad
er

sh
ip

de
ci

si
on

s,
w

hi
le

su
rv

ey
fo

cu
se

s
on

ou
td

at
ed

pr
oc

es
se

s
Te

ch
ni

ca
l

an
d

D
es

ig
n

D
eb

t
N

ot
fo

un
d

C
om

pl
ex

co
de

ba
se

s,
in

co
ns

is
-

te
nt

U
I,

ou
td

at
ed

de
si

gn
gu

id
e-

lin
es

B
ot

h
ac

kn
ow

le
dg

e
te

ch
ni

ca
l

as
-

pe
ct

s
Su

rv
ey

pr
ov

id
es

de
ta

ile
d

te
ch

-
ni

ca
l

ca
us

es
no

t
m

en
tio

ne
d

in
th

e
re

vi
ew



392 Ahmad MO et al.

dling OD preventatively as it tends to spread throughout the organisation and threaten its
sustainability.

This paper also sought to find out different approaches of recognizing, evaluating, and
managing OD. People stressed the need to use number indicators, consumers’ responses,
and customer satisfaction rates to identify potential causes of OD, as well as, collabo-
rate with different departments. These findings support previous studies that have been
done on the best practices for the management of NTDs [2]. Additionally, fostering a cul-
ture of continuous improvement, open communication, and cross-functional collaboration
emerged as crucial elements in combating OD effectively. Mitigating TD involved prac-
tices such as dedicated time for code refactoring, rigorous code reviews, and investment
in test automation, consistent with established software engineering best practices [34].
Addressing debt required process optimization, robust knowledge management practices,
and collaboration with product teams. Mitigating cultural debt necessitated promoting
open communication, fostering a culture of continuous improvement, and prioritizing user
experience throughout the product development lifecycle.

The findings of this study contribute to the growing body of knowledge on OD and
provide valuable insights for software organizations seeking to enhance their long-term
success. By recognizing the multifaceted nature of OD and implementing proactive mit-
igation strategies, organizations can minimize the accumulation of debt and foster an
environment conducive to innovation, quality, and customer satisfaction. However, it is
important to acknowledge the limitations of this study, such as the relatively small sample
size, reliance on self-reported data, and the potential for response biases.

Future research should aim to address these limitations by employing larger and more
diverse samples, triangulating data from multiple sources, and conducting longitudinal
studies to further strengthen the understanding of OD and its implications. Additionally,
the evolving nature of OD necessitates ongoing research to keep pace with the dynamic
landscape of software development and organizational practices. Exploring the quantifi-
cation of OD, estimating its economic costs, and examining the relationship between OD
and factors such as workforce motivation, customer satisfaction, and project success could
provide valuable insights for effective debt management. Collaboration between academia
and industry practitioners is crucial in this endeavour, as it fosters the integration of
theoretical frameworks and practical insights, ultimately leading to the development of
context-specific strategies rooted in both rigour and pragmatism.

7. Conclusion

This study demonstrates that OD extends beyond technical debt, encompassing a broad
range of organizational inefficiencies, including outdated processes, misaligned struc-
tures, and cultural barriers. OD integrates both technical and non-technical debt, influ-
encing organization’s ability to maintain agility, adaptability, and competitiveness. The
accumulation of OD hinders decision-making, slows innovation, and weakens the organi-
zation’s competitive edge. By recognizing and addressing OD through proactive measures
such as interdepartmental collaboration and continuous improvement, organizations can
reduce their debt and create an environment conducive to long-term success. This study
has shed light on the multifaceted nature of OD, its causes, consequences, and potential
mitigation strategies within software organizations.



Organisational Debt and Software 393

The survey findings revealed a growing awareness of OD among software profession-
als, recognizing its impact on various aspects of an organization, including inefficient
processes, code quality issues, user experience challenges, and employee frustration. The
causes of OD were found to be diverse, with rapid growth, communication barriers, out-
dated processes, and resource constraints contributing to the accumulation of different
types of debt, such as technical debt, process debt and cultural debt.

Notably, the consequences of OD extend beyond technical aspects, affecting an or-
ganization’s competitiveness, employee morale, adaptability, and overall efficiency. This
underscores the importance of proactively addressing OD to ensure long-term success
and sustainability. The study explored various strategies for identifying, assessing, and
mitigating OD, emphasizing the importance of leveraging quantitative metrics, user feed-
back, customer satisfaction data, and interdepartmental collaboration. Fostering a cul-
ture of continuous improvement, open communication, and cross-functional collaboration
emerged as crucial elements in combating OD effectively.

Mitigating technical debt involved practices such as dedicated time for code refactor-
ing, rigorous code reviews, and investment in test automation. Addressing process debt
required process optimization, robust knowledge management practices, and collabora-
tion with product teams. Mitigating cultural debt necessitated promoting open commu-
nication, fostering a culture of continuous improvement, and prioritizing user experience
throughout the product development lifecycle. While this study contributes to the growing
understanding of OD, it is essential to acknowledge its limitations and the need for fur-
ther research. Future studies should aim to address these limitations by employing larger
and more diverse samples, triangulating data from multiple sources, and conducting lon-
gitudinal studies to provide a more comprehensive and dynamic understanding of OD.
Additionally, exploring the quantification of OD, estimating its economic costs, and ex-
amining its relationship with factors such as workforce motivation, customer satisfaction,
and project success could yield valuable insights for effective debt management. Collabo-
ration between academia and industry practitioners is crucial in this endeavour, fostering
the integration of theoretical frameworks and practical insights to develop context-specific
strategies rooted in both rigour and pragmatism.

In conclusion, the concept of organizational debt represents a critical challenge for
software organizations striving for agility, adaptability, and long-term success. By recog-
nizing the multifaceted nature of OD, implementing proactive mitigation strategies, and
fostering a culture of continuous improvement and open communication, organizations
can minimize the accumulation of debt and foster an environment conducive to inno-
vation, quality, and customer satisfaction. Ongoing research and collaboration between
academia and industry are essential to further advance the understanding and effective
management of organizational debt in the software development domain.

Acknowledgments. This work was supported by the KK-stiftelsen (grant no. 20200253), Helge Ax:
son Johnsons Stiftelse, and STINT - Swedish Foundation for International Cooperation in Research
and Higher Education (IB2020-8720).

References

1. Adizes, I., Cudanov, M., Rodic, D.: Timing of proactive organizational consulting: difference
between organizational perception and behaviour. Amfiteatru Economic 19(44), 232 (2017)



394 Ahmad MO et al.

2. Ahmad, M.O., Gustavsson, T.: The pandora’s box of social, process, and people debts in soft-
ware engineering. Journal of Software: Evolution and Process p. e2516 (2022)

3. Ahmad, M.O.: A deep dive into self-regulated learning: Reflective diaries role and implemen-
tation strategies. Communications of the Association for Information Systems 54(1), 868–888
(2024)

4. Ahmad, M.O.: Psychological safety, leadership and non-technical debt in large-scale agile soft-
ware development. In: 2023 18th Conference on Computer Science and Intelligence Systems
(FedCSIS). pp. 327–334. IEEE (2023)

5. Ahmad, M.O.: 5g secure solution development and security master role. In: Proceedings of
the 28th International Conference on Evaluation and Assessment in Software Engineering. pp.
629–633 (2024)

6. Ahmad, M.O., Al-Baik, O.: Beyond technical debt unravelling organisational debt concept.
In: Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing. pp. 802–809
(2024)

7. Ahmad, M.O., Dennehy, D., Conboy, K., Oivo, M.: Kanban in software engineering: A sys-
tematic mapping study. Journal of Systems and Software 137, 96–113 (2018)

8. Ahmad, M.O., Gustavsson, T.: Nexus between psychological safety and non-technical debt in
large-scale agile enterprise resource planning systems development. In: Conference on Practi-
cal Aspects of and Solutions for Software Engineering. pp. 63–81. Springer (2023)

9. Ahmad, M.O., Gustavsson, T., Saeeda, H.: Customised roles in scrum teams for the develop-
ment of secure solution. In: 2023 49th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA). pp. 362–369. IEEE (2023)

10. Al-Baik, O., Miller, J.: Kaizen cookbook: The success recipe for continuous learning and im-
provements. In: 2016 49th Hawaii International Conference on System Sciences (HICSS). pp.
5388–5397. IEEE (2016)

11. Al-Baik, O., Miller, J.: Integrative double kaizen loop (idkl): towards a culture of continuous
learning and sustainable improvements for software organizations. IEEE transactions on Soft-
ware Engineering 45(12), 1189–1210 (2018)

12. Al-Tarawneh, A.M.: An analysis of the positive and negative effects of cyberpsychotherapy:
A systematic review. In: 2024 2nd International Conference on Cyber Resilience (ICCR). pp.
1–4. IEEE (2024)

13. Anderson, E.W., Sullivan, M.W.: The antecedents and consequences of customer satisfaction
for firms. Marketing science 12(2), 125–143 (1993)

14. Audit, T.S.N.: Föråldrade it-system–hinder för en effektiv digitalisering (2019)
15. Avgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C.: Managing technical debt in software engi-

neering (dagstuhl seminar 16162). Dagstuhl reports 6(4) (2016)
16. Avgeriou, P.C., Taibi, D., Ampatzoglou, A., Fontana, F.A., Besker, T., Chatzigeorgiou, A.,

Tsintzira, A.A.: An overview and comparison of technical debt measurement tools. IEEE soft-
ware 38(3), 61–71 (2020)

17. Behutiye, W.N., Rodrı́guez, P., Oivo, M., Tosun, A.: Analyzing the concept of technical debt
in the context of agile software development: A systematic literature review. Information and
Software Technology 82, 139–158 (2017)

18. Besker, T., Martini, A., Bosch, J.: Managing architectural technical debt: A unified model and
systematic literature review. Journal of Systems and Software 135, 1–16 (2018)

19. Blank, S.: Organizational debt is like technical debt–but worse (2015)
20. Braun, V., Clarke, V.: Thematic analysis. American Psychological Association (2012)
21. Cunningham, W.: The wycash portfolio management system. In: Addendum to the Proceedings

on Object-oriented Programming Systems, Languages, and Applications (Addendum). ACM,
Vancouver, British Columbia, Canada (1992)

22. DeLone, W.H., McLean, E.R.: The delone and mclean model of information systems success:
a ten-year update. Journal of management information systems 19(4), 9–30 (2003)



Organisational Debt and Software 395

23. Dodgson, M., Gann, D.M., Phillips, N.: Organizational learning and the technology of foolish-
ness: The case of virtual worlds at ibm. Organization science 24(5), 1358–1376 (2013)

24. Edmondson, A.: Psychological safety and learning behavior in work teams. Administrative
science quarterly 44(2), 350–383 (1999)

25. Ernst, N.A., Bellomo, S., Ozkaya, I., Nord, R.L., Gorton, I.: Measure it? manage it? ignore it?
software practitioners and technical debt. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. pp. 50–60 (2015)

26. of Finance, D.M.: Regeringens kasseeftersyn på it-området (2017)
27. Haddaway, N.R., Collins, A.M., Coughlin, D., Kirk, S.: The role of google scholar in evidence

reviews and its applicability to grey literature searching. PloS one 10(9), e0138237 (2015)
28. Helfat, C.E., Finkelstein, S., Mitchell, W., Peteraf, M., Singh, H., Teece, D., Winter, S.G.:

Dynamic capabilities: Understanding strategic change in organizations. John Wiley & Sons
(2009)

29. Holan, P.M.D., Phillips, N.: Organizational forgetting. Handbook of organizational learning
and knowledge management pp. 433–451 (2012)

30. Kemerer, C.F., Slaughter, S.: An empirical approach to studying software evolution. IEEE
transactions on software engineering 25(4), 493–509 (1999)

31. Khomyakov, I., Makhmutov, Z., Mirgalimova, R., Sillitti, A.: Automated measurement of tech-
nical debt: A systematic literature review. In: International Conference on Enterprise Informa-
tion Systems. pp. 95–106 (2019)

32. Kitchenham, B.A., Pfleeger, S.L.: Personal opinion surveys. In: Guide to advanced empirical
software engineering, pp. 63–92. Springer (2008)

33. Klinger, T., Tarr, P., Wagstrom, P., Williams, C.: An enterprise perspective on technical debt.
In: Proceedings of the 2nd Workshop on managing technical debt. pp. 35–38 (2011)

34. Lenarduzzi, V., Besker, T., Taibi, D., Martini, A., Fontana, F.A.: A systematic literature review
on technical debt prioritization: strategies, processes, factors, and tools. Journal of Systems and
Software 171, 110827 (2021)

35. LePine, J.A., Podsakoff, N.P., LePine, M.A.: A meta-analytic test of the challenge stressor–
hindrance stressor framework: An explanation for inconsistent relationships among stressors
and performance. Academy of management journal 48(5), 764–775 (2005)

36. Liechti, O., Pasquier, J., Reis, R.: Supporting agile teams with a test analytics platform: a case
study. In: 2017 IEEE/ACM 12th International Workshop on Automation of Software Testing
(AST). pp. 9–15. IEEE (2017)

37. Liu, Z., Stray, V., Sporsem, T.T.: Organizational debt in large-scale hybrid agile software de-
velopment: A case study on coordination mechanisms. In: Agile Processes in Software Engi-
neering and Extreme Programming–Workshops: XP 2022 Workshops, Copenhagen, Denmark,
June 13–17, 2022, and XP 2023 Workshops, Amsterdam, The Netherlands, June 13–16, 2023,
Revised Selected Papers. Springer (2023)

38. Luthans, F., Youssef-Morgan, C.M.: Psychological capital: An evidence-based positive ap-
proach. Annual review of organizational psychology and organizational behavior 4(1), 339–366
(2017)

39. Marjanović, J., Dalčeković, N., Sladić, G.: Blockchain-based model for tracking compliance
with security requirements. Computer Science and Information Systems 20(1), 359–380 (2023)

40. Martini, A., Besker, T., Bosch, J.: Process debt: a first exploration. In: 27th Asia-Pacific Soft-
ware Engineering Conference. pp. 316–325. IEEE (2020)

41. Maslach, C., Schaufeli, W.B., Leiter, M.P.: Job burnout. Annual review of psychology 52(1),
397–422 (2001)

42. Matkovic, P., Maric, M., Tumbas, P., Sakal, M.: Traditionalisation of agile processes: Architec-
tural aspects. Computer Science and Information Systems 15(1), 79–109 (2018)

43. Morgeson, F.P., Hofmann, D.A.: The structure and function of collective constructs: Implica-
tions for multilevel research and theory development. Academy of management review 24(2),
249–265 (1999)



396 Ahmad MO et al.

44. Mowday, R.T., Porter, L.W., Steers, R.M.: Employee—organization linkages: The psychology
of commitment, absenteeism, and turnover. Academic press (2013)

45. Nadler, D.A., Tushman, M.L.: A model for diagnosing organizational behavior. Organizational
Dynamics 9(2), 35–51 (1980)

46. Piqueres, C.: Managing debt: Organizational debt (2021), https://carlos-piqueres.
medium.com/managing-debt-organizational-debt-a7a1578235f3

47. Poth, A., Kottke, M., Riel, A.: Self-service kits to scale knowledge to autonomous teams-
concept, application and limitations. Computer Science and Information Systems 20(1), 229–
249 (2023)

48. Rainer, A., Hall, T.: Key success factors for implementing software process improvement: a
maturity-based analysis. Journal of Systems and Software 62(2), 71–84 (2002)

49. Rios, N., de Mendonca Neto, M.G., Spinola, R.O.: A tertiary study on technical debt: types,
management strategies, research trends, and base information for practitioners. Information
Software Technology 102, 117–145 (2018)

50. Rios, N., Spinola, R.O., Mendonça, M., Seaman, C.: The practitioners’ point of view on the
concept of technical debt and its causes and consequences: a design for a global family of
industrial surveys and its first results from brazil. Empirical Software Engineering 25, 3216–
3287 (2020)

51. Senge, P.M.: The fifth discipline: The art and practice of the learning organization. Broadway
Business (2006)

52. Tamburri, D.A., Kruchten, P., Lago, P., Vliet, H.V.: Social debt in software engineering: insights
from industry. Journal of Internet Services and Applications 6(1), 1–17 (2015)

53. Turab, N., Abu Owida, H., Al-Nabulsi, J.I.: Harnessing the power of blockchain to strengthen
cybersecurity measures: a review. Indonesian Journal of Electrical Engineering and Computer
Science 3(1), 593–600 (July 2024)

54. Wasserman, S., Faust, K.: Social network analysis: Methods and applications (1994)

https://carlos-piqueres.medium.com/managing-debt-organizational-debt-a7a1578235f3
https://carlos-piqueres.medium.com/managing-debt-organizational-debt-a7a1578235f3


Organisational Debt and Software 397

APPENDIX A: Survey questions
Category Questions
Participants background What is your sex?

What is your title?
What is your age?
How many years of experience do you have?

Organizational Information What is your organization size?
What domain is the organization operating in?

Awareness and Identification of
Organizational Debt

Are you familiar with the concept of organizational debt (OD)?

How would you describe your organization’s current level of
OD? (Operational, Managerial, Executive)
What indicators or symptoms do you use to identify the pres-
ence of OD in your organization? (e.g., inefficient processes,
outdated policies, employee dissatisfaction)
Do you have any specific processes or methods in place to as-
sess and monitor OD levels?

Causes and Consequences of
Organizational Debt

In your opinion, what are the primary causes or factors con-
tributing to the accumulation of OD in your organization? (e.g.,
rapid growth, lack of communication, outdated structures)
What impact has OD had on your organization? (e.g., decreased
productivity, employee turnover, difficulty adapting to change)

Mitigation Strategies and Prac-
tices

Does your organization have any strategies or practices in place
to mitigate or reduce OD?
If yes, please describe the strategies or practices you use to mit-
igate OD.
How effective have these strategies or practices been in mitigat-
ing OD? (Very effective, Somewhat effective, Not effective)
What challenges or obstacles have you faced in implementing
strategies to mitigate OD?

Additional Comments and
Feedback

Do you have any additional comments, suggestions, or insights
regarding the identification, impact, or mitigation of organiza-
tional debt in software organizations?



398 Ahmad MO et al.

APPENDIX B: Definition of various types of debt [2] [6]
Debt type Definition
Technical debt The debt incurred through the speeding up of software project

development which results in a number of deficiencies ending
up in high maintenance overheads

Non-technical
debt

It is an umbrella term to cover a combination of social and tech-
nical aspects, such as process, social, and people debt.

Process debt Refers to inefficient processes, for example, what the process
was designed to handle may be no longer appropriate

Social debt Social debt is analogous to technical debt in many ways: It rep-
resents the state of software development organizations as the
result of “accumulated” decisions. In the case of social debt,
decisions are about people and their interactions.

People debt People debt Refers to people issues that, if present in the soft-
ware organization, can delay or hinder some development activ-
ities. An example of this kind of debt is expertise concentrated
in too few people, as an effect of delayed training and/or hiring

Organisational
debt

OD refers to the difference between a company’s strategic plans
and its actual ability to implement them in view of the ever-
changing market needs

Muhammad Ovais Ahmad is an associate professor at Karlstad University Sweden and
adj. professor at the University of Oulu, Finland. He received his PhD and MSc degree in
Information Processing Science from University of Oulu, Finland. Previously, he worked
as a Professor of software engineering at the Gdansk University of Technology, Poland;
research fellow and programme coordinator of the European Masters Programme in Soft-
ware Engineering at the University of Oulu, Finland. Dr. Ahmad’s research interests are
focused on software development methodologies, evidence based software engineering,
process assessment and improvement, software engineering curriculum and pedagogy,
technology and digital services adoption and diffusion. He has published in journals such
as the Journal of Systems and Software, Software Quality Journal, Information & Soft-
ware Technology, Information Systems Frontiers, Information Technology and People,
IET Software, Journal of Software: Evolution and Process, Journal of Cleaner Production,
Transforming Government: People, Process and Policy, e-Informatica Software Engineer-
ing Journal.

Osama Al-Baik is a quality-oriented professional with over 20 years of experience and
technical expertise in diverse range of technologies within multiple industry settings. He
has held senior positions in international and domestic organizations. Dr. Osama received
his Doctorate degree in Software Engineering and Intelligent Systems from University of
Alberta, Canada; Master Degree in Software Engineering and Project Management from
DePaul University, USA. Dr. Osama has also a PGP in AI and Machine Learning from
University of Texas at Austin, USA. Dr. Osama’s research interests have been in Soft-
ware Engineering, Health Information Systems, Lean Operations, Process improvements
and Optimization, Lean Product Development, Lean Service Excellence, and the Socio-
cultural aspects of Software Engineering.



Organisational Debt and Software 399

AbdelRahman Hussein is an Associate Professor at the Department of Computer Sci-
ence at Al-Ahliyya Amman University, Jordan. He received his first degree in Computer
Science from Jordan University of Science and Technology, Jordan, in July 2000, master
degree in Computer Science from Jordan University, Jordan in July 2003, and Ph.D. from
the Anglia Ruskin University ARU), UK in 2010. His main research interests lie in the
areas of VoIP, mobile Ad-Hoc networking, and E-learning.

Mwaffaq Abu Alhija is an Associate Professor at the Department of Computer Science,
Applied Science Private University, Amman, Jordan. His main research interests lie in the
areas of operating system design, distributed computing systems, multimedia communi-
cation and networking, mobile and wireless networks, data and network security, wireless
sensor networks, Cybersecurity, and parallel computing.

Received: April 11, 2024; Accepted: December 20, 2024.




	Introduction
	Background
	Research Method
	Data Coding and Analysis

	Results
	Results from Literature Review
	OD Concept and Definition 
	OD Causes and Consequences:
	OD Mitigation Strategies:

	Practitioners Survey Results
	Demographics:
	OD Concept from Practitioners Survey:
	OD Causes and Consequences:
	OD Identification
	OD Assessment:
	OD Mitigation Strategies:

	Future Research Directions

	Validity Threats and Limitations
	Discussion
	Conclusion

