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Abstract. Edge computing and edge intelligence have gained significant traction
in recent years due to the proliferation of Internet of Things devices, the exponen-
tial growth of data generated at the network edge, and the demand for real-time
and context-aware applications. Despite its promising potential, the application of
artificial intelligence on the edge faces many challenges, such as edge computing
resource constraints, heterogeneity of edge devices, scalability issues, security and
privacy concerns, etc. The paper addresses the challenges of deploying deep neu-
ral networks for edge intelligence and traffic object detection and recognition on
a video captured by edge device cameras. The primary aim is to analyze resource
consumption and achieve resource-awareness, optimizing computational resources
across diverse edge devices within the edge-fog computing continuum while main-
taining high object detection and recognition accuracy. To accomplish this goal, a
methodology is proposed and implemented that exploits the edge-to-fog paradigm
to distribute the inference workload across multiple tiers of the distributed system
architecture. The edge-fog related solutions are implemented and evaluated in sev-
eral use cases on datasets encompassing real-world traffic scenarios and traffic ob-
jects’ recognition problems, revealing the feasibility of deploying deep neural net-
works for object recognition on resource-constrained edge devices. The proposed
edge-to-fog methodology demonstrates enhancements in recognition accuracy and
resource utilization, validating the viability of both edge-only and edge-fog based
approaches. Furthermore, experimental results demonstrate the system’s adaptabil-
ity to dynamic traffic scenarios, ensuring real-time recognition performance even in
challenging environments.

Keywords: Resource awareness, Traffic Object Recognition, Edge Inteligence, Dis-
tributed Neural Networks, Edge-Fog Computing Continuum.

1. Introduction

Edge computing refers to the paradigm of processing data near its source or point of col-
lection, rather than relying solely on centralized cloud servers. Edge intelligence involves
the integration of artificial intelligence (AI) and machine learning (ML) algorithms into
edge devices, enabling them to perform data analytics and decision-making tasks locally.

⋆ The paper is an extension of the paper presented at RAW 2023 workshop
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By bringing computation and intelligence closer to the data source, edge computing and
edge intelligence offer numerous benefits, including reduced latency, improved bandwidth
efficiency, enhanced privacy and security, and increased resilience to network failures. AI
on edge devices and infrastructure powers real-time, context-aware, and intelligent appli-
cations across various fields, such as healthcare, smart cities, industrial automation, trans-
portation, and agriculture. However, its potential comes with challenges, including limited
resources, diverse device architectures, scalability difficulties, and concerns around secu-
rity and privacy. The evolution of edge AI across the edge-fog computing continuum has
been extensively explored in recent literature, highlighting the significance of distributed
ML and AI in enabling real-time decision-making [21]. It underscores the importance of
integrating ML and AI algorithms into edge devices and fog nodes to facilitate intelligent
data processing, minimizing latency and network bandwidth usage [9].

In recent years, the rapid proliferation of Internet of Things (IoT) devices, includ-
ing microcontrollers, single-board computers and smartphones, equipped with built-in or
externally connected cameras, has led to their ubiquitous usage across a myriad of appli-
cations requiring detection and recognition of objects on the real-time video streams. This
widespread adoption has heralded the advent of edge intelligent systems across diverse
domains, with a notable emphasis on traffic object detection and recognition. Accurately
identifying and classifying traffic objects, such as cars, trucks, motorcycles, bicycles, and
pedestrians, is crucial for efficient traffic management, advanced driver assistance sys-
tems (ADAS), and autonomous driving. There is an increasing reliance on ML and deep
learning (DL) algorithms for video stream analysis for object detection and classification
in safety-critical embedded systems and IoT applications, such as autonomous driving
systems, surveillance systems and security robots. It emphasizes the need for ML/DL
technologies to meet strict timing requirements in real-time systems while maintaining
accuracy, given the potentially catastrophic consequences of missed deadlines. Bian et al.
in [3] aim to provide a comprehensive exploration of state-of-the-art results in ML/DL-
based scheduling techniques, accuracy trade-offs, and security considerations in real-time
IoT systems. The potential of deep neural networks (DNNs) to perform efficiently on
edge IoT devices is particularly significant, as it harnesses the computational power and
availability of these widely used devices. Exploring the intersection of advanced neural
network architectures, real-time data processing, and distributed computing paradigms is
essential for developing innovative solutions for traffic object detection, classification, and
recognition [2]. By combining the proximity and processing capabilities of edge devices
with fog servers and a cloud infrastructure, research efforts aim to enhance the efficiency,
accuracy, and responsiveness of traffic object detection systems.

This paper addresses the challenges of training and deploying DNNs for traffic object
detection and recognition across various edge devices, including Android smartphones,
microcontrollers, and single-board computers. The focus is on distributing computational
and inference tasks between IoT devices at the far edge, edge servers, and fog servers. We
examine different deployment strategies, balancing trade-offs between model size, infer-
ence speed, power consumption, and accuracy. Specifically, we evaluate two approaches:
(1) quantizing and optimizing the DNN model as TensorFlow Lite for direct deployment
on edge devices, and (2) deploying the original DNN model on an edge or fog server.
We also explore distributing the object recognition task by dividing it into two inference
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stages: object detection performed at the edge and object recognition of the detected items
carried out on the fog server.

Through a series of experiments on traffic object detection and recognition, we eval-
uate the performance, accuracy, and resource consumption across different platforms, in-
cluding microcontrollers, smartphones, single-board computers, and commodity servers,
under various video data parameters and configurations. The results offer valuable insights
into the practicality and efficiency of distributing DNNs for traffic object recognition from
the edge to the fog. These findings support resource-aware edge intelligence by optimizing
computational resource usage while preserving high recognition accuracy. Furthermore,
this research lays the groundwork for developing intelligent transportation systems that
harness the potential of edge devices, such as Android smartphones and microcontrollers,
along with fog computing infrastructure, to improve traffic safety and management.

This paper represents the extended version of the paper presented at the RAW 2023
Workshop [20]. We now provide significant extension of the related work in object deetc-
tion and recognition at edge-fog infrastructure. Furthermore we give detailed explanation
of the traffic object detection and recognition solutions implemented on an Android smart-
phone and a commodity PC, presented in the original paper. As the main improvement
and the contribution of this paper we implemented and analysed new use cases for traffic
object detection over novel edge devices using a TinyML approach. This involves de-
ploying the traffic object detection solution on a microcontroller (Arduino Nano 33 BLE
Sense) and a single-board computer (Raspberry Pi 4). Various DNN models suitable for
object detection and recognition tasks have been utilized in their original versions and
subsequently optimized, quantified and compressed to enable deployment on mentioned
edge devices. Extensive experiments have been conducted to evaluate the performance
and accuracy of these applications concerning ML tasks. The experiments also assessed
resource usage, including memory and processing time. The results have been described
and analysed in detail. The extended paper now provides thorough insights into the imple-
mentation and experimental evaluation of various traffic object detection and recognition
tasks in different distributed configurations. It also covers the distribution of tasks across
the edge-fog computing continuum, from microcontrollers and single-board computers to
smartphones and fog servers (commodity PCs).

The paper is structured as follows. Section 2 presents research work in edge comput-
ing and edge intelligence related to object detection and recognition from video streams.
Section 3 presents several strategies and corresponding applications for deployment of
DNN for traffic object detection and recognition across various edge devices and a fog
server. Section 4 presents the experimental evaluation for various traffic object detection
scenarios and discusses the evaluation results. Section 5 gives concluding remarks and
directions for future research.

2. Related Work

A growing body of research has focused on harnessing the power of edge devices, such as
IoT devices and edge servers, to perform real-time object detection and recognition tasks
at the network edge, minimizing latency and bandwidth consumption. The convergence of
edge computing and DL methods and techniques has enabled the deployment of resource-
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efficient object detection and recognition models directly on edge devices, facilitating
autonomous decision-making and edge AI applications.

Singh and Gill in [19] gives the extensive review of the unique characteristics and
advantages of deploying AI algorithms directly on edge devices, enabling real-time infer-
ence and decision-making at the network edge. Furthermore, the survey discusses the di-
verse applications of Edge AI across domains such as smart cities, healthcare, autonomous
vehicles, and industrial automation, highlighting its transformative potential in enhanc-
ing efficiency, scalability, and privacy in distributed computing environments. The article
delves into the challenges and open research issues associated with Edge AI, such as
resource constraints, security concerns, and algorithmic optimizations.

The need to integrate ML techniques into resource-constrained embedded devices,
facilitated by advancements in technologies like the IoT and edge computing has given
rise to TinyML, an embedded ML technique, a by enabling ML applications on low-cost,
resource-constrained devices. However, implementing TinyML comes with challenges
such as processing capacity optimization and maintaining model accuracy [10].

Shuvo et al. in [18] address the challenges of deploying DNNs on edge devices. It
highlights the computational complexity and memory requirements of DNNs, which often
necessitate cloud-based processing, leading to latency issues and security concerns. The
paper explores optimization techniques at both hardware and software levels to enable
efficient DNN deployment on edge devices, focusing on four research directions: novel
DL architecture and algorithm design, optimization of existing DL methods, algorithm-
hardware co-design, and efficient accelerator design. Through a comprehensive review,
the paper provides insights into state-of-the-art tools and techniques for efficient edge
inference, aiming to facilitate the integration of AI capabilities into next-generation edge
devices.

The research on the distribution of DNNs for resource-aware systems has gained sig-
nificant attention in recent years. Several studies have explored different approaches and
strategies for optimizing the training and deployment of DNNs in various domains. In
the context of object detection and recognition from edge to cloud, several relevant re-
search papers provide valuable insights and inspiration. Bittencourt et al. in [4] discuss
the integration and challenges of the IoT, fog, and cloud continuum, highlighting the need
for efficient resource utilization. Lockhart et al. in [13] propose Scission, a performance-
driven and context-aware cloud-edge distribution approach for DNNs, emphasizing the
importance of considering context and performance in distribution decisions. Cho et al.
in [5] present a study on DNN model deployment on distributed edges, focusing on dis-
tributed inference across edge devices.

Lin et al. in [12] propose a distributed DNN deployment approach from the edge to
the cloud for smart devices, addressing the challenges of efficient utilization of resources
in different computing tiers. McNamee et al. in [15] advocate for adaptive DNNs in edge
computing, emphasizing the need for dynamic adaptation to optimize resource usage.
Ren et al. in [17] provide a survey on collaborative DNN inference for edge intelligence,
exploring the collaborative aspects of inference across edge devices. Hanhirova et al. in
[7] characterize the latency and throughput of convolutional neural networks (CNN) for
mobile computer vision, providing insights into the perfor-mance aspects of DNNs on
resource-constrained devices.
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Lee et al. in [11] propose Transprecise Object Detection (TOD) for maximizing real-
time accuracy on the edge, highlighting the importance of accurate object detection for
edge scenarios. Parthasarathy et al. in [16]introduce DEFER, a distributed edge inference
approach for DNNs, focusing on resource-efficient inference in distributed edge environ-
ments. Teerapittayanon et al. in [22] investigate distributed DNNs over the cloud, edge,
and end devices, highlighting the trade-offs between resource utilization and computa-
tional capabilities across different components of the system architecture.

In line with our research, Dharani et al. in [6] present the utilisation of TinyML and
TensorFlow Lite on mobile phones for image classification, but without more extensive
experimental evaluation and discussions. Akhtar et al. in [1] introduce multiple real-time
deployable cost-efficient solutions for motorbike detection using state-of-the-art embed-
ded edge devices, addressing the critical need for accurate and real-time traffic surveil-
lance and road safety. The paper presents an improved baseline accuracy of motorbike
detection by developing a custom network based on YOLOv5, the part of the You Only
Look Once (YOLO) family.

The aforementioned papers contribute to the understanding of resource-aware DNN
deployment and optimization techniques in various contexts. Our research aims to provide
insights into the efficient training and deployment of DNNs for traffic object detection,
classification and recognition, considering the resource utilization from edge to fog in the
context of edge devices with various computing capabilities and resources available.

3. Traffic Object Detection and Recognition Across the Edge-Fog
Continuum

DNNs have shown promising results in various computer vision tasks, including object
detection and recognition. In this Section we present three case studies related to distri-
bution of DNN-based software components in the context of traffic object detection and
recognition.

3.1. Traffic Object Recognition

To recognize traffic objects captured by a camera on Android smartphones, we implement
two approaches: the first executes entirely on the edge device, while the second divides
the process between the edge device and a fog node. The training of the DNN model is
based on the TensorFlow Object Detection API and specifically utilizes the MobileNetV2
SSD 320x320 coco17 tpu-8 pre-trained model. To enhance the training process, we have
utilized video data captured from an Android phone camera, as well as publicly available
traffic video datasets such as the Udacity Self Driving Car Dataset [23], INRIA Graz-02
(IG02)[14], and the Bike-rider Detector dataset [24]. Manual labeling was applied to these
datasets when necessary to ensure accurate annotation of traffic objects, for detection of
cars, trucks, motorcycles, bicycles, and pedestrians.

The first approach we propose utilizes the computing power and resources available
solely on the smartphone, making it an offline approach. This method does not require
a network connection for traffic object recognition within the Android application. To
accommodate the limited resources available on the smartphone, the TensorFlow model
used for recognition is quantized and converted to TensorFlow Lite form. By optimizing
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the model, we ensure that it can efficiently operate on the smartphone without compromis-
ing its performance. The trained model is integrated into the Android application, enabling
real-time traffic object recognition directly on the smartphone without the need for an in-
ternet connection (Figure1). Figure 2 illustrates the execution flow of object recognition

Fig. 1. Android application for traffic object recognition

conducted within an Android application. Once the camera image is available, it is sent
to the detector component. In offline mode, the LocalDetector component is employed,
utilizing a TensorFlow Lite model deployed on the Android smartphone. Before inputting
the image into the model, specific preparations must be completed, including scaling and
rotation. Furthermore, after detection, it is crucial to parse the results and generate objects
that will be used for GUI creation.

The second approach utilizes the advantages of fog computing by offloading part of
the processing to a fog server. In this method, the video captured by the smartphone cam-
era undergoes preprocessing within the Android application. These preprocessing steps
may include scaling, rotation, and filtering of the captured images to enhance the quality
and clarity of the input data. The preprocessed images are then encoded in Base64 for-
mat and sent to the fog server through a Web socket using the SocketIO library. The fog
server, implemented with Flask/Python, hosts the original TensorFlow model, which per-
forms object recognition on the received images. The results of this recognition process
are returned to the Android application in JSON format, providing real-time feedback and
visualization of the recognized traffic objects.

The execution flow of object recognition in edge-fog scenario is illustrated in Figure
3. The client application captures an image from the camera and processes it before send-
ing it to the server. This processing includes scaling, rotation (considering the device’s
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Fig. 2. The sequence diagram during the detection process on Android smartphone.

sensor), and encoding the image into Base64 format (as a string). The image is trans-
mitted to the server as an emitted event indicating that it is ready for processing. Upon
receipt, the server decodes the Base64 string to reconstruct the image. On the server side,
the TensorFlow library is utilized to run the model and perform object detection within
the frame. The identified objects are then returned to the client in JSON format.

The second method distributes the computational workload between the smartphone
and the fog server, offloading resource-intensive tasks to a more powerful computing in-
frastructure. This approach enhances the accuracy and robustness of traffic object recogni-
tion, particularly in situations where the smartphone’s resources are limited. Additionally,
leveraging fog computing alleviates the strain on the smartphone’s battery and processing
capabilities, resulting in better performance and an improved user experience. Both meth-
ods provide unique advantages regarding resource utilization, real-time performance, and
accuracy, addressing various requirements and constraints, which are experimentally eval-
uated and discussed in the following section. The source code for the Android application
that implements traffic object recognition using both methods is available on GitHub 1.

3.2. Car Model Recognition

The second use case is related to car model recognition. To address the specific challenge
of car model recognition, we propose a two-stage approach that leverages both edge and
fog computing resources. Our method is built on the pre-trained MobileNetV2 model,
known for its outstanding performance across various computer vision tasks. For training
the model specifically for car model recognition, we employed the Stanford Cars dataset,
which contains more than 16,000 images and includes more than 190 different car classes.

1 https://github.com/drstojanovic/camera

https://github.com/drstojanovic/camera
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Fig. 3. Sequence diagram for the server-based object detection

The execution flow for recognizing car models is illustrated in Figure 4. As depicted,
the process occurs in multiple phases, with some tasks handled on the edge side (client)
and others on the fog side (server).

Since an existing object detector is used, it will return detections for all five classes
of traffic objects: cars, trucks, motorcycles, bikes, and pedestrians. The first step is to
filter out only the class of interest, cars. After capturing the image from the camera, the
following steps are taken:

1. Object detection is conducted using an edge model, which discards all objects not
belonging to the ”car” class.

2. Based on the detections, the image is cropped, creating a list of car crops.
3. Each crop is then encoded in Base64 format, and this list of strings is sent to the

server.
4. Upon receipt, the server decodes the list back into images. Each crop is resized to fit

the model’s input size (192x192 in this application).
5. The model is then executed on each crop, providing a list of potential classes for each

image.
6. The results are formatted as JSON, resulting in a list of lists whose length corresponds

to the number of detected cars or crops obtained.
7. On the edge side, the detection results are merged with the classification results from

the server, and a bounding box is drawn around each car, displaying the recognized
class.

The high-level flow of the car model recognition is illustrated in Figure 5. In the first
stage of our approach, the Android application takes advantage of edge computing capa-
bilities to detect cars and determine their positions within the video images. We employ
a TensorFlow Lite model, like the one used in the previous implementation, to perform
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Fig. 4. Execution flow of a car model recognition

Fig. 5. The steps performed for car model detection.
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this initial car detection task on the smartphone. Once the cars are identified, the corre-
sponding regions of interest (ROIs) are extracted from the video frames and preprocessed
to enhance their quality and suitability for subsequent recognition.

The preprocessed and cropped car images are then sent from the Android application
to the fog server. The fog server application handles the second stage of the car model
recognition process. It employs a trained TensorFlow model, specifically designed for the
Stanford Cars Dataset, to identify the model of each car in the received images and sends
the results back to the Android application (Figure6). The fog server’s superior compu-
tational resources and processing power allow it to perform more intensive tasks, such
as detailed car-type classification. To enable communication between the Android appli-

Fig. 6. Car model detection in the Android application

cation and the fog server, we use WebSockets. This approach facilitates real-time, bidi-
rectional communication, allowing for the efficient transfer of preprocessed car images
from the smartphone to the server and the return of recognition results to the mobile ap-
plication. By utilizing WebSockets, we ensure a seamless and responsive user experience
throughout the car model recognition process.

In the training phase, the Table 1 shows hyperparameter settings that were used for
MobileNetV2 and MobileNetV2 SSD algorithms.

By leveraging both edge and fog computing resources, our two-stage approach op-
timizes the distribution of computational tasks. The edge computing performed on the
smartphone efficiently detects cars and extracts relevant regions of interest (ROIs), which
reduces the volume of data sent to the fog server. This strategy minimizes bandwidth us-
age and latency. The more resource-intensive task of car model recognition is offloaded
to the fog server, taking advantage of its greater computational capabilities and trained
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Table 1. Hyperparameter settings

Epochs 100
Learning rate 0.1
Quantization fp16

Training:Validation (%) 80:20
Batch size 64

Momentum 0.9
Weight decay 0.001

model. This approach maximizes the utilization of computing resources and enhances the
overall performance and accuracy of car model recognition in our system. The source
code for traffic object recognition server is available at GitHub2 while its docker image
can be pulled from Docker Hub3.

3.3. Vehicle detection on microcontrollers and single-board computers

The third use case focuses on vehicle detection on low-resource edge devices, such as
microcontrollers and single-board computers. The goal is to detect and recognize cars
in video streams captured by integrated cameras. This involves implementing various
object detection model architectures and optimizing them for execution on devices like
the Arduino Nano 33 BLE Sense (Arduino Nano) and Raspberry Pi 4 Model B (RPi).
Part of the model training and evaluation was conducted using the Edge Impulse platform
[8], an online MLOps platform that supports the training, testing, and deployment of
ML/DL models across a wide range of edge devices. Additionally, transfer learning was
applied using TensorFlow Lite Model Maker. The training dataset, obtained from Kaggle,
comprises 499 images containing a total of 4,281 vehicles, with each frame featuring
between 4 and 13 vehicles. In addition to collecting data directly from the edge devices,
datasets were also uploaded to the Edge Impulse platform in YOLO txt format. In this
format, each image has an associated .txt file listing the detected objects, where each line
in the file represents a single object, containing its class and the normalized coordinates
of its bounding box.

The initial implementation of vehicle detection was performed on the Arduino Nano
33 BLE Sense, a resource-constrained edge device. Given the limited capabilities of this
development board, the trained models operate on smaller image dimensions. However,
increasing image size leads to longer inference times and larger model sizes. Unfortu-
nately, due to the dataset containing small objects, models trained on low-resolution im-
ages yielded poor results. For the Arduino Nano application, two models, FOMO Mo-
bileNetV2 0.1 and FOMO MobileNetV2 0.35 were trained. The values 0.1 and 0.35 rep-
resent the alpha parameters in the MobileNetV2 architecture, indicating the network’s
width by scaling the number of channels in each layer. These hyperparameters help bal-
ance model size, computational efficiency, and accuracy. FOMO models were trained for
various numbers of epochs using both RGB and Grayscale images, with various hyperpa-
rameter configurations, to find the optimal trade-off between performance and accuracy.

2 https://github.com/drstojanovic/trafficAssistantServer
3 https://hub.docker.com/r/stefan2708/ta server

https://github.com/drstojanovic/trafficAssistantServer
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The Edge Impulse platform was used to generate binary files for model inference on the
Arduino device. Inference can be initiated with the command edge-impulse-run-impulse.
Object detection results from the OV7675 camera attached to the Arduino Nano are dis-
played in the browser, as shown in Figure 7.

Fig. 7. Object detection from Arduino camera shown in browser

The Raspberry Pi 4 Model B offers greater computing resources, enabling the training
of a broader range of models. Beyond the FOMO algorithms, the following models were
also trained using the Edge Impulse platform:

1. MobileNetV2 SSD FPN-Lite: This model was pre-trained on the COCO 2017 dataset
with images of size 320x320. It consists of three parts:

– Basic network (MobileNetV2): Provides high-level features for classification or
detection. By removing the fully connected and softmax layers and adding a de-
tection network, the model can determine object locations in the image.

– Detection network (Single Shot Detector, SSD): Detects multiple objects in an
image using a single CNN SSD models are faster and more efficient as they
simultaneously predict object classes and regions containing objects.

– Feature Pyramid Network (FPN): Utilizes an input image of a single size to gen-
erate feature maps for different sizes, facilitating the detection of objects of vari-
ous sizes.

2. YOLOv5: This model performs object detection in a single pass. Introduced in 2020,
YOLOv5 incorporates the EfficientDet architecture, built on EfficientNet, to optimize
both resource usage and accuracy. Unlike its predecessor, YOLOv5 abandons anchor-
based detection, instead relying on a convolutional layer to predict bounding box
coordinates directly.

YOLOv5 is used in the transfer learning process, leveraging prior training on a larger
dataset. This enables the model to learn from a broader data set and improve its gener-
alization capabilities. During the training of the YOLOv5 model on Edge Impulse, the
model size can be selected: Nano, Small, Medium, and Large . Due to resource limita-
tions, the Nano model with 1.9M parameters, sized at 3.78 MB, was chosen. Models from
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Edge Impulse are downloaded in the EIM (Edge Impulse Model) format. EIM files are
binary files for Linux and macOS that encapsulate the complete impulse built on the Edge
Impulse platform, including signal processing, model, and inference blocks. EIM files are
architecture-specific and allow direct inference execution on the RPi device. The hyper-
parameters defined for training four mentioned models that have been deployed and run
at Arduino Nano and RPi are given in Table 2.

Table 2. The hyperparameters defined for training NN models

Hyperparameters FOMO 0.1 FOMO 0.35 MobileNetV2 SSD FPN YOLOv5 (Nano)
Epochs 60 60 25 30

Learning rate 0.001 0.001 0.15-0.01 0.01-0.001
Quantization int8 int8 int8 fp16

Training:Validation (%) 80:20 80:20 80:20 80:20
Batch size 32 32 32 16-32

Momentum 0.9 0.9 0.95 0.937

Inference on the RPi device is performed on images generated using a camera con-
nected to the Arduino development board. Frames are captured on the Arduino and trans-
mitted to the RPi device using serial communication. The OV7675 camera records images
sized at 320x240 in RGB565 format. Within the Python script on the RPi device, bytes are
read from the serial port, and conversion from RGB565 to RGB888 format is carried out.
The converted image is passed to the run_inference function, which performs pre-
processing and inference (Figure 8). TensorFlow Lite Model Maker 4 is a library designed

Fig. 8. Detection of vehicles using DL models deployed on RPi

for training TensorFlowLite models with custom datasets. It leverages transfer learning to
minimize the amount of training data required and reduce training time. For object detec-
tion, the library offers five versions of EfficientDet-Lite models, each differing in memory
usage, detection latency, and mean Average Precision (mAP). These models are deployed

4 https://www.tensorflow.org/lite/models/modify/model maker
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on the RPi for real-time vehicle detection. In this setup, frames transmitted from the Ar-
duino Nano’s camera are used for detection. However, the inference process differs here,
as it utilizes the TensorFlowLite Interpreter, which requires a tensor as input. This neces-
sitates preprocessing the image and generating a tensor with the correct shape and data
type. Finally, the function completes the process by drawing bounding boxes and sav-
ing the annotated image. The source code of the Arduino Nano and RPi applications are
available at GitHub 5.

4. Resource-Aware Experimental Evaluation

This section presents an experimental evaluation of previously described use cases and
the corresponding methods for distributing DNNs in traffic object detection and recog-
nition. In the first use case, we assess two solutions: one executed entirely within the
Android application using a TensorFlow Lite model, and the other performed on the fog
server. In the third use case, we evaluate solutions implemented on Arduino Nano and RPi
devices. To measure performance, accuracy, and resource consumption (CPU, memory,
and energy), we conduct experiments using various video data parameters and config-
urations. The objective is to explore the trade-offs between different approaches across
the edge-fog computing continuum and analyze their behavior under varying conditions.
For evaluation, we use representative datasets that include a variety of traffic scenarios
and object types, ensuring coverage of diverse lighting conditions, weather patterns, and
traffic densities.

4.1. Smartphone and Server implementation

To evaluate the Android application solution, we measure its performance and accuracy
directly on the smartphone. The computational requirements, including CPU usage, mem-
ory consumption, and energy consumption, are analyzed using the Android Profiler tool.
Furthermore, we assess the accuracy of traffic object recognition by comparing the appli-
cation’s outputs with ground truth annotations from the datasets.

Similarly, for the fog server solution, we assess its performance, accuracy, and re-
source consumption. The server’s computational requirements, such as CPU usage, mem-
ory utilization, and energy consumption, are analyzed. Additionally, the recognition re-
sults from the fog server are compared with ground truth annotations to evaluate the so-
lution’s accuracy. A timeline diagram illustrating CPU and memory consumption, along
with energy usage for traffic object recognition performed on the Android smartphone
and the fog server, is presented in Figure 9. The maximum CPU utilization during local
detection on the Android smartphone reached 33%, while server-based detection peaked
at 14%. The maximum RAM usage during local detection was 316 MB, compared to 240
MB for server-based detection. The TensorFlow model size is 11.2 MB; however, with
model quantization, it can be reduced to 3.2 MB.

During the experimental evaluation, we varied the video data parameters and con-
figurations to analyze the performance of both solutions under different conditions. This
involved adjusting factors such as video resolution, frame rate, lighting conditions, and

5 https://github.com/drstojanovic/object-detection-rpi
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Fig. 9. CPU, memory, and energy usage for edge (smartphone) and edge server solutions

traffic densities. By conducting experiments across a range of scenarios, we aim to pro-
vide a thorough assessment of each solution’s performance and resource utilization. The
experimental evaluation is carried out using appropriate benchmarking tools and metrics
to ensure reliable and meaningful results. We measure the execution time, resource uti-
lization, and accuracy of both solutions across various datasets and configurations. The
collected data is analyzed and compared to identify the strengths and weaknesses of each
approach. For all experiments, a Google Pixel 4 phone was used, while the server appli-
cation ran on a Lenovo Legion laptop (CPU: i5-9300H, RAM: 16.0 GB, GPU: NVIDIA
GeForce GTX 1650). The server is configured on a local network to facilitate access by
the mobile application.

The first experiment aimed to evaluate the recognition accuracy across different im-
age resolutions and object sizes, with the latter expressed as a percentage relative to the
overall image size. The phone’s camera was pointed at a computer monitor displaying an
image of a car that progressively decreased in size, simulating the appearance of traffic
objects at varying distances. Testing was conducted for both operational modes at each
of the four available resolutions in the application settings. The image quality was set to
the maximum (100 %, with no compression). The reliability of detection, expressed as
percentages, is presented in Table 3. This experiment showed that the reliability values
for detection, and thus the overall detection quality, are quite comparable for both edge
detection and server-based detection. A slight advantage was noted for edge detection at
lower image resolutions, likely because of the extra image processing involved in sending
the image to the server (such as encoding and decoding in Base64 format). One potential
solution to improve performance is to use a more advanced image transport method, like
implementing one of the transfer protocols specifically designed for image handling. We
also assessed how performance (execution speed) depends on image resolution and image
quality, with values expressed in milliseconds (ms). This experiment aimed to evaluate the
impact of image compression on detection speed and image size. The phone’s camera was
pointed at a computer monitor displaying a consistent image of a car. Testing was con-



638 Dragan Stojanović et al.

Table 3. Dependency of detection accuracy on image resolution and object size

Object size Resolution
640 x 640 512 x 512 300 x 300 160 x 160
Edge Fog Edge Fog Edge Fog Edge Fog

100% 98.9 97.8 98.7 98.7 98.9 98.3 90 84.3
80% 95.4 95 95.1 95.4 94.7 93.1 82.4 82.1
50% 89.2 90 87.4 88.7 89.9 87.9 83.4 80.5
30% 47.1 42.3 40.1 32.8 31.7 19.7 23.1 17.4
15% 12.3 12.7 10.7 12.1 10.2 2.1 7.4 1.8

ducted for both operating modes across all four available resolutions, using image quality
levels of 100 %, 70 %, 50 %, 30 %, and 20 % achieved via JPEG compression.

Table 4 illustrates how detection speed varies with changes in image characteristics.
The rows represent a decrease in image quality, while the columns show a reduction in
resolution. The values are presented in milliseconds, and it is evident that local detection
operates at a significantly higher speed compared to the server-based detection.

Table 4. Dependency of performance (speed of execution) on image resolution and image
quality (in ms)

Quality Resolution
640 x 640 512 x 512 300 x 300 160 x 160
Edge Fog Edge Fog Edge Fog Edge Fog

100% 61.4 153.2 58 137 55.9 103.2 45.8 83.9
70% 56.5 112.2 50.4 99.8 43.9 87.7 43 76.9
50% 55.5 108.2 49.8 98.9 43.6 86.7 42.9 76.4
30% 55.3 103.8 49.1 93.1 43.4 84.7 43.4 75
20% 54.4 101.8 48.9 90.2 43.9 84.1 42.8 74.9

For local detection, the difference in detection speed between a resolution of 640x640
resolution and 100 % image quality and a resolution of 160x160 and 20 % quality is
approximately 18.6 milliseconds per frame While precise measurement is challenging,
according to results presented in Tables 3 and 4 it is evident that the detection quality for
smaller objects is significantly reduced at lower resolution and image quality settings.

When it comes to server-based detection, internet connection speed becomes a sig-
nificant factor. Since a GPU was utilized, the model execution itself was short ( 45ms),
with most of the time being spent on image transportation. During the testing, an internet
speed of 55.8 Mbps for download and 7.7 Mbps for upload was used. In the case of edge
detection, the byte size of the image does not have as much influence as it does for server-
based detection, as each image is transported to the server, and any reduction in image
size contributes to increased detection speed. The difference in detection speed between
settings A (640x640 resolution and 100 % quality) and settings B (160x160 resolution
and 20 % quality) amounts to 78.3 milliseconds per frame. A significant degradation in
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detection quality on the server compared to edge detection was observed when decreasing
the image resolution.

By assessing the performance, accuracy, and resource consumption of both the An-
droid application and the fog server solutions, we aim to shed light on the trade-offs asso-
ciated with each approach. This experimental evaluation will enhance our understanding
of how these distribution methods perform in traffic object recognition tasks. Ultimately,
this analysis will aid in choosing the most suitable solution based on specific require-
ments, including resource availability, real-time performance, and accuracy.

4.2. Arduino Nano and RPi Solutions for Object Detection

Testing and evaluating vehicle detection models involved comparing key parameters es-
sential for implementing AI at the edge. Resource utilization metrics, such as RAM and
flash memory usage, are particularly important for edge devices. Additionally, the time re-
quired for object detection is critical for real-time decision-making scenarios. A compari-
son of model accuracy was also conducted. The objective is to compare models developed
using the Edge Impulse platform and TensorFlow Lite tools, exploring various combina-
tions of preprocessing and hyperparameters. Furthermore, this comparison encompasses
devices with differing resources, specifically the Arduino Nano and RPi.

The comparison between the FOMO 0.1 and FOMO 0.35 models on the Arduino
Nano has been conducted. All results are presented for the quantized versions of the mod-
els, utilizing integer 8-bit values. The EON model format was chosen due to its lower re-
source overhead compared to TFLite models. Figure 10 illustrates the comparison of these
models across different image sizes, focusing on model accuracy and inference time. The
diagrams indicate that the accuracy of the FOMO 0.1 and FOMO 0.35 models is compa-
rable across all image sizes. However, FOMO 0.1 shows significantly better performance
for smaller dimensions, such as 64x64, whereas the advantage shifts toward the FOMO
0.35 algorithm for larger dimensions. Inference time increases with image size, reach-
ing 3 seconds for dimensions of 160x160. Furthermore, the inference time of the FOMO
0.35 model diverges considerably from that of the FOMO 0.1 model as the dimensions
increase.

Figure 11 illustrates the memory utilization for the same models. Although flash mem-
ory usage remains consistent across various image dimensions, maximum RAM utiliza-
tion rises sharply as the dimensions increase. The diagram also shows the available RAM
on the Arduino development board; models that exceed this limit cannot be executed on
the device.

The evaluation of the models executed on the Raspberry Pi includes those generated
on Edge Impulse as well as models created using TensorFlow Model Maker. Figure 12
illustrates the changes in accuracy and inference time for different models with varying
image sizes. The YOLOv5 model demonstrates superior accuracy in all scenarios, except
for the smallest image size. However, in terms of object detection speed, the YOLOv5
algorithm requires up to seven times longer to make decisions compared to the FOMO
algorithms.

The resource utilization diagram (Figure 13) reveals that the maximum RAM usage
with FOMO algorithms exceeds that of the YOLO algorithm at higher dimensions. Flash
memory utilization remains consistent across all dimensions. Notably, the FOMO algo-
rithms require approximately 70 KB, while the YOLOv5 model occupies 1.8 MB. On
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Fig. 10. Comparison of NN models based on accuracy and inference time.

Fig. 11. Comparison of NN models based on memory utilization

Fig. 12. Comparison of NN models based on accuracy and inference time on RPi
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Fig. 13. Comparison of NN models based on memory utilization on RPi

Edge Impulse, several model optimizations are available. Figure 14 illustrates the differ-
ences between EON models with float32 values and their quantized versions using int8
values. Notably, quantization has a substantial effect on the size of the MobileNetV2 SSD
and YOLOv5 models, as well as on inference time. The numerical comparison of the

Fig. 14. Comparison between float32 and int8 NN model versions

models’ size and inference time values is given in Table 5. The comparison of models
compiled using EON and TensorFlow Lite compilers is shown in Figure 15, and pre-
sented in Table 6). The objective of the EON compiler is to reduce resource overhead,
while maintaining unchanged accuracy and inference time. The values are presented for
the int8 versions of the models. Resource optimization using the EON compiler is not
supported for YOLOv5.

TensorFlow Model Maker enables training of five versions of EfficientDet models (1-
5). The results of the trained EfficientDet2 model are presented in Table 7. Due to the
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Table 5. The NN model size and inference time values

Model size (float32) Model size (int8) Inference time (float32) Inference time (int8)
MobileNetV2 SSD 11 MB 3 MB 404 ms 249 ms
FOMO 0.1 66.9 KB 64.4 KB 14 ms 11 ms
FOMO 0.35 102.7 KB 78.5 KB 18 ms 14 ms
YOLOv5 3.5 MB 1.9 MB 128 ms 81ms

Fig. 15. Comparison of EON and TensorFlowLite models

Table 6. Review of memory utilization for EON and TensorFlow Lite models

RAM (EON) RAM (TensorFlowLite) Flash (EON) RAM (TensorFlowLite)
MobileNetV2 SSD / / 2.8 MB 3 MB
FOMO 0.1 1.2 MB 1.4 MB 64.4 KB 94.4 KB
FOMO 0.35 1.2 MB 1.4 MB 110.5 KB 78.5 KB
YOLOv5 817.5 KB 817.5 KB 1.9 MB 1.9 MB
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potential loss of model accuracy resulting from optimization, an evaluation of the Tensor-
Flow Lite model is provided using mAP (mean Average Precision) metric for evaluation.
The analysis of the results concludes that the differences in accuracy between TensorFlow

Table 7. Evaluation of the TensorFlowLite model

TensorFlow model TensorFlow Lite model
AP 0.4535 0.4426
AP50 0.81 0.8
AP75 0.48 0.46
APs 0.003 0.0027
APm 0.35 0.3
APl 0.66 0.65
ARmax1 0.08 0.08
ARmax10 0.5 0.5
ARmax100 0.58 0.54
ARs 0.06 0.045
ARm 0.55 0.49
ARl 0.75 0.71
AP car/ 0.45 0.44

and TensorFlow Lite models are nearly indistinguishable. The TensorFlow model’s pre-
cision is 45.35 %. At a 50 % overlap threshold, the model’s precision is 81.3 %, while
for a 75 % overlap threshold, the value is nearly halved. Detection precision for differ-
ent sizes (APs – small, APm – medium, APl – large) indicates that the model performs
well with larger objects. Additionally, the model exhibits better accuracy when there are
multiple objects in the image (ARmax10, ARmax100). There is room for improvement in
detecting small objects and under very strict overlap criteria.

EfficientDet 0 and 2 versions were deployed on the RPi device, and a comparison
of inference time and model size is given in Figure 16. Memory analysis during the ob-
ject detection process was performed and the results are given in Table 8. Both models
require a similar amount of memory, with only minor differences in usage. EfficientDet
0 consumes slightly fewer resources than EfficientDet 2; however, both models func-
tion effectively within the available system resources. Through comprehensive testing

Table 8. Memory utilization of EfficientDet models (in KB)

total used free shared buff/cache available
EfficientDet 0 3794 599 1937 75 1256 3043
EfficientDet 2 3794 613 1915 80 1265 3025

and evaluation of NN models created using various tools, significant advancements in
technologies for deploying models on edge devices have become apparent. By leveraging
advanced optimization techniques, it is feasible to execute complex model architectures
on resource-constrained devices. For example, models trained on Edge Impulse occupy
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Fig. 16. Comparison of EfficientDet 0 and 2

considerably less space and consume fewer resources compared to TensorFlow Lite mod-
els. Conversely, the strength of the TensorFlow Lite framework lies in its broader selection
of model architectures and the ability to utilize established models for object detection.

5. Conclusions

The proposed approach and experimental evaluations provide valuable insights into the
challenges and opportunities of deploying DNNs for traffic object detection and recog-
nition across the edge-fog computing continuum. One of the key takeaways is that dis-
tributing tasks between edge devices and fog servers offers a balanced trade-off between
performance, resource consumption, and accuracy. By leveraging edge devices like smart-
phones for object detection, we can reduce data transmission and latency. We found that
current smartphones perform well in both accuracy and speed, with only 33% CPU uti-
lization during inference. This raises the question of whether offloading detection tasks to
the fog is necessary, given that the communication overhead may outweigh any potential
performance benefits. The results suggest that, in many cases, performing both detection
and recognition on the mobile device itself is a more efficient strategy, especially for real-
time applications.

Meanwhile, the fog server, with its higher computational capacity, is well-suited well-
suited for more complex tasks such as car model recognition, where detailed feature ex-
traction and processing are required. This delegation not only reduces the computational
burden on edge devices like smartphones or embedded platforms but also enables the
deployment of heavier models that might otherwise exceed the capabilities of smaller
devices. For instance, running computationally intensive architectures such as YOLOv5
or EfficientDet on the fog server ensures that these models can operate without com-
promising performance or requiring extensive optimization, as would be necessary on
edge devices. This division of labor improves the system’s overall efficiency by allowing
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lightweight tasks, such as object detection, to occur locally on edge devices while offload-
ing more demanding tasks to the fog server. Consequently, the combination of fast local
inference with sophisticated fog-based recognition creates a robust pipeline that balances
speed and accuracy across different layers of the edge-fog continuum.

While the smartphone proved capable, the resource constrained embedded devices,
such as RPi or Arduino Nano, could still benefit from fog or cloud offloading, especially
for complex models. However, our focus in this study was on evaluating lightweight archi-
tectures directly on these devices. Future research could explore hybrid approaches, where
RPi or Arduino devices collaborate with fog or cloud systems for more demanding tasks,
striking a balance between local processing and offloading. We found that the quantized
and minimized model deployed on Arduino Nano, RPI device, and Android smartphones
achieved reasonable performance with efficient resource usage. The use of quantization
and model optimization techniques, especially through TensorFlow Lite and Edge Im-
pulse, proved crucial for deploying DNNs on resource-constrained devices like the Ar-
duino Nano and RPi. Our results show that while Edge Impulse models consume fewer
resources, TensorFlow Lite offers greater flexibility through access to a wider variety of
model architectures. The experiments also highlighted the trade-offs between model size,
inference time, and accuracy, emphasizing the importance of fine-tuning hyperparameters
based on the specific hardware and use case.

The ability to achieve near real-time detection using optimized models demonstrates
that modern AI technologies can effectively run on low-power edge devices. Our findings
suggest that combining edge and fog computing provides a scalable and efficient way to
implement more demanding AI solutions, such as specific object recognition on video
stream. The experiments also revealed that model size and computational overhead must
be carefully managed, particularly on microcontrollers, where even slight increases in
image resolution or model complexity can lead to significant resource constraints.

However, there are still several avenues for future research in this area. Some potential
directions include:

– Exploration of federated learning techniques tailored for object detection and recog-
nition tasks at the edge for aggregating model updates from distributed edge nodes
efficiently while accounting for resource constraints.

– Investigation of online continual learning techniques for adaptive object detection and
recognition at the edge that enable edge devices to incrementally learn from streaming
data while retaining knowledge learned from previous tasks.

– Research resource-efficient model adaptation techniques in edge-fog environments
that dynamically adjust model complexity and capacity based on available computa-
tional resources and streaming data characteristics.

By further exploring these research directions, we can continue to advance the field
of DNN model distribution and slicing across the edge-fog-cloud computing continuum,
enabling resource-aware and efficient object detection, classification and recognition sys-
tems for various real-world applications.
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