
Computer Science and Information Systems 22(2):533–561 https://doi.org/10.2298/CSIS240722021T

Demystifying Power and Performance Variations in GPU
Systems through Microarchitectural Analysis ⋆

Burak Topcu⋆⋆1, Deniz Karabacak2, and Işıl Öz3

1 The Pennsylvania State University
Department of Computer Science and Engineering, State College, PA, USA

topcuuburak@gmail.com
2 Izmir Institute of Technology

Electrical and Electronics Engineering Department, Izmir, Turkey
denizkarabacak@std.iyte.edu.tr
3 Izmir Institute of Technology

Computer Engineering Department, Izmir, Turkey
isiloz@iyte.edu.tr

Abstract. Graphics Processing Units (GPUs) serve efficient parallel execution for
general-purpose computations at high-performance computing and embedded sys-
tems. While performance concerns guide the main optimization efforts, power is-
sues become significant for energy-efficient and sustainable GPU executions. Pro-
filers and simulators report statistics about the target execution; however, they ei-
ther present only performance metrics in a coarse kernel function level or lack
visualization support that can enable microarchitectural performance analysis or
performance-power consumption comparison. Evaluating runtime performance and
power consumption dynamically across GPU components enables a comprehen-
sive tradeoff analysis for GPU architects and software developers. In this work, we
present a novel memory performance and power monitoring tool for GPU programs,
GPPRMon, which performs a systematic metric collection and provides useful vi-
sualization views to guide power and performance analysis for target executions.
Our simulation-based framework dynamically gathers SM and memory-related mi-
croarchitectural metrics by monitoring individual instructions and reports dynamic
performance and power values. Our interface presents spatial and temporal views
of the execution. While the first demonstrates the performance and power metrics
across GPU memory components, the latter shows the corresponding information
at the instruction granularity in a timeline. We demonstrate performance and power
analysis for memory-bound graph applications and resource-critical embedded pro-
grams from GPU benchmark suites. Our case studies reveal potential usages of
our tool in memory-bound kernel identification, performance bottleneck analysis of
a memory-intensive workload, performance-power evaluation of an embedded ap-
plication, and the impact of input size on the memory structures of an embedded
system.

Keywords: GPU Computing, Performance monitoring, Power consumption

⋆ This article is an extended version of our previously published workshop paper, ”GPPRMon: GPU Runtime
Memory Performance and Power Monitoring Tool, Burak Topçu, Işıl Öz, Workshop on Resource AWareness
of Systems and Society (RAW), co-located with International European Conference on Parallel and
Distributed Computing (Euro-Par), 2023.”

⋆⋆ Work was done when the author was at Izmir Institute of Technology.



534 Burak Topcu et al.

1. Introduction

As high-performance and energy-efficient computation requirements increase in data pro-
cessing tasks, GPU architectures, with heterogeneous components, play an essential role
in accelerating parallel workloads [40, 47]. Since GPU devices have evolved into more
complex systems with recent technological developments, efficient execution requires
more detailed research effort. As a result of high computational capacity, energy and
power issues have become crucial in GPU-based systems [22].

While GPU devices have large computational power with multiple processing units,
the performance and energy efficiency may decline for memory-intensive workloads due
to high pressure on memory units by concurrently executing multiple threads. While sev-
eral works discuss the impacts of the memory wall problem for the GPUs [10, 12], there
are also studies explaining the memory bottleneck reasons for GPU applications [20, 32]
and proposing various improvements for the problem [13, 16, 46, 50]. Additionally, the
researchers propose energy-efficient methods for GPU programs [6, 36]. While both per-
formance and energy improvements contribute to the efficient execution of GPU pro-
grams, they may compete with each other, and the design decisions become critical and
get complicated, requiring the evaluation of the tradeoffs between performance and en-
ergy efficiency [4, 9, 17, 42].

Performance and energy efficiency analysis for GPU execution requires low-level
measurements at runtime and detailed evaluations of the performance bottlenecks and
power consumption. Evaluating the execution for performance and energy efficiency at
the kernel function level hides most of the clear evidence for conducting a baseline anal-
ysis. We need to perform more fine-grain analysis, where the individual warp instructions
are tracked throughout the execution on SM resources. However, profiling and simula-
tion tools collect and report GPU performance results at the kernel level. For instance,
the NVIDIA Nsight Compute Tool [27], which presents occupancy, IPC, and memory
utilization metrics, operates on a kernel basis. Similarly, the state-of-the-art GPU simula-
tion tools [15, 45] report the performance and hardware metrics for each kernel function.
None of the tools directly reports GPU programs’ dynamic performance, memory access
behavior, and power consumption at runtime. While profiling tools and simulation frame-
works report runtime statistics, the software developers and researchers spend additional
effort to collect related metrics from the experiments. In other words, several in-house
target-specific works still exist to monitor the runtime behavior of a GPU execution, and
repetitive studies cause redundant effort.

While the profilers help software developers to understand performance and power
consumption information about GPU execution, microarchitecture-level simulators are
quite significant in modeling hardware and monitoring the runtime application behav-
iors. The simulators target micro and macro scales by collecting performance and energy
metrics. In GPU-related research, GPGPU-Sim [15] and Multi2Sim [45] simulators have
been prominent in offering accurate hardware models for NVIDIA and AMD GPUs, re-
spectively, among the other simulators [3, 7, 34]. Moreover, the developer communities
of these simulators have provided continuity by incorporating new GPU architectures and
optimizations introduced in GPU hardware and software. Among the top five hundred
computer systems [41], 179 use NVIDIA-based GPUs as the accelerator/co-processor
technology; specifically, 84 include NVIDIA Volta, and 64 use NVIDIA Ampere devices.



Demystifying Power and Performance Variations in GPU Systems 535

In this work, we build and implement, GPPRMon, a performance and power moni-
toring tool, for GPU programs executing on top of a simulation environment. We aim to
close the gap between the profilers’ high-level static results and the cycle-accurate sim-
ulators’ large-volume raw data about the execution. Not only do we set up GPPRMon
built on configurable simulation execution, but we also generate abstractions and provide
visualization views that are easy to capture and comprehend large amounts of data. Our
tool presents both dynamic and configurable simulation execution, and rich architectural
profiling views by combining the best of both worlds.

As potential users of the GPPRMon, we target program developers, system architects,
and researchers, who are working to optimize GPU software or hardware, considering
both performance improvement and energy efficiency. Our simulation-based framework
dynamically collects microarchitectural metrics by monitoring individual instructions’ is-
sues/completions and reports performance and power consumption information at run-
time. Hence, it enables the users to analyze the dynamic behavior of memory accesses
and thread blocks during program execution. Based on the detailed characteristics col-
lected at runtime, our visualization interface presents both spatial and temporal views
of the execution, where the first demonstrates the performance and power metrics for
each hardware component, including memory units and SMs; and the latter shows the
corresponding information at the instruction granularity in a cycle-based timeline. Our
tool enables the users to perform a fine-granularity evaluation of the target execution by
observing instruction-level microarchitectural features related to performance and power
consumption at runtime. In this article, we extend our previously published workshop
paper [44] by including additional case studies that demonstrate the usage scenarios of
our tool. To the best of our knowledge, this is the first work monitoring a GPU kernel’s
performance by visualizing the execution of instructions for multiple user-configurable
scenarios, relating memory hierarchy utilization with performance, and tracking power
dissipation at runtime. Our main contributions are as follows:

– We design a systematic microarchitectural metric collection methodology that keeps
track of instruction-per-cycle (IPC) per streaming multiprocessor (SM) as a perfor-
mance metric, instruction execution records for each warp to observe issue and com-
pletion cycles, memory statistics per each component in the memory hierarchy to
understand the possible impacts on performance and power-related statistics per each
GPU component at runtime. We build our configurable collection framework on top
of the GPGPU-Sim simulation environment [15], which provides cycle-accurate in-
formation about the execution.

– Based on the information gathered by our metric collection module, we design and
build a visualization framework that executes in parallel to our collection module
and generates displays and charts for each kernel execution with the following three
perspectives:

1. General View displays the average IPC among SMs, access statistics of L1 and
L2 caches, row buffer utilization of DRAM partitions, and dissipated power by
the main components for any execution cycle interval.

2. Temporal View shows the details of the instructions with issue and completion cy-
cles for each thread block at warp level. In addition to power consumption statis-
tics for the sub-components in an SM, we include L1 Data (L1D) cache access



536 Burak Topcu et al.

statistics, which are local for each SM, to relate the thread block’s performance
in the same execution interval.

3. Spatial View demonstrates the access information for each on-chip L1D cache,
L2 cache in each sub-partition, and row buffers of DRAM banks in each memory
partition. Additionally, it shows the power consumption distribution among the
memory components in the execution interval.

– We present case studies to demonstrate the potential usages of our framework and its
visualizations by performing experiments for memory-bound graph workloads and
resource-critical embedded applications. Our tool enables us to perform detailed per-
formance and power analysis for the target GPU executions.

The remainder of this paper is organized as follows: Section 2 presents some back-
ground on GPU architecture, CUDA programming model, and the simulator. We explain
our design and implementation details for tool construction in Section 3. Then, we present
case studies in Section 4, demonstrating usage scenarios of the GPPRMon. Section 5
presents the existent performance and power evaluation studies for GPGPU applications.
Finally, Section 6 summarizes the work with some conclusive remarks.

2. Background

2.1. GPU Hardware

Modern GPU architectures employ a single instruction multiple thread (SIMT) execution
in the Streaming Multiprocessor (SM) units. Each SM includes multiple warp schedulers,
instruction dispatchers, a register file, multiple single and double precision ALUs, tensor
cores, special function units (SFU), and load/store units with on-chip (on-SM) local mem-
ory. An interconnection network connects SMs to off-chip memory partitions on which
DRAM and Last-Level caches (LLC) are placed. While the cores inside the same SM can
access the private L1 cache, all the cores can communicate via the L2 cache structure.
Load/store instructions may require off-chip accesses whenever requested data cannot be
found in the L1D cache. Furthermore, data access gets slower for memory instructions
as moving down the hierarchy. GPU architectures have been evolving, with each new
generation introducing enhancements in performance, power efficiency, and specialized
features. This overview provides a general understanding of GPU architecture, but spe-
cific details and terminology may vary based on the GPU device model and manufacturer.
We specify the architectural and resource specifications for the GPUs in our experimental
setup parts.

2.2. CUDA Programming Model

Compute Unified Device Architecture (CUDA) [26] is an API to execute a function,
namely kernel function, on GPUs. A GPU kernel consists of a 3D grid space, where each
grid has a 3D thread block with multiple threads. Each sequential 32-thread set forms
a warp within a thread block in CUDA. When a kernel function launches, the Gigath-
read engine (thread block scheduler) schedules thread blocks to SMs in the Round-Robin
fashion. Register resources on SMs determine the number of active thread blocks, some
of which may be issued to the same SMs. Figure 1 demonstrates a GPU kernel code,



Demystifying Power and Performance Variations in GPU Systems 537

Fig. 1. CUDA, PTX, and SASS code snippets for vectorAdd code

vectorAdd, for the vector addition operation. Part 1 presents a compilation command by
nvcc [29], which is the CUDA compiler to generate the executable. Part 2 demonstrates
the Parallel Thread Execution (PTX) [30] instructions, which represent a virtual machine
ISA generated by nvcc, and Part 3 includes the SASS machine instructions, which rep-
resent low-level machine assembly that compiles to binary code executing on NVIDIA
GPU hardware.

2.3. GPGPU-Sim Simulation Framework

A cycle-level microarchitectural simulator GPGPU-Sim [15] (hereafter referred to as the
simulator) has been heavily utilized by researchers working on GPU software and hard-
ware optimizations. Figure 2 displays the workflow of the simulator, which configures
a traditional NVIDIA GPU and simulates CUDA-based applications. The simulator pro-
vides functional and performance-driven modes such that functional mode enables de-
velopers to check the kernel’s functional correctness, while the performance mode sim-
ulates the kernel for the configured GPU in a cycle-accurate manner. The simulator offi-
cially supports Volta-based Titan V, V100, RTX2060 GPU series, Pascal-based Titan X,
Kepler-based TITAN, and Fermi-based GTX480. Additionally, AccelWattch developers
introduced Volta-based RTX2060 S and Ampere-based RTX3070 GPUs to the official
simulator configurations. Beyond these, one can reconfigure any GPU with different re-
sources on top of these architecture models. Additionally, the simulator reports achieving
15% performance accuracy error rate with its virtual ISA implementation [15].

The AccelWattch [14], a power model extension of the simulator, is an analytical
model formulating power dissipation and utilizing validated power coefficients of mi-



538 Burak Topcu et al.

Fig. 2. A general workflow simulation model for a modern GPU

croarchitectural components such as functional units, CUDA core lanes, and memory
components, which are gathered through a comprehensive set of experiments. Accel-
Wattch, which supports Dynamic Voltage-Frequency Scaling (DVFS), estimates the en-
ergy consumption for V100 with 90% accuracy. In addition to V100, AccelWattch is val-
idated for TITAN X and Turing RTX GPU series through a large set of applications from
Rodinia, Parboil, CUTLASS, and DeepBench benchmark suites and NVIDIA CUDA
Samples, enables tracking detailed power dissipation of any GPU kernel execution.

Since we build our GPPRMon tool completely on top of GPGPU-Sim and its Accel-
Wattch power model, its accuracy, architectural support and scalability limitations can be
considered parallel to the support of the simulation framework.

3. Methodology

GPPRMon tool enables monitoring and visualizing runtime GPU execution performance
and power consumption. Figure 3 displays GPPRMon workflow consisting of two main
parts: 1 Metric Collection, 2 Visualization. For any execution interval, GPPRMon sys-
tematically calculates IPC rates of SMs, records warp instruction’s issues and comple-
tions, collects memory access statistics across the memory hierarchy, and tracks dissi-
pated power on sub-hardware units. Parts 1-a and 1-b demonstrate examples of the
power and performance metrics, respectively, and Section 3.1 details what these metrics
are and configuration options for users. Furthermore, Part 2 reveals GPPRMon’s visu-
alizer that contains three views to show general performance, memory access statistics,
instruction monitoring, and their power dissipation by processing the collected metrics.
We build our framework on top of the simulator, which is compatible with many GPU
models mentioned in Section 2.3. The GPPRMon framework is available as open-source
software 4.

4 https://github.com/parsiyte/GPPRMon



Demystifying Power and Performance Variations in GPU Systems 539

Fig. 3. A general workflow overview of GPPRMon framework

3.1. Metric Collection

The Metric Collection phase of GPPRMon, shown in Part 1 in Figure 3, conducts the
systematical recording of performance and power metrics during the execution. Perfor-
mance metrics mainly consist of hardware utilization and execution statistics of the mem-
ory hierarchy and SMs, such as cache usage efficiency and SMs IPC values. The metric
collector extension to the simulator cumulatively tracks the hardware performance, exe-
cution statistics, and power counters during a sampling interval, which is determined by
sampling freq perf in Figure 3. At the end of each observation interval, the metric collec-
tor exports the tracked metrics to their respective files and clears counters. To enable the
performance metric collection feature, the user needs to specify the mem profiler flag in
the simulation configuration file. Similarly, power metrics, such as dynamic runtime and
peak power, can be collected by setting the power sim profiler flag.

GPPRMon’s metric collection is multi-functional, such that users can separately track
warp instruction issue/completion for each thread block, runtime IPC values of each SM,
and runtime memory hierarchy utilization statistics (i.e., L1, L2, and DRAM row buffers).
GPPRMon allows users to either accumulate or independently collect metrics for each ob-
servation interval. Furthermore, users can discard store operations from the memory hi-
erarchy utilization metrics for their runtime target observation. Users can configure these
features through metric collection specifications, as depicted Control Flags in Figure 3.
GPPRMon creates separate folders for each component’s statistics and distinct files for
each sub-component with IDs. To reduce storage and access overheads during the ker-
nel’s execution, we utilize CSV file format for recording metrics. Our visualizer, shown
in Part 2 , can execute parallel to Part 1 and processes the collected metrics to gener-
ate runtime visualizations. The following subsections will briefly describe the collected
microarchitectural performance and power metrics and how to configure each metric col-
lection separately. More detailed information about how to build GPPRMon and deploy
multi-functional metric collection is available on the tool’s GitHub page.



540 Burak Topcu et al.

Performance Metrics

L1 Data and L2 Caches. A memory request’s access status on caches can be one of
the possible states: i) Hit: Data resides on the cache line; ii) Hit Reserved: The data is re-
quested, and the corresponding cache line is allocated, but the data is still invalid; iii) Miss:
The corresponding cache line causes several sector misses, resulting in a line eviction; iv)
Reservation Failure: The situations in which a line allocation, MSHR entry allocation, or
merging an entry with an existing in MSHR fail, or the miss queue does not have any
slot to hold new requests result in reservation failure; v) Sector Miss: A memory request
cannot find the data in the sector of a cache line (i.e., a sector is 32B, whereas a cache
line is 128B); vi) MSHR hit: When the upcoming request’s sector miss has already been
recorded, and request can merge with the existing entry, MSHR hit occurs.

GPPRMon can observe runtime access statistics of each L1D and L2 cache sepa-
rately. Users can activate the metric collection feature of GPPRMon for L1D and L2
caches with regarding control flags as depicted in Figure 3. Tracking runtime cache uti-
lization helps researchers evaluate the application’s memory access behavior and relate
it to the overall application performance. While cache hits indicate small access laten-
cies, misses generally refer to longer latencies and increasing active memory traffic in the
hierarchy. Furthermore, reservation failures result in a memory pipeline stall, directly de-
laying the subsequent load/store operations. Handling intensive misses requires detailed
analytic observations to deduct behavioral interpretations across applications and cache
utilization. In this manner, GPPRMon can meet the runtime analytic observation neces-
sity for micro-architectures on GPU to identify the memory performance and power issues
understandably.

Row Buffers of DRAM Banks. A row buffer hit occurs when an L2 miss request finds
the requested data in the row buffer of the target DRAM bank. A row buffer miss results
in a longer access service time than those hits because handling a row buffer miss requires
scheduling a memory request to the correct address on DRAM and activation latencies.
Row buffer utilization with cache access statistics completes the runtime memory hierar-
chy behavior exploitation, crucial for describing overall memory performance, especially
for sparse data applications. GPPRMon provides separate metric collections for the row
buffers in each DRAM partition, and users can activate this feature by enabling DRAM
control flag as depicted in Figure 3.

SM IPC. An IPC rate mainly describes an SM’s performance, which consists of various
functional units with varying lane depths. For example, V100 SMs include four single-
precision (SP) ALUs with four pipe depths, as presented in Figure 2. When a thread
block occupies only SP-ALU lanes, assuming an operation takes one cycle, the ideal IPC
for each SM should be sixteen without other functional units’ contribution. However,
IPC oscillates during the execution depending on SM and memory hierarchy utilization.
GPPRMon tracks the runtime IPC rate for each SM separately for each sampling interval,
and one can active per SM IPC tracking by enabling IPC control flag as in Figure 3. With
GPPRMon, developers can analyze runtime IPC variations and investigate the root causes
of IPC suffering.



Demystifying Power and Performance Variations in GPU Systems 541

Instruction Monitor. The instruction monitor feature of GPPRMon records the
issue/completion cycles of warp instructions within each thread block together with their
opcode, operand, and PC separately. Since GPUs execute instructions for multiple threads
concurrently by a common PC within a warp, we design tracking instruction
issues/completions at the warp level. While the first row of the Instruction Monitor in Part
1-b shows the issue statistics, the second displays the completion. Even if the dispatcher
unit may issue the same instruction multiple times for a warp, it is guaranteed that any
two instructions, of which CTA ID, SM ID, local Warp ID, and PC are the same, cannot
change the issue/completion sequence. Hence, we can obtain the correct issue/completion
matching for each instruction. Users can activate the instruction monitoring utility for
each thread block with instruction mon. control flag as in Figure 3.

Power Metrics

The comprehensive results of the dissipated power on GPU yield the analytical observa-
tion that gains significance, especially on embedded systems. Therefore, we develop GP-
PRMon to systematically collect the power distribution on the sub-units of SMs, memory
partitions, and the interconnection network, in addition to performance metrics. More-
over, SMs are GPUs’ most impactful hardware units in terms of runtime power dissi-
pation with their dense compute units. Thus, GPPRMon further classifies SM’s power
distribution through execution units, including the register file and the beginning of the
instruction pipeline, functional units, and load/store units involving the L1D cache.

We implement the collection of power metrics utility on top of the AccelWattch [14],
built upon McPAT [21], and the accuracy and theoretical limitations of AccelWattch yet
reside. However, GPPRMon’s power metric collection feature is still a reliable and prac-
tical tool since we extend various configurability options of AccelWattch to GPPRMon,
such as DVFS. GPPRMon assures the following runtime power measurements for each
component apart from idle SM: Peak Dynamic(W), the maximum momentary power
within the interval, Sub-threshold Leakage (W) and Gate Leakage(W), the leaked power
(due to current leakage) from the junctions of MOSFETs, and Runtime Dynamic (W),
the total consumed power. Runtime Dynamic power actually stands for the instantaneous
power at the cycle granularity. However, since GPPRMon samples metric counters for
each observation interval, this metric accumulates the power of each corresponding ob-
servation interval. Moreover, GPPRMon supports collecting power metrics either cumu-
latively or distinctly for each sampling interval, starting from a kernel’s execution. For
instance, power dissipation results in Figure 4 show the cumulatively collected results
for the interval between [55000, 56000], which means aggregating power results for each
sampling interval. The cumulative power metric collection option eases determining aver-
age power dissipation for different execution intervals. While V100’s TDP is 300W [35],
aggregated Runtime Dynamic power for 1000 cycles is 1095.5W, which corresponds to an
average of 109.5W per sampling interval with the cycling frequency of 100 on the sim-
ulator. Users can configure the power metric collection by first enabling power profiling
and determining other configurations as detailed in the tool’s source code.



542 Burak Topcu et al.

3.2. Visualization

By processing the collected metrics (Part 1 in Figure 3), GPPRMon depicts performance
and power dissipation with three perspectives at runtime, as represented in Part 2 in
Figure 3, and enables pointing out detailed interaction of the program with the underlying
hardware.

i General View, Part 2-a , presents the overall IPC of GPU, the average memory ac-
cess statistics, and dissipated power among the major components with application-
and architecture-specific information;

ii Spatial View, Part 2-b , presents the detailed access statistics of the GPU memory
hierarchy and dissipated overall power among the memory partitions by enabling the
monitoring of the entire GPU memory space;

iii Temporal View, Part 2-c , demonstrates instruction execution statistics with activa-
tion intervals at warp-level for user-specified thread blocks, L1D cache access char-
acteristics, and power distribution among the sub-components of SMs by activating
the execution monitoring feature.

Fig. 4. General View with average performance and power consumption metrics
collected at runtime

GPPRMon includes three configuration options for different visualization perspec-
tives and an interval sampling cycle to divide runtime execution into portions. Since GP-
PRMon’s Temporal View may require scanning of many statistics for all thread blocks,
especially in large architectures, GPPRMon provides a Temporal View option among the
thread blocks determined with IDs. Depending on the configuration, GPPRMon starts
tracking collected metrics for each kernel and systematically saves images in PNG format
per execution interval.

Figure 4, an example of our General View, presents the overall measurement of the
first kernel for the SPMV from Gardenia benchmark [48] executed on V100 GPU [23]. It
displays average memory access statistics among the active L1D caches, L2 caches, and



Demystifying Power and Performance Variations in GPU Systems 543

DRAM banks; average IPC value among the active SMs; dissipated power on major sub-
GPU components within the [55000, 60000] cycle interval. The view includes grid (i.e.,
1764 thread blocks) and block dimensions (i.e., 256 threads per block) with the number
of actively used SMs so that the users can relate active SMs and workloads at runtime. To
illustrate, Figure 4 shows that the kernel executes with the IPC rate of 1.08 and utilizes
the memory hierarchy inefficiently due to high miss and reservation failure rates on V100
in this interval, where the Volta SM architecture supports concurrent execution of 2048
threads per SM. Considering that V100 SMs contain 16 SP/INT/DP ALUs, SFUs, and
Tensor Cores, we can notice the low performance since the ideal IPC should be much
more than 1.08 with 640 thread blocks (8 thread blocks per SM) in the given interval.
Long-latency memory operations may slow instruction completion and result in low IPC.
Moreover, memory partitions consume 75% of total power dissipation, which validates
that SMs mostly stay idle for the execution interval given in Figure 4.

Our General View supports two additional visuals that show the time spanning of
memory access statistics and the relationship between IPC and power metrics for longer
runtime intervals as in Figure 11 and Figure 14 (the examples given as part of our case
studies), respectively.

Fig. 5. Spatial View displaying memory access statistic at runtime

Figure 5, an example of our Spatial View, shows the memory access statistics across
the GPU memory hierarchy on L1D caches, L2 caches, and DRAM. On caches, the green
emphasizes hit and hit reserved accesses, the red indicates miss and sector miss, and
the blue states the reservation failures through miss queues or MSHR. Similarly, DRAM
bank pixels are colored with a mixture of red and blue to specify the row buffer misses
and hits, respectively. GPPRMon supports memory hierarchy visualization for all official
GPU configurations of the simulator, even if some disable the L1D cache for load/store
operations. Spatial View includes detailed data about access statistics, resource quanti-
ties, architecture types, and dissipated power on memory partitions. To detail the view,
we zoom in on some memory units in Figure 5, which presents statistics in the cycles of
[51000, 51500] for the kernel execution. Different L1D caches behave similarly in that in-



544 Burak Topcu et al.

terval, such that almost all L1D caches turn blue due to reservation failure concentration.
To illustrate, the reservation failure rates are 0.92 and 0.78 on L1D-0 and L1D-1, respec-
tively. On the contrary, statistics on L2 caches imply heterogeneous data accesses. While
L2 Cache-6 and L2 Cache-54 bring hit rates of 0.75 and 0.67, respectively, L2 Cache-37
causes 0.67 miss and 0.33 sector miss rates, and L2 cache is intermediate in utilizing data
locality among the others. Gray color among the units regards no access occurring on the
Spatial View.

Fig. 6. Temporal View monitoring instruction executions together with the performance
and power consumption of the corresponding SM

Figure 6, an example of our Temporal View, displays a thread block’s execution statis-
tics at warp-level, L1D cache statistics, and dissipated power of core components con-
figurable execution intervals. It presents each warp’s PTX instruction sequence, with op-
codes, operands (source/destination registers and immediate values if they exist), and the
program counter (PC). The Issue/Completion column indicates the execution start and
writeback times of warp instruction segments within any thread block. For instance, Fig-
ure 6 reveals the execution monitoring of the Thread Block 2 on SM 2 in the cycle range
of [8000, 8500]. The instruction dispatcher unit issues two SP global loads with PC=368
and PC=376 at Cycle 8071 and Cycle 8072, and they are completed at Cycle 8179 and Cy-
cle 8178, respectively. Temporal View allows tracking execution duration per instruction
in this manner. Since L1D cache hits result in low latency, these load instructions lasting
above 100 cycles are among the misses or sector misses of L1D cache statistics. In addi-
tion, the view enables us to relate IPC, instruction statistics, and power metrics. The fact
that the rate of memory instructions is 0.37 and inefficient use of the L1D cache within
the given interval significantly degrades the IPC on SM2. Furthermore, the load/store
unit dissipates nearly 92% of SMs total power in the corresponding interval because of
the pressure on the L1D cache. As a result, one can analyze the data locality in a multi-
perspective by utilizing access statistics of caches and row buffers on Spatial View, tracing
the issue/completion times of memory operations on Temporal View at runtime.

GPPRMon Overheads. GPPRMon execution performance mainly depends on i. the
metric collection sampling frequency, ii. visualizer intervals, and iii. view types. Firstly,
each sampling operation during simulation conducts multiple I/O operations to the met-
ric collection files, such as performance, memory, and power trace files, which are sig-
nificantly slow compared to the simulation execution. Hence, widening the simulation
runtime sampling interval directly reduces the number of I/O operations for exporting



Demystifying Power and Performance Variations in GPU Systems 545

results to output files, and the simulation duration decreases accordingly. For instance,
simulating the SPMV benchmark [48] takes 98 minutes for the Higgs Twitter Mention
data by recording both power and performance metrics per 5000 simulation cycles, while
the baseline simulation (i.e., not collecting runtime performance and power metrics) com-
pletes the execution at 88 minutes in our local infrastructure. Furthermore, the visualiza-
tion interval mainly determines the spanning range of the collected metrics. That is, lower
visualization intervals search for fewer sampled metrics, reducing generating views to
demonstrate runtime performance and power observations on the GPU. Since each view
type requires different metrics, composing each figure takes various amounts of time.
For example, generating General View in Figure 4 necessitates spanning all statistics on
L1D and L2 caches, row buffers, SMs, and power dissipation for a given internal while
Spatial View only displays memory access statistics, and is much easier to compose. Ad-
ditionally, tracking the instruction monitoring of limited thread blocks through Temporal
View is comparably easy, whereas increasing the number of thread blocks for instruction
monitoring raises the spanning overhead and takes longer to generate those views.

4. Usage Scenarios

We evaluate a set of CUDA programs from two benchmark suites and demonstrate the
case studies that can use our framework. Specifically, we utilize graph workloads from the
Gardenia benchmark suite [48] and embedded applications from the GPU4S embedded
benchmark suite [37]. Since graph workloads target large-scale systems, we configure the
GPPRMon to simulate Volta architecture-based V100, commonly used in HPC systems
and GPU architecture research. Table 1 presents salient characteristics of the V100 device.
On the other hand, for embedded applications, we configure our tool to simulate the GPU
device on Jetson AGX Xavier, which provides a System-on-Module with a Volta-based
GPU and contains an 8GB/16GB unified memory with a high-bandwidth interface to the
GPU, and a 512KB shared L2 cache exists in the memory hierarchy [25]. Its GPU includes
512 cores corresponding to 8 SMs involving a 128KB on-chip cache per SM.

Table 1. V100 GPU configuration specifications based on Volta architecture
Registers, Register Banks 65536, 16
SP-U, SF-U, DP-U, INT-U, TC-U,
LD/ST-U (WB-PipeDepth)

4,4,4,4,4,1(8)

SM (80) Specifications
Warp Scheduler 4
on-chip L1I Cache, NoF banks, ac-
cess latency, cache line

128KB (64 sets, 16-way), 1, 20 cy-
cles, 128B

Memory Parititon (32)
Specifications

L2 Cache, NoF banks, access la-
tency, cache line

96KB (32 sets and 24-way), 2, 160
cycles, 128B

DRAM, NoF banks, access latency
(after L2)

1GB, 16 banks, 100 cycles, 128B

DRAM scheduler First-ready, first-come first-service



546 Burak Topcu et al.

Fig. 7. Average memory and power consumption statistics for BC-Kernel 1

4.1. Determining Memory-Bound Kernels and Spatial Characteristics

We evaluate the Betweenness Centrality (BC) program (from Gardenia suite [48]) with
multiple kernel executions. By analyzing the kernels with the largest cycles, we classify
them as kernels with no memory pressure and kernels with memory bottleneck. Addition-
ally, we review SM distribution and utilization of the target executions.

Figure 7 presents memory-related data and IPC values during the execution time in-
tervals for the kernel function, Kernel 1, and demonstrates L1, L2, and row buffer statis-
tics and the corresponding IPC/power behavior. While our spatial and temporal views
present fine-grained values for each hardware component across the GPU device, those
statistics (Figure 7 and Figure 9 afterward) demonstrate the dynamic average values for
overall GPU SMs. While there are a few oscillations in the rates, the general behavior
demonstrates steadily high hit rates. Moreover, we can see the peak IPC value during the
intensive computations at the beginning of the kernel execution. Then, IPC values tend to
decrease as the computations end. We can observe that the kernel has no memory pressure
during the execution. After warming the caches at the very beginning of the execution, the
kernel could perform its operations with high hit rates and compatible IPC rates.

After getting the memory behavior of our target kernel based on our average tim-
ing statistics, we can utilize our Spatial View to understand its SM utilization. Figure 8
presents the partial view that includes the L1 cache structures of each SM at time inter-
vals [5000-10000], [15000-20000], and [245000-250000], respectively. The application
launches the kernel function with 64 thread blocks and 256 threads per block, such that
the thread blocks are scheduled to 64 SMs (out of 80 in the V100 device). Therefore, only
the corresponding L1 caches exhibit non-zero values. Since all thread blocks are active
and the caches do not hold data at the beginning (5K-10K time interval), all 64 L1 cache
structures employ low hit rates (red color in our representation, while inactive L1s are
gray). At the next time interval, the execution starts warming the caches, and hit rates
increase (green color in our representation). Eventually, as the thread blocks complete
execution and they retire, L1 caches on the corresponding SMs do not collect statistics



Demystifying Power and Performance Variations in GPU Systems 547

Fig. 8. L1 cache status for BC-Kernel 1 for successive time intervals

(gray as the other L1 caches at the beginning). We can track all thread blocks’ scheduling
and their L1 cache utilization during the execution for the given time intervals. For the
specific kernel execution, observing the high hit rates (green colors) in all L1 caches of
the active SMs and corresponding IPC rates demonstrates efficient L1 utilization and low
memory pressure.

Figure 9 demonstrates memory-related data and IPC values for another kernel, Kernel
2. Since Kernel 2 has been launched by much more threads than available SMs, all SMs
are active during the execution, and the threads compete for both L1 and L2 caches.
The reservation failure and miss rates at the first part of the execution are significant for
private L1 and shared L2 cache, in turn, the kernel exhibits low IPC values. Whenever L2
and especially L1 hit rates become more than 0.5 (around cycle 600K), IPC values also
increase, and the kernel function performs most of the target computations (until cycle
800K). We can observe the corresponding cache status in our Spatial View. For this case,
we include both L1 and L2 cache structures in our aggregated visualization in Figure 10.
Different from Kernel 1, we can see that all L1 caches exhibit non-zero values from the
beginning of the execution since the available threads utilize all SMs in the device. The
figure demonstrates the warming of the caches through the execution cycles, where the
kernel function has pressure on both L1 and L2 by highly utilizing those structures.

4.2. Performance Bottleneck Analysis and its Power Impacts for a
Memory-Intensive Workload

We evaluate CUDA implementation of the Page Ranking (PR) algorithm given in Gar-
denia suite [48] to analyze a memory-bound GPU program and irregular memory access
statistics through GPPRMon. PR assigns weights to graph nodes describing relative im-
portance among nodes.



548 Burak Topcu et al.

Fig. 9. Average memory and power consumption statistics for BC-Kernel 2

The PR execution iterates with the Contribution Step (K0), Pull Step (K1), and Linear
Normalization (K2) kernels, and the total number of iterations varies depending on the
data size. Table 2 presents the performance overview of the kernel statistics. At the begin-
ning of the execution, K0 causes a high miss rate on caches since all memory operations
are completed before warming up. No row buffer locality information is provided across
DRAM accesses, as the required data mostly fits into the L2 cache. In other words, L2
misses do not access the same row of DRAM banks within any memory partition. Since
total elapsed cycles indicate that K1 dominates the execution at 99.7% and directly affects
the application performance and overall power consumption, we focus on that kernel ex-
ecution.

Table 2. Page Ranking (PR) kernel performance statistics

GPU
IPC

GPU Oc-
cupancy

L1D L2 DRAM

Kernel Miss
Rate

Res. Fail
Rate

Miss
Rate

Res. Fail
Rate

Row
B. Loc.
(L+S)

Row
B. Loc.
(Load)

Total Cycle

Page Ranking -
Contrib K0 715.59 82.76% 1.000 0.819 0.333 0.0 NA NA 8670

Page Ranking -
PullStep K1 3.007 5.55% 0.584 0.400 0.156 0.011 0.658 0.667 8677889

Page Ranking - Lin-
Norm K2 1297.68 77.108% 0.501 0.285 0.457 0.001 0.724 0.732 11718

V100 includes 870GB/s bandwidth migrating 217.5 Giga SP float to the SMs and
14.8-SP/7.4-DP TFLOPS peak computational power [23]. With these specifications, we
can state that the time consumed for one load complies with the execution of 68 SP float
operations on SMs, ideally (i.e., without L1D and L2 caches). On the other hand, K1
has a memory instruction intensity of around 0.2 in its PTX code, which validates that
K1 bounds the performance due to intrinsic memory workload. Not only is K1 memory-
bound, but also inefficient memory usage severely impacts performance. To see performance-



Demystifying Power and Performance Variations in GPU Systems 549

Fig. 10. L1 and L2 cache status for BC-Kernel 2 from cycles 400K, 600K, 700K

critical points in the execution, we monitor runtime performance-degrading factors with
low-frequency execution snapshots provided as part of our tool.

While the overall IPC is around 0.3 for K1, General View results obtained for every
500 cycles during the execution indicate that IPC oscillates in the range of [0.1, 9.54],
with the highest peak of 53.44. Figure 11, which is part of our General Overview, shows
average access statistics on memory units in [5000, 100000] cycles. After caches warm-
ing up (around cycles 10000), while the average miss rate on L1D caches oscillates in
[0.14, 0.51], sector misses, which the simulator does not provide separately, vary in [0.05,
0.31] with the metrics collected in every 20 cycles. We can understand the data pollution
on the L1D caches, which prevents the execution from exploiting cache locality. For in-
stance, K1 does not utilize spatial locality on the L1D cache since the MSHR hits oscillate
slightly in [0.03, 0.08] during the execution. Hence, the overall hit rate on L2 caches is
quite high when we use the web-Stanford dataset [19], which occupies memory space



550 Burak Topcu et al.

Fig. 11. Average memory access statistics in the cycle range of [5000, 100000] for
PR-K1

five times larger than the L2 cache size. While the performance metrics in Table 2 hide
the L2 statistics as it counts misses before warming up at kernel launch, the actual L2 hit
rate oscillates in [0.82, 0.95] at runtime with sampling per 500 cycles. Additionally, the
row buffer hits and misses vary in [0.2, 0.85] in an unstable manner, which verifies data
sparsity throughout the execution.

Fig. 12. Instruction monitoring for the load instructions on SM 0 in the cycle range of
[5000, 30000] for PR-K1

Figure 12 presents the instruction issue/completion cycles of 8 K1 thread blocks run-
ning on SM 0. We merge multiple snapshots of our Temporal View that belong to thread
blocks in SM 0 to evaluate the performance of all load instructions together. The first and
second lines point to the load instructions of which the program counter (PC) equals 296
(loads DP) and 312 (loads SP), respectively. Figure 13, a snapshot of our Spatial View,



Demystifying Power and Performance Variations in GPU Systems 551

demonstrates the memory access statistics of representative components within the same
interval. After the kernel launch, each thread collects thread-specific information from

Fig. 13. Memory performance overview in the cycle range of [5000, 9500] for PR-K1

parameter memory, which takes 250-450 cycles to process target data addressed with
the thread’s private registers. The warp schedulers dispatch the load instructions (i.e., at
PC=296 ld.global.u64), and all eight warps at Thread Block 24 start executing the instruc-
tion after Cycle 5455. Furthermore, Figure 12 reveals that SM dispatches load instructions
from the remaining thread blocks in the interval of [5470, 5786] after issuing the load in-
structions of Thread Block 24. Figure 13 reveals that no access occurs on some of the L1D
caches, while none of the L2 caches and DRAM banks are accessed during the preparation
time in [5000, 5500] in Part 1 . No data brought to the L1D cache of SM 0 by the warps of
Thread Block 24 after Cycle 6087 (Warp 6) enables the early completion of the instruction
pointed with PC=296, belonging to the thread blocks 104, 184, 264, 344, 424, 504, and
584. We highlight this observation with the bold fonts representing the earliest completion
times within each thread block in the second row of the first instructions. Additionally,
a high reservation failure and no MSHR hit rates on the L1D cache of SM 0 in Part 2
confirms that the locality utilization between thread blocks is quite low for the first load. If
the L1D cache locality was utilized, we should have observed larger MSHR hit rates and
completion of the same instructions just after Cycle 6087. Parts 2,3,4,5 reveal that the
reservation failed requests pointed by PC=296 cause a miss on L2 caches without MSHR



552 Burak Topcu et al.

merging. Thus, memory requests of the same instruction from different SMs cannot ben-
efit from L2 locality and cause more traffic in the memory hierarchy. Additionally, Parts
3,4,5,6 reveal that the L1 access status mostly turns to the hit after Cycle 6000. Unlike
the load instructions at PC=296, ones at PC=312 (ld.global.u32) usually hit on L1. The
second line for each thread block shown in Figure 12 indicates that the completion takes
much fewer cycles for the loads at PC=312. To illustrate, while Thread Block 504 com-
pletes the first load instructions within 2133 cycles, except Warp 63, it takes 26 cycles for
the second instructions, whose requests result in a miss on both the L1D and L2 caches.
While the loads at PC=296 complete the execution in the range of [350, 2250] cycles,
the loads at PC=312 take less than 50 cycles for most of the warps due to the increasing
hits on the L1D cache. However, the loads at PC=296 delay the issue of the second load
instructions due to long latency. The remaining thread blocks (from Thread Block 641)
are assigned to SMs after Cycle 55000. With the observation that a thread block occupies
50000 cycles on an SM (for the web-Stanford graph, which can easily fit into DRAM),
the schedule of any waiting thread block delays around 2000 cycles. Such delays affect
the performance of a thread block by 4% in addition to affecting the memory traffic neg-
atively and degrading the overall performance of K1. In this manner, an approach such as
adaptive thread block scheduling by throttling the load/store unit issue amount depend-
ing on the access statistics of caches can reduce the side effects and increase the overall
performance.

Table 3. Dissipated average power in Watts in the cycle range of [5000,10000] for PR-K1
Streaming Multiprocessors Memory Partitions

Cycles Exec.
Units

Func.
Units

LD/ST
Unit Idle Total MC

FEE PHY MC
TE Dram L2 Total NoC TOTAL

5k, 5.5k 2637.5 54.3 35.6 23.7 2751.3 3.7 8.2 4.6 0 0 16.5 0.7 2768.5
5.5k, 6k 597 6.3 860 0 1463.7 177.2 17.8 9.4 557.2 3.4 764.9 26.9 2501.6
6k, 6.5k 614.4 12.4 399.9 0 1026.7 56.1 31.3 16.1 1346.4 3.0 1452.9 92.6 2577.3
6.5k, 7k 708.6 14.4 464.3 0 1187.3 65.5 31.4 16.2 1354.3 3.1 1470.5 94.2 2755.1
7k, 7.5k 686.8 13.9 463.9 0 1164.6 65.6 31.8 16.2 1354.9 3.1 1471.2 94.4 2733.2
7.5k, 8k 795.8 16.3 487.4 0 1299.4 69.9 29.7 15.3 1264.3 3.7 1383.1 96.7 2782.9
8k, 8.5k 543 10.2 335 0 888.2 60.4 30.5 15.7 1341.4 4.4 1452.0 124.7 2469.3
8.5k, 9k 354.5 5.6 249.3 0 609.3 52 31.1 16.1 1362.6 19 1480.7 148 2257.2
9k, 9.5k 474.9 5.3 455.4 0 935.7 80.2 27.8 14.4 1096.9 66.1 1284.4 216.8 2503
9.5k, 10k 446.8 4.8 475.5 0 927 78.2 23.8 12.4 843.2 41 968.7 153.8 2090.4

Table 3 presents power measurements for K1 execution throughout the hardware struc-
tures. After kernel launch, (i.e., Cycle 5000), the threads load thread-identifier data from
the parameter memory, causing higher power consumption on SMs. The power values of
the memory partitions in the following cycles get higher than the SMs. Additionally, the
power consumption by the LD/ST unit is high due to the intense memory operations and
pressure on the L1D cache, and other units apart from the register file portion of the exe-
cution unit get lower after Cycle 5500. We can see that DRAM consumes the most power
in the memory partitions with intense usage of high-bandwidth [24].

4.3. Performance-Power Analysis of an Embedded Application

Embedded applications targeting artificial intelligence, computer vision, and advanced
graphics require high computational power. Jetson AGX Xavier provides a System-on-



Demystifying Power and Performance Variations in GPU Systems 553

Module that meets these demands with a Volta-based GPU. We execute CUDA imple-
mentation of the Fast Fourier Transform (FFT) from the GPU4S suite [37].

Table 4 presents the overall performance metrics for executing the first three kernels.
The thread blocks consist of 256 threads, and a maximum of 8 thread blocks can run in
parallel on the SMs since the register file limits the number of simultaneous thread block
execution. Since the kernels other than the K0 utilize the hardware similarly, they result in
similar performance as shown for K1 and K2. Thus, we explain the relationship between
performance and power consumption for K0, which employs diverse characteristics.

Table 4. Fast Fourier kernel performance statistics
GPU
IPC

GPU
Occ.

L1D L2 DRAM

Kernel Miss Rate Res. Fail
Rate Miss Rate Res. Fail

Rate

Row
Buffer
Loc.
(L+S)

Row
Buffer
Loc.
(Load)

Total Cycle

FFT - K0 31.76 62.52 % 0.67 0.92 0.65 0 0.21 0.89 990276
FFT - K1 100.22 80.25 % 0.1 0,75 0.20 0 0.33 0.92 235390
FFT - K2 49.20 85.28 % 0.1 0.837 0.21 0 0.41 0.92 239755

Fig. 14. IPC with dissipated power metrics in the cycle range of [5000, 155000] for
FFT-K0

Figure 14 displays the IPC and power metrics measurements for K0 at different execu-
tion cycle intervals. To avoid losing observation details related to IPC and power metrics
of the kernel, we report the relationship in three execution intervals separately. At cycles
[5000, 6500], the power per cycle and IPC values increase significantly since each SM
registers thread-identifier information in their private registers, causing a high activation
on register files and functional units. Figure 15, (as part of our General View), shows four
loads, three data movements, and one multiply-add instruction executed by 16384 threads
concurrently (with 64 thread blocks where each contains 256 threads) in that interval.
Throughout the K0 execution, we have high L1D and L2 miss rates. Figure 14 reveals the



554 Burak Topcu et al.

effect of those accesses on power dissipation (yellow line). The memory partitions dissi-
pate half of the total power, around 50W, due to intensive activation at runtime. IPC and
power dissipation increase instantly with SM activation points. By tracking the points,
where IPC increases between [55000, 105000] and [105000, 155000] cycles, we can see
parallel increments in power metrics dissipated by SMs and GPU. While the overall IPC
value for K0 equals 31.76 on SMs, runtime IPC varies in the range of [5, 75]. The concur-
rent load and store instructions cause small latencies and slight computational loads on
the SMs.

Fig. 15. Instructions preparing threads for execution with thread-specific data in the
cycle range of [5000, 6500] for FFT-K0

4.4. Analyzing the Impact of the Input Size on Resource-Critical Embedded
System

Since embedded devices employ relatively smaller computational and memory resources,
the target programs’ resource utilization becomes more important and influential on the
execution performance. Besides program characteristics, the input size significantly af-
fects the pressure on the memory structures and the obtained performance. To understand
the impacts of the input size on memory behavior and execution performance, we utilize
the memory statistics view of our tool. We execute softmax program from GPU4S suite
[37] for two matrix sizes (1024 and 4096).

Figure 16 presents the memory statistics of the first 500K cycles. The execution em-
ploys high L1 reservation failure rates and L2 miss rates for the first 300K cycles for both
executions. However, the small input (1024) can fit within the L2 and L1 caches around
Cycle 300K and Cycle 350K, respectively. On the other hand, the large input (4096) exe-
cution still employs low hit L1 and L2 rates.

Figure 17 demonstrates the corresponding IPC behavior, which is compatible with
cache rates. While the IPC for the large input case oscillates at small values (0.2-0.8), the
IPC values for the small input case are steadily low but increase after L2 and L1 cache
breakpoints. With this analysis, we can decide on the cache utilization of the target input
dimension for the program.



Demystifying Power and Performance Variations in GPU Systems 555

Fig. 16. Average memory access statistics at first 500K cycles for softmax kernel (matrix
sizes with 1024 and 4096)

5. Related Work

In this section, we review the existing GPU execution analysis and visualization tools
in the literature. For each work, we emphasize GPPRMon’s fine-grain evaluation and
visualization support for performance and power analysis by specifying the differences
from the existing approach.

AerialVision [1] visualizes runtime warp divergence, dynamic IPC, global memory
access statistics, active thread count, and a mapping window between source code and
exposed pipeline latency metrics of kernel execution. While GPPRMon enables develop-
ers to dig into details of runtime GPU execution within specific microarchitectural units,
AerialVision profiles the run time metrics on a much longer execution scale and visual-
izes overall GPU performance without per-component performance analysis. GPPRMon
is similar to AerialVision in terms of providing runtime performance metrics, but GP-
PRMon can uncover more detailed behavioral insight inside kernel execution with more
detailed runtime observation opportunities. Furthermore, AerialVision does not support
displaying dissipated power.

Nsight Compute Tool [27] runs an application on an NVIDIA GPU device and col-
lects average hardware usage statistics for the main components on a kernel basis. Nsight
System Tool [28] is the other tool that is mostly preferred to analyze end-to-end ker-
nel execution performance, including CPU-GPU communications. Profiling through these
tools eases interpreting the overall kernel performance and hardware utilization with well-
designed GUIs. In addition to performance analysis tools, GPU users can track instant
power dissipation of deployed GPU through System Management Interface (SMI) li-
brary (i.e., nvidia-smi) [31]. Different from all NVIDIA tools and library frameworks,
GPPRMon can track and visualize execution and hardware utilization statistics at run-



556 Burak Topcu et al.

Fig. 17. IPC values for first 500K cycles for softmax kernel (matrix sizes with 1024 and
4096)

time for each component separately. GPPRMon further monitors warp-instruction is-
sues/completions for each thread block, which provides an on-point analysis opportunity
in a highly parallel execution. Hence, GPPRMon provides multi-functional performance
and power tracking options together with various configurations, and it supports these
features for all official GPU models described in Section 2.3.

TAU Performance System [39] is a performance profiling tool for hybrid parallel pro-
grams such as CUDA and OpenCL by intercepting the execution and inserting metric
collection calls. After gathering the performance results, TAU integrates them with data
through instrumentation to display a performance picture of the execution. Like Nsight
Systems Tool [28], which provides performance traces for high-level CUDA functions
such as cudaMemcpy, TAU does not address detailed hardware usage and performance
during runtime as GPPRMon does. While TAU is insufficient to reveal the hardware’s
energy consumption, GPPRMon provides runtime power breakdown of GPU subcompo-
nents during the execution.

Daisen [43] displays the overall occupancy on SM pipeline stages and memory com-
ponents during the simulation. The authors aim to propose a performance-improving ar-
chitecture by iterating an algorithm that benefits from the previously collected perfor-
mance and hardware usage metrics. In other words, Daisen does not highlight the per-
formance degrading points analytically. Instead, their approach addresses general bottle-
necks, shares with the user, and tries to optimize performance in each iteration. Similar to
[33], their approach offers more systematic performance optimization points on GPU ex-
ecutions. On the other hand, GPPRMon focuses on monitoring the execution at the PTX
instruction level and relating the execution with the memory occupancy during execution.
That is, GPPRMon offers a runtime analytical observation environment to evaluate both
architecture and application inefficiencies. Moreover, while GPPRMon supports runtime
power tracking and overall energy consumption metrics, Daisen does not provide them.

CHAMPVis [33] offers a web-supported architectural performance monitoring tool
that provides a hierarchical analysis of trends and bottlenecks for varying applications.
The tool aims to analyze performance by evaluating metrics from a system view and auto-
matically generates predictive optimization speculations for the applications. Unlike GP-
PRMon, CHAMPVis does not employ any dissipated power tracking. GPPRMon yields
detailed execution statistics, whereas CHAMPVis highlights the overall execution trends.



Demystifying Power and Performance Variations in GPU Systems 557

Francisco et al. [5] model a portion of the memory hierarchy of the AMD GPUs ac-
curately by investigating the behavior of MSHRs, coalescing for vector (warp for our
case) memory requests by extending Multi2Sim [45]. The authors find that the size and
switching frequencies of MSHRs affect performance directly, especially for irregular
workloads. Additionally, coalesced memory accesses, implemented in the simulator, re-
duce the repeated overheads of memory requests, significantly affecting performance for
global memory accesses. GPPRMon offers more comprehensive evaluation opportunity
besides the impact of MSHRs and memory request coalescing by being capable of run-
time monitoring of both all memory hierarchy and SMs. Furthermore, GPPRMon extends
relating the performance analysis options together with the dissipated power for perfor-
mance/power trade-off evaluations at any execution scale.

Tanzima et al. [11] present an analysis and visualization framework (DASHING) tar-
geting exascale computing consisting of multi-core architectures. The authors provide
user interaction to compare varying configuration models by providing environment con-
figuration options for analysis and visualization. Similarly, GPPRMon supports official
GPU configurations of the GPGPU-Sim for multiple performance analyses and includes
multi-functional metric collection and visualization perspectives depending on the user’s
demand. However, we obtain a more low-level performance analysis tool as described
in Temporal and Spatial View Sections. In addition to runtime monitoring support, GP-
PRMon allows tracking the power dissipation across microarchitectural GPU components
at runtime, which enables evaluating performance/power together, especially for energy-
critical applications.

MemAxes [8] proposes an analysis framework for memory performance with various
inspections on multi-core architectures. Its interface displays the analysis by obtaining
performance metric samples from different simulations and mapping them into a single
visual. In addition, the authors offer memory utilization-based clustering research among
the benchmark applications. On the contrary, GPPRMon enables the analysis of GPU
execution at runtime with performance and power dissipation features through Spatial,
Temporal, and General Views.

To the best of our knowledge, GPPRMon differs from existing works by targeting
hardware from both embedded and large-scale GPUs and providing runtime performance
and power analysis opportunities. GPPRMon offers a detailed micro-architectural and
power dissipation analysis for any GPU application. With observations through GPPRMon,
developers can identify performance and power issues for both applications and archi-
tectures. For instance, data sparsity, irregular memory access behaviors, compute-bound
behaviors, and the execution interval of these bottlenecks can be easily recognized via
GPPRMon. Moreover, since GPPRMon supports runtime power dissipation together with
performance monitoring, developers can analyze the energy impact of those performance
issues and make their decisions. The studies conducting performance-energy tradeoff
analysis [2, 38] and power capping strategies accordingly [49, 18] can potentially ben-
efit from our fine-grained dynamic performance and power evaluations. We believe GP-
PRMon will be useful in fulfilling the micro-architectural performance and power analysis
of GPUs for diverse application domains.



558 Burak Topcu et al.

6. Conclusion

To conclude, we design and build a systematic runtime metric collection of instruction
monitoring, performance, memory access, and power consumption metrics. Our tool pro-
vides a multi-perspective visualization framework that displays performance, execution
statistics of the workload, occupancy of the memory hierarchy, and dissipated power re-
sults to conduct baseline analysis on GPUs at runtime. Since GPPRMon reliably reveals
all the interactions between hardware and application at runtime, it potentially helps the
researchers and software developers understand the dynamic behavior of the target GPU
execution. While the researchers can propose architectural optimizations based on the
detailed information, the software developers can deal with performance bottlenecks by
analyzing our visualizations and fixing the target GPU code accordingly. Additionally,
the low-power embedded system developers can utilize dynamic performance and power
considerations to balance between two important design points.

We believe that GPPRMon will help to conduct baseline analysis for the literature con-
cerning GPU performance and power dissipation and eliminate the need for additional in-
house efforts that involve real-time monitoring and profiling support. Since GPPRMon’s
metric collection and visualization components are independent, other microarchitectural
metrics obtained during runtime from either GPUs or other simulators can be displayed by
exploiting the GPPRMon visualizer. The integration of other simulators with GPPRMon
results in a system capable of runtime execution, memory statistics, and power dissipation
tracker among all the possible GPUs. Alternatively, extending the runtime visualization
by deepening the scope of the runtime metric collection and visualization phases of GP-
PRMon is another future direction.

Acknowledgments. This work was supported by the Scientific and Technological Research Council
of Turkey (TÜBİTAK), Grant No: 122E395. This work is partially supported by CERCIRAS COST
Action CA19135 funded by COST Association.

References
1. Ariel, A., Fung, W.W.L., Turner, A.E., Aamodt, T.M.: Visualizing complex dynamics in many-

core accelerator architectures. In: 2010 IEEE International Symposium on Performance Anal-
ysis of Systems & Software (ISPASS). pp. 164–174 (2010)

2. Aslan, B., Yilmazer-Metin, A.: A study on power and energy measurement of nvidia jetson em-
bedded gpus using built-in sensor. In: 2022 7th International Conference on Computer Science
and Engineering (UBMK). pp. 1–6 (2022)

3. del Barrio, V., Gonzalez, C., Roca, J., Fernandez, A., E, E.: Attila: a cycle-level execution-
driven simulator for modern gpu architectures. In: 2006 IEEE International Symposium on
Performance Analysis of Systems and Software. pp. 231–241 (2006)

4. Becker, P.H.E., Arnau, J.M., González, A.: Demystifying power and performance bottlenecks
in autonomous driving systems. In: 2020 IEEE International Symposium on Workload Charac-
terization (IISWC). pp. 205–215 (2020)

5. Candel, F., Petit, S., Sahuquillo, J., Duato, J.: Accurately modeling the gpu memory subsystem.
In: 2015 International Conference on High Performance Computing & Simulation (HPCS). pp.
179–186 (2015)

6. Chen, X., Chang, L.W., Rodrigues, C.I., Lv, J., Wang, Z., Hwu, W.M.: Adaptive cache man-
agement for energy-efficient gpu computing. In: 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture. pp. 343–355 (2014)



Demystifying Power and Performance Variations in GPU Systems 559

7. Collange, C., Daumas, M., Defour, D., Parello, D.: Barra: A parallel functional simulator for
gpgpu. In: 2010 IEEE International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems. pp. 351–360 (2010)

8. Giménez, A., Gamblin, T., Jusufi, I., Bhatele, A., Schulz, M., Bremer, P.T., Hamann, B.:
Memaxes: Visualization and analytics for characterizing complex memory performance be-
haviors. IEEE Transactions on Visualization and Computer Graphics 24(7), 2180–2193 (2018)

9. Guerreiro, J., Ilic, A., Roma, N., Tomás, P.: Dvfs-aware application classifica-
tion to improve gpgpus energy efficiency. Parallel Computing 83, 93–117 (2019),
https://www.sciencedirect.com/science/article/pii/S0167819118300243

10. Hong, J., Cho, S., Kim, G.: Overcoming memory capacity wall of gpus with heterogeneous
memory stack. IEEE Computer Architecture Letters 21(2), 61–64 (2022)

11. Islam, T., Ayala, A., Jensen, Q., Ibrahim, K.: Toward a programmable analysis and visualization
framework for interactive performance analytics. In: 2019 IEEE/ACM International Workshop
on Programming and Performance Visualization Tools (ProTools). pp. 70–77 (2019)

12. Jain, P., Jain, A., Nrusimha, A., Gholami, A., Abbeel, P., Keutzer, K., Stoica, I., Gonzalez,
J.E.: Checkmate: Breaking the memory wall with optimal tensor rematerialization. CoRR
abs/1910.02653 (2019), http://arxiv.org/abs/1910.02653

13. Jog, A., Kayiran, O., Nachiappan, N.C., Mishra, A.K., Kandemir, M.T., Mutlu, O., Iyer, R.R.,
Das, C.R.: OWL: cooperative thread array aware scheduling techniques for improving GPGPU
performance. In: Sarkar, V., Bodı́k, R. (eds.) Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS 2013, Houston, TX, USA, March 16-20, 2013. pp.
395–406. ACM (2013), https://doi.org/10.1145/2451116.2451158

14. Kandiah, V., Peverelle, S., Khairy, M., Pan, J., Manjunath, A., Rogers, T.G., Aamodt,
T.M., Hardavellas, N.: Accelwattch: A power modeling framework for modern gpus. In:
MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture. p.
738–753. MICRO ’21, Association for Computing Machinery, New York, NY, USA (2021),
https://doi.org/10.1145/3466752.3480063

15. Khairy, M., Shen, Z., Aamodt, T.M., Rogers, T.G.: Accel-sim: An extensible simulation frame-
work for validated gpu modeling. In: 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA). pp. 473–486 (2020)

16. Koo, G., Oh, Y., Ro, W.W., Annavaram, M.: Access pattern-aware cache management for im-
proving data utilization in gpu. In: 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA). pp. 307–319 (2017)

17. Krzywaniak, A., Czarnul, P., Proficz, J.: Gpu power capping for energy-performance trade-offs
in training of deep convolutional neural networks for image recognition. In: Computational
Science – ICCS 2022. pp. 667–681. Springer International Publishing, Cham (2022)

18. Krzywaniak, A., Czarnul, P., Proficz, J.: Dynamic gpu power capping
with online performance tracing for energy efficient gpu computing us-
ing depo tool. Future Generation Computer Systems 145, 396–414 (2023),
https://www.sciencedirect.com/science/article/pii/S0167739X23001267

19. Leskovec, J., Lang, K., Dasgupta, A., Mahoney, M.: Community structure in large networks:
Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics 6 (11
2008)

20. Lew, J., Shah, D.A., Pati, S., Cattell, S., Zhang, M., Sandhupatla, A., Ng, C., Goli, N., Sinclair,
M.D., Rogers, T.G., Aamodt, T.M.: Analyzing machine learning workloads using a detailed
gpu simulator. In: 2019 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS). pp. 151–152 (2019)

21. Li, S., Ahn, J.H., Strong, R.D., Brockman, J.B., Tullsen, D.M., Jouppi, N.P.: Mcpat: An inte-
grated power, area, and timing modeling framework for multicore and manycore architectures.
In: 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
pp. 469–480 (2009)



560 Burak Topcu et al.

22. Mittal, S., Vetter, J.S.: A survey of methods for analyzing and improving gpu energy efficiency.
ACM Comput. Surv. 47(2) (aug 2014), https://doi.org/10.1145/2636342

23. NVIDIA: Quadro gv100 data sheet (2018), https://www.nvidia.com/content/dam/en-
zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-volta-gv100-
a4-nvidia-704619-r3-web.pdf

24. NVIDIA: Volta architecture white paper (March 2018),
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

25. NVIDIA: Jetson agx xavier and the new era of au-
tonomous machines (2019), https://info.nvidia.com/rs/156-OFN-
742/images/Jetson AGX Xavier New Era Autonomous Machines.pdf

26. NVIDIA: Cuda toolkit documentation (Jan 2023), https://docs.nvidia.com/cuda
27. NVIDIA: Nsight compute kernel profiling guide (2024), https://docs.nvidia.com/nsight-

compute/ProfilingGuide/index.html
28. NVIDIA: Nsight systems profiling guide (2024), https://developer.nvidia.com/nsight-systems
29. NVIDIA: Nvidia cuda compiler driver nvcc (2024), https://docs.nvidia.com/cuda/cuda-

compiler-driver-nvcc/
30. NVIDIA: Parallel thread execution isa version 8.4 (2024),

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
31. NVIDIA: System management interface (2024), https://developer.nvidia.com/system-

management-interface
32. O’Neil, M.A., Burtscher, M.: Microarchitectural performance characterization of irregular gpu

kernels. In: 2014 IEEE International Symposium on Workload Characterization (IISWC). pp.
130–139 (2014)

33. Pentecost, L., Gupta, U., Ngan, E., Beyer, J., Wei, G.Y., Brooks, D., Behrisch, M.: Champvis:
Comparative hierarchical analysis of microarchitectural performance. In: 2019 IEEE/ACM In-
ternational Workshop on Programming and Performance Visualization Tools (ProTools). pp.
55–61 (2019)

34. Power, J., Hestness, J., Orr, M.S., Hill, M.D., Wood, D.A.: gem5-gpu: A heterogeneous cpu-
gpu simulator. IEEE Computer Architecture Letters 14(1), 34–36 (2015)

35. PowerUP, T.: V100 tech powerup (2018), https://www.techpowerup.com/gpu-specs/tesla-
v100-pcie-16-gb.c2957

36. Rhu, M., Sullivan, M., Leng, J., Erez, M.: A locality-aware memory hierarchy for energy-
efficient gpu architectures. In: Proceedings of the 46th Annual IEEE/ACM International Sym-
posium on Microarchitecture. p. 86–98. MICRO-46, Association for Computing Machinery,
New York, NY, USA (2013), https://doi.org/10.1145/2540708.2540717

37. Rodriguez, I., Kosmidis, L., Lachaize, J., Notebaert, O., Steenari, D.: Gpu4s bench: Design and
implementation of an open gpu benchmarking suite for space on-board processing. Universitat
Politecnica de Catalunya (2019)

38. Sezgin, Y., Öz, I.: Performance-reliability tradeoff analysis for safety-critical embedded sys-
tems with gpus. In: Ulusal Yüksek Başarımlı Hesaplama Konferansı (BAŞARIM) (2024),
https://indico.truba.gov.tr/event/140/attachments/310/642/BASARIM2024-BildiriKitabi.pdf

39. Shende, S.S., Malony, A.D.: The tau parallel performance system. Int. J. High Perform. Com-
put. Appl. 20(2), 287–311 (may 2006), https://doi.org/10.1177/1094342006064482

40. Shi, X., Zheng, Z., Zhou, Y., Jin, H., He, L., Liu, B., Hua, Q.S.: Graph processing on gpus: A
survey. ACM Comput. Surv. 50(6) (jan 2018), https://doi.org/10.1145/3128571

41. Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: Highlights - november 2022 (2022),
https://www.top500.org/lists/top500/2022/11/highs/

42. Sun, Y., Mukherjee, S., Baruah, T., Dong, S., Gutierrez, J., Mohan, P., Kaeli, D.: Evaluat-
ing performance tradeoffs on the radeon open compute platform. In: 2018 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). pp. 209–218 (2018)



Demystifying Power and Performance Variations in GPU Systems 561

43. Sun, Y., Zhang, Y., Mosallaei, A., Shah, M.D., Dunne, C., Kaeli, D.R.: Daisen: A frame-
work for visualizing detailed GPU execution. Comput. Graph. Forum 40(3), 239–250 (2021),
https://doi.org/10.1111/cgf.14303

44. Topçu, B., Öz, I.: Gpprmon: Gpu runtime memory performance and power monitoring tool. In:
Euro-Par 2023: Parallel Processing Workshops. pp. 17–29. Springer Nature Switzerland (2024)

45. Ubal, R., Jang, B., Mistry, P., Schaa, D., Kaeli, D.: Multi2sim: A simulation framework for
cpu-gpu computing. In: 2012 21st International Conference on Parallel Architectures and Com-
pilation Techniques (PACT). pp. 335–344 (2012)

46. Vijaykumar, N., Ebrahimi, E., Hsieh, K., Gibbons, P.B., Mutlu, O.: The locality descriptor:
A holistic cross-layer abstraction to express data locality in gpus. In: 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture (ISCA). pp. 829–842 (2018)

47. Wang, Y., Pan, Y., Davidson, A., Wu, Y., Yang, C., Wang, L., Osama, M., Yuan, C., Liu, W.,
Riffel, A.T., Owens, J.D.: Gunrock: Gpu graph analytics. ACM Trans. Parallel Comput. 4(1)
(aug 2017), https://doi.org/10.1145/3108140

48. Xu, Z., Chen, X., Shen, J., Zhang, Y., Chen, C., Yang, C.: Gardenia: A graph processing bench-
mark suite for next-generation accelerators. ACM Journal on Emerging Technologies in Com-
puting Systems 15(1) (jan 2019), https://doi.org/10.1145/3283450

49. Zhao, D., Samsi, S., McDonald, J., Li, B., Bestor, D., Jones, M., Tiwari, D., Gadepally, V.:
Sustainable supercomputing for ai: Gpu power capping at hpc scale. In: Proceedings of the 2023
ACM Symposium on Cloud Computing. p. 588–596. SoCC ’23, Association for Computing
Machinery, New York, NY, USA (2023), https://doi.org/10.1145/3620678.3624793

50. Zhao, X., Adileh, A., Yu, Z., Wang, Z., Jaleel, A., Eeckhout, L.: Adaptive memory-side last-
level gpu caching. In: 2019 ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA). pp. 411–423 (2019)

Burak Topçu is a PhD student in the Department of Computer Science and Engineering
at Pennsylvania State University. He received a B.Sc. degree from Middle East Technical
University and an M.Sc. degree from Izmir Institute of Technology.

Deniz Karabacak is an undergraduate student in the Electrical and Electronics Engineer-
ing Department at Izmir Institute of Technology.

Işıl Öz is an assistant professor in the Computer Engineering Department at Izmir Institute
of Technology. Her research interests include computer architecture, multicore systems,
heterogeneous systems, and fault-tolerant computing.

Received: July 22, 2024; Accepted: November 05, 2024.




