Research on Problem Formulations in Resource-aware Problems Across Scientific Domains and Applications

Paweł Czarnul and Mariusz Matuszek

Faculty of Electronics, Telecommunications and Informatics Gdańsk University of Technology, Narutowicza 11/12 80-233 Gdańsk, Poland pczarnul@eti.pg.edu.pl mrm@eti.pg.edu.pl

Abstract. In this paper we conducted thorough analysis of research papers focused on resource aware problems and using one of the following formulations: integer linear programming (ILP), greedy algorithms (GrA), dynamic programming (DP), evolutionary algorithms (EA) and machine learning (ML). Basing on such general problem formulations we identified actual research tasks considered in many different domains. Furthermore, we analyzed each of these problems in terms of: resources being considered/subject to optimization, specific optimization algorithms, if applicable, and domains. Finally, based on over 170¹ research papers, we assessed which particular resources like: time, cost, energy, human, computer, natural resources, data/information are used in which problems formulations, which formulations and resources are used and considered in which application/domains. It can serve as reference for algorithms in particular domains or, conversely, looking for unexplored approaches in specific contexts.

Keywords: resource aware problems, resource, domain, integer linear programming, greedy approach, dynamic programming, evolutionary algorithm, machine learning.

1. Introduction and Motivation

Research in various domains is inevitably linked with specific resources as well as optimization problems. Such optimization problems are typically expressed as multi-objective optimization that involves metrics referring to the given domain, in particular resources in a given domain. We can distinguish physical resources such as computers, interconnects, cooling systems, human resources in a cloud computing center as well as more general resources such as time, energy, budget etc. We shall note that in optimization problems certain metrics are often linked to particular physical, problem specific resources e.g.: performance or power consumption of a computer node. These, in turn, can be reflected in metrics describing such a resource, i.e., execution time and energy used within a particular period. These can then be used in a multi-objective optimization. We shall note that optimization often involves trade-offs, e.g., performance vs energy [36,45], performance vs security [120], performance vs storage [79], performance vs memory [18,13], performance vs ease of programming/development effort [84].

¹ the total number of over 190 citations includes also references to related work.

While researching the topic of resource aware optimization we observed that in the literature there are several review papers considering specific resources within a particular domain. These include, for example:

- renewable energy [8,122]
- human resources management [69,23,59],
- computer systems, e.g., cloud computing [68,4],
- telecommunication [152],
- education [180],
- natural resources management [138,22],
- tourism [118,55,151],
- manufacturing [132],
- health [73,158],
- transport [115],
- space [117],
- disaster management [20,3].

We also identified some research papers on multidisciplinary (design) optimization, e.g., [37]. On the hand, to the best of our knowledge, there is no research on applicability of specific optimization problem formulations across various domains, with consideration of resources and metrics.

In this paper, we aim at conducting cross-domain analysis of research works that involve resource aware problems, in terms of resources / metrics considered, problem formulations and domains they target.

This paper is a very significantly extended version of workshop paper [39] that extends it in the following aspects:

- 1. Considering a new set of research works fetched from a reliable scientific database - Scopus. While the former paper considered approximately 70 works, we have now considered more than 190 research papers.
- 2. Involving other problem formulations such as a more general evolutionary algorithm concept (versus genetic algorithms considered before) as well as the popular and important machine learning.
- 3. Final classification of the research versus a larger number of resources: 8 vs 7 as well as applications/domains: 15 vs 8, for a more thorough analysis.

The outline of the paper is as follows. Section 2 details the methodology we used for selection of research papers used as input for subsequent analysis. Section 3 contains analysis of identified resource aware problems across domains with identification of resources, metrics and problem formulations. Section 4 includes comprehensive analysis of the previous problem descriptions with cross linking resources and problem formulations, applications/domains and problem formulations as well as resources and domains. Finally, Section 5 contains summary and outline of possible future work.

2. Methodology for Selection of Source Scientific Works

In this paper we build on and significantly extend the results originally obtained in paper [39]. In that work, analysis was based on selected scientific papers found by the

standard Google search engine returned for querying for combinations of a given problem formulation and phrases: *resource, resource-aware problems*. The original problem formulations included: integer linear programming, dynamic programming, greedy approach as well as genetic algorithm. Furthermore, this input data set has been extended with selected results returned by the Bing search engine, queried about *resource aware computing* and *resource aware computing problems*.

In this paper, we significantly extended our previous input data set by adding scientific papers returned by the Scopus database. We used an extended query which specified: integer linear programming (ILP), dynamic programming (DP), greedy approach, evolutionary algorithm (EA) (that encompasses the previously considered class of genetic algorithms) as well as the widely popular nowadays machine learning (ML). Specifically, for each of these formulations, we ran a query as follows: cproblem formulation> AND cresource" OR "resource aware problems"> and sorted the results by relevance. Scopus provides details on how relevance is computed² which considers: Number of hits, how significant the word is, position in the document and occurrence in title, keywords etc., proximity of terms and completeness in terms of the words from the query. Finally, out of each of these queries we analyzed top 50 works in terms of problems in specific domains, using the given problem formulation. This has increased the number of sources considered very considerably. Additionally, several new applications/domains have been distinguished, along with new general type resources identified in the works.

3. Resource-aware Problems Across Domains with Resources and Problem Formulations

3.1. Resources, Formulations and Applications/Domains

Within this paper we use the term resource in a broad context that encompasses two classes of assets, that can refer to both physical and non-physical forms:

- problem specific resources entities and assets that show up in the context of an optimization problem in a given domain. For instance, in the case of resource allocation in cloud computing, such resources would include: computational nodes with CPUs, GPUs, storage, network, applications.
- 2. general resources entities and assets that are of interest in optimization problems in potentially various domains that can exist either in a physical or in a non-physical form. Examples of these include: time, monetary/other cost, energy used, etc. As indicated before, these can in fact be metrics describing the use of particular physical resources e.g. response/execution time of an application run in a computer system at the given cost with a certain amount of energy used within the execution time frame.

In order to classify problems considered in possibly various domains, we have decided to distinguish selected, frequently used problem formulations/approaches used for stating problems formally which can be subsequently solved using specific algorithms. The formulations we distinguish are as follows: integer linear programming (ILP); dynamic programming (DP); greedy approach (GrA); evolutionary algorithms (EA), including genetic

² https://service.elsevier.com/app/answers/detail/a_id/14182/supporthub/scopus/

algorithms (GA) considered previously in paper [39] as well as the very popular machine learning (ML).

Furthermore, we aim at assignment of specific optimization problems considered in research works to particular domains, i.e., cloud systems, grid systems, IoT, medical, education, manufacturing etc.

3.2. Classification of Problems in Terms of Resources, Formulations and Domains

Classification of the research works, selected using the methodology outlined in Section 2, was performed separately by problem formulation. Then, we recorded all found problem domains in the given formulation in the respective tables. For each considered paper, we identified a given specific optimization problem and classified it in terms of: resources / metrics used, formulation³ adopted (possibly more detailed description when applicable) and assignment to a particular domain. Classification of these is included in Tables 1,2,3,4, 5 for ILP, GrA, DP, EA and ML respectively.

 Table 1. Selected resource-aware problems by resources / metrics and domain, using ILP formulation

problem description	resources / metrics	formulation	domain	bib
allocating resources for	human resources;	ILP	wildfire sup-	[145]
fighting forest fires	time; financial cost		pression; wild-	
			fire simulation	
Mixed-Integer Linear	jobs; projects; time;	ILP	general cross	[9]
Programming for Re-	resources for execut-		domain applica-	
source Constrained Project	ing jobs		ble	
Scheduling Problem				
minimization of: electricity	solar energy; wind	MOMILP	energy sector	[193]
cost, CO2 emission, energy	energy; coal energy;			
import, fossil resource us-	natural gas energy;			
age, maximization of: em-	hydroelectric energy;			
ployment, social acceptance	nuclear energy			
allocation of health care re-	health care re-	ILP	healthcare	[48]
sources (treatments, popula-	sources; financial		domain; max-	
tion, healthcare programs)	cost		imization of	
			benefit	
finding the minimum power	power distribution	ILP	resource op-	[24]
loss configuration of the net-	network resources		timization in	
work			power distribu-	
			tion networks	
site selection of a wind	energy; power plant	ILP	energy sector	[10]
power plant				
			Continued on ne	xt page

³ for explanation of less frequently appearing abbreviations see Appendix A

Research on Problem Formulations in Resource-aware Problems... 463

nroblem description	resources / metrics	formulation	domain	hih
decision CDM naturals in	times aget quality		uomani rood construc	[150]
decision-CPM network in	unite; cost; quanty;	ILP	road construc-	[130]
order to obtain an overall op-	safety		uon	
umum including time, cost,				
quality and safety in a road				
building project		ЧЪ	1 . 1	51 5 53
scheduling resources in sys-	staff; time; cost; re-	ILP	hospital re-	[155]
tems that integrate humans	sources assigned by		source man-	
with hardware and software	staff		agement;	
components		H D	simulation	59.43
data assignment optimiza-	computer resources;	ILP	high per-	[21]
tion in a hybrid heteroge-	time		formance	
neous environment			computing	
cloudlet selection in the	computing; storage;	ILP	cloud comput-	[102]
multi-cloudlet environment,	network		ing	
selection of cloudlet(s), se-				
lection of VMs for cloudlets				
Data-center power-aware	data-center re-	ILP	high per-	[58]
management, efficient	sources; power;		formance	[154]
utilization of available	time		computing	
resources				
scheduling of satellite obser-	observation capabili-	ILP	satellite Earth	[34]
vations	ties of satellites; mis-		observations	
	sion time constraints			
hospital capacity assessment	hospital resources;	MILP	healthcare	[30]
	number of patients;			
	treatment time			
agricultural water manage-	water resources;	MILP	agriculture; wa-	[184]
ment under uncertainty	ecological wa-		ter allocation	
	ter requirements;			
	uncertainty levels			
preventive maintenance	cost; reliability; re-	MILP	generic pre-	[111]
scheduling	sources;		ventive mainte-	
			nance	
mobile workforce schedul-	traveling cost; action	MILP	mobile work-	[192]
ing	cost; teams; task		force schedul-	
			ing	
Volt/var optimization of un-	transformers; reac-	MILP	power distribu-	[25]
balanced power distribution	tive power resources;		tion networks	
networks	embedded generators			
selection of an appropriate	properties of combat	MILP	military opera-	[15]
agent in a military con-	agents; properties of		tions	
frontation	combat forces			
			Continued on ne	ext page

Table 1 – continued from previous page

	• • ••••••••••••	provisions puge		
problem description	resources / metrics	formulation	domain	bib
allocation and sequencing of	operations; human	MILP	healthcare	[107]
elective operations on hospi-	resources; time;			
tal operating rooms	schedule			
continuous berth allocation	quayside resources;	ILP	ship terminal	[181]
	vessels; time;		management	
bus scheduling	bus seats demand;	MILP	public transport	[116]
	bus seats supply;		scheduling	
optimization of building en-	electricity sources;	MILP	smart grid;	[71]
ergy use	electricity cost; grid		smart home	
	power import/export			
	schedule			
carrier optimization in wire-	network resources;	MILP	wireless net-	[183]
less localization networks	power allocation;		works	
	spectrum allocation			
optimization of humanitar-	distance; vehi-	MILP	disaster re-	[2]
ian aid resource distribution	cle density; travel		sponse	
time	time; aid resources		-	
	demand			
telescope network schedul-	astronomers; reser-	ILP	astronomy	[93]
ing	vations; preferences			
planning and operations of	energy cost; energy	ILP	smart grid; re-	[41]
renewable energy-based dis-	supply availability;		newable energy	
tributed power systems	energy sources; op-			
1 2	timal energy source			
	sizes			
optimization of multi-period	energy savings; bud-	MILP	streetlight	[144]
investment planning in street	get constraints; state		systems; invest-	
lighting systems	of the system: avail-		ment planning	
	able technologies		8	
optimal selection and sizing	thermal storages;	MILP	low-energy	[11]
of a smart building system	electrical storages;		building design	
6.,	heating and cooling		6	
	systems: renewable			
	energy sources:			
	policies: cost			
dynamic optimal nurse	nurses: tasks: con-	ILP	healthcare	[72]
scheduling	straints: locations:			L = J
8	preferences: work			
	regulations			
		1	1	1

Table 1 – continued from previous page

problem description	resources / metrics	formulation	domain	bib
dynamic multi-user resource	communication	GrA	resource	[121]
allocation in the downlink	channels; power		allocation;	
of OFDMA system, power	consumption		telecomm.	
consumption minimization				
scheduling of flows from	throughput; loss;	GrkA	resource	[53]
various applications in	time (delay)		allocation;	
overload states, downlink			telecomm.	
scheduling				
preparation of educational	human resources;	GrA	education	[133]
schedule in the higher edu-	classes; courses;			
cation	time; cost			
allocating resources in Vir-	processing power;	GrA	Virtual Sensor	[27]
tual Sensor Networks, max-	bandwidth; storage;		Networks	
imizing revenue of multi-	time; energy			
ple concurrent applications'				
schedule				
Set Covering Problem as a	generic resources;	wGrA	resource man-	[156]
template for resource man-	time		agement	
agement				
Maximizing utility and rev-	processing power;	GrA	datacenter	[136]
enue of hardware resources	memory; storage		provisioning	[137]
in virtual machine allocation				
Reducing task duplication in	computational re-	GrA	distributed	[1]
task scheduling on heteroge-	sources		computing	
neous distributed systems				
Task offloading and resource	computational	GrA	power net-	[98]
allocation in power network	resources; communi-		work moni-	
monitoring (PIoT)	cation resources		toring	
Resource-aware fluid	computational	GrA	physics mod-	[182]
scheduling	resources; commu-		eling	
	nication resources;			
	fluids			
task scheduling in a cloud	energy consumption;	GrA	cloud com-	[165]
computing environment,	time		puting	
with time and energy				
constraints		~ .		
radio resource allocation	link performance;	GrA	telecomm.	[161]
and interference manage-	cell throughput			
ment				
		C	continued on ne	xt page

Table 2. Selected resource-aware problems by resources / metrics and domain, using greedy formulation

465

problem description	resources	formulation	domain	bib
allocation of resources for	network resources;	GrA	telecomm.	[47]
data traffic in 5G networks	quality of service;			
allocation of resources for online teaching	course resources; network; bandwidth; delay	GrA	online educa- tion	[173]
dynamic battlefield resource scheduling	campaign resources	GrA	military	[160]
combinatorial auctions in ef- ficient cloud resource allo- cation	cloud resources; re- source pricing	aGrA	cloud com- puting	[35]
computing resource scheduling in the computing-aware network	computing resources; QoS attributes; net- work; tasks	dGrA	edge com- puting; IoT; internet-of- vehicles	[95]
allocation or constrained resources to multi-activity projects	human resources; equipment; materi- als;	GrA	manufacturing industry	[100]
HW/SW partitioning in SoC design	task criticality; time savings; task frequency; task area	GrA	System-on- Chip design	[167]
relief resource allocation to areas of disaster	equity constraint; relief resource demand; relief resources	GrA	relief opera- tions	[61]

Table 2 – continued from previous page

Table 3. Selected resource-aware problems by resources / metrics and domain, using dynamic programming formulation

problem description	resources / metrics	formulation	domain	bib
agriculture and natural re-	natural resources	DP	agriculture;	[86]
sources management			natural re-	
			sources	
scheduling water resources;	water resources; cost	DP	power sys-	[32]
minimization of cost of run-			tems	
ning a hydroelectric system				
stochastic resource alloca-	generic resources; fi-	DP	general	[56]
tion	nancial cost; time		resource	
			allocation	
stochastic resource alloca-	ships; weapons;	DP	military real-	[130]
tion	time; security		time naval op-	
			erations	
		(Continued on ne	xt page

problem description	resources / metrics	formulation	domain	bib
HPC compute nodes alloca-	application specific	DP	HPC	[29]
tion	resources; accelera-			
	tors; storage			
dynamic code loading	grid resources; power	DP	dynamic re-	[119]
	consumption		configuration	
			of servers	
Balancing resources in	computational	DP	balanced	[125]
robotic vision	power; bandwidth;		utilization of	
	responsiveness		computing	
			resources	
integration of low cost wear-	energy; bandwidth;	DP	healthcare;	[6]
able sensors, processing of	processing power;		clinical-level	
sensors' data at the cloud	measurement quality		continu-	
edge			ous patient	
			monitoring	
Seamless image manipula-	still images	DP	image pro-	[12]
tion			cessing	
task scheduling and resource	computing resources;	DP	distributed	[63]
allocation in distributed sys-	cost		processing	[142]
tems				[131]
planning water resources	water resources	DIRSDP	water re-	[105]
management systems under			sources	
uncertainty			management	[110]
hydraulics and water re-	water resources	DP	agriculture;	[110]
sources simulating, optimiz-			water con-	
ing water transfer system	· · · · · · · · · · · · · · · · · · ·	חח	sumption	[00]
stochastic dynamic pro-	military resources; n-	DP	determining	[80]
gramming for military	nancial cost		soldiers/ med-	
applications			leastion	
data cantar rasourca du	anarou: tima: com	פת	data contor	[07]
hata center resource dy-	putational resources:	Dr	ontimization	[97]
optimization emission re	putational resources,		opunitzation	
duction	physical resources			
finding the optimal hidding	recources available to	infinite	public tenders	[70]
strategy for a firm	the firm	horizon	in oligopolis-	[/0]
		semi-Markov	tic market	
		DP	no market	
bandwidth allocation in	bandwidth: user pro-	aDP	telecomm.	[75]
OFDM systems with rate	files			[]
constraint to minimize				
transmission power				
1	I	C	Continued on ne	xt page

Table 3 – continued from previous page

Table	3 = continueu from	previous page		
problem description	resources / metrics	formulation	domain	bib
sensor resource manage-	time to acquire tar-	sDP	surveilance	[171]
ment	get; target priorities;		(civil and	
	sensor field of view		military)	
optimization of energy pur-	energy sources	DP	energy market	[109]
chase and production				
dynamic fleet management	vehicles; vehicle	aDP	vehicle fleet	[64]
	states; customer		management	
	demands			
optimization of resource al-	production line re-	DP	industry	[172]
location in a factory	sources; profit		-	
price management, maxi-	customer; resource	aDP & sDP	price manage-	[57]
mizing revenue	(requests)		ment systems	
optimization of water treat-	water resource; re-	DP	environmental	[187]
ment and allocation	source state		resources al-	
			location	
resource allocation in R&D	project; activities;	DP	cost optimiza-	[87]
projects	cost;		tion in R&D	
1 5	,		projects	
resource allocation to cloud	storage; efficiency;	aDP	cloud com-	[141]
storage	load		puting	
operation of a water reser-	water reservoirs;	DP	water re-	[17]
voir system	reservoir state;		source plan-	
-	operation policy		ning	
resource-constrained project	resources; resource	aDP with	applicable to	[175]
scheduling	availability	Markov deci-	many fields	
6		sion process		
resource allocation in indus-	human resources;	DP	heavy indus-	[62]
trial maintenance	equipment; time		try	
finding optimal preventive	maintenance re-	DP	power dis-	[14]
maintenance budget in	sources; reliability		tribution	
power distribution network	constraints		networks	
with reliability constraints				
resource allocation in sliced	rate; latency; reliabil-	DP with hier-	telecomm.	[153]
5G radio access networks	ity; separation	archical auc-		
	J / 1	tion		
assembly line balancing	resource constraints;	DP	manufacturing	[135]
, .	task precedence rela-		e	
	tions			
optimization of regional in-	labor; capital;	grey DP	economy	[126]
dustrial structure develop-	energy; natural		5	
ment	resources; techno-			
	logical progress			
		C	ontinued on ne	xt page

Table 3 – continued from previous page

I I I I I I I I I I I I I I I I I I I					
problem description	resources / metrics	formulation	domain	bib	
reducing stochastic errors	computational re-	DP	metrology	[113]	
in accelerometers and gyro-	sources				
scopic sensors					

Table 3 – continued from previous page

Table 4. Selected resource-aware problems by resources / metrics and domain, using evolutionary algorithms

problem description	resources / metrics	formulation	domain	bib
resource provisioning and	financial cost; time;	GA	cloud comput-	[31]
scheduling in uncertain	deadlines imposed		ing	
cloud environments				
resource-constrained project	generic resources;	GA	cross domain	[82]
scheduling with transfer	transfer time		applicable prob-	
times			lem formulation	
resource constrained multi-	generic resources;	GA	cross domain	[66]
project scheduling	time		applicable prob-	
			lem formulation	
resource constrained project	generic resources;	multiple GA	cross domain	[60]
scheduling - comparison of	time		applicable prob-	[5]
GAs			lem formulation	[101]
		GA parameter		[162]
		tuning		
		decomposition		[43]
		based GA		
		quantum		[149]
		inspired GA		
		Elitist GA		[94]
construction scheduling	generic resources;	GA	general problem	[163]
	bridge; time		formulation;	
			bridge construc-	
			tion	
troops-to-tasks problem	military resources;	GA	military field	[52,51]
	time		applications	
grid resource allocation	grid resources; time	GA	grid computing	[49]
regional drinking water sup-	water resources; fi-	GA	water resource	[166]
ply	nancial cost; ecolog-		research	
	ical value; energy			
groundwater management	water resources; fi-	GA	water resource	[88]
	nancial cost; environ-		research	
	mental value; time			
surgery scheduling	hospital resources;	GA	healthcare sec-	[143]
	time		tor	
			Continued on ne	ext page

problem description	resources / metrics	formulation	domain	bib
scheduling problems on	machines: storage	GA+PSO	manufacturing	[54]
flexible manufacturing	buffers: material:	0111150	system	[0.]
systems (FMS)	tool-changing de-		J	
	vices: fixtures:			
	pallets; time			
protection of marine envi-	cost; time; environ-	GA	environmental	[194]
ronment and allocation of	mental burden		protection	
response vessels to mini-				
mize costs of oil spill at sea				
Power aware resource re-	resources; power	GA	cloud comput-	[44]
configuration	consumption		ing	
processing of time-	resources; power	GA	mobile edge	[83]
constrained workflows	limitations		computing	
in mobile edge computing				
power-aware allocation of	energy; power con-	GA	cloud comput-	[134]
virtual machines in a cloud	sumption		ing; virtualiza-	
			tion	
Solving resource constraints	fog computing re-	GA	Fog-cloud com-	[74]
in fog computing	sources		puting; Internet	
		a .	of Things	F1003
virtual network embedding	physical infras-	GA	network virtual-	[190]
onto underlying physical in-	tructure; network		ization	
Irastructure	topology			[150]
scheduling in grid resource	grid resources; cost;	EA + learning	grid computing	[139]
design of combinational	uine airauit: gata: aast:	БV	alastronias	[195]
logic circuits	time	LA	electronics	[105]
dynamic multicast routing	network topology:	FΔ	telecomm	[176]
with network coding	cost: time		telecollini.	[170]
multi-agent coalition forma-	agents: tasks: cost:	IMOEA	multi-agent pro-	[177]
tion	time		cessing	[]
employment level planning	human resources;	GA+HEA	project manage-	[146]
for assigned construction	project; time		ment	
project lead time				
optimization of subcarrier	network; time	EA	telecomm.	[99]
allocation and transmit				
power				
multi-period dynamic emer-	roads; time	MOEA/D-	post-disaster	[189]
gency resource scheduling		mdERS	emergency re-	
			source schedul-	
_			ing	
resource planning and	space resources	PEA	space (satellite)	[96]
scheduling of payload				
			Continued on ne	xt page

Table 4 – continued from previous page

		1 10		
problem description	resources / metrics	formulation	domain	bib
order quantities in a multi	- storage; cost	two-phase EA	retail	[81]
item inventory with con	-			
straints on storage space an	b			
capital				

 Table 4 – continued from previous page

Table 5. Selected resource-aware problems by resources / metrics and domain, using machine learning formulation

problem description	resources / metrics	formulation	domain	bib
resource allocation, opti-	network resources	sML, RL	wireless	[76]
mization of the downlink			systems;	[140]
communication [76], re-			telecomm.	[89]
source allocation for 5G				
[140], medium access con-				
trol in 6G [89]				
fog computing resource	cost; energy;	NN, RL, DT,	fog computing	[50]
management review	throughput; time;	etc.		
	task			
resource planning system	groceries; customer;	ML	grocery retail	[178]
for grocery retail delivery	driver; cost			
services				
highlighting geologic sweet	natural resources	ML	geology	[28]
spots for multiple US on-				
shore basins				
ML for tourism informa-	cost; tourism re-	GBDT,	tourism; econ-	[191]
tion system, optimization of	sources	Lambdamart	omy	
economy of scenic spots				
using ML for hydrological	water resources; cost;	ANNs,	water resources	[128]
modeling, flood forecasting,	time	RMTs, DL,	management	
drought prediction, water re-		RNNs, LSTM		
source management				
compression of quantum	information	ML	quantum com-	[127]
data			puting	
identification of groundwa-	water resources	EBM, GAMI-	water resource	[40]
ter potential zones		net	research	
pronominal coreference res-	text corpus	KNN, LR,	languge re-	[16]
olution using machine learn-		XGBoost	search	
ing				
machine learning-based	energy; network	ML	wireless	[139]
handoff management in 5G	topology; resource		networks;	
networks	allocation		telecomm.	
			Continued on ne	xt page

nroblem description	resources / metrics	formulation	domain	hih
interpretable machine learn	information re		nublic opinion	[106]
ing methods and their an		KIVIS, DIS,	rassarah	[100]
nig methods and then ap-	sources	machanisms	aial natural	
formation recourse monoge		DDD ICE	cial lietwork	
mont		PDP, ICE,	user benavior,	
ment		CILAD	nearthcare;	
		SHAP	scientometric	
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		NG	research	1051
soil moisture prediction	natural resources	ML	environmental;	[85]
through machine learning			water resources	
			management	
ML based employee	human resources	DTs,	human resource	[147]
engagement, appraisal,		LR[147],	systems man-	[77]
organizational culture pre-		sML[77]	agement	
diction [147], recruitment				
procedures[77]				
mineral resource estimation,	natural resources	SVM, SVR,	management	[108]
exploration		and ANN	of natural re-	[46]
		used for	sources	[26]
		MRE, mostly		
		RF, neuro-		
		fuzzy, SVM,		
		and ANN ML		
multi-core resource manage-	computer resources	RL, ANNs	computer	[112]
ment	1		resource man-	
			agement	
water quality prediction	water resources; time	DNNs	water research	[157]
1 7 1	,			[104]
workload prediction in	computer resources:	LSTM.	serverless com-	[123]
serverless environments	cost	ARIMA.	nuting	[]
	•••••	VAR	Paring	
sharing digital education	information: training	SVMs. DT.	education	[179]
training resources[179]	resources: students	NNs	culculon	[168]
personalized learning[168]	resources, students	1110		[100]
increasing the resource ef-	screws: cost	DT SVM	manufacturing	[114]
ficiency of screw fastening	serews, cost	$\Delta NN_{\rm S}$	manufacturing	[117]
process		AININS		
process	madical recourses	МІ	madical	[7]
and trand alogifaction and	medical resources	NIL.	medical	[/]
diagnosis medical manage				
mant				
mem			Cantinual	
			Continued on ne	xt page

Table 5 –	continued	from	previous	page

Research on Problem Formulations in Resource-aware Problems... 473

problem description	resources	s / metrics	formulation	on	do	bib	
resource provisions,	cloud	resources;	regression,		cloud	resource	[164]
scheduling, alloca-	time; cost;	energy	NNs, D'	Ts,	manag	ement	[67]
tion, energy effi-			RL, SVM				[103]
ciency, resource[164]							
management[67] resource							
scheduling[103]							
resource-efficient computa-	computer	resources;	ML + bad	ck-	IoT; eo	lge com-	[19]
tion offloading in IoT de-	time		ward indu	uc-	puting;	cloud	
vices			tion		compu	ting	
project resource allocation	project	resources;	SVM		project	manage-	[148]
	cost; time				ment		
water availability prediction	natural	resources;	NNs, LST	М,	water r	esearch	[104]
	natural pho	enomena	SVM, etc.				
intrusion detection system	computer	resources;	logistic	re-	IoT		[42]
for IoT	time; mem	ory	gression,				
			passive-				
			aggressive				
			classifiers;				
			perception				
vehicular network resource	vehicles;	network;	DL, RL,	re-	vehicu	lar dis-	[124]
allocation strategy	cost; time		gression		tributed	1 system	

Table 5 – continued from previous page

Additionally, during research we have encountered works that consider various and mixed formulations. Selected examples of these are shown in Table 6, described in terms of the same features as works in the previous tables.

Table 6. Selected resource-aware problems by resources / metrics, mixed formulations

problem description	resources / metrics	formulation	domain	bib
scheduling service based	time; cost	ILP, GA,	scientific	[38]
workflow applications with		GAIN,	workflows;	
changeable service avail-		divide-and-	business	
ability		conquer	workflows;	
			mixed work-	
			flows	
performance and energy	execution time; en-	(Halton num-	HPC	[36]
trade-off analysis for run-	ergy	ber) sampling		
ning parallel applications		of configura-		
on heterogeneous multi		tion space for		
processing systems		Pareto front		
		generation		
		C	Continued on ne	xt page

problem description	resources / metrics	formulation	domain	bib		
performance-energy op-	time; energy	linear config-	HPC	[91,90,9		
timization for parallel		uration space				
applications using power		exploration				
capping, for CPUs and GPUs						
tugboat allocation optimiza-	vessels; tugboats;	combined GA	marine re-	[169]		
tion in container terminals	time	+ ant colony optimization	search			
approximate DP for re-	cloud resources;	approximate	cloud re-	[129]		
source management in	time; revenue	DP, RL	source man-			
multi-cloud environments			agement			
allocation method of wind	natural resources; en-	EA, LP	wind en-	[188]		
resources under the back-	ergy; cost		ergy; natural			
ground of carbon neutraliza-			resource man-			
tion			agement			
comb jamming resource al-	data/information	greedy + EA	telecomm.	[174]		
location algorithm						
optimal financial investment	risk; benefit; time; fi-	DP and GA	investment	[65]		
of limited resources in enter-	nancial resources		management;			
prise			financial			
virtual network function	resource cost; delay-	ILP + greedy	software-	[186]		
(VNF) scheduling and	satisfied request ratio		defined			
deployment			networks;			
			telecomm.			
optimal multi-resource allo-	resources; tasks;	greedy + GA	big data	[170]		
cation in big data mining	parallelism; resource		model train-			
model training	constraints		ing			

Table 6 – continued fr	om previous page
------------------------	------------------

We shall note that performing the extended search for the articles from the Scopus database, we generally identified different articles than those in the original paper [39]. There was almost no overlap between current and previous search results. On the other hand, though, the set of domains of identified problems in the two searches mostly matched.

4. Summary of Problem Formulations, Resources and Domains

Based on the classification of the research works shown in the previous section, we can now perform comprehensive analysis concerning:

- 1. which resources are used in particular problem formulations referring to practical applications,
- 2. which problem formulations are typically used in particular applications and domains,

3. which resources typically occur in the context of a given application and domain which in fact denotes which of these are considered in the process of an optimization problem in a given domain.

Such analysis allows us to draw conclusions regarding whether:

- 1. a particular problem formulation is used in the majority of domains,
- 2. there are formulations that are specific for particular applications/domains,
- 3. there is a resource that is used only with a specific problem formulation.

It should be noted that this analysis was performed for the source data used within this paper and outlined in Tables 1 through 6. This does mean that the following results reflect the source data analyzed in the paper rather than the whole set of existing research works.

We shall note during preparation of the following summary results we considered the most frequently occurring resources, without problem-specific ones, as well as applications. Integration of the results from the aforementioned tables required relevant generalization of terms used by respective authors in specific problem formulations. Furthermore, in the following Tables 7 and 8, we counted occurrences of terms corresponding to resources and domains per article i.e. possibly several energy-related terms in an article shown before would be counted as one reference to energy. In Table 9 we placed counts of relevant tuples of a resource and a domain and there can be several such tuples resulting from one article.

Resources considered with various problem formulations are shown in Table 7.

Table 7. Resources identified in various problem formulations, notation: I/M - I denotes the number of occurrences in individual formulations, M – denotes the number of occurrences in mixed formulations

resource	ILP	GrA	DP	EA	ML	uns
time	11/2	7/3	5/2	22/2	8/1	63
monetary resources	10/3	1/2	6/1	9/2	9/	43
energy	13/1	3/	5/	4/1	3/	30
human resources	10/	2/	2/	1/	4/	19
computer, network, stor- age	8/	17/	11/1	6/	8/1	52
natural resources	5/1	/	8/	2/1	7/	24
	1	1	. (Continu	ed on ne	xt page

Table 7 – continueu nom previous page									
resource	ILP	GrA	DP	EA	ML	sum			
resources in general problem formulations	6/	6/	6/	8/	/	26			
data/information	/	/1	1/	/1	4/	7			
sum	70	42	48	59	45	264			

Table 7 – continued from previous page

Applications that are considered in various problem formulations are presented in Table 8.

Table 8. Applications for which selected problem formulations are used, notation: I/M - I denotes the number of occurrences in individual formulations, M – denotes the number of occurrences in mixed formulations

application	ILP	GrA	DP	EA	ML	uns			
power/energy	6/	1/	3/	/	/	10			
general resource man- agement	4/1	3/	4/	10/1	/	23			
computer resource man- agement	3/1	8/1	6/1	10/2	9/1	42			
communication	1/1	5/2	2/	3/1	4/	19			
education	/	2/	/	/	1/	3			
natural resources man- agement	3/1	/	8/	3/1	8/	24			
military applications	1/	1/	3/	1/	/	6			
retail	/	/	2/	1/	2/	5			
tourism	1/	/	1/	/	1/	3			
manufacturing	/	1/	4/	2/	1/	8			
medical/health	5/	/	4/	1/	3/	13			
Continued on next page									

Fig.										
application	ILP	GrA	DP	EA	ML	sum				
human resources man- agement	2/	1/	/	/	1/	4				
transport	3/	/	1/	1/1	/	6				
space	2/	/	1	1/	/	3				
disaster management	1/	1/	/	1/	/	3				
sum	36	26	39	40	31	172				

Table 8 – continued from previous page

Additionally, we identify how resources are considered within selected applications/domains. Such assessment, based on the reviewed papers, is included in Table 9.

Table 9. Resources identified in selected applications/domains

resource	power/energy	general res mgmt	computer res mgmt	communication	education	nat res mgmt	military	retail	tourism	manufacturing	medical/health	human res mgmt	transport	space	disaster management	sum
time	/	10/1	16/3	6/1	2/	4/	2/	1/	/	5/	4/	2/	4/1	1/	3/	66
monetary resources	4/	4/1	8/1	2/1	1/	5/1	1/	2/	1/	3/	2/	3/	3/	1/	3/	47
energy	9/	/	12/2	6/	1	4/1	/	1	1	/	1/	/	1/	1	1	36
human resources	/	1/	/	1/	2/	1	2/	2/	1/	2/	6/	4/	2/	1/	4/	28
computer, network, stor- age	7/	/	32/1	14/	2/	1	1/	1	1	/	2/	/	1/	1	/	60
natural resources	11/	/	/	/	1	22/	1	1	1	1	1	1	1	1	/	33
resources in general problem formulations	/	14/	2/	1/	/	1/	/	/	1	1/	2/	/	2/	1	/	23
										Coi	ntin	ueo	1 on	ne	xt j	page

resource	power/energy	general res mgmt	computer res mgmt	communication	education	nat res mgmt	military	retail	tourism	manufacturing	medical/health	human res mgmt	transport	space	disaster management	ums
data/information	/	2/	/	1/	3/	/	/	/	/	/	/	1/	/	/	/	7
sum	31	33	77	33	10	38	6	5	2	11	17	10	14	3	10	300

Table 9 – continued from previous page

Based on this analysis we can draw the following conclusions:

- 1. All the problem formulations are similarly frequent across applications (total), as can be seen from Table 8. The same can be seen across the resources used, as shown in Table 7.
- 2. Not surprisingly, as shown in Tables 7 and 9, time and cost are the most frequently addressed non-physical resources, followed by energy. Out of the physical resources, computer, network and storage devices are most frequently considered. Across applications/domains, computer system management, natural resource management, general universally applicable resource management problems, and communication are the most frequently considered ones.
- 3. ML targets all but general resources and appears in most of the specific contexts, as it is linked to particular applications. This also emphasizes its popularity nowadays.
- 4. While data/information as a resource is present during optimization using GrA+EA, DP and ML, it is not as frequently considered as the other resources like time, energy, cost.
- 5. From Table 8 we can see that within the set of papers analyzed, papers on tourism tend to use ILP, DP and ML approaches rather than GrA and EA. Retail domain seems to omit ILP and GrA formulations. While we know that ML can be used for disaster management e.g. in [33,78], this has not been visible in our set of papers, suggesting it is an area worthy of further exploration. The same would apply to military and space domains.
- 6. From Table 9 we can see that time and cost are practically considered in all identified fields, there is room for further energy-aware research in many fields, including: education, retail, tourism, manufacturing and transport. While, in some of these, energy aspects can be considered within costs, energy considerations, especially concerning environmental impact, are becoming more and more important and are likely to require more direct exposure. Other interesting cross resource domain combinations that could be further explored, in our opinion, include: more focus on human resources in the computer resources management, as well as more focus on consideration of natural resources in contexts other than those specifically focused on natural resource management, as visible in Table 9. Finally, data/information per se is

not deeply present as a resource in other domain-specific areas, other than in works specifically focused on general resource management models and algorithms, education, communication and social contexts.

5. Summary and Future Work

We were able to identify resources and metrics used in various problem formulations as well as problem formulations typically used in a given application/domain. Additionally, we mapped particular resources to applications/domains which allows to draw conclusions about their perceived importance.

Resource identification in Table 9 shows that time and monetary resources are always considered as important, while energy is explicitly considered in 1/3rd of domains and natural resources are given even less direct consideration. It would be interesting to conduct a similar literature survey in, e.g., five years and check, whether increased awareness of energy cost and of demand pressure on natural resources will be reflected in the repeated survey findings. Furthermore, the search for source research works could be extended to include other scientific (indexing) databases, including: ACM DL, IEEE Xplore, Web of Science etc.

Ongoing research in this field has a potential for new formulations. Such occurrences could trigger a new research to amend our findings.

Acknowledgments. This work is partially supported by CERCIRAS COST Action CA19135 funded by COST.

A. Abbreviations

aDP - approximate Dynamic Programming; aGrA – adaptive Greedy Algorithm; ANN – Artificial Neural Network; ARIMA – Auto Regressive Integrated Moving Average; dGrA – dynamic Greedy Algorithm; DIRSDP - Dual Interval Robust Stochastic Dynamic Programming; DNN - Deep Neural Network; DT - Decision Trees; EBM – Explainable Boosting Machine; GBDT – Gradient Boosting Decision Trees; GrkA - Greedy knapsack Algorithm; HEA – Hybrid Evolutionary Algorithm; ICE - Individual Conditional Expectation; IMOEA – Improved Multi-Objective Evolutionary Algorithm; KNN – k-nearest neighbors; LIME – Local Interpretable Model-agnostic Explanations; LP – Linear Programming; LR - Logistic Regression; LSTM - Long Short-Term Memory;

- 480 Paweł Czarnul and Mariusz Matuszek
- MILP Mixed Integer Linear Programming;

MOEA/D-mdERS – Multi-Objective Evolutionary Algorithm for Dynamic multi-period dynamic Emergency Resource Scheduling;

MOMILP - Multi Objective MILP;

MRE - Most Relevant Explanation;

NN – Neural Network;

PDP - Partial Dependence Plot;

PEA – Plasmodium Evolutionary Algorithm;

PFI - Permutation Feature Importance;

PSO – Particle Swarm Optimization;

RF - Random Forest;

RL – Reinforcement Learning;

RMT - Regression and Model Trees;

RNN – Recurrent Neural Network;

sDP - stochastic Dynamic Programming;

SHAP – SHapley Additive exPlanations;

sML - supervised Machine Learning;

SVM – Support Vector Machine;

SVR – Super Vector Regression;

VAR – Vector Auto Regression;

wGrA-weighted Greedy Algorithm.

References

- 1. A resource-aware scheduling algorithm with reduced task duplication on heterogeneous computing systems. J Supercomput 68, 1347—1377 (2014)
- Acero Condor, A.A., Ramirez Castañeda, C.M., Taquía Gutiérrez, J.A.: Optimization of humanitarian aid resource distribution time through mixed integer linear programming. p. 191 – 197 (2023)
- 3. Akter, S., Wamba, S.F.: Big data and disaster management: a systematic review and agenda for future research. Annals of Operations Research 283, 939 959 (2017)
- 4. Al-Ahmad, A.S., Kahtan, H.: Cloud computing review: Features and issues. In: 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE). pp. 1–5 (2018)
- Alcaraz, J., Maroto, C.: A Robust Genetic Algorithm for Resource Allocation in Project Scheduling. Annals of Operations Research 102(1), 83–109 (February 2001)
- Amiri, D., Anzanpour, A., Azimi, I., Levorato, M., Liljeberg, P., Dutt, N., Rahmani, A.M.: Context-aware sensing via dynamic programming for edge-assisted wearable systems 1 (03 2020)
- An, Q., Gao, Q., Gao, Z., Qian, Y.: A survey of machine learning technologies for covid-19 pandemic. p. 7 – 11. Institute of Electrical and Electronics Engineers Inc. (2022)
- Ang, T.Z., Salem, M., Kamarol, M., Das, H.S., Nazari, M.A., Prabaharan, N.: A comprehensive study of renewable energy sources: Classifications, challenges and suggestions. Energy Strategy Reviews 43, 100939 (2022)
- Araujo, J.A.S.: Mixed-Integer Linear Programming Based Approaches for the Resource Constrained Project Scheduling Problem. Ph.D. thesis, Universidade Federal de Ouro Preto (December 2019)
- Ari, E.S., Gencer, C.: Proposal of a novel mixed integer linear programming model for site selection of a wind power plant based on power maximization with use of mixed type wind turbines. Energy & Environment 31(5), 825–841 (2020)

- Ashouri, A., Fux, S.S., Benz, M.J., Guzzella, L.: Optimal design and operation of building services using mixed-integer linear programming techniques. Energy 59, 365 – 376 (2013)
- 12. Avidan, S., Shamir, A.: Seam carving for content-aware image resizing. In: ACM Trans. Graph. p. 10. SIGGRAPH (2007)
- Avoine, G., Junod, P., Oechslin, P.: Characterization and improvement of time-memory tradeoff based on perfect tables. ACM Trans. Inf. Syst. Secur. 11(4) (Jul 2008)
- Bacalhau, E.T., Usberti, F.L., Lyra, C.: A dynamic programming approach for optimal allocation of maintenance resources on power distribution networks (2013)
- Baek, S., Moon, S., Kim, H.J.: Entry optimization using mixed integer linear programming. International Journal of Control, Automation and Systems 14(1), 282 – 290 (2016)
- Barbu, E., Muischnek, K., Freienthal, L.: A study in estonian pronominal coreference resolution. Frontiers in Artificial Intelligence and Applications 328, 3 – 10 (2020)
- Bayazit, M., Duranyildiz, I.: An iterative method to optimize the operation of reservoir systems. Water Resources Management 1(4), 255 – 266 (1987)
- Bermudo Mera, J.M., Karmakar, A., Verbauwhede, I.: Time-memory trade-off in toom-cook multiplication: an application to module-lattice based cryptography. IACR Transactions on Cryptographic Hardware and Embedded Systems 2020(2), 222–244 (Mar 2020)
- Bharti, P., Chaudhary, S., Snigdh, I.: A novel machine learning approach to delay efficient offloading strategy for mobile edge computing. Lecture Notes in Electrical Engineering 887, 215 – 221 (2023)
- Bly, J., Francescutti, L.H., Weiss, D.: Disaster management: A state-of-the-art review. In: Farsangi, E.N. (ed.) Natural Hazards, chap. 1. IntechOpen, Rijeka (2020)
- Boiński, T., Czarnul, P.: Optimization of Data Assignment for Parallel Processing in a Hybrid Heterogeneous Environment Using Integer Linear Programming. The Computer Journal (02 2021)
- 22. Bonnin, M., Azzaro-Pantel, C., Domenech, S.: Optimization of natural resource management: Application to french copper cycle. Journal of Cleaner Production 223, 252–269 (2019)
- Boon, C., Hartog, D.N.D., Lepak, D.P.: A systematic review of human resource management systems and their measurement. Journal of Management 45(6), 2498–2537 (2019)
- Borghetti, A.: Mixed Integer Linear Programming Models for Network Reconfiguration and Resource Optimization in Power Distribution Networks, chap. 2, pp. 43–88. John Wiley & Sons, Ltd
- 25. Borghetti, A., Napolitano, F., Nucci, C.A.: Volt/var optimization of unbalanced distribution feeders via mixed integer linear programming (2014)
- Bournas, N., Touré, A., Balboné, M., Zagré, P.S., Ouédraogo, A., Khaled, K., Prikhodko, A., Legault, J.: Use of machine learning techniques on airborne geophysical data for mineral resources exploration in burkina faso. Exploration Geophysics 2019(1), 1 – 4 (2019)
- Bousnina, S., Cesana, M., Ortín, J., Delgado, C., Gállego, J.R., Canales, M.: A greedy approach for resource allocation in virtual sensor networks. In: 2017 Wireless Days. pp. 15–20 (2017)
- Bowman, J., Tabatabaie, H., Bowman, J.A.: A comparative study of machine learning model results and key geologic parameters for unconventional resource plays. p. 470 – 486. Unconventional Resources Technology Conference (URTEC) (2021)
- Braun, M., Buchwald, S., Mohr, M., Zwinkau, A.: Dynamic x10: Resource-aware programming for higher efficiency. Tech. Rep. 8, Karlsruhe Institute of Technology (2014)
- Burdett, R.L., Kozan, E., Sinnott, M., Cook, D., Tian, Y.C.: A mixed integer linear programing approach to perform hospital capacity assessments. Expert Systems with Applications 77, 170 – 188 (2017)
- Calzarossa, M.C., Massari, L., Nebbione, G., Della Vedova, M.L., Tessera, D.: Tuning genetic algorithms for resource provisioning and scheduling in uncertain cloud environments: Challenges and findings. In: 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). pp. 174–180 (2019)

- 482 Paweł Czarnul and Mariusz Matuszek
- 32. Castellano, A., Martínez, C., Monzón, P., Bazerque, J.A., Ferragut, A., Paganini, F.: Quadratic approximate dynamic programming for scheduling water resources: a case study (2020)
- Chamola, V., Hassija, V., Gupta, S., Goyal, A., Guizani, M., Sikdar, B.: Disaster and pandemic management using machine learning: A survey. IEEE Internet of Things Journal 8(21), 16047–16071 (2021)
- 34. Chen, X., Reinelt, G., Dai, G., Spitz, A.: A mixed integer linear programming model for multi-satellite scheduling (2018)
- Chichin, S., Vo, Q.B., Kowalczyk, R.: Adaptive market mechanism for efficient cloud services trading. p. 705 – 712 (2014)
- Coutinho Demetrios, A.M., De Sensi, D., Lorenzon, A.F., Georgiou, K., Nunez-Yanez, J., Eder, K., Xavier-de Souza, S.: Performance and energy trade-offs for parallel applications on heterogeneous multi-processing systems. Energies 13(9) (2020)
- 37. Cramer, E.J., Dennis, Jr., J.E., Frank, P.D., Lewis, R.M., Shubin, G.R.: Problem formulation for multidisciplinary optimization. SIAM Journal on Optimization 4(4), 754–776 (1994)
- Czarnul, P.: Comparison of selected algorithms for scheduling workflow applications with dynamically changing service availability. J. Zhejiang Univ. Sci. C 15(6), 401–422 (2014)
- Czarnul, P., Matuszek, M.: Identification of selected resource-aware problems across scientific disciplines and applications. In: Iyenghar, P., Rakić, G. (eds.) Proceedings of the First Workshop on Connecting Education and Research Communities for an Innovative Resource Aware Society (CERCIRAS). CEUR, vol. 3145. Novi Sad, Serbia (September 2021)
- Dahal, K., Sharma, S., Shakya, A., Talchabhadel, R., Adhikari, S., Pokharel, A., Sheng, Z., Pradhan, A.M.S., Kumar, S.: Identification of groundwater potential zones in data-scarce mountainous region using explainable machine learning. Journal of Hydrology 627 (2023)
- Dahiru, A.T., Tan, C.W., Salisu, S., Lau, K.Y.: Multi-configurational sizing and analysis in a nanogrid using nested integer linear programming. Journal of Cleaner Production 323 (2021)
- Data, M., Bakhtiar, F.A.: Resource efficient intrusion detection systems for internet of things using online machine-learning models. p. 297 – 303. Association for Computing Machinery (2023)
- 43. Debels, D., Vanhoucke, M.: A decomposition-based genetic algorithm for the resourceconstrained project-scheduling problem. Operations Research 55(3), 457–469 (2007)
- Deng, L., Li, Y., Yao, L., Jin, Y., Gu, J.: Power-aware resource reconfiguration using genetic algorithm in cloud computing. Mob. Inf. Syst. 2016, 4859862:1–4859862:9 (2016)
- 45. Diouani, S., Medromi, H.: Trade-off between performance and energy management in autonomic and green data centers. In: Proceedings of the 2nd International Conference on Networking, Information Systems & Security. NISS19, Association for Computing Machinery, New York, NY, USA (2019)
- Dumakor-Dupey, N.K., Arya, S.: Machine learning—a review of applications in mineral resource estimation. Energies 14(14) (2021)
- Elamaran, E., Sudhakar, B.: Greedy based round robin scheduling solution for data traffic management in 5g. p. 773 – 779 (2019)
- Epstein, D., Chalabi, Z., Claxton, K., Sculpher, M.: Mathematical programming for the optimal allocation of health care resources (2005)
- Ezugwu, A.E., Okoroafor, N.A., Buhari, S.M., Frincu, M.E., Junaidu, S.B.: Grid resource allocation with genetic algorithm using population based on multisets:. Journal of Intelligent Systems 26(1), 169–184 (2017)
- Fahimullah, M., Ahvar, S., Agarwal, M., Trocan, M.: Machine learning-based solutions for resource management in fog computing. Multimedia Tools and Applications 83(8), 23019 – 23045 (2024)
- Fauske, M.F.: Optimizing the troops-to-tasks problem in military operations planning. Military Operations Research 20(4), 49–57 (2015)
- 52. Fauske, M.F.: Using a genetic algorithm to solve the troops-to-tasks problem in military operations planning. The Journal of Defense Modeling and Simulation 14(4), 439–446 (2017)

- Ferdosian, N., Othman, M., Ali, B.M., Lun, K.Y.: Greedy–knapsack algorithm for optimal downlink resource allocation in lte networks. Wireless Networks 22(5), 1427–1440 (Aug 2015)
- Filho, M.G., Barco, C.F., Neto, R.F.T.: Using genetic algorithms to solve scheduling problems on flexible manufacturing systems (fms): a literature survey, classification and analysis. Flexible Services and Manufacturing Journal 26, 408–431 (2014)
- Foris, D., Popescu, M., Foris, T.: A comprehensive review of the quality approach in tourism. In: Butowski, L. (ed.) Mobilities, Tourism and Travel Behavior, chap. 10. IntechOpen, Rijeka (2017)
- Forootani, A., Iervolino, R., Tipaldi, M., Neilson, J.: Approximate dynamic programming for stochastic resource allocation problems. IEEE/CAA Journal of Automatica Sinica 7(4), 975– 990 (2020)
- Forootani, A., Liuzza, D., Tipaldi, M., Glielmo, L.: Allocating resources via price management systems: a dynamic programming-based approach. International Journal of Control 94(8), 2123 2143 (2021)
- 58. García, J.L.B., Mestre, R.G., Viñals, J.T.: An integer linear programming representation for data-center power-aware management (2010)
- 59. Garengo, P., Sardi, A., Nudurupati, S.S.: Human resource management (hrm) in the performance measurement and management (pmm) domain: a bibliometric review. International Journal of Productivity and Performance Management ahead-of-print (2021)
- Gargiulo, F., Quagliarella, D.: Genetic algorithms for the resource constrained project scheduling problem. In: 2012 IEEE 13th International Symposium on Computational Intelligence and Informatics (CINTI). pp. 39–47 (2012)
- 61. Ge, H., Liu, N.: An relief resource allocation model with equity constraints. p. 506 509 (2011)
- Ghaeli, M.: A dynamic programming approach for resource allocation in oil and gas industry. Journal of Project Management (Canada) 4(3), 213 – 216 (2019)
- Gianni M., R., Soon-Wook, H.: Cost-aware dynamic resource allocation in distributed computing infrastructures. International Journal of Contents 2(2) (Jun 2011)
- Godfrey, G.A., Powell, W.B.: An adaptive dynamic programming algorithm for dynamic fleet management, i: Single period travel times. Transportation Science 36(1), 21 – 39 (2002)
- Gong, J.Q., Qin, X.H.: The dynamic programming model for investment decision of enterprise. Applied Mechanics and Materials 519-520, 1466 – 1469 (2014)
- Gonçalves, J., Mendes, J., Resende, M.: A genetic algorithm for the resource constrained multi-project scheduling problem. European Journal of Operational Research 189(3), 1171– 1190 (2008)
- Goodarzy, S., Nazari, M., Han, R., Keller, E., Rozner, E.: Resource management in cloud computing using machine learning: A survey. p. 811 – 816. Institute of Electrical and Electronics Engineers Inc. (2020)
- Gourisaria, M.K., Samanta, A., Saha, A., Patra, S.S., Khilar, P.M.: An extensive review on cloud computing. In: Raju, K.S., Senkerik, R., Lanka, S.P., Rajagopal, V. (eds.) Data Engineering and Communication Technology. pp. 53–78. Springer Nature Singapore, Singapore (2020)
- 69. Guest, D.E.: Human resource management and performance: a review and research agenda. The International Journal of Human Resource Management 8(3), 263–276 (1997)
- Gunter, S., Swanson, L.: Semi-markov dynamic programming approach to competitive bidding with state space reduction considerations. European Journal of Operational Research 32(3), 435 – 447 (1987)
- 71. Hasnaoui, A., Omari, A., Azzouz, Z.E.: Optimization of building energy based on mixed integer linear programming (2022)

- 484 Paweł Czarnul and Mariusz Matuszek
- 72. Ho, T.W., Yao, J.S., Chang, Y.T., Lai, F., Lai, J.F., Chu, S.M., Liao, W.C., Chiu, H.M.: A platform for dynamic optimal nurse scheduling based on integer linear programming along with multiple criteria constraints. p. 145 150 (2018)
- 73. Hollnagel, H., Malterud, K.: From risk factors to health resources in medical practice. Medicine, Health Care and Philosophy (3), 257–264 (2000)
- Hoseiny, F., Azizi, S., Shojafar, M., Ahmadiazar, F., Tafazolli, R.: Pga: A priority-aware genetic algorithm for task scheduling in heterogeneous fog-cloud computing. In: IEEE INFO-COM 2021 IEEE Conference on Computer Communications Workshops (INFOCOM WK-SHPS). pp. 1–6 (2021)
- 75. Huang, Z., Zhao, X., He, C., Gu, Y., Zhou, H., Zhao, B.: Fast optimal resource allocation algorithm for multicast ofdm systems (2012)
- 76. Imtiaz, S., Koudouridis, G.P., Gross, J.: On the feasibility of coordinates-based resource allocation through machine learning (2019)
- Indarapu, S.R.K., Vodithala, S., Kumar, N., Kiran, S., Reddy, S.N., Dorthi, K.: Exploring human resource management intelligence practices using machine learning models. Journal of High Technology Management Research 34(2) (2023)
- Jiang, Z., Ji, R., Chen, Y., Ji, W.: Machine learning and simulation-based framework for disaster preparedness prediction. In: 2021 Winter Simulation Conference (WSC). pp. 1–10 (2021)
- Jo, H., Kim, Y., Lee, H., Lee, Y., Han, H., Kang, S.: On the trade-off between performance and storage efficiency of replication-based object storage. In: Chen, J., Yang, L. (eds.) Proceedings - 11th IEEE International Conference on Cloud Computing Technology and Science, Cloud-Com 2019, 19th IEEE International Conference on Computer and Information Technology, CIT 2019, 2019 International Workshop on Resource Brokering with Blockchain, RBchain 2019 and 2019 Asia-Pacific Services Computing Conference, APSCC 2019. pp. 301–304. International Conference on Cloud Computing Technology and Science, Institute of Electrical and Electronics Engineers (IEEE), United States (2019)
- Johansson, R., Mårtenson, C., Suzić, R., Svenson, P.: Stochastic dynamic programming for resource allocation. Tech. rep., FOI – Swedish Defence Research Agency FOI-R–1666–SE, Command and Control Systems (September 2005)
- Jucan, D., Tudose, L., Bojan, I.: Constrained multi-item inventory systems with quantity discounts via evolutionary algorithm. p. 1543 – 1544. Danube Adria Association for Automation and Manufacturing, DAAAM (2009)
- Kadri, R.L., Boctor, F.F.: An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case. European Journal of Operational Research 265(2), 454–462 (2018)
- Kai Peng, Bohai Zhao, S.X.Q.H.: Energy- and resource-aware computation offloading for complex tasks in edge environment (2020)
- Karimi, K.: The feasibility of using opencl instead of openmp for parallel cpu programming (2015)
- Keerthika, S., Abinaya, N., Jayadharshini, P., Ruthranayaki, J., Vasugi, M., Priyanka, S.: Enhancing soil moisture prediction through machine learning for sustainable resource management. p. 1175 1179. Institute of Electrical and Electronics Engineers Inc. (2023)
- Kennedy, J.O.: Dynamic programming applications to agriculture and natural resources (1 1986)
- Kepler, C., Blackman, W.: Use of dynamic programming techniques for determining resource allocations among r/d projets: An example. IEEE Transactions on Engineering Management EM-20(1), 2 – 5 (1973)
- Khalaf, R.M., Hassan, W.H.: Multi-objective groundwater management using genetic algorithms in kerbala desert area, iraq. IOP Conference Series: Materials Science and Engineering 1067(1), 012013 (feb 2021)

- Kim, Y., Ahn, S., You, C., Cho, S.: A survey on machine learning-based medium access control technology for 6g requirements. Institute of Electrical and Electronics Engineers Inc. (2021)
- Krzywaniak, A., Czarnul, P.: Performance/energy aware optimization of parallel applications on gpus under power capping. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds.) Parallel Processing and Applied Mathematics. pp. 123–133. Springer International Publishing, Cham (2020)
- Krzywaniak, A., Czarnul, P., Proficz, J.: Extended investigation of performance-energy tradeoffs under power capping in hpc environments. In: 2019 International Conference on High Performance Computing Simulation (HPCS). pp. 440–447 (2019)
- 92. Krzywaniak, A., Proficz, J., Czarnul, P.: Analyzing energy/performance trade-offs with power capping for parallel applications on modern multi and many core processors. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, FedCSIS 2018, Poznań, Poland, September 9-12, 2018. Annals of Computer Science and Information Systems, vol. 15, pp. 339–346 (2018)
- Lampoudi, S., Saunders, E., Eastman, J.: An integer linear programming solution to the telescope network scheduling problem. p. 331 – 337 (2015)
- Lee, J.: Efficient elitist genetic algorithm for resource-constrained project scheduling. Korea Journal of Construction Engineering and Management 8(6), 235–245 (2007)
- Li, H., Han, S., Wu, X., Wang, F.: A novel task of loading and computing resource scheduling strategy in internet of vehicles based on dynamic greedy algorithm. Tehnicki Vjesnik 30(4), 1298 – 1307 (2023)
- 96. Li, J.: Resource planning and scheduling of payload for satellite with plasmodium evolutionary algorithm. Journal of Convergence Information Technology 6(8), 395 – 402 (2011)
- 97. Li, X., Nie, L., Chen, S.: Approximate dynamic programming based data center resource dynamic scheduling for energy optimization. In: 2014 IEEE International Conference onÂ Internet of Things(iThings), and IEEEÂ Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing(CPSCom). pp. 494–501. IEEE Computer Society, Los Alamitos, CA, USA (sep 2014)
- Liao, H., Zhou, Z., Zhao, X., Wang, Y.: Learning-based queue-aware task offloading and resource allocation for space–air–ground-integrated power iot. IEEE Internet of Things Journal 8(7), 5250–5263 (2021)
- Liu, H.L., Wang, Q.: A hybrid evolutionary algorithm for ofdm resource allocation. p. 43 47 (2013)
- Liu, H., Wang, Y.: A method for multi-project with resource constraints based on greedy strategy. p. 22 – 27 (2009)
- Liu, J., Liu, Y., Shi, Y., Li, J.: Solving resource-constrained project scheduling problem via genetic algorithm. Journal of Computing in Civil Engineering 34(2), 04019055 (2020)
- Liu, L., Fan, Q.: Resource allocation optimization based on mixed integer linear programming in the multi-cloudlet environment. IEEE Access 6, 24533–24542 (2018)
- 103. Liu, Q., Jiang, Y.: A survey of machine learning-based resource scheduling algorithms in cloud computing environment. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11063 LNCS, 243 – 252 (2018)
- Liu, Z., Zhou, J., Yang, X., Zhao, Z., Lv, Y.: Research on water resource modeling based on machine learning technologies. Water (Switzerland) 16(3) (2024)
- Liu, Z., Zhou, Y., Huang, G., Luo, B.: Risk aversion based inexact stochastic dynamic programming approach for water resources management planning under uncertainty. Sustainability 11(24) (2019)
- Liu, Z., Wang, J.: Review of interpretable machine learning for information resource management. Data Analysis and Knowledge Discovery 8(1), 16 29 (2024)

- 486 Paweł Czarnul and Mariusz Matuszek
- Maaroufi, F., Camus, H., Korbaa, O.: A mixed integer linear programming approach to schedule the operating room. p. 3882 – 3887 (2017)
- Mahboob, M., Celik, T., Genc, B.: Review of machine learning-based mineral resource estimation. Journal of the Southern African Institute of Mining and Metallurgy 122(11), 655 664 (2022)
- Manninen, M.: Short-term optimization method for a local energy system using modified dynamic programming. p. 3225 – 3230 (1982)
- 110. Mansouri, R., Pudeh, H.T., Yonesi, H.A., Haghiabi, A.H.: Dynamic programming model for hydraulics and water resources simulating and optimizing water transfer system (a case study in Iran). Journal of Water Supply: Research and Technology-Aqua 66(8), 684–700 (08 2017)
- Manzini, R., Accorsi, R., Cennerazzo, T., Ferrari, E., Maranesi, F.: The scheduling of maintenance. a resource-constraints mixed integer linear programming model. Computers and Industrial Engineering 87, 561 – 568 (2015)
- Martinez, J.F., Ipek, E.: Dynamic multicore resource management: A machine learning approach. IEEE Micro 29(5), 8–17 (2009)
- Marusenkova, T., Yurchak, I.: A dynamic programming method of calculating the overlapping allan variance. Experience of Designing and Application of CAD Systems in Microelectronics (2019)
- Matzka, S.: Using process quality prediction to increase resource efficiency in manufacturing processes. p. 110 – 111. Institute of Electrical and Electronics Engineers Inc. (2018)
- Meixell, M.J., Norbis, M.: A review of the transportation mode choice and carrier selection literature. The International Journal of Logistics Management 19(2), 183–211 (Jan 2008)
- Meng, G., Lai, Y., Yang, F.: An optimal bus scheduling model based on mixed-integer linear programming. p. 2200 – 2204 (2020)
- 117. Meurisse, A., Carpenter, J.: Past, present and future rationale for space resource utilisation. Planetary and Space Science 182, 104853 (2020)
- 118. Miller, G., Torres-Delgado, A.: Measuring sustainable tourism: a state of the art review of sustainable tourism indicators. Journal of Sustainable Tourism 31(7), 1483–1496 (2023)
- Moreau, L., Queinnec, C.: Resource aware programming. ACM Trans. Program. Lang. Syst. 27(3), 441–476 (2005)
- 120. Müller, S.: Security trade-offs in Cloud storage systems. Doctoral thesis, Technische Universität Berlin, Berlin (2017)
- Najeh, S., Besbes, H., Bouallegue, A.: Greedy algorithm for dynamic resource allocation in downlink of ofdma system. In: 2005 2nd International Symposium on Wireless Communication Systems. pp. 475–479 (2005)
- 122. Neha, Joon, R.: Renewable energy sources: A review. Journal of Physics: Conference Series 1979(1), 012023 (aug 2021)
- Noble, N.T., Dev, Y.P., Joseph, C.T.: Machine learning based techniques for workload prediction in serverless environments. Institute of Electrical and Electronics Engineers Inc. (2023)
- Nurcahyani, I., Lee, J.W.: Role of machine learning in resource allocation strategy over vehicular networks: A survey. Sensors 21(19) (2021)
- Paul, J., Stechele, W., Kröhnert, M., Asfour, T.: Resource-aware programming for robotic vision. CoRR abs/1405.2908 (2014)
- Pei, L.L., Wang, Z.X.: Application of grey dynamic programming model for optimizing regional industrial structure. p. 285 – 288 (2012)
- 127. Pepper, A., Tischler, N., Pryde, G.J.: A quantum autoencoder: Using machine learning to compress qutrits. Institute of Electrical and Electronics Engineers Inc. (2020)
- 128. Perez, G.A.C., Solomatine, D.P.: ADVANCED HYDROINFORMATICS: Machine Learning and Optimization for Water Resources. wiley (2023)
- Pietrabissa, A., Priscoli, F.D., Giorgio, A.D., Giuseppi, A., Panfili, M., Suraci, V.: An approximate dynamic programming approach to resource management in multi-cloud scenarios. International Journal of Control 90(3), 492–503 (2017)

- Plamondon, P., Chaib-draa, B., Benaskeur, A.R.: A real-time dynamic programming decomposition approach to resource allocation. In: 2007 Information, Decision and Control. pp. 308–313 (2007)
- 131. Poladian, Vahe; Sousa, J.G.D.S.M.: Dynamic configuration of resource-aware services. carnegie mellon university. journal contribution (2018)
- Ponis, S., Aretoulaki, E., Maroutas, T.N., Plakas, G., Dimogiorgi, K.: A systematic literature review on additive manufacturing in the context of circular economy. Sustainability 13(11) (2021)
- 133. Popov, A.A., Lopateeva, O.N., Ovsyankin, A.K., Satsuk, M.M.: Application of greedy algorithms for the formation of the educational schedule in the higher education. Journal of Physics: Conference Series 1691, 012066 (nov 2020)
- 134. Quang-Hung N., Nien P.D., N.N.H.T.N.T.N.: A genetic algorithm for power-aware virtual machine allocation in private cloud (2013)
- Quyen, N.T.P., Kuo, R., Chen, J.C., Yang, C.L.: Dynamic programming to solve resource constrained assembly line balancing problem in footwear manufacturing. p. 66 – 70 (2017)
- 136. Rampersaud, S., Grosu, D.: A sharing-aware greedy algorithm for virtual machine maximization. In: 2014 IEEE 13th International Symposium on Network Computing and Applications, NCA 2014, Cambridge, MA, USA, 21-23 August, 2014. pp. 113–120 (2014)
- 137. Rampersaud, S., Grosu, D.: An approximation algorithm for sharing-aware virtual machine revenue maximization. IEEE Trans. Serv. Comput. 14(1), 1–15 (2021)
- Ramírez-Márquez, C., Posadas-Paredes, T., Raya-Tapia, A.Y., Ponce-Ortega, J.M.: Natural resource optimization and sustainability in society 5.0: A comprehensive review. Resources 13(2) (2024)
- Rani, S., Charaya, S.: Review of resource allocation strategies for handoff in 5g mobile communication system. vol. 2023-June, p. 1305 – 1311. Grenze Scientific Society (2023)
- Rani, S., Nainwal, M., Charaya, S.: Analysis of machine learning based resource allocation strategies for 5g mobile networks. vol. 2023-June, p. 1987 – 1993. Grenze Scientific Society (2023)
- 141. Ren, C., Wang, T., Li, X., Bai, G.: An improved adaptive dynamic programming algorithm for cloud storage resource allocation. Journal of Computational Information Systems 7(15), 5401 – 5408 (2011)
- Ricciardi, G., Hwang, S.W.: Cost-aware dynamic resource allocation in distributed computing infrastructures. International Journal of Contents 7, 1–5 (06 2011)
- Rivera, G., Cisneros, L., Sánchez-Solís, P., Rangel-Valdez, N., Rodas-Osollo, J.: Genetic algorithm for scheduling optimization considering heterogeneous containers: A real-world case study. Axioms 9(1) (2020)
- 144. Rodríguez, C.C., Romero Quete, A.A., Suvire, G.O., Rivera, S.R.: Optimization of multiperiod investment planning in street lighting systems by mixed-integer linear programming. International Journal for Simulation and Multidisciplinary Design Optimization 14 (2023)
- Rodríguez-Veiga, J., Ginzo-Villamayor, M.J., Casas-Méndez, B.: An integer linear programming model to select and temporally allocate resources for fighting forest fires. Forests 9(10) (2018)
- Rogalska, M., Bozejko, W., Hejducki, Z., Wodecki, M.: Development of time couplings method using evolutionary algorithms. p. 638 – 643. Vilnius Gediminas Technical University (2008)
- Rudra Kumar, M., Gunjan, V.K.: Machine learning based solutions for human resource systems management. Lecture Notes in Electrical Engineering 828, 1239 – 1249 (2022)
- Rudra Kumar, M., Pathak, R., Gunjan, V.K.: Machine learning-based project resource allocation fitment analysis system (ml-prafs). Lecture Notes in Electrical Engineering 834, 1 – 14 (2022)
- 149. Saad, H.M.H., Chakrabortty, R.K., Elsayed, S., Ryan, M.J.: Quantum-inspired genetic algorithm for resource-constrained project-scheduling. IEEE Access 9, 38488–38502 (2021)

487

- 488 Paweł Czarnul and Mariusz Matuszek
- San Cristóbal Mateo, J.R.: An integer linear programming model including time, cost, quality, and safety. IEEE Access 7, 168307–168315 (2019)
- 151. Shahbaz, M., Bashir, M.F., Bashir, M.A., Shahzad, L.: A bibliometric analysis and systematic literature review of tourism-environmental degradation nexus. Environmental Science and Pollution Research 28, 58241 – 58257 (2021)
- 152. Sheykhi, N., Salami, A., Guerrero, J.M., Agundis-Tinajero, G.D., Faghihi, T.: A comprehensive review on telecommunication challenges of microgrids secondary control. International Journal of Electrical Power & Energy Systems 140, 108081 (2022)
- 153. Shi, J., Tian, H., Fan, S., Zhao, P., Zhao, K.: Hierarchical auction and dynamic programming based resource allocation (hadp-ra) algorithm for 5g ran slicing. p. 207 212 (2018)
- 154. Shin, S., Brun, Y., Balasubramanian, H., Henneman, P., Osterweil, L.: Discrete-event simulation and integer linear programming for constraint-aware resource scheduling. IEEE Transactions on Systems, Man, and Cybernetics: Systems PP, 1–16 (03 2017)
- 155. Shin, S.Y., Brun, Y., Balasubramanian, H., Henneman, P.L., Osterweil, L.J.: Discrete-event simulation and integer linear programming for constraint-aware resource scheduling. IEEE Transactions on Systems, Man, and Cybernetics: Systems 48(9), 1578–1593 (2018)
- 156. Singh, H.: Performance Evaluation of Weighted Greedy Algorithm in Resource Management. Master's thesis, University of Windsor, Windsor, Ontario, Canada (2018)
- Singh, R.I., Lilhore, U.K.: A survey of machine learning models for water quality prediction. p. 1069 – 1074. Institute of Electrical and Electronics Engineers Inc. (2023)
- 158. Stickley, T., O'Caithain, A., Homer, C.: The value of qualitative methods to public health research, policy and practice. Perspectives in Public Health 142(4), 237–240 (2022)
- Stucky, K.U., Jakob, W., Quinte, A., Süß, W.: Solving scheduling problems in grid resource management using an evolutionary algorithm. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4276 LNCS - II, 1252 – 1262 (2006)
- Sun, Y., Yao, P., Zhang, S., Xiao, Y.: Dynamic battlefield resource scheduling model and algorithm with interval parameters. Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice 37(4), 1080 – 1088 (2017)
- Tao, Y., Sun, J., Shao, S.: Radio resource allocation based on greedy algorithm and successive interference cancellation in device-to-device (d2d) communication. vol. 2013, p. 452 – 458 (2013)
- Tiana, X., Yuanb, S.: Genetic algorithm parameters tuning for resource-constrained project scheduling problem. In: AIP Conference Proceedings. vol. 1955 (2018)
- 163. Toklu, Y.C.: Application of genetic algorithms to construction scheduling with or without resource constraints. Canadian Journal of Civil Engineering 29(3), 421–429 (2002)
- Tsakalidou, V.N., Mitsou, P., Papakostas, G.A.: Machine learning for cloud resources management—an overview. Lecture Notes on Data Engineering and Communications Technologies 141, 903 – 915 (2023)
- Venuthurumilli, P., Mandapati, S.: An energy and deadline aware scheduling using greedy algorithm for cloud computing. Ingénierie des systèmes d information 24, 583–590 (12 2019)
- Vink, K., Schot, P.: Multiple-objective optimization of drinking water production strategies using a genetic algorithm. Water Resources Research 38(9), 20–1–20–15 (2002)
- Wang, H., Zhang, H.: Improved hw/sw partitioning algorithm on efficient use of hardware resource. vol. 2, p. 682 – 685 (2010)
- Wang, L.: Proactive push research on personalized learning resources based on machine learning. p. 986 – 991. Institute of Electrical and Electronics Engineers Inc. (2022)
- 169. Wang, S., Meng, B.: Resource allocation and scheduling problem based on genetic algorithm and ant colony optimization. In: Zhou, Z.H., Li, H., Yang, Q. (eds.) Advances in Knowledge Discovery and Data Mining. pp. 879–886. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

489

- 170. Wang, Y., Sun, Y., Zhang, Z.: Model training task scheduling algorithm based on greedygenetic algorithm for big-data mining. vol. 1168 (2019)
- 171. Washburn, R., Schneider, M., Fox, J.: Stochastic dynamic programming based approaches to sensor resource management. vol. 1, p. 608 615 (2002)
- 172. Wen, J.H., Jiang, H., Zhang, M., Yu, X.: Application of dynamic programming in resources optimization allocation of factory production line. Key Engineering Materials 474-476, 1632 – 1637 (2011)
- 173. Wu, L.: Simulation study on optimal allocation model of english online teaching resources based on greedy algorithm. p. 643 646 (2023)
- 174. Wu, T., Zou, Q., Yang, Y., Zhang, X., Liu, S.: A hierarchical comb interference resource allocation algorithm based on greedy strategy and evolutionary algorithm. p. 299 – 303. Institute of Electrical and Electronics Engineers Inc. (2022)
- 175. Xie, F., Li, H., Xu, Z.: An approximate dynamic programming approach to project scheduling with uncertain resource availabilities. Applied Mathematical Modelling 97, 226 – 243 (2021)
- Xing, H., Xu, L., Qu, R., Qu, Z.: A quantum inspired evolutionary algorithm for dynamic multicast routing with network coding. p. 186 – 190. Institute of Electrical and Electronics Engineers Inc. (2016)
- 177. Xu, B., Zhang, R., Yu, J.P.: Improved multi-objective evolutionary algorithm for multi-agent coalition formation. Journal of Software 8(12), 2991 2995 (2013)
- Yakymchuk, B., Liashenko, O.: Modeling the resource planning system for grocery retail using machine learning. Communications in Computer and Information Science 1980, 288 – 299 (2023)
- 179. Yan, J., Zheng, J.: Open sharing of digital education training resources based on machine learning. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST 388, 142 – 151 (2021)
- Yang, C., Xiu, Q.: A bibliometric review of education for sustainable development, 1992–2022. Sustainability 15(14) (2023)
- Yang, J.M., Hu, Z.H., Ding, X.Q., Luo, J.X.: An integer linear programming model for continuous berth allocation problem. vol. 4, p. 74 – 77 (2009)
- Yin, A., Guo, Y., Tang, D.: Resource-aware fluid scheduling with time constraints for clustered many-core architectures. Journal of Physics: Conference Series 1971(1), 012090 (jul 2021)
- Yuan, P., Zhang, T.: Mixed integer linear programming for carrier optimization in wireless localization networks. vol. 2018-January, p. 1 – 6 (2017)
- 184. Zhang, C., Guo, P.: An inexact cvar two-stage mixed-integer linear programming approach for agricultural water management under uncertainty considering ecological water requirement. Ecological Indicators 92, 342 – 353 (2018)
- 185. Zhang, X., Luo, W.: Evolutionary repair for evolutionary design of combinational logic circuits (2012)
- Zhang, Z., Oki, E.: Joint vnf scheduling and deployment: A dynamic scenario. vol. 2022-October, p. 309 – 314 (2022)
- Zhao, J.J., Liu, B.Y., Wei, F.X.: The application of dynamic programming in the system optimization of environmental problem. Advanced Materials Research 765-767, 3045 – 3050 (2013)
- Zhao, Q., Yan, H., Jin, J.: Research on the most efficient use of wind energy resources in the context of carbon neutrality: Overview based on evolutionary algorithm. Mathematical Problems in Engineering 2022 (2022)
- Zhou, Y., Liu, J., Zhang, Y., Gan, X.: A multi-objective evolutionary algorithm for multiperiod dynamic emergency resource scheduling problems. Transportation Research Part E: Logistics and Transportation Review 99, 77 – 95 (2017)
- 190. Zhou, Z., Chang, X., Yang, Y., Li, L.: Resource-aware virtual network parallel embedding based on genetic algorithm. 2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT) pp. 81–86 (2016)

- 490 Paweł Czarnul and Mariusz Matuszek
- Zhuang, X., Jiao, H., Kang, L.: Digital management and optimization of tourism information resources based on machine learning. International Transactions on Electrical Energy Systems 2022 (2022)
- Éles, A., Cabezas, H., Heckl, I.: Heuristic algorithm utilizing mixed-integer linear programming to schedule mobile workforce. Chemical Engineering Transactions 70, 895 900 (2018)
- 193. Özcan, E., Erol, S.: A multi-objective mixed integer linear programming model for energy resource allocation problem: The case of turkey. Gazi University Journal of Science 27, 1157 – 1168 (2014)
- 194. Łazuga, K., Gucma, L.: Genetic algorithm method for solving the optimal allocation of response resources problem on the example of polish zone of the baltic sea. Journal of KONBiN 38(1), 291–310 (2016)

Mariusz Matuszek is an assistant professor at Department of Computer Systems Architecture, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology. His main research areas focus on intelligent distributed systems, in connection with power efficient computing. Most of his professional life is devoted to academic research, with a short interruption by an engineering position with Philips early on.

Paweł Czarnul is an associate professor, v-Dean for Cooperation Promotion and Head of Computer Architecture Department at Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology. His research interests include: high performance computing, distributed systems, and artificial intelligence. He is an author of over 130 publications in the area of parallel and distributed processing, including 2 books. He was a PI or participated in over 20 research, didactic or organizational projects.

Received: July 22, 2024; Accepted: October 27, 2024.