
Computer Science and Information Systems 22(2):563–590 https://doi.org/10.2298/CSIS240722023K

Comparison and Analysis of Software and Hardware
Energy Measurement Methods for a CPU+GPU System

and Selected Parallel Applications

Grzegorz Koszczał, Mariusz Matuszek, and Paweł Czarnul

Faculty of Electronics, Telecommunications and Informatics
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Abstract. In this paper authors extend upon their previous research on power-
capped optimization of performance-energy metrics of deep neural networks train-
ing workloads. A professional power meter Yokogawa WT-310E is used, as well
as Intel RAPL and Nvidia NVML interfaces, to examine power consumption of
a much more comprehensive set of multi-GPU and multi-CPU workloads, includ-
ing: selected kernels from NAS Parallel Benchmarks for CPUs and GPUs as well
as Horovod-Python Xception deep neural network training using several GPUs. A
comparison and discussion of results obtained by both power measurement meth-
ods has been performed using 2 systems, one with 2 Intel Xeon CPUs and 8 Nvidia
Quadro RTX 6000 GPUs and the second 2 Intel Xeon CPUs and 4 Nvidia Quadro
RTX 5000 GPUs. We compared power consumption between hardware and soft-
ware interfaces for CPU, GPU and mixed CPU+GPU workload configurations, us-
ing 1-40 threads for the CPUs and 1-8 GPUs.

Keywords: high performance computing, performance-energy optimization, en-
ergy measurements, measurement accuracy, parallel benchmarks.

1. Introduction

In recent years an increased awareness of the need for energy conservation can be ob-
served, together with ever-increasing demand for high performance computing (HPC),
either in a traditional or cloud-presented form. These two factors combined led to a series
of research on performance-energy optimizations in high performance computing envi-
ronments, as well as introducing dedicated power measurement interfaces: Intel RAPL1

and Nvidia NVML2.
In this paper we use both a Yokogawa WT-310E professional power meter [41] and

software interfaces by Intel and Nvidia to examine reported power draw under a com-
prehensive set of multi-GPU, multi-CPU and mixed workloads, in order to gain a better
insight into capabilities and limitations of those software interfaces.

1 Intel Running Average Power Limit (RAPL) is a set of interfaces for reporting the accumulated energy
consumption of various power domains [17].

2 Nvidia Management Library (NVML) is a C-based API that allows monitoring and managing various states
of the NVIDIA GPU devices, including their power draw [32].
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This paper is a very significantly extended version of conference paper [25]. While
the original work focused on power-capped optimization of performance-energy metrics
of multi-GPU training of deep neural networks using a hardware power meter, this paper
focuses on a thorough comparison of software and hardware power/energy measurement
methods using the aforementioned application (Xception DNN training) and a set of se-
lected NAS Parallel Benchmarks, run on CPUs, GPUs and CPUs+GPUs configurations.

The paper is organized in a standard pattern. We begin by highlighting relevant re-
search papers in this field. Next we present our motivation for research and list our main
contributions. Then a description of our measurement methodology is given, followed by
reasoning behind our choice of testbed applications. A large part of this paper is then
dedicated to a detailed description of our experiments and discussion of results. We fin-
ish the paper with a summary of results and short discussion on possible future work
and an appendix, containing detailed measurements including power values from individ-
ual computing devices and entire nodes, execution times and standard deviations for the
measurements.

2. Related Work

The related work can be broadly assigned to two research categories. One is examina-
tion and validation of RAPL and NVML power measurement interfaces themselves. The
second one is using measurements obtained from said interfaces as inputs for some en-
ergy/performance optimization scheme. Additionally, there are papers dedicated to re-
search on the accuracy and quality of standard benchmark patterns. Papers [30] and [6]
present NAS Parallel Benchmarks and their implementations, while papers [3] and [4]
discuss efficient NAS Parallel benchmarks on GPUs.

Hähnel et al. [14] report on using Intel RAPL energy sensors to measure energy con-
sumption of short code paths, with execution times substantially shorter than RAPL up-
date interval. The authors describe operating system level modifications made to ensure
code execution synchronous with RAPL register updates.

Lang and Rünger [28] propose a statistical method for generating high resolution
power profiles on Nvidia GPUs using standard (lower) resolution power measurements
returned by NVML.

A power consumption model focused on rendering graphics of varying complexity on
a mobile GPU is proposed by Vatjus-Anttila et al. [39]. The model is based on graphics
primitives, such as triangles, render batches and texels, and thus is intended to be hardware
agnostic. The proposed approach allows to predict the complexity of any given 3D scene
at a content production phase. The authors verify their model with measurements on a
real-world content and hardware and report prediction errors in range of 0.3% to 3.2%.

A quantitative evaluation of the Intel’s RAPL power control system is presented by
Zhang and Hoffmann [42]. The authors evaluate the RAPL system by setting target power
limits and running a set of benchmarks, quantifying the results using metrics of accuracy,
stability, settling time, overshoot and efficiency.

Desrochers et al. [11] conducted detailed analysis of RAPL measurements (using the
perf event interface) concerning the CPU and DRAM versus system wide numbers from
a WattsUpPro? device. The testbed system included 3 machines with 2 desktop and 1
server Haswell CPUs. Three different types of DDR3 DRAM as well as two types of
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DDR4 DRAM were tested. The authors concluded that, in general, usually RAPL mea-
surements follow the total power value trends, typically by a constant offset. In general
measurements matched within 20% with following relative phase behavior. Additionally,
in terms of memory, results matched best when the DRAM was heavily utilized, but were
not accurate where the system was idle or memory was used by an integrated GPU. The
authors also noted that the Haswell server machines returned more accurate results from
actual power measurements.

Lucas and Juurlink [29] examine the power consumption dependency of arithmetic-
logic units (ALU’s) in modern GPUs on data values being processed. They show large
power consumption differences between the same kernel processing different data. Use
of microbenchmarks to characterize power consumption of GPU functional units is dis-
cussed and obtained data is used to propose a simple and fast model of the power con-
sumption of functional units, in order to improve accuracy of power consumption models.

Ferro et al. [13] use internal GPU power sensors to examine power profiles of two
Nvidia GPUs under both artificial (benchmark) and real application loads. Cards from two
different generations are measured and a comparison of accuracy between generations is
made. Power consumption of a whole node is also monitored using IPMI interface and
tool.

Ikram et al. [15] propose an experimental methodology for evaluating power and en-
ergy consumption of programs executing on Nvidia Kepler GPUs. The methodology is
applied to two common HPC programs: a matrix multiplication and a parallel sorting.
The authors conclude, that their methodology can be applied to any program executing
on Nvidia Kepler GPU, to obtain measurements of peak and average power, energy and
kernel runtime.

Khan et al. [23] performed detailed analysis of RAPL accuracy and usefulness for
power measurements. They used both customized benchmarks as well as Stream, Stress-
ng and ParFullCMS applications as well as two power measurement datasets from the
Taito – a supercomputing system of the Finnish Center of Scientific Computing. They
determined that measurements using RAPL are very highly highly correlated (≈ 0.99)
with AC power, with a high sampling rate ≈ 1ms that even allows to distinguish various
phases of an application and negligible overhead less than 1% for standalone systems and
less than 2.5% for Amazon EC2. They concluded that RAPL can be used for measur-
ing energy consumption of servers without power meters. Selected, desired features that
would be useful were identified, including: reduction of the delay of reading RAPL MSRs
through hypervisors and more resolution, i.e., per core readings, not only per package.

Sen et al. [35] present a quality assessment methodology of GPU power profiling
mechanisms. Using the proposed methodology the authors assess the quality of four pro-
filing techniques: NVML via Allinea MAP, NVML via direct reads, PowerInsight (PI)
via vendor-provided drivers and PI via Allinea MAP. In addition the authors discuss the
influence of moving-average filters on the slow variation of some of measured power
profiles.

Paniego et al. [33] focus on monitoring and analyzing energy consumption in HPC
environment for a given application and architecture. A matrix multiplication application
on a shared-memory architecture is used to compare values reported by Intel RAPL with
physical measurements obtained through the processor power source. The authors report
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that, for the application considered, there is an error of up to 22% between the average
CPU power and values predicted by RAPL.

Fahad et al. [12] investigated accuracy of on-chip power sensors and predictive models
versus an external hardware power meter for measurement of dynamic energy of appli-
cations. They ran two scientific applications, matrix-matrix multiplication and 2D fast
Fourier transform, for various data sizes, on three Intel multi-core CPUs, two Nvidia
GPUs and an Intel Xeon Phi device and concluded that the average error using on-chip
power sensors can be as high as 73% and using predictive models with performance moni-
toring counters can be as high as 32% for Haswell and Skylake CPUs, for dynamic energy
profiles.

Kavanagh and Djemame [20] use RAPL and IPMI interfaces to come up with tuned
models for estimation of host-level power consumption, for use in Cloud and High Per-
formance Computing platforms. The methodology of models tuning and calibration, as
well as mitigating errors present in both interfaces is discussed in detail.

Ilsche [16] analyzed, in particular, the accuracy of RAPL measurements, for vari-
ous architectures of Intel CPUS, specifically: Sandy Bridge, Haswell and Skylake. For
SandyBridge, after testing several workloads, for the package domain correlation between
RAPL and reference power has been found to be weak with RAPL values being higher
or lower, depending on the workload. For DRAM, close correlation was observed for
higher power consumption while visible discrepancy was observed for smaller values.
This suggests that usage of RAPL is limited in that generation as a replacement for real
measurements, according to the author. In that generation RAPL used an internal, archi-
tectural model with a set of events and consideration of weights for prediction of power
consumption. From Haswell, an implementation based on physical measurements was in-
troduced. The author also evaluated RAPL for the Skylake generation. The accuracy of
measurements for that generation was shown to be considerably better, with relative dis-
crepancy for package + DRAM max. at 3.8% and 3.3% without idle measurement point
(but with much higher discrepancies for separate package and DRAM components).

Arafa et al. [2] present a detailed measurement of energy consumption of different
instructions that can be executed on Nvidia GPGPUs. Three different techniques to read
on-chip power sensors are being used and a comparison of these techniques is made.
Additionally, obtained measurements are verified against an external, custom-designed,
hardware power measuring device.

Aslan and Yilmazer-Metin [5] present a study on power and energy measurement in
Nvidia Jetson embedded GPUs, by validating and extending the methodology presented
by Burtscher et al. [8], originally developed for measurement of GPU power using the
K20 built-in sensor.

Shahid et al. [36] investigated various energy predictive models for multi-core CPUs,
performing tests for two systems with Haswell and Skylake CPUs and a variety of bench-
marks including: NPB kernels, MKL FFT, HPCG, MKL DGEMM, stress and naive matrix-
matrix and matrix-vector multiplication. They have determined, having analyzed the pre-
diction accuracy of linear energy models based on utilization variables only, PMCs only
and both utilization variables and PMCs, that the best models with both utilization vari-
ables and PMCs resulted in 3.6 and 2.6 times better average prediction accuracy compared
to the models based on utilization variables only and PMCs only.
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Krzywaniak et al. [26,27] analyzed application of power capping for multi-core CPUs
and GPUs, in the context of performance-energy optimization considering metrics such as
Energy Delay Product (EDP), Energy Delay Sum (EDS). For a given parallel application
and a computing device, the goal was to find such a power cap so that the value of a
given metric was optimized, compared to the default power cap. Since this process was
performed dynamically at runtime by the proposed DEPO tool, available in versions for
the CPU and the GPU, both performance and power/energy were measured automatically,
even without the need for code instrumentation. For a given power cap, in the case of the
CPU, application progress is measured using an instruction counter and energy using
Intel RAPL. For a code running on a GPU, application progress is measured using a
kernel invocation counter while power is measured using Nvidia NVML which allows
computation of energy. Measurements are taken in an adjustable time window that should
be short enough for quick browsing of a range of available power caps and sufficiently
long for the measurements to be stable and representative. DEPO can browse the available
range of adjustable power caps using one of two algorithms: Linear Search (LS) and
Golden Section Search (GSS). As a result, the authors concluded that for the purpose of
the stated optimization, the accuracy of Intel RAPL and Nvidia NVML was sufficient,
as demonstrated by Krzywaniak et al. [26] (RAPL compared to HPE Metered 3Ph 22
kVA/60309 5-wire 32 A/230 V Outlets (30) C13 (3) C19/Vertical INTL PDU (D9N56A)
with ±1% or better accuracy in power monitoring) and [27] (NVML compared to power
meter WT310) respectively.

A very low-level study of energy cost associated with dynamic branch prediction in an
Intel CPU is given by Alqurashi and Al-Hashimi [1]. The authors use the RAPL interface
for reporting the CPU power and energy, while using known micro-benchmarks under
various run conditions to explore potential pitfalls in the measurement interface.

Departing from the prevailing Intel RAPL and Nvidia NVML tune, Tröpgen et al.
[38] show an evaluation of the energy measurement present in the IBM POWER9 on-chip
controller (OCC). The authors provide a detailed description and in-depth evaluation of
OCC-provided power measurements for several power domains, confronting the results
with externally measured data.

Yang et al. [40] investigated details of power/energy measurement using Nvidia-smi.
They proposed a suite of micro-benchmarks to benchmark profiles using Nvidia-smi for
power readings and have evaluated for over 70 different GPUs from several generations.
For the steady state error evaluation, in the majority of the cases the error was within
+/-5%. Additionally, they determined that for H100 and A100, Nvidia-smi only reports
the average of the past 25ms every 100ms, while for the previous Volta and Pascal gen-
erations 10/20ms periods were reported. The authors proposed to incorporate controlled
delays between repetitions to exposing various segments of an application to the identified
measurement window.

Shalavi et al. [37] study the accurate calibration of power measurements from Nvidia
Jetson devices. The authors propose and utilise a regression model to map sensor mea-
surements to real accurate power readings obtained from external hardware. The authors
found, that internal sensors in Jetson devices underestimated the power draw by up to
50% and, by applying calibration, were able to reduce the error to within ±3%.

A very interesting and thorough experimental comparison of software-based power
meters was presented by Jay et al. [19], focusing on both CPU and GPU workloads. The
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authors discussed various methods to measure energy in computer systems, including:
power meters, intra-node devices, hardware sensors (with respective software interfaces
such as Intel RAPL and Nvidia NVML), as well as power and energy modeling (including
using e.g. a combination of RAPL and hardware performance counter events). Several
software-based power meters are discussed and compared, including: Carbon Tracker,
Code Carbon, Energy Scope, Experiment Impact Tracker, Perf, Power API, Green Al-
gorithms, ML CO2 Impact, and Scaphandre. Furthermore, experimental evaluation was
conducted using a cluster with Nvidia DGX-1 nodes, each with 2 Intel Xeon (Broadwell)
CPUs, 8 Nvidia Tesla V100 GPUs and 512 GB RAM, with an Omegawatt external power
meter (sampling frequency of 1Hz) and node’s BMC with a sampling frequency of 0.2Hz.
Selected NAS benchmark kernels were used: EP, LU and MG (different sizes for CPUs
and GPUs). Power profiles over time were analyzed from Energy Scope, Scaphandre,
Perf, PowerAPI, BMC, and the power meter for both the CPU and GPU. In general, the
Pearson correlation coefficient between the tools and the power meter was approx. 0.95
with the highest value for EnergyScope 0.972 (sampling frequency of 2Hz). What is very
interesting in the context of this work is that the offset between the software power meters’
and the external power meter’ values is not constant and, according to the authors, shall
be studied for various architectures/computing node. Energy overheads of the tools were
evaluated as of approx. 1%. Additionally, the authors tested several benchmarks running
in parallel, also benchmarks of various types, i.e., compute and memory intensive, with
PowerAPI and Scaphandre giving mostly coherent results but some differences occurred
as well. One interesting observation from the results was that after GPU workloads, GPUs
would still take some 20-30 seconds to return to idle load, apparently due to engaged fans
etc.

Raffin and Trystram [34] perform a critical analysis of Intel RAPL energy measure-
ment operations in order to provide RAPL users with best access practices. Qualitative
highlights of differences between measurement mechanisms are given, including evalua-
tion of overheads for various mechanisms present. The paper is focused on a comparative
analysis of the measurement mechanisms and on experimental evaluation of performance
and energy measurements.

3. Motivations and Contribution

As energy-aware high performance computing has gained much attention [10,24], there
is a constant need for assessment of accuracy of various power and energy measurement
methods. This stems from the fact that methods such as Intel RAPL and Nvidia NVML
might be expected to be improved over time and also because of the fact that many system
configurations differ considerably in terms of setups such as numbers of CPUs, GPUs but
also density and additional devices that might be measured by hardware but not grasped
by software APIs, notably fans etc.

Our direct motivation for this research is following up on our previous research on
power-capped optimization of performance-energy metrics of multi-GPU training of deep
neural networks [25]. While in the latter work, we took power measurements under power
capping conditions using a professional hardware power meter Yokogawa WT-310E [41]
and used DNN training workloads only, in this paper we focuse on comparing power
readings from Yokogawa and Intel RAPL and Nvidia NVML. For the comparison to be
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meaningful, we broaden the scope of workloads with NPB Suite to better reflect the di-
versity of contemporary applications. Additionally, we want to explore potential impact
of possible power supply configurations on such measurements.

Our contribution is a comparison of power consumption readings between software
and hardware measurement methods, for a set of workloads representative of HPC appli-
cations, for a range of CPU and GPU loads, up to 2 multi-core CPUs and 8 GPUs. We also
expose and discuss power consumption overheads which are not visible in the readings
from software interfaces like Intel RAPL and Nvidia NVML.

4. Measurement Methodology

The methodology adopted in this paper assumes that we compare average power taken by
a system running selected, representative benchmarks, using both hardware (power me-
ter) and software based measurement methods (through Intel RAPL and Nvidia NVML)
which are available and widely used by other researchers [19].

The ground truth for our measurements is provided by Yokogawa WT310E – an ex-
ternal power meter that is a digital power analyzer that provides extremely low current
measurement capability down to 50 micro-Amps, and a maximum of up to 26 Amps
RMS. This device follows standards and certificates such as Energy Star, SPECpower and
IEC62301/EN50564 testing. This model belongs to WT300E’s family of devices that of-
fer a wide range of functions and enhanced specifications, allowing handling of all the
measurement applications from low frequency to high frequency inverters using a single
power meter. The WT300E series with a fast update rate of 100ms. The basic accuracy for
all input ranges is 0.1% rdg + 0.05% rng (50/60Hz) and DC 0.1% rdg + 0.2% rng. In order
to obtain readings from the Yokogawa WT310E power meter connected to a machine, a
special software has been written – Yokotool [7]. Yokotool is a command-line tool for
controlling Yokogawa power meters in Linux. The tool is written in Python and comes
with the ‘yokolibs.PowerMeter’ module which can be used from Python scripts.

For software-based measurement APIs, we used Intel RAPL for obtaining energy and
then power from the CPU(s) and the DRAM domain as well as Nvidia NVML for obtain-
ing power taken by the GPU(s). Energy measurements from RAPL are accessible by read-
ing proper files exposed in a file system. Power values are reported by NVML by either us-
ing the nvidia-smi command-line tool or calling the nvmlDeviceGetPowerUsage
library function.

While Yokogawa allows us to measure the total power of the whole system, the com-
bined readings from RAPL and NVML are not able to account for additional system
devices, including disks and especially cooling, including fans. By analyzing the differ-
ence between the Yokogawa and combined RAPL+NVML measurements, under various
configurations (CPU cores and GPUs used), for various applications, we can conclude
how the difference changes with the configurations, applications and systems.

As the measurement frequency of the Yokogawa device is 10Hz, it was the frequency
that we set for all the APIs, i.e., Yokogawa WT301E, Intel RAPL and Nvidia NVML.

Specifically, the following results will include computation of the offset (δ) as the
difference between the subtraction of active node power draw (Yokogawa) (θY ) and the
sum of active CPUs (RAPL) power draw (θR) and GPUs (NVML) power draw (θN ) [W],
and subtraction of idle node (Yokogawa) power draw (θYi ) and the sum of idle CPUs and
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GPUs (RAPL+NVML) power draw [W] (θRi
and θNi

, respectively), computed for each
configuration:

δ = (θY − (θR + θN ))− (θYi
− (θRi

+ θNi
))

= (θY − θYi
)− ((θR + θN )− (θRi

+ θNi
)) (1)

5. Testbed Applications

In order to obtain results that are representative of a wide range of applications, it is best
to rely on performing experiments using well established benchmarks. In our case, it is
especially important that we target CPU, GPU and mixed CPU+GPU workloads, for the
purpose of comparison of power/energy measurement methods. Specific requirements in-
clude: ability to run in parallel on various numbers of logical processors, run on one or
more GPUs and being able to execute for various input data sizes so that configurations
with reasonable compute to communication/synchronization time ratios can be selected so
that parallelization is efficient, actual speed-ups are obtained [9]. We have decided to use
the well-established NAS Parallel Benchmark Suite as well as loads generated by Xcep-
tion DNN training. The NPB Suite contains a series of kernels including: IS – Integer Sort
(random memory access), EP – Embarassingly Parallel, CG – Conjugate Gradient (irreg-
ular memory access and communication), MG – Multi-Grid on a sequence of meshes, FT
– Discrete 3D fast Fourier Transform (all-to-all communication) as well as applications:
BT – Block Tri-diagonal solver, SP – Scalar Penta-diagonal solver, LU – Lower-Upper
Gauss-Seidel solver. These benchmarks are available in various sizes, in particular: classes
A, B, C – standard test problems (roughly 4 times size increase from each of the previous
classes) as well as classes D, E, F – large test problems (roughly 16 times size increase
from each of the previous classes). In terms of the implementations tested, we used the
following that satisfied the aforementioned criteria to put load on the CPU(s) and GPU(s):
NAS Parallel Benchmarks (C++ with OMP) [30], NAS Parallel Benchmarks (Fortran with
MPI) [6], NAS Parallel Benchmarks (CUDA) [3,4]. In addition to the NPB Suite, a cus-
tom deep learning model based on Xceptionnet with MPI communication was used. This
model was tested previously with power capping for performance-energy optimization
under power capping [25]. The rationale and methodology for selection of particular con-
figurations is discussed in detail in Section 6.2.

It should be noted how sizes of the benchmarks are set in the following experiments,
which stems from actual implementations for CPUs and GPUs. Specifically, the bench-
marks for the CPU scale with a specific number of threads set which results in reduced
execution times for larger numbers of threads. On the other hand, the compiled bench-
marks for the GPU are run, by default, on a single GPU. For runs that use more than one
GPU, we run the same benchmark independently on a given number of GPUs, which re-
sults in essentially the same execution time of the test, regardless of the number of GPUs
used. In the case of mixed CPU+GPU benchmarks, we conducted a given test until the
end of the shortest (out of the CPU and GPU) benchmarks.
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6. Experiments

6.1. Testbed Systems

For the following tests, we used two systems with multicore CPUs and GPUs, with the
following specifications:

vinnana : 2 x Intel(R) Xeon(R) Silver 4210 CPU (TDP 85W), 2.20GHz, for a total of
20 physical cores and 40 logical processors; 384 GB RAM, DDR4, 2400 MHz; 4 x
Nvidia Quadro RTX 5000 16GB (TDP 230W);

sanna : 2 x Intel(R) Xeon(R) Silver 4210 CPU (TDP 85W), 2.20GHz, for a total of
20 physical cores and 40 logical processors; 384 GB RAM, DDR4, 2400 MHz; 8 x
Nvidia Quadro RTX 6000 24GB (TDP 260W).

Each system uses an Inspur YZMB01130107 motherboard as well as 4 × Delta Elec-
tronics DPS-2200AB-2 PSUs and runs Linux Ubuntu 22.04 LTS operating system. Use
of two very similar systems allowed us to achieve two objectives:

1. validate our findings (in the load ranges common to the two systems, to the extent
possible with our experiment setup),

2. investigate the power consumption overhead patterns between less and more densely
GPU equipped systems, which was made possible by otherwise identical configu-
rations of the two systems. The only difference between the two systems was the
number and models of the installed GPUs.

6.2. Tested Configurations

Tested configurations correspond to various parallelization levels of application runs, in-
teresting from the point of view of taking advantages of the CPUs’ numbers of cores
and numbers of GPUs, installed in the two testbed systems. Consequently, we varied the
number of CPU threads between 2 and 32 threads, considering powers of 2 for selected
simulations which is a typical approach in parallel computing benchmarking. For others,
we set the number of threads between 1 and 20 for 1 CPU as well as between 2 and 40 for
2 physical CPUs which is adjusted to the actual CPU models and core and logical pro-
cessor counts described in Section 6.1. For the GPU tests, we varied the number of GPUs
used, as available in a given system: 1, 2 and 4 GPUs for vinnana and 1, 2, 4 and 8 GPUs
in sanna. For mixed CPUs+GPUs tests, we combined increasing numbers of threads and
GPUs from the aforementioned configurations.

In order to provide a larger variety of tests on similar machines (different in the GPU
configuration) we have decided to conduct tests of various benchmarks/implementations
on the two machines, as follows:

vinnana : CPUs – MPI-Fortran3, GPUs – Horovod-Python, mixed – MPI-Fortran +
Horovod-Python;

sanna : CPUs – OMP-CPP, GPUs – OMP-CUDA, mixed – OMP-CPP + OMP-CUDA.

3 note that throughout the paper, in the case of MPI-Fortran workloads, we refer to computational threads.
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In order to select configurations for testing, we adopted the following assumptions.
Considering the sampling frequency of Yokogawa WT-310E of 10Hz, we assumed that
each test should last at least 20 seconds (in fact guaranteeing 199 probes). We performed
initial tests in order to select benchmarks and corresponding classes (sizes) to satisfy this
criterion. The following benchmarks and configurations were run in this initial phase on
particular systems, each of which was run 3 times and average values were recorded:

Implementation: OMP-CPP: benchmarks available: IS, FT, EP, CG, MG, LU, SP and
BT, class sizes to choose from: B, C and D, 24 different combinations of benchmarks
and class sizes in total, all tests were run on 2 CPUs and 40 logical processors in
parallel;

Implementation: OMP-CUDA: benchmarks available: IS, FT, EP, CG, MG, LU, SP and
BT, class sizes to choose from: C, D and E, 24 different combinations of benchmarks
and class sizes in total, all tests were run on a single GPU with the same grid sizes
each time;

Implementation: MPI-Fortran: benchmarks available: IS, FT, EP, CG, MG and LU, class
sizes to choose from: B, C and D, 18 different combinations of benchmarks and class
sizes in total, all tests were run on 2 CPUs and 32 logical processors in parallel;

Implementation: Horovod-Python: benchmark available: Xception, number of training
epochs tested: 1, 3 and 5, 3 different combinations of model training parameters to
choose from, all tests were run in configurations with 1, 2 and 4 GPUs, to check
training behavior.

Based on these tests and satisfying the aforementioned requirements, we selected the
following configurations for subsequent power/energy investigation for the following test
types:

CPU on vinnana : ep.D.x – Embarassingly Parallel, class size ‘D’, lu.C.x – Lower-
Upper Gauss-Seidel solver, class size ‘C’, is.D.x – Integer Sort, class size ‘D’;

CPU on sanna : bt.C – Block Tri-diagonal solver, class size ‘C’, is.D – Integer Sort, class
size ‘D’, lu.C – Lower-Upper Gauss-Seidel solver, class size ‘C’;

GPUs on vinnana : number of epochs for the training of the Xception model was se-
lected to be 1 as the test accuracy of model is relatively high (86.8%) and the execu-
tion time is satisfactory (48.5s using 4 GPUs).

GPUs on sanna : lu.D – Lower-Upper Gauss-Seidel solver, class size ‘D’, sp.D – Scalar
Penta-diagonal solver, class size ‘D’, ep.D – Embarassingly Parallel, class size ‘D’;

Then mixed versions were selected as follows:

mixed on vinnana : ep.D.x + Xception, is.D.x + Xception, lu.C.x + Xception;
mixed on sanna : bt.C + lu.D, is.D + sp.D, lu.C + ep.D.

We selected the aforementioned benchmarks in order to reflect the variety of real
world workload scalability characteristics.

6.3. Results

All the following results are averages from 10 runs. We have also recorded standard de-
viations, which are reported in tables, for clarity. Before we proceed with presentation of
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results of the selected configuration runs, we demonstrate values of the measured com-
ponents, for selected runs on vinnana. Specifically, Table 1 presents power values for
vinnana, for Xception run on 1, 2 and 4 GPUs, measured using Yokogawa as well as
RAPL and NVML, for CPUs and GPUs, along with execution times, the latter showing
scalability of the simulation. Standard deviation values are provided as well showing very
good stability of the results.

Table 1. Execution times and power draws; server: vinnana, device: GPUs,
implementation: Horovod-Python, benchmark: Xception

GPUs

Results from 10 runs 1 GPU 2 GPUs 4 GPUs

Avg. Exec. time [s] 133.363 80.633 56.574

Std. dev. of time [s] 0.403 0.360 0.350

(Yokogawa) Avg. power draw [W] 511.645 665.957 905.241

(Yokogawa) Std. dev. of avg. power draw [W] 1.120 2.813 2.909

(CPUs) Avg. power draw [W] 55.354 67.363 81.370

(CPUs) Std. dev. of avg. power draw [W] 0.074 0.203 0.283

(GPU: 0) Avg. power draw [W] 169.563 156.733 135.377

(GPU: 0) Std. dev. of avg. power draw [W] 0.878 0.832 1.089

(GPU: 1) Avg. power draw [W] 14.416 159.318 138.517

(GPU: 1) Std. dev. of avg. power draw [W] 0.097 1.436 1.123

(GPU: 2) Avg. power draw [W] 11.060 10.967 133.840

(GPU: 2) Std. dev. of avg. power draw [W] 0.054 0.120 1.084

(GPU: 3) Avg. power draw [W] 14.637 14.873 137.662

(GPU: 3) Std. dev. of avg. power draw [W] 0.046 0.091 1.053

Similarly, Table 2 presents values of analogous variables for a mixed run of ep.D.x+
Xception using a respective number of 1, 2 and 4 GPUs and 8, 16 and 32 processes for
computations. Table 3 presents idle power values for vinnana, measured using Yokogawa
for the whole node, using RAPL for CPUs, NVML for GPUs as well as presents the
difference between the Yokogawa value and sum of the two latter.

We now proceed with presentation of the measurements for the applications and con-
figurations derived in Section 6.2. Each of the following figures presents values for one
computing device type (CPUs, GPUs, mixed CPUs+GPUs) for one system: vinnana or
sanna, for a total of 6 figures: vinnana and applications running on CPUs – Figure 1,
vinnana and applications running on GPUs and on CPUs+GPUs – Figure 2, sanna and
applications running on 1 CPU – Figure 3, sanna and applications running on 2 CPUs
– Figure 4, sanna and applications running on GPUs – Figure 5, sanna and applications
running on CPUs+GPUs – Figure 6.

Each figure, for each application presents three graphs: average power measured for
the whole node by Yokogawa, sum of average powers obtained from RAPL and NVML
(in case of sanna measurements include the DRAM component) as well as the offset
computed using Equation 1.
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Table 2. Execution times and power draws; server: vinnana, device: Hybrid,
implementation: MPI-Fortran+Horovod-Python, benchmark: ep.D.x+Xception

Hybrid

Results from 10 runs (GPU(s) + Processes) 1 + 8 2 + 16 4 + 32

Avg. Exec. time [s] 131.454 80.068 73.330

Std. dev. of time [s] 0.552 1.590 0.355

(Yokogawa) Avg. power draw [W] 561.049 741.187 915.957

(Yokogawa) Std. dev. of avg. power draw [W] 1.145 6.528 2.154

(CPUs) Avg. power draw [W] 99.713 135.506 163.343

(CPUs) Std. dev. of avg. power draw [W] 0.123 0.217 0.221

(GPU: 0) Avg. power draw [W] 171.163 156.899 112.283

(GPU: 0) Std. dev. of avg. power draw [W] 0.676 2.686 0.845

(GPU: 1) Avg. power draw [W] 14.324 159.284 115.304

(GPU: 1) Std. dev. of avg. power draw [W] 0.087 2.510 0.371

(GPU: 2) Avg. power draw [W] 11.058 11.096 111.088

(GPU: 2) Std. dev. of avg. power draw [W] 0.052 0.068 0.945

(GPU: 3) Avg. power draw [W] 14.670 14.960 115.475

(GPU: 3) Std. dev. of avg. power draw [W] 0.034 0.064 1.035

Table 3. Power draw measurements of idle vinnana server
Idle power draw

Measured components Power draw readings [W]

Sum of entire node idle power draw (Yokogawa) 314.693

Sum of CPUs idle power draw (Linux Perf / Intel RAPL) 46.967

Sum of GPUs idle power draw (NVML) 50.255

Difference between idle node power draw
and sum of CPUs and GPUs power draw

217.471

The factory hardware configuration of both sanna and vinnana includes 4 power sup-
plies for each server, for required redundancy. In order to find out the power cost of re-
dundancy we removed 2 power supplies from each server and rerun our test suite for
CPU, GPU and mixed CPU+GPU workloads. We observed an average offset of approx.
40 Watts in the overall power consumption between the two configurations, as reported
by the Yokogawa power meter.

6.4. Discussion

From all the charts, looking at average power values gathered from application runs, for
vinnana, for a given number of threads and/or number of GPUs we can see slightly dif-
ferent results for various workloads, with the exception of very similar power values for
ep.D.x+Xception and lu.C.x+Xception for 1 and 2 GPUs (for 4 GPUs values are visibly
different), as shown in Figure 2. For sanna, very similar power values can be observed for
GPU tests using sp.D and lu.D (Figure 5) and mixed bt.C+lu.D and is.D+sp.D (Figure 6).
Some differences can also be observed in the speed of growth of the power (angle) for
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Fig. 1. Measurements using CPU benchmarks on vinnana

various applications, for instance between lu.C.x and is.D.x for vinnana (Figure 1). Inter-
estingly, mixed is.D.x+Xception is not able to put much larger load onto 4 versus 2 GPUs
and results from Yokogawa and RAPL+NVML are very consistent here.

The most important observations, in the context of the research goal of this paper, is
the observation of the offsets between the hardware (whole node) power measurements
from Yokogawa and the sum of measurements from the software APIs i.e. RAPL and
NVML. The offsets, considering also differences in idle power values measured using
Equation 1, are presented in all Figures 1-6. We can conclude that for all applications
running on the CPUs, the offset is growing with an increasing number of threads but is
relatively small and reaches only up to approx. 30W for a single CPU using 20 threads
(Figure 3), up to approx. 40W using 32 threads on 2 CPUs on vinnana (Figure 1) and
40 threads on sanna (Figure 4). These constitute roughly up to 8.7% of the total power
(Yokogawa) for largest numbers of threads in these tests. Those differences include other
system components such as fans, disks and potential inaccuracies of RAPL and NVML
as the measurements from Yokogawa are considered ground truth. We could also observe
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Fig. 2. Measurements using GPU and mixed CPU+GPU benchmarks on vinnana,
number of threads and GPUs used is marked on the X axis
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Fig. 3. Measurements using CPU benchmarks on 1 multi-core CPU on sanna

that the growth of the offsets is linear up to the number of available physical cores in the
system (20) and then slightly dropping when Hyperthreading is engaged. The similarity of
observed patterns and values for offsets on the two similar systems allows us to conclude
that the measurements are valid.

For GPU workload (Xception) as well as mixed workloads (also including Xception
on the GPU(s)) on vinnana, shown in Figure 2, we see linear growth of the offsets up
to approx. 80W reaching the largest percentage of the total power (from Yokogawa) of
approx. 11%. We can see that the offsets for all the applications are very similar.

For GPU based workloads as well as CPU+GPU mixed workloads run on sanna, we
see a different behaviour. Firstly, we notice that the workloads run on sanna put much
more load on the same number of GPUs (4) on both systems, which results from different
workloads and different GPU models – Quadro RTX 6000 with a higher TDP in sanna
compared to Quadro RTX 5000 in vinnana. Additionally, there are 8 GPUs in sanna, in
the same system (motherboard and chassis). This evidently shows in the offsets. We first
notice that for these workloads, both GPU and mixed shown in Figure 5 and Figure 6
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Fig. 4. Measurements using CPU benchmarks on 2 multi-core CPUs on sanna

respectively, RAPL+NVML report average powers growing linearly with an increasing
number of GPUs. Additionally, starting with 4 GPUs, both for GPU and mixed work-
loads, for all applications we see a large consistent jump in the offsets. These then either
stay at this level or increase only very slightly for 8 GPUs. These increases are clearly
visible in the Yokogawa readings. The values of the offsets for the largest 8 GPU cases
range up to approx. 19% of the total power consumed by the node, and up to 22-26% for
4 GPUs, as reported by Yokogawa. These ratios are much lower for 2 GPUs, e.g. approx.
6% for mixed configurations on sanna. We shall note that while performing tests using the
Xception application for paper [25], we also compared Yokogawa measurements versus
the sum of Intel RAPL and Nvidia NVML and observed the same pattern of power differ-
ence increase for 4-8 GPUs. This suggests that the issue is hardware rather than software
related.
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Fig. 5. Measurements using GPU benchmarks on sanna
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Fig. 6. Measurements using mixed CPU+GPU benchmarks on sanna, number of threads
and GPUs used is marked on the X axis
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We have compared our results with analysis of the requirements of cooling in high
performance computer systems from the literature. Firstly, we note that in the sanna and
vinnana systems, there are two rows of carriers that are four columns across, each carrier
with two fans, for a total of 16 large chassis fans [21].

Itoh et al. [18] performed detailed analysis of power consumption of fans in an HP
blade system. They modeled the speed of fan versus the temperature as well as power
consumed versus fan speed (rpm) presenting formula power = 22.1(rpm/10000)3+8.2.
They concluded that, in their case, fans consumed approx 0.8∼1kW which amounted to
16∼20% of the system. Similarly, Kennedy [22] analyzed the 1U and 2U system fan
power consumption as a percentage of total power consumption, across 9 workloads. The
1U fan power consumption was approx. 1% higher and amounted to 15∼16% of the total
power. Neudorfer [31] stated that server fans can consume 10% to 15% or more of the
total power drawn by the server. Based on those findings, taking into account the our
offsets include also other system components such as disks, we believe these are in line
with the aforementioned observations.

7. Summary and Future Work

In the paper, we performed detailed comparison of hardware and software based power/
energy measurement methods using the hardware power meter Yokogawa WT-310E as
well as Intel RAPL and Nvidia NVML interfaces respectively. We performed tests using
2 systems, one with 2 Intel Xeon CPUs and 8 Nvidia Quadro RTX 6000 GPUs and the
second 2 Intel Xeon CPUs and 4 Nvidia Quadro RTX 5000 GPUs. For thorough com-
parison we used selected kernels from NAS Parallel Benchmarks for CPUs and GPUs
and Xception deep neural network training using several GPUs. Tests were conducted
for CPU, GPU as well as mixed CPUs+GPUs configurations, using 1-40 threads for the
CPUs and 1-8 GPUs.

We shall note that the software power measurements from Intel RAPL and Nvidia
NVML only capture the CPU, GPU and DRAM components without e.g. cooling and
disks. We have determined that the offset, computed using formula 1 in Section 4, grows
with an increasing load (numbers of CPU threads and GPUs used) and amounts to roughly
8.7% of the total system power for CPU workloads. For GPU and mixed workloads on
the system with 4 GPUs the offset reaches up to 11% of the total system power. At the
extreme end, under the highest 2 CPUs + 4-8 GPUs load on the system with 8 Quadro
RTX 6000, it rises up to roughly 19-26% of the total system power. In the high-load range
(multi-GPU workloads on sanna) obtained offset patterns clearly indicate node cooling
system saturation point.

In the future, we plan to extend the scope of tests in terms of applications and systems.
Additionally, we plan to perform a similar comparison with the power measurements ob-
tained from the system platform as well, when provided. We also plan to correlate values
of system metrics corresponding to the loads of CPUs and GPUs with power measurement
offsets. That would allow runtime estimation of whole node power draw using previously
obtained node characteristics.
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A. Detailed Results from sanna

For clarity, this appendix section contains detailed results of measurements of selected
benchmarks, including execution times, power measured for individual computing de-
vices and the whole sanna node, as well as standard deviation values. We chose to include
details for sanna rather than vinnana as sanna is better equipped and reveals cooling limi-
tations in a more pronounced way. Table 4 contains measurements for the lu.C benchmark
executed in parallel using various numbers of threads on a single multi-core CPU, Table 5
presents analogus results using 2 multi-core CPUs, Table 6 details measurements from
the ep.D benchmarks using GPUs and finally Table 7 contains values corresponding to
mixed runs of lu.C and ep.D on both CPUs and GPUs.
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Table 4. Execution times and power draws; server: sanna, device: 1 CPU,
implementation: OMP-CPP, benchmark: lu.C

1 CPU

Results from 10 runs 1 Thread 5 Threads 10 Threads 20 Threads

Avg. Exec. time [s] 709.838 146.984 76.672 64.195

Std. dev. of time [s] 1.198 0.124 0.201 0.196

(Yokogawa)
Avg. power draw [W]

349.991 379.51 411.501 432.449

(Yokogawa)
Std. dev. of avg. power draw [W]

0.085 0.212 0.829 1.553

(CPU: 0)
Avg. power draw [W]

34.419 54.615 74.217 82.381

(CPU: 0)
Std. dev. of avg. power draw [W]

0.221 0.053 0.079 0.055

(CPU: 1)
Avg. power draw [W]

28.919 29.018 28.887 28.803

(CPU: 1)
Std. dev. of avg. power draw [W]

0.297 0.075 0.042 0.030

(RAM)
Avg. power draw [W]

23.574 27.971 30.029 31.413

(RAM)
Std. dev. of avg. power draw [W]

0.093 0.030 0.053 0.046

(GPU: 0)
Avg. power draw [W]

5.384 5.414 5.378 5.387

(GPU: 0)
Std. dev. of avg. power draw [W]

0.077 0.101 0.073 0.056

(GPU: 1)
Avg. power draw [W]

9.691 10.083 10.046 9.759

(GPU: 1)
Std. dev. of avg. power draw [W]

0.180 0.139 0.185 0.186

(GPU: 2)
Avg. power draw [W]

13.812 13.757 13.811 13.945

(GPU: 2)
Std. dev. of avg. power draw [W]

0.164 0.148 0.041 0.190

(GPU: 3)
Avg. power draw [W]

17.234 17.248 17.240 17.233

(GPU: 3)
Std. dev. of avg. power draw [W]

0.014 0.017 0.012 0.011

(GPU: 4)
Avg. power draw [W]

4.045 4.037 4.017 4.025

(GPU: 4)
Std. dev. of avg. power draw [W]

0.011 0.017 0.006 0.011

(GPU: 5)
Avg. power draw [W]

18.450 18.661 18.709 18.585

(GPU: 5)
Std. dev. of avg. power draw [W]

0.111 0.136 0.164 0.117

(GPU: 6)
Avg. power draw [W]

6.469 6.393 6.593 6.621

(GPU: 6)
Std. dev. of avg. power draw [W]

0.077 0.082 0.108 0.079

(GPU: 7)
Avg. power draw [W]

11.371 11.745 12.035 11.495

(GPU: 7)
Std. dev. of avg. power draw [W]

0.280 0.249 0.191 0.147
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Table 5. Execution times and power draws; server: sanna, device: 2 CPUs,
implementation: OMP-CPP, benchmark: lu.C

1 CPU

Results from 10 runs 2 Threads 10 Threads 20 Threads 40 Threads

Avg. Exec. time [s] 518.970 75.024 46.207 44.716

Std. dev. of time [s] 26.472 0.910 0.385 1.309

(Yokogawa)
Avg. power draw [W]

354.402 405.909 452.840 466.669

(Yokogawa)
Std. dev. of avg. power draw [W]

0.550 0.808 1.639 4.044

(CPU: 0)
Avg. power draw [W]

33.168 52.455 67.115 70.499

(CPU: 0)
Std. dev. of avg. power draw [W]

0.155 0.204 0.163 0.524

(CPU: 1)
Avg. power draw [W]

33.589 51.560 67.221 70.781

(CPU: 1)
Std. dev. of avg. power draw [W]

0.307 0.247 0.215 0.605

(RAM)
Avg. power draw [W]

23.927 28.316 30.873 31.369

(RAM)
Std. dev. of avg. power draw [W]

0.096 0.132 0.117 0.234

(GPU: 0)
Avg. power draw [W]

5.559 5.514 5.508 5.538

(GPU: 0)
Std. dev. of avg. power draw [W]

0.204 0.114 0.093 0.061

(GPU: 1)
Avg. power draw [W]

10.276 10.210 10.480 10.347

(GPU: 1)
Std. dev. of avg. power draw [W]

0.298 0.185 0.174 0.064

(GPU: 2)
Avg. power draw [W]

13.689 13.966 13.833 13.863

(GPU: 2)
Std. dev. of avg. power draw [W]

0.125 0.126 0.166 0.070

(GPU: 3)
Avg. power draw [W]

17.229 17.238 17.226 17.256

(GPU: 3)
Std. dev. of avg. power draw [W]

0.034 0.017 0.014 0.011

(GPU: 4)
Avg. power draw [W]

4.004 4.012 4.039 4.061

(GPU: 4)
Std. dev. of avg. power draw [W]

0.043 0.016 0.013 0.023

(GPU: 5)
Avg. power draw [W]

18.408 18.451 18.554 18.537

(GPU: 5)
Std. dev. of avg. power draw [W]

0.183 0.121 0.097 0.097

(GPU: 6)
Avg. power draw [W]

6.278 6.446 6.314 6.491

(GPU: 6)
Std. dev. of avg. power draw [W]

0.381 0.087 0.113 0.097

(GPU: 7)
Avg. power draw [W]

11.684 12.216 12.250 12.131

(GPU: 7)
Std. dev. of avg. power draw [W]

0.367 0.140 0.144 0.212
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Table 6. Execution times and power draws; server: sanna, device: GPUs,
implementation: OMP-CUDA, benchmark: ep.D

1 CPU

Results from 10 runs 1 GPU 2 GPUs 4 GPUs 8 GPUs

Avg. Exec. time [s] 28.056 28.212 28.350 28.975

Std. dev. of time [s] 0.080 0.031 0.051 0.133

(Yokogawa)
Avg. power draw [W]

539.594 703.358 1306.636 1949.073

(Yokogawa)
Std. dev. of avg. power draw [W]

8.704 6.079 15.716 11.492

(CPU: 0)
Avg. power draw [W]

33.286 37.151 37.555 45.274

(CPU: 0)
Std. dev. of avg. power draw [W]

0.065 0.639 0.223 0.092

(CPU: 1)
Avg. power draw [W]

28.970 28.776 37.179 44.509

(CPU: 1)
Std. dev. of avg. power draw [W]

0.152 0.231 0.095 0.073

(RAM)
Avg. power draw [W]

21.765 21.899 22.030 21.994

(RAM)
Std. dev. of avg. power draw [W]

0.077 0.094 0.106 0.074

(GPU: 0)
Avg. power draw [W]

156.550 156.842 153.124 150.186

(GPU: 0)
Std. dev. of avg. power draw [W]

1.426 0.428 0.299 0.892

(GPU: 1)
Avg. power draw [W]

10.206 160.103 158.563 155.258

(GPU: 1)
Std. dev. of avg. power draw [W]

0.151 1.263 0.448 0.692

(GPU: 2)
Avg. power draw [W]

13.757 13.844 161.103 158.964

(GPU: 2)
Std. dev. of avg. power draw [W]

0.138 0.106 1.131 1.452

(GPU: 3)
Avg. power draw [W]

17.208 17.205 174.830 172.491

(GPU: 3)
Std. dev. of avg. power draw [W]

0.019 0.023 1.426 0.342

(GPU: 4)
Avg. power draw [W]

4.055 4.047 4.107 153.803

(GPU: 4)
Std. dev. of avg. power draw [W]

0.013 0.011 0.012 1.957

(GPU: 5)
Avg. power draw [W]

18.628 18.739 19.708 168.175

(GPU: 5)
Std. dev. of avg. power draw [W]

0.145 0.152 0.135 0.994

(GPU: 6)
Avg. power draw [W]

5.995 5.979 6.795 158.945

(GPU: 6)
Std. dev. of avg. power draw [W]

0.081 0.114 0.152 1.391

(GPU: 7)
Avg. power draw [W]

12.572 12.626 13.555 172.951

(GPU: 7)
Std. dev. of avg. power draw [W]

0.215 0.201 0.163 1.657
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Table 7. Execution times and power draws; server: sanna, device: Hybrid,
implementation: OMP-CPP+OMP-CUDA, benchmark: lu.C+ep.D

1 CPU

Results from 10 runs 1 + 4 2 + 8 4 + 16 8 + 32

Avg. Exec. time [s] 27.974 28.101 28.314 29.211

Std. dev. of time [s] 0.082 0.072 0.076 0.186

(Yokogawa)
Avg. power draw [W]

570.861 748.939 1385.889 2024.047

(Yokogawa)
Std. dev. of avg. power draw [W]

8.010 9.171 26.194 11.160

(CPU: 0)
Avg. power draw [W]

53.715 72.342 65.580 71.738

(CPU: 0)
Std. dev. of avg. power draw [W]

0.106 5.246 5.428 0.738

(CPU: 1)
Avg. power draw [W]

29.490 29.483 65.091 72.040

(CPU: 1)
Std. dev. of avg. power draw [W]

0.108 0.069 7.089 0.824

(RAM)
Avg. power draw [W]

27.094 29.173 27.993 29.224

(RAM)
Std. dev. of avg. power draw [W]

0.086 2.041 2.760 0.385

(GPU: 0)
Avg. power draw [W]

157.522 157.090 153.753 150.166

(GPU: 0)
Std. dev. of avg. power draw [W]

1.623 1.619 1.082 0.598

(GPU: 1)
Avg. power draw [W]

10.251 159.154 157.782 154.078

(GPU: 1)
Std. dev. of avg. power draw [W]

0.181 0.775 1.027 0.878

(GPU: 2)
Avg. power draw [W]

14.145 14.103 161.310 158.264

(GPU: 2)
Std. dev. of avg. power draw [W]

0.191 0.182 1.294 0.991

(GPU: 3)
Avg. power draw [W]

17.251 17.239 173.964 171.584

(GPU: 3)
Std. dev. of avg. power draw [W]

0.026 0.031 1.835 1.215

(GPU: 4)
Avg. power draw [W]

3.966 3.973 3.996 154.742

(GPU: 4)
Std. dev. of avg. power draw [W]

0.005 0.013 0.012 0.731

(GPU: 5)
Avg. power draw [W]

18.808 18.940 19.680 167.668

(GPU: 5)
Std. dev. of avg. power draw [W]

0.164 0.194 0.344 0.620

(GPU: 6)
Avg. power draw [W]

6.049 6.233 6.476 156.762

(GPU: 6)
Std. dev. of avg. power draw [W]

0.081 0.346 0.107 0.808

(GPU: 7)
Avg. power draw [W]

10.969 11.067 12.323 171.879

(GPU: 7)
Std. dev. of avg. power draw [W]

0.157 0.220 0.261 1.756
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13. Ferro, M., Yokoyama, A., Klõh, V., Silva, G., Gandra, R., Bragança, R., Bulcão, A., Schulze,
B.: Analysis of gpu power consumption using internal sensors. In: Anais do XVI Work-
shop em Desempenho de Sistemas Computacionais e de Comunicação. SBC, Porto Ale-
gre, RS, Brasil (2017), https://sol.sbc.org.br/index.php/wperformance/
article/view/3360

https://www.mdpi.com/2073-431X/12/7/139
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3056
https://doi.org/10.1007/978-0-387-09766-4_133
https://doi.org/10.1145/2588768.2576783
https://doi.org/10.1145/2588768.2576783
https://doi.org/10.1155/2019/8348791
https://doi.org/10.1145/2989081.2989088
https://doi.org/10.1145/2989081.2989088
https://www.mdpi.com/1996-1073/12/11/2204
https://www.mdpi.com/1996-1073/12/11/2204
https://sol.sbc.org.br/index.php/wperformance/article/view/3360
https://sol.sbc.org.br/index.php/wperformance/article/view/3360


588 Grzegorz Koszczał et al.
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of Technology. His main research areas focus on intelligent distributed systems, in con-
nection with power efficient computing. Most of his professional life is devoted to aca-
demic research, with a short interruption by an engineering position with Philips early
on.

Paweł Czarnul is an associate professor, v-Dean for Cooperation & Promotion and Head
of Computer Architecture Department at Faculty of Electronics, Telecommunications and
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